linux/fs/nfs/file.c
<<
>>
Prefs
   1/*
   2 *  linux/fs/nfs/file.c
   3 *
   4 *  Copyright (C) 1992  Rick Sladkey
   5 *
   6 *  Changes Copyright (C) 1994 by Florian La Roche
   7 *   - Do not copy data too often around in the kernel.
   8 *   - In nfs_file_read the return value of kmalloc wasn't checked.
   9 *   - Put in a better version of read look-ahead buffering. Original idea
  10 *     and implementation by Wai S Kok elekokws@ee.nus.sg.
  11 *
  12 *  Expire cache on write to a file by Wai S Kok (Oct 1994).
  13 *
  14 *  Total rewrite of read side for new NFS buffer cache.. Linus.
  15 *
  16 *  nfs regular file handling functions
  17 */
  18
  19#include <linux/module.h>
  20#include <linux/time.h>
  21#include <linux/kernel.h>
  22#include <linux/errno.h>
  23#include <linux/fcntl.h>
  24#include <linux/stat.h>
  25#include <linux/nfs_fs.h>
  26#include <linux/nfs_mount.h>
  27#include <linux/mm.h>
  28#include <linux/pagemap.h>
  29#include <linux/gfp.h>
  30#include <linux/swap.h>
  31
  32#include <asm/uaccess.h>
  33
  34#include "delegation.h"
  35#include "internal.h"
  36#include "iostat.h"
  37#include "fscache.h"
  38#include "pnfs.h"
  39
  40#include "nfstrace.h"
  41
  42#define NFSDBG_FACILITY         NFSDBG_FILE
  43
  44static const struct vm_operations_struct nfs_file_vm_ops;
  45
  46/* Hack for future NFS swap support */
  47#ifndef IS_SWAPFILE
  48# define IS_SWAPFILE(inode)     (0)
  49#endif
  50
  51int nfs_check_flags(int flags)
  52{
  53        if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT))
  54                return -EINVAL;
  55
  56        return 0;
  57}
  58EXPORT_SYMBOL_GPL(nfs_check_flags);
  59
  60/*
  61 * Open file
  62 */
  63static int
  64nfs_file_open(struct inode *inode, struct file *filp)
  65{
  66        int res;
  67
  68        dprintk("NFS: open file(%pD2)\n", filp);
  69
  70        nfs_inc_stats(inode, NFSIOS_VFSOPEN);
  71        res = nfs_check_flags(filp->f_flags);
  72        if (res)
  73                return res;
  74
  75        res = nfs_open(inode, filp);
  76        return res;
  77}
  78
  79int
  80nfs_file_release(struct inode *inode, struct file *filp)
  81{
  82        dprintk("NFS: release(%pD2)\n", filp);
  83
  84        nfs_inc_stats(inode, NFSIOS_VFSRELEASE);
  85        nfs_file_clear_open_context(filp);
  86        return 0;
  87}
  88EXPORT_SYMBOL_GPL(nfs_file_release);
  89
  90/**
  91 * nfs_revalidate_size - Revalidate the file size
  92 * @inode - pointer to inode struct
  93 * @file - pointer to struct file
  94 *
  95 * Revalidates the file length. This is basically a wrapper around
  96 * nfs_revalidate_inode() that takes into account the fact that we may
  97 * have cached writes (in which case we don't care about the server's
  98 * idea of what the file length is), or O_DIRECT (in which case we
  99 * shouldn't trust the cache).
 100 */
 101static int nfs_revalidate_file_size(struct inode *inode, struct file *filp)
 102{
 103        struct nfs_server *server = NFS_SERVER(inode);
 104        struct nfs_inode *nfsi = NFS_I(inode);
 105
 106        if (nfs_have_delegated_attributes(inode))
 107                goto out_noreval;
 108
 109        if (filp->f_flags & O_DIRECT)
 110                goto force_reval;
 111        if (nfsi->cache_validity & NFS_INO_REVAL_PAGECACHE)
 112                goto force_reval;
 113        if (nfs_attribute_timeout(inode))
 114                goto force_reval;
 115out_noreval:
 116        return 0;
 117force_reval:
 118        return __nfs_revalidate_inode(server, inode);
 119}
 120
 121loff_t nfs_file_llseek(struct file *filp, loff_t offset, int whence)
 122{
 123        dprintk("NFS: llseek file(%pD2, %lld, %d)\n",
 124                        filp, offset, whence);
 125
 126        /*
 127         * whence == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate
 128         * the cached file length
 129         */
 130        if (whence != SEEK_SET && whence != SEEK_CUR) {
 131                struct inode *inode = filp->f_mapping->host;
 132
 133                int retval = nfs_revalidate_file_size(inode, filp);
 134                if (retval < 0)
 135                        return (loff_t)retval;
 136        }
 137
 138        return generic_file_llseek(filp, offset, whence);
 139}
 140EXPORT_SYMBOL_GPL(nfs_file_llseek);
 141
 142/*
 143 * Flush all dirty pages, and check for write errors.
