linux/fs/kernfs/dir.c
<<
>>
Prefs
   1/*
   2 * fs/kernfs/dir.c - kernfs directory implementation
   3 *
   4 * Copyright (c) 2001-3 Patrick Mochel
   5 * Copyright (c) 2007 SUSE Linux Products GmbH
   6 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
   7 *
   8 * This file is released under the GPLv2.
   9 */
  10
  11#include <linux/sched.h>
  12#include <linux/fs.h>
  13#include <linux/namei.h>
  14#include <linux/idr.h>
  15#include <linux/slab.h>
  16#include <linux/security.h>
  17#include <linux/hash.h>
  18
  19#include "kernfs-internal.h"
  20
  21DEFINE_MUTEX(kernfs_mutex);
  22static DEFINE_SPINLOCK(kernfs_rename_lock);     /* kn->parent and ->name */
  23static char kernfs_pr_cont_buf[PATH_MAX];       /* protected by rename_lock */
  24
  25#define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
  26
  27static bool kernfs_active(struct kernfs_node *kn)
  28{
  29        lockdep_assert_held(&kernfs_mutex);
  30        return atomic_read(&kn->active) >= 0;
  31}
  32
  33static bool kernfs_lockdep(struct kernfs_node *kn)
  34{
  35#ifdef CONFIG_DEBUG_LOCK_ALLOC
  36        return kn->flags & KERNFS_LOCKDEP;
  37#else
  38        return false;
  39#endif
  40}
  41
  42static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen)
  43{
  44        return strlcpy(buf, kn->parent ? kn->name : "/", buflen);
  45}
  46
  47/* kernfs_node_depth - compute depth from @from to @to */
  48static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to)
  49{
  50        size_t depth = 0;
  51
  52        while (to->parent && to != from) {
  53                depth++;
  54                to = to->parent;
  55        }
  56        return depth;
  57}
  58
  59static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a,
  60                                                  struct kernfs_node *b)
  61{
  62        size_t da, db;
  63        struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b);
  64
  65        if (ra != rb)
  66                return NULL;
  67
  68        da = kernfs_depth(ra->kn, a);
  69        db = kernfs_depth(rb->kn, b);
  70
  71        while (da > db) {
  72                a = a->parent;
  73                da--;
  74        }
  75        while (db > da) {
  76                b = b->parent;
  77                db--;
  78        }
  79
  80        /* worst case b and a will be the same at root */
  81        while (b != a) {
  82                b = b->parent;
  83                a = a->parent;
  84        }
  85
  86        return a;
  87}
  88
  89/**
  90 * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to,
  91 * where kn_from is treated as root of the path.
  92 * @kn_from: kernfs node which should be treated as root for the path
  93 * @kn_to: kernfs node to which path is needed
  94 * @buf: buffer to copy the path into
  95 * @buflen: size of @buf
  96 *
  97 * We need to handle couple of scenarios here:
  98 * [1] when @kn_from is an ancestor of @kn_to at some level
  99 * kn_from: /n1/n2/n3
 100 * kn_to:   /n1/n2/n3/n4/n5
 101 * result:  /n4/n5
 102 *
 103 * [2] when @kn_from is on a different hierarchy and we need to find common
 104 * ancestor between @kn_from and @kn_to.
 105 * kn_from: /n1/n2/n3/n4
 106 * kn_to:   /n1/n2/n5
 107 * result:  /../../n5
 108 * OR
 109 * kn_from: /n1/n2/n3/n4/n5   [depth=5]
 110 * kn_to:   /n1/n2/n3         [depth=3]
 111 * result:  /../..
 112 *
 113 * Returns the length of the full path.  If the full length is equal to or
 114 * greater than @buflen, @buf contains the truncated path with the trailing
 115 * '\0'.  On error, -errno is returned.
 116 */
 117static int kernfs_path_from_node_locked(struct kernfs_node *kn_to,
 118                                        struct kernfs_node *kn_from,
 119                                        char *buf, size_t buflen)
 120{
 121        struct kernfs_node *kn, *common;
 122        const char parent_str[] = "/..";
 123        size_t depth_from, depth_to, len = 0;
 124        int i, j;
 125
 126        if (!kn_from)
 127                kn_from = kernfs_root(kn_to)->kn;
 128
 129        if (kn_from == kn_to)
 130                return strlcpy(buf, "/", buflen);
 131
 132        common = kernfs_common_ancestor(kn_from, kn_to);
 133        if (WARN_ON(!common))
 134                return -EINVAL;
 135
 136        depth_to = kernfs_depth(common, kn_to);
 137        depth_from = kernfs_depth(common, kn_from);
 138
 139        if (buf)
 140                buf[0] = '\0';
 141
 142        for (i = 0; i < depth_from; i++)
 143                len += strlcpy(buf + len, parent_str,
 144                               len < buflen ? buflen - len : 0);
 145
 146        /* Calculate how many bytes we need for the rest */
 147        for (i = depth_to - 1; i >= 0; i--) {
 148                for (kn = kn_to, j = 0; j < i; j++)
 149                        kn = kn->parent;
 150                len += strlcpy(buf + len, "/",
 151                               len < buflen ? buflen - len : 0);
 152                len += strlcpy(buf + len, kn->name,
 153                               len < buflen ? buflen - len : 0);
 154        }
 155
 156        return len;
 157}
 158
 159/**
 160 * kernfs_name - obtain the name of a given node
 161 * @kn: kernfs_node of interest
 162 * @buf: buffer to copy @kn's name into
 163 * @buflen: size of @buf
 164 *
 165 * Copies the name of @kn into @buf of @buflen bytes.  The behavior is
 166 * similar to strlcpy().  It returns the length of @kn's name and if @buf
 167 * isn't long enough, it's filled upto @buflen-1 and nul terminated.
 168 *
 169 * This function can be called from any context.
 170 */
 171int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
 172{
 173        unsigned long flags;
 174        int ret;
 175
 176        spin_lock_irqsave(&kernfs_rename_lock, flags);
 177        ret = kernfs_name_locked(kn, buf, buflen);
 178        spin_unlock_irqrestore(&kernfs_rename_lock, flags);
 179        return ret;
 180}
 181
 182/**
 183 * kernfs_path_from_node - build path of node @to relative to @from.
 184 * @from: parent kernfs_node relative to which we need to build the path
 185 * @to: kernfs_node of interest
 186 * @buf: buffer to copy @to's path into
 187 * @buflen: size of @buf
 188 *
 189 * Builds @to's path relative to @from in @buf. @from and @to must
 190 * be on the same kernfs-root. If @from is not parent of @to, then a relative
 191 * path (which includes '..'s) as needed to reach from @from to @to is
 192 * returned.
