linux/fs/userfaultfd.c
<<
>>
Prefs
   1/*
   2 *  fs/userfaultfd.c
   3 *
   4 *  Copyright (C) 2007  Davide Libenzi <davidel@xmailserver.org>
   5 *  Copyright (C) 2008-2009 Red Hat, Inc.
   6 *  Copyright (C) 2015  Red Hat, Inc.
   7 *
   8 *  This work is licensed under the terms of the GNU GPL, version 2. See
   9 *  the COPYING file in the top-level directory.
  10 *
  11 *  Some part derived from fs/eventfd.c (anon inode setup) and
  12 *  mm/ksm.c (mm hashing).
  13 */
  14
  15#include <linux/hashtable.h>
  16#include <linux/sched.h>
  17#include <linux/mm.h>
  18#include <linux/poll.h>
  19#include <linux/slab.h>
  20#include <linux/seq_file.h>
  21#include <linux/file.h>
  22#include <linux/bug.h>
  23#include <linux/anon_inodes.h>
  24#include <linux/syscalls.h>
  25#include <linux/userfaultfd_k.h>
  26#include <linux/mempolicy.h>
  27#include <linux/ioctl.h>
  28#include <linux/security.h>
  29
  30static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
  31
  32enum userfaultfd_state {
  33        UFFD_STATE_WAIT_API,
  34        UFFD_STATE_RUNNING,
  35};
  36
  37/*
  38 * Start with fault_pending_wqh and fault_wqh so they're more likely
  39 * to be in the same cacheline.
  40 */
  41struct userfaultfd_ctx {
  42        /* waitqueue head for the pending (i.e. not read) userfaults */
  43        wait_queue_head_t fault_pending_wqh;
  44        /* waitqueue head for the userfaults */
  45        wait_queue_head_t fault_wqh;
  46        /* waitqueue head for the pseudo fd to wakeup poll/read */
  47        wait_queue_head_t fd_wqh;
  48        /* a refile sequence protected by fault_pending_wqh lock */
  49        struct seqcount refile_seq;
  50        /* pseudo fd refcounting */
  51        atomic_t refcount;
  52        /* userfaultfd syscall flags */
  53        unsigned int flags;
  54        /* state machine */
  55        enum userfaultfd_state state;
  56        /* released */
  57        bool released;
  58        /* mm with one ore more vmas attached to this userfaultfd_ctx */
  59        struct mm_struct *mm;
  60};
  61
  62struct userfaultfd_wait_queue {
  63        struct uffd_msg msg;
  64        wait_queue_t wq;
  65        struct userfaultfd_ctx *ctx;
  66};
  67
  68struct userfaultfd_wake_range {
  69        unsigned long start;
  70        unsigned long len;
  71};
  72
  73static int userfaultfd_wake_function(wait_queue_t *wq, unsigned mode,
  74                                     int wake_flags, void *key)
  75{
  76        struct userfaultfd_wake_range *range = key;
  77        int ret;
  78        struct userfaultfd_wait_queue *uwq;
  79        unsigned long start, len;
  80
  81        uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
  82        ret = 0;
  83        /* len == 0 means wake all */
  84        start = range->start;
  85        len = range->len;
  86        if (len && (start > uwq->msg.arg.pagefault.address ||
  87                    start + len <= uwq->msg.arg.pagefault.address))
  88                goto out;
  89        ret = wake_up_state(wq->private, mode);
  90        if (ret)
  91                /*
  92                 * Wake only once, autoremove behavior.
  93                 *
  94                 * After the effect of list_del_init is visible to the
  95                 * other CPUs, the waitqueue may disappear from under
  96                 * us, see the !list_empty_careful() in
  97                 * handle_userfault(). try_to_wake_up() has an
  98                 * implicit smp_mb__before_spinlock, and the
  99                 * wq->private is read before calling the extern
 100                 * function "wake_up_state" (which in turns calls
 101                 * try_to_wake_up). While the spin_lock;spin_unlock;
 102                 * wouldn't be enough, the smp_mb__before_spinlock is
 103                 * enough to avoid an explicit smp_mb() here.
 104                 */
 105                list_del_init(&wq->task_list);
 106out:
 107        return ret;
 108}
 109
 110/**
 111 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
 112 * context.