 144 */
 145static int
 146nfs_file_flush(struct file *file, fl_owner_t id)
 147{
 148        struct inode    *inode = file_inode(file);
 149
 150        dprintk("NFS: flush(%pD2)\n", file);
 151
 152        nfs_inc_stats(inode, NFSIOS_VFSFLUSH);
 153        if ((file->f_mode & FMODE_WRITE) == 0)
 154                return 0;
 155
 156        /* Flush writes to the server and return any errors */
 157        return vfs_fsync(file, 0);
 158}
 159
 160ssize_t
 161nfs_file_read(struct kiocb *iocb, struct iov_iter *to)
 162{
 163        struct inode *inode = file_inode(iocb->ki_filp);
 164        ssize_t result;
 165
 166        if (iocb->ki_flags & IOCB_DIRECT)
 167                return nfs_file_direct_read(iocb, to);
 168
 169        dprintk("NFS: read(%pD2, %zu@%lu)\n",
 170                iocb->ki_filp,
 171                iov_iter_count(to), (unsigned long) iocb->ki_pos);
 172
 173        nfs_start_io_read(inode);
 174        result = nfs_revalidate_mapping(inode, iocb->ki_filp->f_mapping);
 175        if (!result) {
 176                result = generic_file_read_iter(iocb, to);
 177                if (result > 0)
 178                        nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result);
 179        }
 180        nfs_end_io_read(inode);
 181        return result;
 182}
 183EXPORT_SYMBOL_GPL(nfs_file_read);
 184
 185int
 186nfs_file_mmap(struct file * file, struct vm_area_struct * vma)
 187{
 188        struct inode *inode = file_inode(file);
 189        int     status;
 190
 191        dprintk("NFS: mmap(%pD2)\n", file);
 192
 193        /* Note: generic_file_mmap() returns ENOSYS on nommu systems
 194         *       so we call that before revalidating the mapping
 195         */
 196        status = generic_file_mmap(file, vma);
 197        if (!status) {
 198                vma->vm_ops = &nfs_file_vm_ops;
 199                status = nfs_revalidate_mapping(inode, file->f_mapping);
 200        }
 201        return status;
 202}
 203EXPORT_SYMBOL_GPL(nfs_file_mmap);
 204
 205/*
 206 * Flush any dirty pages for this process, and check for write errors.
 207 * The return status from this call provides a reliable indication of
 208 * whether any write errors occurred for this process.
 209 *
 210 * Notice that it clears the NFS_CONTEXT_ERROR_WRITE before synching to
 211 * disk, but it retrieves and clears ctx->error after synching, despite
 212 * the two being set at the same time in nfs_context_set_write_error().
 213 * This is because the former is used to notify the _next_ call to
 214 * nfs_file_write() that a write error occurred, and hence cause it to
 215 * fall back to doing a synchronous write.