 193 *
 194 * Returns the length of the full path.  If the full length is equal to or
 195 * greater than @buflen, @buf contains the truncated path with the trailing
 196 * '\0'.  On error, -errno is returned.
 197 */
 198int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from,
 199                          char *buf, size_t buflen)
 200{
 201        unsigned long flags;
 202        int ret;
 203
 204        spin_lock_irqsave(&kernfs_rename_lock, flags);
 205        ret = kernfs_path_from_node_locked(to, from, buf, buflen);
 206        spin_unlock_irqrestore(&kernfs_rename_lock, flags);
 207        return ret;
 208}
 209EXPORT_SYMBOL_GPL(kernfs_path_from_node);
 210
 211/**
 212 * pr_cont_kernfs_name - pr_cont name of a kernfs_node
 213 * @kn: kernfs_node of interest
 214 *
 215 * This function can be called from any context.
 216 */
 217void pr_cont_kernfs_name(struct kernfs_node *kn)
 218{
 219        unsigned long flags;
 220
 221        spin_lock_irqsave(&kernfs_rename_lock, flags);
 222
 223        kernfs_name_locked(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf));
 224        pr_cont("%s", kernfs_pr_cont_buf);
 225
 226        spin_unlock_irqrestore(&kernfs_rename_lock, flags);
 227}
 228
 229/**
 230 * pr_cont_kernfs_path - pr_cont path of a kernfs_node
 231 * @kn: kernfs_node of interest
 232 *
 233 * This function can be called from any context.
 234 */
 235void pr_cont_kernfs_path(struct kernfs_node *kn)
 236{
 237        unsigned long flags;
 238        int sz;
 239
 240        spin_lock_irqsave(&kernfs_rename_lock, flags);
 241
 242        sz = kernfs_path_from_node_locked(kn, NULL, kernfs_pr_cont_buf,
 243                                          sizeof(kernfs_pr_cont_buf));
 244        if (sz < 0) {
 245                pr_cont("(error)");
 246                goto out;
 247        }
 248
 249        if (sz >= sizeof(kernfs_pr_cont_buf)) {
 250                pr_cont("(name too long)");
 251                goto out;
 252        }
 253
 254        pr_cont("%s", kernfs_pr_cont_buf);
 255
 256out:
 257        spin_unlock_irqrestore(&kernfs_rename_lock, flags);
 258}
 259
 260/**
 261 * kernfs_get_parent - determine the parent node and pin it
 262 * @kn: kernfs_node of interest
 263 *
 264 * Determines @kn's parent, pins and returns it.  This function can be
 265 * called from any context.
 266 */
 267struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
 268{
 269        struct kernfs_node *parent;
 270        unsigned long flags;
 271
 272        spin_lock_irqsave(&kernfs_rename_lock, flags);
 273        parent = kn->parent;
 274        kernfs_get(parent);
 275        spin_unlock_irqrestore(&kernfs_rename_lock, flags);
 276
 277        return parent;
 278}
 279
 280/**
 281 *      kernfs_name_hash
 282 *      @name: Null terminated string to hash
 283 *      @ns:   Namespace tag to hash
 284 *
 285 *      Returns 31 bit hash of ns + name (so it fits in an off_t )
 286 */
 287static unsigned int kernfs_name_hash(const char *name, const void *ns)
 288{
 289        unsigned long hash = init_name_hash(ns);
 290        unsigned int len = strlen(name);
 291        while (len--)
 292                hash = partial_name_hash(*name++, hash);
 293        hash = end_name_hash(hash);
 294        hash &= 0x7fffffffU;
 295        /* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
 296        if (hash < 2)
 297                hash += 2;
 298        if (hash >= INT_MAX)
 299                hash = INT_MAX - 1;
 300        return hash;
 301}
 302
 303static int kernfs_name_compare(unsigned int hash, const char *name,
 304                               const void *ns, const struct kernfs_node *kn)
 305{
 306        if (hash < kn->hash)
 307                return -1;
 308        if (hash > kn->hash)
 309                return 1;
 310        if (ns < kn->ns)
 311                return -1;
 312        if (ns > kn->ns)
 313                return 1;
 314        return strcmp(name, kn->name);
 315}
 316
 317static int kernfs_sd_compare(const struct kernfs_node *left,
 318                             const struct kernfs_node *right)
 319{
 320        return kernfs_name_compare(left->hash, left->name, left->ns, right);
 321}
 322
 323/**
 324 *      kernfs_link_sibling - link kernfs_node into sibling rbtree
 325 *      @kn: kernfs_node of interest
 326 *
 327 *      Link @kn into its sibling rbtree which starts from
 328 *      @kn->parent->dir.children.
 329 *
 330 *      Locking:
 331 *      mutex_lock(kernfs_mutex)
 332 *
 333 *      RETURNS:
 334 *      0 on susccess -EEXIST on failure.
 335 */
 336static int kernfs_link_sibling(struct kernfs_node *kn)
 337{
 338        struct rb_node **node = &kn->parent->dir.children.rb_node;
 339        struct rb_node *parent = NULL;
 340
 341        while (*node) {
 342                struct kernfs_node *pos;
 343                int result;
 344
 345                pos = rb_to_kn(*node);
 346                parent = *node;
 347                result = kernfs_sd_compare(kn, pos);
 348                if (result < 0)
 349                        node = &pos->rb.rb_left;
 350                else if (result > 0)
 351                        node = &pos->rb.rb_right;
 352                else
 353                        return -EEXIST;
 354        }
 355
 356        /* add new node and rebalance the tree */
 357        rb_link_node(&kn->rb, parent, node);
 358        rb_insert_color(&kn->rb, &kn->parent->dir.children);
 359
 360        /* successfully added, account subdir number */
 361        if (kernfs_type(kn) == KERNFS_DIR)
 362                kn->parent->dir.subdirs++;
 363
 364        return 0;
 365}
 366
 367/**
 368 *      kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
 369 *      @kn: kernfs_node of interest
 370 *
 371 *      Try to unlink @kn from its sibling rbtree which starts from
 372 *      kn->parent->dir.children.  Returns %true if @kn was actually
 373 *      removed, %false if @kn wasn't on the rbtree.
 374 *
 375 *      Locking:
 376 *      mutex_lock(kernfs_mutex)
 377 */
 378static bool kernfs_unlink_sibling(struct kernfs_node *kn)
 379{
 380        if (RB_EMPTY_NODE(&kn->rb))
 381                return false;
 382
 383        if (kernfs_type(kn) == KERNFS_DIR)
 384                kn->parent->dir.subdirs--;
 385
 386        rb_erase(&kn->rb, &kn->parent->dir.children);
 387        RB_CLEAR_NODE(&kn->rb);
 388        return true;
 389}
 390
 391/**
 392 *      kernfs_get_active - get an active reference to kernfs_node
 393 *      @kn: kernfs_node to get an active reference to
 394 *
 395 *      Get an active reference of @kn.  This function is noop if @kn
 396 *      is NULL.