 113 * @ctx: [in] Pointer to the userfaultfd context.
 114 *
 115 * Returns: In case of success, returns not zero.
 116 */
 117static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
 118{
 119        if (!atomic_inc_not_zero(&ctx->refcount))
 120                BUG();
 121}
 122
 123/**
 124 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
 125 * context.
 126 * @ctx: [in] Pointer to userfaultfd context.
 127 *
 128 * The userfaultfd context reference must have been previously acquired either
 129 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
 130 */
 131static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
 132{
 133        if (atomic_dec_and_test(&ctx->refcount)) {
 134                VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
 135                VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
 136                VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
 137                VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
 138                VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
 139                VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
 140                mmdrop(ctx->mm);
 141                kmem_cache_free(userfaultfd_ctx_cachep, ctx);
 142        }
 143}
 144
 145static inline void msg_init(struct uffd_msg *msg)
 146{
 147        BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
 148        /*
 149         * Must use memset to zero out the paddings or kernel data is
 150         * leaked to userland.
 151         */
 152        memset(msg, 0, sizeof(struct uffd_msg));
 153}
 154
 155static inline struct uffd_msg userfault_msg(unsigned long address,
 156                                            unsigned int flags,
 157                                            unsigned long reason)
 158{
 159        struct uffd_msg msg;
 160        msg_init(&msg);
 161        msg.event = UFFD_EVENT_PAGEFAULT;
 162        msg.arg.pagefault.address = address;
 163        if (flags & FAULT_FLAG_WRITE)
 164                /*
 165                 * If UFFD_FEATURE_PAGEFAULT_FLAG_WRITE was set in the
 166                 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
 167                 * was not set in a UFFD_EVENT_PAGEFAULT, it means it
 168                 * was a read fault, otherwise if set it means it's
 169                 * a write fault.
 170                 */
 171                msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
 172        if (reason & VM_UFFD_WP)
 173                /*
 174                 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
 175                 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
 176                 * not set in a UFFD_EVENT_PAGEFAULT, it means it was
 177                 * a missing fault, otherwise if set it means it's a
 178                 * write protect fault.
 179                 */
 180                msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
 181        return msg;
 182}
 183
 184/*
 185 * Verify the pagetables are still not ok after having reigstered into
 186 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
 187 * userfault that has already been resolved, if userfaultfd_read and
 188 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
 189 * threads.
 190 */
 191static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
 192                                         unsigned long address,
 193                                         unsigned long flags,
 194                                         unsigned long reason)
 195{
 196        struct mm_struct *mm = ctx->mm;
 197        pgd_t *pgd;
 198        pud_t *pud;
 199        pmd_t *pmd, _pmd;
 200        pte_t *pte;
 201        bool ret = true;
 202
 203        VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
 204
 205        pgd = pgd_offset(mm, address);
 206        if (!pgd_present(*pgd))
 207                goto out;
 208        pud = pud_offset(pgd, address);
 209        if (!pud_present(*pud))
 210                goto out;
 211        pmd = pmd_offset(pud, address);
 212        /*
 213         * READ_ONCE must function as a barrier with narrower scope
 214         * and it must be equivalent to:
 215         *      _pmd = *pmd; barrier();
 216         *
 217         * This is to deal with the instability (as in
 218         * pmd_trans_unstable) of the pmd.
 219         */
 220        _pmd = READ_ONCE(*pmd);
 221        if (!pmd_present(_pmd))
 222                goto out;
 223
 224        ret = false;
 225        if (pmd_trans_huge(_pmd))
 226                goto out;
 227
 228        /*
 229         * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
 230         * and use the standard pte_offset_map() instead of parsing _pmd.
 231         */
 232        pte = pte_offset_map(pmd, address);
 233        /*
 234         * Lockless access: we're in a wait_event so it's ok if it
 235         * changes under us.
 236         */
 237        if (pte_none(*pte))
 238                ret = true;
 239        pte_unmap(pte);
 240
 241out:
 242        return ret;
 243}
 244
 245/*
 246 * The locking rules involved in returning VM_FAULT_RETRY depending on
 247 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
 248 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
 249 * recommendation in __lock_page_or_retry is not an understatement.
 250 *
 251 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released
 252 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
 253 * not set.