 216 */
 217static int
 218nfs_file_fsync_commit(struct file *file, loff_t start, loff_t end, int datasync)
 219{
 220        struct nfs_open_context *ctx = nfs_file_open_context(file);
 221        struct inode *inode = file_inode(file);
 222        int have_error, do_resend, status;
 223        int ret = 0;
 224
 225        dprintk("NFS: fsync file(%pD2) datasync %d\n", file, datasync);
 226
 227        nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
 228        do_resend = test_and_clear_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags);
 229        have_error = test_and_clear_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
 230        status = nfs_commit_inode(inode, FLUSH_SYNC);
 231        have_error |= test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
 232        if (have_error) {
 233                ret = xchg(&ctx->error, 0);
 234                if (ret)
 235                        goto out;
 236        }
 237        if (status < 0) {
 238                ret = status;
 239                goto out;
 240        }
 241        do_resend |= test_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags);
 242        if (do_resend)
 243                ret = -EAGAIN;
 244out:
 245        return ret;
 246}
 247
 248int
 249nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync)
 250{
 251        int ret;
 252        struct inode *inode = file_inode(file);
 253
 254        trace_nfs_fsync_enter(inode);
 255
 256        do {
 257                ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
 258                if (ret != 0)
 259                        break;
 260                ret = nfs_file_fsync_commit(file, start, end, datasync);
 261                if (!ret)
 262                        ret = pnfs_sync_inode(inode, !!datasync);
 263                /*
 264                 * If nfs_file_fsync_commit detected a server reboot, then
 265                 * resend all dirty pages that might have been covered by
 266                 * the NFS_CONTEXT_RESEND_WRITES flag
 267                 */
 268                start = 0;
 269                end = LLONG_MAX;
 270        } while (ret == -EAGAIN);
 271
 272        trace_nfs_fsync_exit(inode, ret);
 273        return ret;
 274}
 275EXPORT_SYMBOL_GPL(nfs_file_fsync);
 276
 277/*
 278 * Decide whether a read/modify/write cycle may be more efficient
 279 * then a modify/write/read cycle when writing to a page in the
 280 * page cache.
 281 *
 282 * The modify/write/read cycle may occur if a page is read before
 283 * being completely filled by the writer.  In this situation, the
 284 * page must be completely written to stable storage on the server
 285 * before it can be refilled by reading in the page from the server.
 286 * This can lead to expensive, small, FILE_SYNC mode writes being
 287 * done.
 288 *
 289 * It may be more efficient to read the page first if the file is
 290 * open for reading in addition to writing, the page is not marked
 291 * as Uptodate, it is not dirty or waiting to be committed,
 292 * indicating that it was previously allocated and then modified,
 293 * that there were valid bytes of data in that range of the file,
 294 * and that the new data won't completely replace the old data in
 295 * that range of the file.
 296 */
 297static int nfs_want_read_modify_write(struct file *file, struct page *page,
 298                        loff_t pos, unsigned len)
 299{
 300        unsigned int pglen = nfs_page_length(page);
 301        unsigned int offset = pos & (PAGE_SIZE - 1);
 302        unsigned int end = offset + len;
 303
 304        if (pnfs_ld_read_whole_page(file->f_mapping->host)) {
 305                if (!PageUptodate(page))
 306                        return 1;
 307                return 0;
 308        }
 309
 310        if ((file->f_mode & FMODE_READ) &&      /* open for read? */
 311            !PageUptodate(page) &&              /* Uptodate? */
 312            !PagePrivate(page) &&               /* i/o request already? */
 313            pglen &&                            /* valid bytes of file? */
 314            (end < pglen || offset))            /* replace all valid bytes? */
 315                return 1;
 316        return 0;
 317}
 318
 319/*
 320 * This does the "real" work of the write. We must allocate and lock the
 321 * page to be sent back to the generic routine, which then copies the
 322 * data from user space.
 323 *
 324 * If the writer ends up delaying the write, the writer needs to
 325 * increment the page use counts until he is done with the page.
 326 */
 327static int nfs_write_begin(struct file *file, struct address_space *mapping,
 328                        loff_t pos, unsigned len, unsigned flags,
 329                        struct page **pagep, void **fsdata)
 330{
 331        int ret;
 332        pgoff_t index = pos >> PAGE_SHIFT;
 333        struct page *page;
 334        int once_thru = 0;
 335
 336        dfprintk(PAGECACHE, "NFS: write_begin(%pD2(%lu), %u@%lld)\n",
 337                file, mapping->host->i_ino, len, (long long) pos);
 338
 339start:
 340        page = grab_cache_page_write_begin(mapping, index, flags);
 341        if (!page)
 342                return -ENOMEM;
 343        *pagep = page;
 344
 345        ret = nfs_flush_incompatible(file, page);
 346        if (ret) {
 347                unlock_page(page);
 348                put_page(page);
 349        } else if (!once_thru &&
 350                   nfs_want_read_modify_write(file, page, pos, len)) {
 351                once_thru = 1;
 352                ret = nfs_readpage(file, page);
 353                put_page(page);
 354                if (!ret)
 355                        goto start;
 356        }
 357        return ret;
 358}
 359
 360static int nfs_write_end(struct file *file, struct address_space *mapping,
 361                        loff_t pos, unsigned len, unsigned copied,
 362                        struct page *page, void *fsdata)
 363{
 364        unsigned offset = pos & (PAGE_SIZE - 1);
 365        struct nfs_open_context *ctx = nfs_file_open_context(file);
 366        int status;
 367
 368        dfprintk(PAGECACHE, "NFS: write_end(%pD2(%lu), %u@%lld)\n",
 369                file, mapping->host->i_ino, len, (long long) pos);
 370
 371        /*
 372         * Zero any uninitialised parts of the page, and then mark the page
 373         * as up to date if it turns out that we're extending the file.