 397 *
 398 *      RETURNS:
 399 *      Pointer to @kn on success, NULL on failure.
 400 */
 401struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
 402{
 403        if (unlikely(!kn))
 404                return NULL;
 405
 406        if (!atomic_inc_unless_negative(&kn->active))
 407                return NULL;
 408
 409        if (kernfs_lockdep(kn))
 410                rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
 411        return kn;
 412}
 413
 414/**
 415 *      kernfs_put_active - put an active reference to kernfs_node
 416 *      @kn: kernfs_node to put an active reference to
 417 *
 418 *      Put an active reference to @kn.  This function is noop if @kn
 419 *      is NULL.
 420 */
 421void kernfs_put_active(struct kernfs_node *kn)
 422{
 423        struct kernfs_root *root = kernfs_root(kn);
 424        int v;
 425
 426        if (unlikely(!kn))
 427                return;
 428
 429        if (kernfs_lockdep(kn))
 430                rwsem_release(&kn->dep_map, 1, _RET_IP_);
 431        v = atomic_dec_return(&kn->active);
 432        if (likely(v != KN_DEACTIVATED_BIAS))
 433                return;
 434
 435        wake_up_all(&root->deactivate_waitq);
 436}
 437
 438/**
 439 * kernfs_drain - drain kernfs_node
 440 * @kn: kernfs_node to drain
 441 *
 442 * Drain existing usages and nuke all existing mmaps of @kn.  Mutiple
 443 * removers may invoke this function concurrently on @kn and all will
 444 * return after draining is complete.
 445 */
 446static void kernfs_drain(struct kernfs_node *kn)
 447        __releases(&kernfs_mutex) __acquires(&kernfs_mutex)
 448{
 449        struct kernfs_root *root = kernfs_root(kn);
 450
 451        lockdep_assert_held(&kernfs_mutex);
 452        WARN_ON_ONCE(kernfs_active(kn));
 453
 454        mutex_unlock(&kernfs_mutex);
 455
 456        if (kernfs_lockdep(kn)) {
 457                rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
 458                if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
 459                        lock_contended(&kn->dep_map, _RET_IP_);
 460        }
 461
 462        /* but everyone should wait for draining */
 463        wait_event(root->deactivate_waitq,
 464                   atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
 465
 466        if (kernfs_lockdep(kn)) {
 467                lock_acquired(&kn->dep_map, _RET_IP_);
 468                rwsem_release(&kn->dep_map, 1, _RET_IP_);
 469        }
 470
 471        kernfs_unmap_bin_file(kn);
 472
 473        mutex_lock(&kernfs_mutex);
 474}
 475
 476/**
 477 * kernfs_get - get a reference count on a kernfs_node
 478 * @kn: the target kernfs_node
 479 */
 480void kernfs_get(struct kernfs_node *kn)
 481{
 482        if (kn) {
 483                WARN_ON(!atomic_read(&kn->count));
 484                atomic_inc(&kn->count);
 485        }
 486}
 487EXPORT_SYMBOL_GPL(kernfs_get);
 488
 489/**
 490 * kernfs_put - put a reference count on a kernfs_node
 491 * @kn: the target kernfs_node
 492 *
 493 * Put a reference count of @kn and destroy it if it reached zero.
 494 */
 495void kernfs_put(struct kernfs_node *kn)
 496{
 497        struct kernfs_node *parent;
 498        struct kernfs_root *root;
 499
 500        if (!kn || !atomic_dec_and_test(&kn->count))
 501                return;
 502        root = kernfs_root(kn);
 503 repeat:
 504        /*
 505         * Moving/renaming is always done while holding reference.
 506         * kn->parent won't change beneath us.
 507         */
 508        parent = kn->parent;
 509
 510        WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
 511                  "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
 512                  parent ? parent->name : "", kn->name, atomic_read(&kn->active));
 513
 514        if (kernfs_type(kn) == KERNFS_LINK)
 515                kernfs_put(kn->symlink.target_kn);
 516
 517        kfree_const(kn->name);
 518
 519        if (kn->iattr) {
 520                if (kn->iattr->ia_secdata)
 521                        security_release_secctx(kn->iattr->ia_secdata,
 522                                                kn->iattr->ia_secdata_len);
 523                simple_xattrs_free(&kn->iattr->xattrs);
 524        }
 525        kfree(kn->iattr);
 526        ida_simple_remove(&root->ino_ida, kn->ino);
 527        kmem_cache_free(kernfs_node_cache, kn);
 528
 529        kn = parent;
 530        if (kn) {
 531                if (atomic_dec_and_test(&kn->count))
 532                        goto repeat;
 533        } else {
 534                /* just released the root kn, free @root too */
 535                ida_destroy(&root->ino_ida);
 536                kfree(root);
 537        }
 538}
 539EXPORT_SYMBOL_GPL(kernfs_put);
 540
 541static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
 542{
 543        struct kernfs_node *kn;
 544
 545        if (flags & LOOKUP_RCU)
 546                return -ECHILD;
 547
 548        /* Always perform fresh lookup for negatives */
 549        if (d_really_is_negative(dentry))
 550                goto out_bad_unlocked;
 551
 552        kn = dentry->d_fsdata;
 553        mutex_lock(&kernfs_mutex);
 554
 555        /* The kernfs node has been deactivated */
 556        if (!kernfs_active(kn))
 557                goto out_bad;
 558
 559        /* The kernfs node has been moved? */
 560        if (dentry->d_parent->d_fsdata != kn->parent)
 561                goto out_bad;
 562
 563        /* The kernfs node has been renamed */
 564        if (strcmp(dentry->d_name.name, kn->name) != 0)
 565                goto out_bad;
 566
 567        /* The kernfs node has been moved to a different namespace */
 568        if (kn->parent && kernfs_ns_enabled(kn->parent) &&
 569            kernfs_info(dentry->d_sb)->ns != kn->ns)
 570                goto out_bad;
 571
 572        mutex_unlock(&kernfs_mutex);
 573        return 1;
 574out_bad:
 575        mutex_unlock(&kernfs_mutex);
 576out_bad_unlocked:
 577        return 0;
 578}
 579
 580static void kernfs_dop_release(struct dentry *dentry)
 581{
 582        kernfs_put(dentry->d_fsdata);
 583}
 584
 585const struct dentry_operations kernfs_dops = {
 586        .d_revalidate   = kernfs_dop_revalidate,
 587        .d_release      = kernfs_dop_release,
 588};
 589
 590/**
 591 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
 592 * @dentry: the dentry in question
 593 *
 594 * Return the kernfs_node associated with @dentry.  If @dentry is not a
 595 * kernfs one, %NULL is returned.
 596 *
 597 * While the returned kernfs_node will stay accessible as long as @dentry
 598 * is accessible, the returned node can be in any state and the caller is
 599 * fully responsible for determining what's accessible.
 600 */
 601struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
 602{
 603        if (dentry->d_sb->s_op == &kernfs_sops)
 604                return dentry->d_fsdata;
 605        return NULL;
 606}
 607
 608static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
 609                                             const char *name, umode_t mode,
 610                                             unsigned flags)
 611{
 612        struct kernfs_node *kn;
 613        int ret;
 614
 615        name = kstrdup_const(name, GFP_KERNEL);
 616        if (!name)
 617                return NULL;
 618
 619        kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
 620        if (!kn)
 621                goto err_out1;
 622
 623        ret = ida_simple_get(&root->ino_ida, 1, 0, GFP_KERNEL);
 624        if (ret < 0)
 625                goto err_out2;
 626        kn->ino = ret;
 627
 628        atomic_set(&kn->count, 1);
 629        atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
 630        RB_CLEAR_NODE(&kn->rb);
 631
 632        kn->name = name;
 633        kn->mode = mode;
 634        kn->flags = flags;
 635
 636        return kn;
 637
 638 err_out2:
 639        kmem_cache_free(kernfs_node_cache, kn);
 640 err_out1:
 641        kfree_const(name);
 642        return NULL;
 643}
 644
 645struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
 646                                    const char *name, umode_t mode,
 647                                    unsigned flags)
 648{
 649        struct kernfs_node *kn;
 650
 651        kn = __kernfs_new_node(kernfs_root(parent), name, mode, flags);
 652        if (kn) {
 653                kernfs_get(parent);
 654                kn->parent = parent;
 655        }
 656        return kn;
 657}
 658
 659/**
 660 *      kernfs_add_one - add kernfs_node to parent without warning
 661 *      @kn: kernfs_node to be added
 662 *
 663 *      The caller must already have initialized @kn->parent.  This
 664 *      function increments nlink of the parent's inode if @kn is a
 665 *      directory and link into the children list of the parent.
 666 *
 667 *      RETURNS:
 668 *      0 on success, -EEXIST if entry with the given name already
 669 *      exists.
 670 */
 671int kernfs_add_one(struct kernfs_node *kn)
 672{
 673        struct kernfs_node *parent = kn->parent;
 674        struct kernfs_iattrs *ps_iattr;
 675        bool has_ns;
 676        int ret;
 677
 678        mutex_lock(&kernfs_mutex);
 679
 680        ret = -EINVAL;
 681        has_ns = kernfs_ns_enabled(parent);
 682        if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
 683                 has_ns ? "required" : "invalid", parent->name, kn->name))
 684                goto out_unlock;
 685
 686        if (kernfs_type(parent) != KERNFS_DIR)
 687                goto out_unlock;
 688
 689        ret = -ENOENT;
 690        if (parent->flags & KERNFS_EMPTY_DIR)
 691                goto out_unlock;
 692
 693        if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent))
 694                goto out_unlock;
 695
 696        kn->hash = kernfs_name_hash(kn->name, kn->ns);
 697
 698        ret = kernfs_link_sibling(kn);
 699        if (ret)
 700                goto out_unlock;
 701
 702        /* Update timestamps on the parent */
 703        ps_iattr = parent->iattr;
 704        if (ps_iattr) {
 705                struct iattr *ps_iattrs = &ps_iattr->ia_iattr;
 706                ktime_get_real_ts(&ps_iattrs->ia_ctime);
 707                ps_iattrs->ia_mtime = ps_iattrs->ia_ctime;
 708        }
 709
 710        mutex_unlock(&kernfs_mutex);
 711
 712        /*
 713         * Activate the new node unless CREATE_DEACTIVATED is requested.
 714         * If not activated here, the kernfs user is responsible for
 715         * activating the node with kernfs_activate().  A node which hasn't
 716         * been activated is not visible to userland and its removal won't
 717         * trigger deactivation.
 718         */
 719        if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
 720                kernfs_activate(kn);
 721        return 0;
 722
 723out_unlock:
 724        mutex_unlock(&kernfs_mutex);
 725        return ret;
 726}
 727
 728/**
 729 * kernfs_find_ns - find kernfs_node with the given name
 730 * @parent: kernfs_node to search under
 731 * @name: name to look for
 732 * @ns: the namespace tag to use
 733 *
 734 * Look for kernfs_node with name @name under @parent.  Returns pointer to
 735 * the found kernfs_node on success, %NULL on failure.
 736 */
 737static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
 738                                          const unsigned char *name,
 739                                          const void *ns)
 740{
 741        struct rb_node *node = parent->dir.children.rb_node;
 742        bool has_ns = kernfs_ns_enabled(parent);
 743        unsigned int hash;
 744
 745        lockdep_assert_held(&kernfs_mutex);
 746
 747        if (has_ns != (bool)ns) {
 748                WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
 749                     has_ns ? "required" : "invalid", parent->name, name);
 750                return NULL;
 751        }
 752
 753        hash = kernfs_name_hash(name, ns);
 754        while (node) {
 755                struct kernfs_node *kn;
 756                int result;
 757
 758                kn = rb_to_kn(node);
 759                result = kernfs_name_compare(hash, name, ns, kn);
 760                if (result < 0)
 761                        node = node->rb_left;
 762                else if (result > 0)
 763                        node = node->rb_right;
 764                else
 765                        return kn;
 766        }
 767        return NULL;
 768}
 769
 770static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent,
 771                                          const unsigned char *path,
 772                                          const void *ns)
 773{
 774        size_t len;
 775        char *p, *name;
 776
 777        lockdep_assert_held(&kernfs_mutex);
 778
 779        /* grab kernfs_rename_lock to piggy back on kernfs_pr_cont_buf */
 780        spin_lock_irq(&kernfs_rename_lock);
 781
 782        len = strlcpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf));
 783
 784        if (len >= sizeof(kernfs_pr_cont_buf)) {
 785                spin_unlock_irq(&kernfs_rename_lock);
 786                return NULL;
 787        }
 788
 789        p = kernfs_pr_cont_buf;
 790
 791        while ((name = strsep(&p, "/")) && parent) {
 792                if (*name == '\0')
 793                        continue;
 794                parent = kernfs_find_ns(parent, name, ns);
 795        }
 796
 797        spin_unlock_irq(&kernfs_rename_lock);
 798
 799        return parent;
 800}
 801
 802/**
 803 * kernfs_find_and_get_ns - find and get kernfs_node with the given name
 804 * @parent: kernfs_node to search under
 805 * @name: name to look for
 806 * @ns: the namespace tag to use
 807 *
 808 * Look for kernfs_node with name @name under @parent and get a reference
 809 * if found.  This function may sleep and returns pointer to the found
 810 * kernfs_node on success, %NULL on failure.