 374         */
 375        if (!PageUptodate(page)) {
 376                unsigned pglen = nfs_page_length(page);
 377                unsigned end = offset + len;
 378
 379                if (pglen == 0) {
 380                        zero_user_segments(page, 0, offset,
 381                                        end, PAGE_SIZE);
 382                        SetPageUptodate(page);
 383                } else if (end >= pglen) {
 384                        zero_user_segment(page, end, PAGE_SIZE);
 385                        if (offset == 0)
 386                                SetPageUptodate(page);
 387                } else
 388                        zero_user_segment(page, pglen, PAGE_SIZE);
 389        }
 390
 391        status = nfs_updatepage(file, page, offset, copied);
 392
 393        unlock_page(page);
 394        put_page(page);
 395
 396        if (status < 0)
 397                return status;
 398        NFS_I(mapping->host)->write_io += copied;
 399
 400        if (nfs_ctx_key_to_expire(ctx, mapping->host)) {
 401                status = nfs_wb_all(mapping->host);
 402                if (status < 0)
 403                        return status;
 404        }
 405
 406        return copied;
 407}
 408
 409/*
 410 * Partially or wholly invalidate a page
 411 * - Release the private state associated with a page if undergoing complete
 412 *   page invalidation
 413 * - Called if either PG_private or PG_fscache is set on the page
 414 * - Caller holds page lock
 415 */
 416static void nfs_invalidate_page(struct page *page, unsigned int offset,
 417                                unsigned int length)
 418{
 419        dfprintk(PAGECACHE, "NFS: invalidate_page(%p, %u, %u)\n",
 420                 page, offset, length);
 421
 422        if (offset != 0 || length < PAGE_SIZE)
 423                return;
 424        /* Cancel any unstarted writes on this page */
 425        nfs_wb_page_cancel(page_file_mapping(page)->host, page);
 426
 427        nfs_fscache_invalidate_page(page, page->mapping->host);
 428}
 429
 430/*
 431 * Attempt to release the private state associated with a page
 432 * - Called if either PG_private or PG_fscache is set on the page
 433 * - Caller holds page lock
 434 * - Return true (may release page) or false (may not)
 435 */
 436static int nfs_release_page(struct page *page, gfp_t gfp)
 437{
 438        dfprintk(PAGECACHE, "NFS: release_page(%p)\n", page);
 439
 440        /* If PagePrivate() is set, then the page is not freeable */
 441        if (PagePrivate(page))
 442                return 0;
 443        return nfs_fscache_release_page(page, gfp);
 444}
 445
 446static void nfs_check_dirty_writeback(struct page *page,
 447                                bool *dirty, bool *writeback)
 448{
 449        struct nfs_inode *nfsi;
 450        struct address_space *mapping = page_file_mapping(page);
 451
 452        if (!mapping || PageSwapCache(page))
 453                return;
 454
 455        /*
 456         * Check if an unstable page is currently being committed and
 457         * if so, have the VM treat it as if the page is under writeback
 458         * so it will not block due to pages that will shortly be freeable.