 811 */
 812struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
 813                                           const char *name, const void *ns)
 814{
 815        struct kernfs_node *kn;
 816
 817        mutex_lock(&kernfs_mutex);
 818        kn = kernfs_find_ns(parent, name, ns);
 819        kernfs_get(kn);
 820        mutex_unlock(&kernfs_mutex);
 821
 822        return kn;
 823}
 824EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
 825
 826/**
 827 * kernfs_walk_and_get_ns - find and get kernfs_node with the given path
 828 * @parent: kernfs_node to search under
 829 * @path: path to look for
 830 * @ns: the namespace tag to use
 831 *
 832 * Look for kernfs_node with path @path under @parent and get a reference
 833 * if found.  This function may sleep and returns pointer to the found
 834 * kernfs_node on success, %NULL on failure.
 835 */
 836struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent,
 837                                           const char *path, const void *ns)
 838{
 839        struct kernfs_node *kn;
 840
 841        mutex_lock(&kernfs_mutex);
 842        kn = kernfs_walk_ns(parent, path, ns);
 843        kernfs_get(kn);
 844        mutex_unlock(&kernfs_mutex);
 845
 846        return kn;
 847}
 848
 849/**
 850 * kernfs_create_root - create a new kernfs hierarchy
 851 * @scops: optional syscall operations for the hierarchy
 852 * @flags: KERNFS_ROOT_* flags
 853 * @priv: opaque data associated with the new directory
 854 *
 855 * Returns the root of the new hierarchy on success, ERR_PTR() value on
 856 * failure.
 857 */
 858struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
 859                                       unsigned int flags, void *priv)
 860{
 861        struct kernfs_root *root;
 862        struct kernfs_node *kn;
 863
 864        root = kzalloc(sizeof(*root), GFP_KERNEL);
 865        if (!root)
 866                return ERR_PTR(-ENOMEM);
 867
 868        ida_init(&root->ino_ida);
 869        INIT_LIST_HEAD(&root->supers);
 870
 871        kn = __kernfs_new_node(root, "", S_IFDIR | S_IRUGO | S_IXUGO,
 872                               KERNFS_DIR);
 873        if (!kn) {
 874                ida_destroy(&root->ino_ida);
 875                kfree(root);
 876                return ERR_PTR(-ENOMEM);
 877        }
 878
 879        kn->priv = priv;
 880        kn->dir.root = root;
 881
 882        root->syscall_ops = scops;
 883        root->flags = flags;
 884        root->kn = kn;
 885        init_waitqueue_head(&root->deactivate_waitq);
 886
 887        if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
 888                kernfs_activate(kn);
 889
 890        return root;
 891}
 892
 893/**
 894 * kernfs_destroy_root - destroy a kernfs hierarchy
 895 * @root: root of the hierarchy to destroy
 896 *
 897 * Destroy the hierarchy anchored at @root by removing all existing
 898 * directories and destroying @root.
 899 */
 900void kernfs_destroy_root(struct kernfs_root *root)
 901{
 902        kernfs_remove(root->kn);        /* will also free @root */
 903}
 904
 905/**
 906 * kernfs_create_dir_ns - create a directory
 907 * @parent: parent in which to create a new directory
 908 * @name: name of the new directory
 909 * @mode: mode of the new directory
 910 * @priv: opaque data associated with the new directory
 911 * @ns: optional namespace tag of the directory
 912 *
 913 * Returns the created node on success, ERR_PTR() value on failure.
 914 */
 915struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
 916                                         const char *name, umode_t mode,
 917                                         void *priv, const void *ns)
 918{
 919        struct kernfs_node *kn;
 920        int rc;
 921
 922        /* allocate */
 923        kn = kernfs_new_node(parent, name, mode | S_IFDIR, KERNFS_DIR);
 924        if (!kn)
 925                return ERR_PTR(-ENOMEM);
 926
 927        kn->dir.root = parent->dir.root;
 928        kn->ns = ns;
 929        kn->priv = priv;
 930
 931        /* link in */
 932        rc = kernfs_add_one(kn);
 933        if (!rc)
 934                return kn;
 935
 936        kernfs_put(kn);
 937        return ERR_PTR(rc);
 938}
 939
 940/**
 941 * kernfs_create_empty_dir - create an always empty directory
 942 * @parent: parent in which to create a new directory
 943 * @name: name of the new directory
 944 *
 945 * Returns the created node on success, ERR_PTR() value on failure.
 946 */
 947struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent,
 948                                            const char *name)
 949{
 950        struct kernfs_node *kn;
 951        int rc;
 952
 953        /* allocate */
 954        kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR, KERNFS_DIR);
 955        if (!kn)
 956                return ERR_PTR(-ENOMEM);
 957
 958        kn->flags |= KERNFS_EMPTY_DIR;
 959        kn->dir.root = parent->dir.root;
 960        kn->ns = NULL;
 961        kn->priv = NULL;
 962
 963        /* link in */
 964        rc = kernfs_add_one(kn);
 965        if (!rc)
 966                return kn;
 967
 968        kernfs_put(kn);
 969        return ERR_PTR(rc);
 970}
 971
 972static struct dentry *kernfs_iop_lookup(struct inode *dir,
 973                                        struct dentry *dentry,
 974                                        unsigned int flags)
 975{
 976        struct dentry *ret;
 977        struct kernfs_node *parent = dentry->d_parent->d_fsdata;
 978        struct kernfs_node *kn;
 979        struct inode *inode;
 980        const void *ns = NULL;
 981
 982        mutex_lock(&kernfs_mutex);
 983
 984        if (kernfs_ns_enabled(parent))
 985                ns = kernfs_info(dir->i_sb)->ns;
 986
 987        kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
 988
 989        /* no such entry */
 990        if (!kn || !kernfs_active(kn)) {
 991                ret = NULL;
 992                goto out_unlock;
 993        }
 994        kernfs_get(kn);
 995        dentry->d_fsdata = kn;
 996
 997        /* attach dentry and inode */
 998        inode = kernfs_get_inode(dir->i_sb, kn);
 999        if (!inode) {
1000                ret = ERR_PTR(-ENOMEM);
1001                goto out_unlock;
1002        }
1003
1004        /* instantiate and hash dentry */
1005        ret = d_splice_alias(inode, dentry);
1006 out_unlock:
1007        mutex_unlock(&kernfs_mutex);
1008        return ret;
1009}
1010
1011static int kernfs_iop_mkdir(struct inode *dir, struct dentry *dentry,
1012                            umode_t mode)
1013{
1014        struct kernfs_node *parent = dir->i_private;
1015        struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops;
1016        int ret;
1017
1018        if (!scops || !scops->mkdir)
1019                return -EPERM;
1020
1021        if (!kernfs_get_active(parent))
1022                return -ENODEV;
1023
1024        ret = scops->mkdir(parent, dentry->d_name.name, mode);
1025
1026        kernfs_put_active(parent);
1027        return ret;
1028}
1029
1030static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
1031{
1032        struct kernfs_node *kn  = dentry->d_fsdata;
1033        struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1034        int ret;
1035
1036        if (!scops || !scops->rmdir)
1037                return -EPERM;
1038
1039        if (!kernfs_get_active(kn))
1040                return -ENODEV;
1041
1042        ret = scops->rmdir(kn);
1043
1044        kernfs_put_active(kn);
1045        return ret;
1046}
1047
1048static int kernfs_iop_rename(struct inode *old_dir, struct dentry *old_dentry,
1049                             struct inode *new_dir, struct dentry *new_dentry,
1050                             unsigned int flags)
1051{
1052        struct kernfs_node *kn  = old_dentry->d_fsdata;
1053        struct kernfs_node *new_parent = new_dir->i_private;
1054        struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1055        int ret;
1056
1057        if (flags)
1058                return -EINVAL;
1059
1060        if (!scops || !scops->rename)
1061                return -EPERM;
1062
1063        if (!kernfs_get_active(kn))
1064                return -ENODEV;
1065
1066        if (!kernfs_get_active(new_parent)) {
1067                kernfs_put_active(kn);
1068                return -ENODEV;
1069        }
1070
1071        ret = scops->rename(kn, new_parent, new_dentry->d_name.name);
1072
1073        kernfs_put_active(new_parent);
1074        kernfs_put_active(kn);
1075        return ret;
1076}
1077
1078const struct inode_operations kernfs_dir_iops = {
1079        .lookup         = kernfs_iop_lookup,
1080        .permission     = kernfs_iop_permission,
1081        .setattr        = kernfs_iop_setattr,
1082        .getattr        = kernfs_iop_getattr,
1083        .listxattr      = kernfs_iop_listxattr,
1084
1085        .mkdir          = kernfs_iop_mkdir,
1086        .rmdir          = kernfs_iop_rmdir,
1087        .rename         = kernfs_iop_rename,
1088};
1089
1090static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
1091{
1092        struct kernfs_node *last;
1093
1094        while (true) {
1095                struct rb_node *rbn;
1096
1097                last = pos;
1098
1099                if (kernfs_type(pos) != KERNFS_DIR)
1100                        break;
1101
1102                rbn = rb_first(&pos->dir.children);
1103                if (!rbn)
1104                        break;
1105
1106                pos = rb_to_kn(rbn);
1107        }
1108
1109        return last;
1110}
1111
1112/**
1113 * kernfs_next_descendant_post - find the next descendant for post-order walk
1114 * @pos: the current position (%NULL to initiate traversal)
1115 * @root: kernfs_node whose descendants to walk
1116 *
1117 * Find the next descendant to visit for post-order traversal of @root's
1118 * descendants.  @root is included in the iteration and the last node to be
1119 * visited.
1120 */
1121static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
1122                                                       struct kernfs_node *root)
1123{
1124        struct rb_node *rbn;
1125
1126        lockdep_assert_held(&kernfs_mutex);
1127
1128        /* if first iteration, visit leftmost descendant which may be root */
1129        if (!pos)
1130                return kernfs_leftmost_descendant(root);
1131
1132        /* if we visited @root, we're done */
1133        if (pos == root)
1134                return NULL;
1135
1136        /* if there's an unvisited sibling, visit its leftmost descendant */
1137        rbn = rb_next(&pos->rb);
1138        if (rbn)
1139                return kernfs_leftmost_descendant(rb_to_kn(rbn));
1140
1141        /* no sibling left, visit parent */
1142        return pos->parent;
1143}
1144
1145/**
1146 * kernfs_activate - activate a node which started deactivated
1147 * @kn: kernfs_node whose subtree is to be activated
1148 *
1149 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
1150 * needs to be explicitly activated.  A node which hasn't been activated
1151 * isn't visible to userland and deactivation is skipped during its
1152 * removal.  This is useful to construct atomic init sequences where
1153 * creation of multiple nodes should either succeed or fail atomically.
1154 *
1155 * The caller is responsible for ensuring that this function is not called
1156 * after kernfs_remove*() is invoked on @kn.
1157 */
1158void kernfs_activate(struct kernfs_node *kn)
1159{
1160        struct kernfs_node *pos;
1161
1162        mutex_lock(&kernfs_mutex);
1163
1164        pos = NULL;
1165        while ((pos = kernfs_next_descendant_post(pos, kn))) {
1166                if (!pos || (pos->flags & KERNFS_ACTIVATED))
1167                        continue;
1168
1169                WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb));
1170                WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS);
1171
1172                atomic_sub(KN_DEACTIVATED_BIAS, &pos->active);
1173                pos->flags |= KERNFS_ACTIVATED;
1174        }
1175
1176        mutex_unlock(&kernfs_mutex);
1177}
1178
1179static void __kernfs_remove(struct kernfs_node *kn)
1180{
1181        struct kernfs_node *pos;
1182
1183        lockdep_assert_held(&kernfs_mutex);
1184
1185        /*
1186         * Short-circuit if non-root @kn has already finished removal.
1187         * This is for kernfs_remove_self() which plays with active ref
1188         * after removal.
1189         */
1190        if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb)))
1191                return;
1192
1193        pr_debug("kernfs %s: removing\n", kn->name);
1194
1195        /* prevent any new usage under @kn by deactivating all nodes */
1196        pos = NULL;
1197        while ((pos = kernfs_next_descendant_post(pos, kn)))
1198                if (kernfs_active(pos))
1199                        atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
1200
1201        /* deactivate and unlink the subtree node-by-node */
1202        do {
1203                pos = kernfs_leftmost_descendant(kn);
1204
1205                /*
1206                 * kernfs_drain() drops kernfs_mutex temporarily and @pos's
1207                 * base ref could have been put by someone else by the time
1208                 * the function returns.  Make sure it doesn't go away
1209                 * underneath us.
1210                 */
1211                kernfs_get(pos);
1212
1213                /*
1214                 * Drain iff @kn was activated.  This avoids draining and
1215                 * its lockdep annotations for nodes which have never been
1216                 * activated and allows embedding kernfs_remove() in create
1217                 * error paths without worrying about draining.