 459         */
 460        nfsi = NFS_I(mapping->host);
 461        if (atomic_read(&nfsi->commit_info.rpcs_out)) {
 462                *writeback = true;
 463                return;
 464        }
 465
 466        /*
 467         * If PagePrivate() is set, then the page is not freeable and as the
 468         * inode is not being committed, it's not going to be cleaned in the
 469         * near future so treat it as dirty
 470         */
 471        if (PagePrivate(page))
 472                *dirty = true;
 473}
 474
 475/*
 476 * Attempt to clear the private state associated with a page when an error
 477 * occurs that requires the cached contents of an inode to be written back or
 478 * destroyed
 479 * - Called if either PG_private or fscache is set on the page
 480 * - Caller holds page lock
 481 * - Return 0 if successful, -error otherwise
 482 */
 483static int nfs_launder_page(struct page *page)
 484{
 485        struct inode *inode = page_file_mapping(page)->host;
 486        struct nfs_inode *nfsi = NFS_I(inode);
 487
 488        dfprintk(PAGECACHE, "NFS: launder_page(%ld, %llu)\n",
 489                inode->i_ino, (long long)page_offset(page));
 490
 491        nfs_fscache_wait_on_page_write(nfsi, page);
 492        return nfs_wb_launder_page(inode, page);
 493}
 494
 495static int nfs_swap_activate(struct swap_info_struct *sis, struct file *file,
 496                                                sector_t *span)
 497{
 498        struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host);
 499
 500        *span = sis->pages;
 501
 502        return rpc_clnt_swap_activate(clnt);
 503}
 504
 505static void nfs_swap_deactivate(struct file *file)
 506{
 507        struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host);
 508
 509        rpc_clnt_swap_deactivate(clnt);
 510}
 511
 512const struct address_space_operations nfs_file_aops = {
 513        .readpage = nfs_readpage,
 514        .readpages = nfs_readpages,
 515        .set_page_dirty = __set_page_dirty_nobuffers,
 516        .writepage = nfs_writepage,
 517        .writepages = nfs_writepages,
 518        .write_begin = nfs_write_begin,
 519        .write_end = nfs_write_end,
 520        .invalidatepage = nfs_invalidate_page,
 521        .releasepage = nfs_release_page,
 522        .direct_IO = nfs_direct_IO,
 523#ifdef CONFIG_MIGRATION
 524        .migratepage = nfs_migrate_page,
 525#endif
 526        .launder_page = nfs_launder_page,
 527        .is_dirty_writeback = nfs_check_dirty_writeback,
 528        .error_remove_page = generic_error_remove_page,
 529        .swap_activate = nfs_swap_activate,
 530        .swap_deactivate = nfs_swap_deactivate,
 531};
 532
 533/*
 534 * Notification that a PTE pointing to an NFS page is about to be made
 535 * writable, implying that someone is about to modify the page through a
 536 * shared-writable mapping
 537 */
 538static int nfs_vm_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
 539{
 540        struct page *page = vmf->page;
 541        struct file *filp = vma->vm_file;
 542        struct inode *inode = file_inode(filp);
 543        unsigned pagelen;
 544        int ret = VM_FAULT_NOPAGE;
 545        struct address_space *mapping;
 546
 547        dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%pD2(%lu), offset %lld)\n",
 548                filp, filp->f_mapping->host->i_ino,
 549                (long long)page_offset(page));
 550
 551        sb_start_pagefault(inode->i_sb);
 552
 553        /* make sure the cache has finished storing the page */
 554        nfs_fscache_wait_on_page_write(NFS_I(inode), page);
 555
 556        wait_on_bit_action(&NFS_I(inode)->flags, NFS_INO_INVALIDATING,
 557                        nfs_wait_bit_killable, TASK_KILLABLE);
 558
 559        lock_page(page);
 560        mapping = page_file_mapping(page);
 561        if (mapping != inode->i_mapping)
 562                goto out_unlock;
 563
 564        wait_on_page_writeback(page);
 565
 566        pagelen = nfs_page_length(page);
 567        if (pagelen == 0)
 568                goto out_unlock;
 569
 570        ret = VM_FAULT_LOCKED;
 571        if (nfs_flush_incompatible(filp, page) == 0 &&
 572            nfs_updatepage(filp, page, 0, pagelen) == 0)
 573                goto out;
 574
 575        ret = VM_FAULT_SIGBUS;
 576out_unlock:
 577        unlock_page(page);
 578out:
 579        sb_end_pagefault(inode->i_sb);
 580        return ret;
 581}
 582
 583static const struct vm_operations_struct nfs_file_vm_ops = {
 584        .fault = filemap_fault,
 585        .map_pages = filemap_map_pages,
 586        .page_mkwrite = nfs_vm_page_mkwrite,
 587};
 588
 589static int nfs_need_check_write(struct file *filp, struct inode *inode)
 590{
 591        struct nfs_open_context *ctx;
 592
 593        ctx = nfs_file_open_context(filp);
 594        if (test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags) ||
 595            nfs_ctx_key_to_expire(ctx, inode))
 596                return 1;
 597        return 0;
 598}
 599
 600ssize_t nfs_file_write(struct kiocb *iocb, struct iov_iter *from)
 601{
 602        struct file *file = iocb->ki_filp;
 603        struct inode *inode = file_inode(file);
 604        unsigned long written = 0;
 605        ssize_t result;
 606
 607        result = nfs_key_timeout_notify(file, inode);
 608        if (result)
 609                return result;
 610
 611        if (iocb->ki_flags & IOCB_DIRECT)
 612                return nfs_file_direct_write(iocb, from);
 613
 614        dprintk("NFS: write(%pD2, %zu@%Ld)\n",
 615                file, iov_iter_count(from), (long long) iocb->ki_pos);
 616
 617        if (IS_SWAPFILE(inode))
 618                goto out_swapfile;
 619        /*
 620         * O_APPEND implies that we must revalidate the file length.
 621         */
 622        if (iocb->ki_flags & IOCB_APPEND) {
 623                result = nfs_revalidate_file_size(inode, file);
 624                if (result)
 625                        goto out;
 626        }
 627
 628        nfs_start_io_write(inode);
 629        result = generic_write_checks(iocb, from);
 630        if (result > 0) {
 631                current->backing_dev_info = inode_to_bdi(inode);
 632                result = generic_perform_write(file, from, iocb->ki_pos);
 633                current->backing_dev_info = NULL;
 634        }
 635        nfs_end_io_write(inode);
 636        if (result <= 0)
 637                goto out;
 638
 639        result = generic_write_sync(iocb, result);
 640        if (result < 0)
 641                goto out;
 642        written = result;
 643        iocb->ki_pos += written;
 644
 645        /* Return error values */
 646        if (nfs_need_check_write(file, inode)) {
 647                int err = vfs_fsync(file, 0);
 648                if (err < 0)
 649                        result = err;
 650        }
 651        nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
 652out:
 653        return result;
 654
 655out_swapfile:
 656        printk(KERN_INFO "NFS: attempt to write to active swap file!\n");
 657        return -EBUSY;
 658}
 659EXPORT_SYMBOL_GPL(nfs_file_write);
 660
 661static int
 662do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
 663{
 664        struct inode *inode = filp->f_mapping->host;
 665        int status = 0;
 666        unsigned int saved_type = fl->fl_type;
 667
 668        /* Try local locking first */
 669        posix_test_lock(filp, fl);
 670        if (fl->fl_type != F_UNLCK) {
 671                /* found a conflict */
 672                goto out;
 673        }
 674        fl->fl_type = saved_type;
 675
 676        if (NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
 677                goto out_noconflict;
 678
 679        if (is_local)
 680                goto out_noconflict;
 681
 682        status = NFS_PROTO(inode)->lock(filp, cmd, fl);
 683out:
 684        return status;
 685out_noconflict:
 686        fl->fl_type = F_UNLCK;
 687        goto out;
 688}
 689
 690static int
 691do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
 692{
 693        struct inode *inode = filp->f_mapping->host;
 694        struct nfs_lock_context *l_ctx;
 695        int status;
 696
 697        /*
 698         * Flush all pending writes before doing anything
 699         * with locks..
 700         */
 701        vfs_fsync(filp, 0);
 702
 703        l_ctx = nfs_get_lock_context(nfs_file_open_context(filp));
 704        if (!IS_ERR(l_ctx)) {
 705                status = nfs_iocounter_wait(l_ctx);
 706                nfs_put_lock_context(l_ctx);
 707                if (status < 0)
 708                        return status;
 709        }
 710
 711        /* NOTE: special case
 712         *      If we're signalled while cleaning up locks on process exit, we
 713         *      still need to complete the unlock.
 714         */
 715        /*
 716         * Use local locking if mounted with "-onolock" or with appropriate
 717         * "-olocal_lock="
 718         */
 719        if (!is_local)
 720                status = NFS_PROTO(inode)->lock(filp, cmd, fl);
 721        else
 722                status = locks_lock_file_wait(filp, fl);
 723        return status;
 724}
 725
 726static int
 727do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
 728{
 729        struct inode *inode = filp->f_mapping->host;
 730        int status;
 731
 732        /*
 733         * Flush all pending writes before doing anything
 734         * with locks..