1218                 */
1219                if (kn->flags & KERNFS_ACTIVATED)
1220                        kernfs_drain(pos);
1221                else
1222                        WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
1223
1224                /*
1225                 * kernfs_unlink_sibling() succeeds once per node.  Use it
1226                 * to decide who's responsible for cleanups.
1227                 */
1228                if (!pos->parent || kernfs_unlink_sibling(pos)) {
1229                        struct kernfs_iattrs *ps_iattr =
1230                                pos->parent ? pos->parent->iattr : NULL;
1231
1232                        /* update timestamps on the parent */
1233                        if (ps_iattr) {
1234                                ktime_get_real_ts(&ps_iattr->ia_iattr.ia_ctime);
1235                                ps_iattr->ia_iattr.ia_mtime =
1236                                        ps_iattr->ia_iattr.ia_ctime;
1237                        }
1238
1239                        kernfs_put(pos);
1240                }
1241
1242                kernfs_put(pos);
1243        } while (pos != kn);
1244}
1245
1246/**
1247 * kernfs_remove - remove a kernfs_node recursively
1248 * @kn: the kernfs_node to remove
1249 *
1250 * Remove @kn along with all its subdirectories and files.
1251 */
1252void kernfs_remove(struct kernfs_node *kn)
1253{
1254        mutex_lock(&kernfs_mutex);
1255        __kernfs_remove(kn);
1256        mutex_unlock(&kernfs_mutex);
1257}
1258
1259/**
1260 * kernfs_break_active_protection - break out of active protection
1261 * @kn: the self kernfs_node
1262 *
1263 * The caller must be running off of a kernfs operation which is invoked
1264 * with an active reference - e.g. one of kernfs_ops.  Each invocation of
1265 * this function must also be matched with an invocation of
1266 * kernfs_unbreak_active_protection().
1267 *
1268 * This function releases the active reference of @kn the caller is
1269 * holding.  Once this function is called, @kn may be removed at any point
1270 * and the caller is solely responsible for ensuring that the objects it
1271 * dereferences are accessible.
1272 */
1273void kernfs_break_active_protection(struct kernfs_node *kn)
1274{
1275        /*
1276         * Take out ourself out of the active ref dependency chain.  If
1277         * we're called without an active ref, lockdep will complain.
1278         */
1279        kernfs_put_active(kn);
1280}
1281
1282/**
1283 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
1284 * @kn: the self kernfs_node
1285 *
1286 * If kernfs_break_active_protection() was called, this function must be
1287 * invoked before finishing the kernfs operation.  Note that while this
1288 * function restores the active reference, it doesn't and can't actually
1289 * restore the active protection - @kn may already or be in the process of
1290 * being removed.  Once kernfs_break_active_protection() is invoked, that
1291 * protection is irreversibly gone for the kernfs operation instance.
1292 *
1293 * While this function may be called at any point after
1294 * kernfs_break_active_protection() is invoked, its most useful location
1295 * would be right before the enclosing kernfs operation returns.
1296 */
1297void kernfs_unbreak_active_protection(struct kernfs_node *kn)
1298{
1299        /*
1300         * @kn->active could be in any state; however, the increment we do
1301         * here will be undone as soon as the enclosing kernfs operation
1302         * finishes and this temporary bump can't break anything.  If @kn
1303         * is alive, nothing changes.  If @kn is being deactivated, the
1304         * soon-to-follow put will either finish deactivation or restore
1305         * deactivated state.  If @kn is already removed, the temporary
1306         * bump is guaranteed to be gone before @kn is released.
1307         */
1308        atomic_inc(&kn->active);
1309        if (kernfs_lockdep(kn))
1310                rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
1311}
1312
1313/**
1314 * kernfs_remove_self - remove a kernfs_node from its own method
1315 * @kn: the self kernfs_node to remove
1316 *
1317 * The caller must be running off of a kernfs operation which is invoked
1318 * with an active reference - e.g. one of kernfs_ops.  This can be used to
1319 * implement a file operation which deletes itself.
1320 *
1321 * For example, the "delete" file for a sysfs device directory can be
1322 * implemented by invoking kernfs_remove_self() on the "delete" file
1323 * itself.  This function breaks the circular dependency of trying to
1324 * deactivate self while holding an active ref itself.  It isn't necessary
1325 * to modify the usual removal path to use kernfs_remove_self().  The
1326 * "delete" implementation can simply invoke kernfs_remove_self() on self
1327 * before proceeding with the usual removal path.  kernfs will ignore later
1328 * kernfs_remove() on self.
1329 *
1330 * kernfs_remove_self() can be called multiple times concurrently on the
1331 * same kernfs_node.  Only the first one actually performs removal and
1332 * returns %true.  All others will wait until the kernfs operation which
1333 * won self-removal finishes and return %false.  Note that the losers wait
1334 * for the completion of not only the winning kernfs_remove_self() but also
1335 * the whole kernfs_ops which won the arbitration.  This can be used to
1336 * guarantee, for example, all concurrent writes to a "delete" file to
1337 * finish only after the whole operation is complete.
1338 */
1339bool kernfs_remove_self(struct kernfs_node *kn)
1340{
1341        bool ret;
1342
1343        mutex_lock(&kernfs_mutex);
1344        kernfs_break_active_protection(kn);
1345
1346        /*
1347         * SUICIDAL is used to arbitrate among competing invocations.  Only
1348         * the first one will actually perform removal.  When the removal
1349         * is complete, SUICIDED is set and the active ref is restored
1350         * while holding kernfs_mutex.  The ones which lost arbitration
1351         * waits for SUICDED && drained which can happen only after the
1352         * enclosing kernfs operation which executed the winning instance
1353         * of kernfs_remove_self() finished.
1354         */
1355        if (!(kn->flags & KERNFS_SUICIDAL)) {
1356                kn->flags |= KERNFS_SUICIDAL;
1357                __kernfs_remove(kn);
1358                kn->flags |= KERNFS_SUICIDED;
1359                ret = true;
1360        } else {
1361                wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
1362                DEFINE_WAIT(wait);
1363
1364                while (true) {
1365                        prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);
1366
1367                        if ((kn->flags & KERNFS_SUICIDED) &&
1368                            atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
1369                                break;
1370
1371                        mutex_unlock(&kernfs_mutex);
1372                        schedule();
1373                        mutex_lock(&kernfs_mutex);
1374                }
1375                finish_wait(waitq, &wait);
1376                WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
1377                ret = false;
1378        }
1379
1380        /*
1381         * This must be done while holding kernfs_mutex; otherwise, waiting
1382         * for SUICIDED && deactivated could finish prematurely.
1383         */
1384        kernfs_unbreak_active_protection(kn);
1385
1386        mutex_unlock(&kernfs_mutex);
1387        return ret;
1388}
1389
1390/**
1391 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
1392 * @parent: parent of the target
1393 * @name: name of the kernfs_node to remove
1394 * @ns: namespace tag of the kernfs_node to remove
1395 *
1396 * Look for the kernfs_node with @name and @ns under @parent and remove it.
1397 * Returns 0 on success, -ENOENT if such entry doesn't exist.
1398 */
1399int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
1400                             const void *ns)
1401{
1402        struct kernfs_node *kn;
1403
1404        if (!parent) {
1405                WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
1406                        name);
1407                return -ENOENT;
1408        }
1409
1410        mutex_lock(&kernfs_mutex);
1411
1412        kn = kernfs_find_ns(parent, name, ns);
1413        if (kn)
1414                __kernfs_remove(kn);
1415
1416        mutex_unlock(&kernfs_mutex);
1417
1418        if (kn)
1419                return 0;
1420        else
1421                return -ENOENT;
1422}
1423
1424/**
1425 * kernfs_rename_ns - move and rename a kernfs_node
1426 * @kn: target node
1427 * @new_parent: new parent to put @sd under
1428 * @new_name: new name
1429 * @new_ns: new namespace tag
1430 */
1431int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
1432                     const char *new_name, const void *new_ns)
1433{
1434        struct kernfs_node *old_parent;
1435        const char *old_name = NULL;
1436        int error;
1437
1438        /* can't move or rename root */
1439        if (!kn->parent)
1440                return -EINVAL;
1441
1442        mutex_lock(&kernfs_mutex);
1443
1444        error = -ENOENT;
1445        if (!kernfs_active(kn) || !kernfs_active(new_parent) ||
1446            (new_parent->flags & KERNFS_EMPTY_DIR))
1447                goto out;
1448
1449        error = 0;
1450        if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
1451            (strcmp(kn->name, new_name) == 0))
1452                goto out;       /* nothing to rename */
1453
1454        error = -EEXIST;
1455        if (kernfs_find_ns(new_parent, new_name, new_ns))
1456                goto out;
1457
1458        /* rename kernfs_node */
1459        if (strcmp(kn->name, new_name) != 0) {
1460                error = -ENOMEM;
1461                new_name = kstrdup_const(new_name, GFP_KERNEL);
1462                if (!new_name)
1463                        goto out;
1464        } else {
1465                new_name = NULL;
1466        }
1467
1468        /*
1469         * Move to the appropriate place in the appropriate directories rbtree.
1470         */
1471        kernfs_unlink_sibling(kn);
1472        kernfs_get(new_parent);
1473
1474        /* rename_lock protects ->parent and ->name accessors */
1475        spin_lock_irq(&kernfs_rename_lock);
1476
1477        old_parent = kn->parent;
1478        kn->parent = new_parent;
1479
1480        kn->ns = new_ns;
1481        if (new_name) {
1482                old_name = kn->name;
1483                kn->name = new_name;
1484        }
1485
1486        spin_unlock_irq(&kernfs_rename_lock);
1487
1488        kn->hash = kernfs_name_hash(kn->name, kn->ns);
1489        kernfs_link_sibling(kn);
1490
1491        kernfs_put(old_parent);
1492        kfree_const(old_name);
1493
1494        error = 0;
1495 out:
1496        mutex_unlock(&kernfs_mutex);
1497        return error;
1498}
1499
1500/* Relationship between s_mode and the DT_xxx types */
1501static inline unsigned char dt_type(struct kernfs_node *kn)
1502{
1503        return (kn->mode >> 12) & 15;
1504}
1505
1506static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
1507{
1508        kernfs_put(filp->private_data);
1509        return 0;
1510}
1511
1512static struct kernfs_node *kernfs_dir_pos(const void *ns,
1513        struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
1514{
1515        if (pos) {
1516                int valid = kernfs_active(pos) &&
1517                        pos->parent == parent && hash == pos->hash;
1518                kernfs_put(pos);
1519                if (!valid)
1520                        pos = NULL;
1521        }
1522        if (!pos && (hash > 1) && (hash < INT_MAX)) {
1523                struct rb_node *node = parent->dir.children.rb_node;
1524                while (node) {
1525                        pos = rb_to_kn(node);
1526
1527                        if (hash < pos->hash)
1528                                node = node->rb_left;
1529                        else if (hash > pos->hash)
1530                                node = node->rb_right;
1531                        else
1532                                break;
1533                }
1534        }
1535        /* Skip over entries which are dying/dead or in the wrong namespace */
1536        while (pos && (!kernfs_active(pos) || pos->ns != ns)) {
1537                struct rb_node *node = rb_next(&pos->rb);
1538                if (!node)
1539                        pos = NULL;
1540                else
1541                        pos = rb_to_kn(node);
1542        }
1543        return pos;
1544}
1545
1546static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
1547        struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
1548{
1549        pos = kernfs_dir_pos(ns, parent, ino, pos);
1550        if (pos) {
1551                do {
1552                        struct rb_node *node = rb_next(&pos->rb);
1553                        if (!node)
1554                                pos = NULL;
1555                        else
1556                                pos = rb_to_kn(node);
1557                } while (pos && (!kernfs_active(pos) || pos->ns != ns));
1558        }
1559        return pos;
1560}
1561
1562static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
1563{
1564        struct dentry *dentry = file->f_path.dentry;
1565        struct kernfs_node *parent = dentry->d_fsdata;
1566        struct kernfs_node *pos = file->private_data;
1567        const void *ns = NULL;
1568
1569        if (!dir_emit_dots(file, ctx))
1570                return 0;
1571        mutex_lock(&kernfs_mutex);
1572
1573        if (kernfs_ns_enabled(parent))
1574                ns = kernfs_info(dentry->d_sb)->ns;
1575
1576        for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
1577             pos;
1578             pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
1579                const char *name = pos->name;
1580                unsigned int type = dt_type(pos);
1581                int len = strlen(name);
1582                ino_t ino = pos->ino;
1583
1584                ctx->pos = pos->hash;
1585                file->private_data = pos;
1586                kernfs_get(pos);
1587
1588                mutex_unlock(&kernfs_mutex);
1589                if (!dir_emit(ctx, name, len, ino, type))
1590                        return 0;
1591                mutex_lock(&kernfs_mutex);
1592        }
1593        mutex_unlock(&kernfs_mutex);
1594        file->private_data = NULL;
1595        ctx->pos = INT_MAX;
1596        return 0;
1597}
1598
1599const struct file_operations kernfs_dir_fops = {
1600        .read           = generic_read_dir,
1601        .iterate_shared = kernfs_fop_readdir,
1602        .release        = kernfs_dir_fop_release,
1603        .llseek         = generic_file_llseek,
1604};
1605