 735         */
 736        status = nfs_sync_mapping(filp->f_mapping);
 737        if (status != 0)
 738                goto out;
 739
 740        /*
 741         * Use local locking if mounted with "-onolock" or with appropriate
 742         * "-olocal_lock="
 743         */
 744        if (!is_local)
 745                status = NFS_PROTO(inode)->lock(filp, cmd, fl);
 746        else
 747                status = locks_lock_file_wait(filp, fl);
 748        if (status < 0)
 749                goto out;
 750
 751        /*
 752         * Revalidate the cache if the server has time stamps granular
 753         * enough to detect subsecond changes.  Otherwise, clear the
 754         * cache to prevent missing any changes.
 755         *
 756         * This makes locking act as a cache coherency point.
 757         */
 758        nfs_sync_mapping(filp->f_mapping);
 759        if (!NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
 760                nfs_zap_mapping(inode, filp->f_mapping);
 761out:
 762        return status;
 763}
 764
 765/*
 766 * Lock a (portion of) a file
 767 */
 768int nfs_lock(struct file *filp, int cmd, struct file_lock *fl)
 769{
 770        struct inode *inode = filp->f_mapping->host;
 771        int ret = -ENOLCK;
 772        int is_local = 0;
 773
 774        dprintk("NFS: lock(%pD2, t=%x, fl=%x, r=%lld:%lld)\n",
 775                        filp, fl->fl_type, fl->fl_flags,
 776                        (long long)fl->fl_start, (long long)fl->fl_end);
 777
 778        nfs_inc_stats(inode, NFSIOS_VFSLOCK);
 779
 780        /* No mandatory locks over NFS */
 781        if (__mandatory_lock(inode) && fl->fl_type != F_UNLCK)
 782                goto out_err;
 783
 784        if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL)
 785                is_local = 1;
 786
 787        if (NFS_PROTO(inode)->lock_check_bounds != NULL) {
 788                ret = NFS_PROTO(inode)->lock_check_bounds(fl);
 789                if (ret < 0)
 790                        goto out_err;
 791        }
 792
 793        if (IS_GETLK(cmd))
 794                ret = do_getlk(filp, cmd, fl, is_local);
 795        else if (fl->fl_type == F_UNLCK)
 796                ret = do_unlk(filp, cmd, fl, is_local);
 797        else
 798                ret = do_setlk(filp, cmd, fl, is_local);
 799out_err:
 800        return ret;
 801}
 802EXPORT_SYMBOL_GPL(nfs_lock);
 803
 804/*
 805 * Lock a (portion of) a file
 806 */
 807int nfs_flock(struct file *filp, int cmd, struct file_lock *fl)
 808{
 809        struct inode *inode = filp->f_mapping->host;
 810        int is_local = 0;
 811
 812        dprintk("NFS: flock(%pD2, t=%x, fl=%x)\n",
 813                        filp, fl->fl_type, fl->fl_flags);
 814
 815        if (!(fl->fl_flags & FL_FLOCK))
 816                return -ENOLCK;
 817
 818        /*
 819         * The NFSv4 protocol doesn't support LOCK_MAND, which is not part of
 820         * any standard. In principle we might be able to support LOCK_MAND
 821         * on NFSv2/3 since NLMv3/4 support DOS share modes, but for now the
 822         * NFS code is not set up for it.
 823         */
 824        if (fl->fl_type & LOCK_MAND)
 825                return -EINVAL;
 826
 827        if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK)
 828                is_local = 1;
 829
 830        /* We're simulating flock() locks using posix locks on the server */
 831        if (fl->fl_type == F_UNLCK)
 832                return do_unlk(filp, cmd, fl, is_local);
 833        return do_setlk(filp, cmd, fl, is_local);
 834}
 835EXPORT_SYMBOL_GPL(nfs_flock);
 836
 837const struct file_operations nfs_file_operations = {
 838        .llseek         = nfs_file_llseek,
 839        .read_iter      = nfs_file_read,
 840        .write_iter     = nfs_file_write,
 841        .mmap           = nfs_file_mmap,
 842        .open           = nfs_file_open,
 843        .flush          = nfs_file_flush,
 844        .release        = nfs_file_release,
 845        .fsync          = nfs_file_fsync,
 846        .lock           = nfs_lock,
 847        .flock          = nfs_flock,
 848        .splice_read    = generic_file_splice_read,
 849        .splice_write   = iter_file_splice_write,
 850        .check_flags    = nfs_check_flags,
 851        .setlease       = simple_nosetlease,
 852};
 853EXPORT_SYMBOL_GPL(nfs_file_operations);
 854