 254 *
 255 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
 256 * set, VM_FAULT_RETRY can still be returned if and only if there are
 257 * fatal_signal_pending()s, and the mmap_sem must be released before
 258 * returning it.
 259 */
 260int handle_userfault(struct fault_env *fe, unsigned long reason)
 261{
 262        struct mm_struct *mm = fe->vma->vm_mm;
 263        struct userfaultfd_ctx *ctx;
 264        struct userfaultfd_wait_queue uwq;
 265        int ret;
 266        bool must_wait, return_to_userland;
 267
 268        BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
 269
 270        ret = VM_FAULT_SIGBUS;
 271        ctx = fe->vma->vm_userfaultfd_ctx.ctx;
 272        if (!ctx)
 273                goto out;
 274
 275        BUG_ON(ctx->mm != mm);
 276
 277        VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
 278        VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));
 279
 280        /*
 281         * If it's already released don't get it. This avoids to loop
 282         * in __get_user_pages if userfaultfd_release waits on the
 283         * caller of handle_userfault to release the mmap_sem.
 284         */
 285        if (unlikely(ACCESS_ONCE(ctx->released)))
 286                goto out;
 287
 288        /*
 289         * We don't do userfault handling for the final child pid update.
 290         */
 291        if (current->flags & PF_EXITING)
 292                goto out;
 293
 294        /*
 295         * Check that we can return VM_FAULT_RETRY.
 296         *
 297         * NOTE: it should become possible to return VM_FAULT_RETRY
 298         * even if FAULT_FLAG_TRIED is set without leading to gup()
 299         * -EBUSY failures, if the userfaultfd is to be extended for
 300         * VM_UFFD_WP tracking and we intend to arm the userfault
 301         * without first stopping userland access to the memory. For
 302         * VM_UFFD_MISSING userfaults this is enough for now.
 303         */
 304        if (unlikely(!(fe->flags & FAULT_FLAG_ALLOW_RETRY))) {
 305                /*
 306                 * Validate the invariant that nowait must allow retry
 307                 * to be sure not to return SIGBUS erroneously on
 308                 * nowait invocations.
 309                 */
 310                BUG_ON(fe->flags & FAULT_FLAG_RETRY_NOWAIT);
 311#ifdef CONFIG_DEBUG_VM
 312                if (printk_ratelimit()) {
 313                        printk(KERN_WARNING
 314                               "FAULT_FLAG_ALLOW_RETRY missing %x\n", fe->flags);
 315                        dump_stack();
 316                }
 317#endif
 318                goto out;
 319        }
 320
 321        /*
 322         * Handle nowait, not much to do other than tell it to retry
 323         * and wait.
 324         */
 325        ret = VM_FAULT_RETRY;
 326        if (fe->flags & FAULT_FLAG_RETRY_NOWAIT)
 327                goto out;
 328
 329        /* take the reference before dropping the mmap_sem */
 330        userfaultfd_ctx_get(ctx);
 331
 332        init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
 333        uwq.wq.private = current;
 334        uwq.msg = userfault_msg(fe->address, fe->flags, reason);
 335        uwq.ctx = ctx;
 336
 337        return_to_userland =
 338                (fe->flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) ==
 339                (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE);
 340
 341        spin_lock(&ctx->fault_pending_wqh.lock);
 342        /*
 343         * After the __add_wait_queue the uwq is visible to userland
 344         * through poll/read().
 345         */
 346        __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
 347        /*
 348         * The smp_mb() after __set_current_state prevents the reads
 349         * following the spin_unlock to happen before the list_add in
 350         * __add_wait_queue.
 351         */
 352        set_current_state(return_to_userland ? TASK_INTERRUPTIBLE :
 353                          TASK_KILLABLE);
 354        spin_unlock(&ctx->fault_pending_wqh.lock);
 355
 356        must_wait = userfaultfd_must_wait(ctx, fe->address, fe->flags, reason);
 357        up_read(&mm->mmap_sem);
 358
 359        if (likely(must_wait && !ACCESS_ONCE(ctx->released) &&
 360                   (return_to_userland ? !signal_pending(current) :
 361                    !fatal_signal_pending(current)))) {
 362                wake_up_poll(&ctx->fd_wqh, POLLIN);
 363                schedule();
 364                ret |= VM_FAULT_MAJOR;
 365        }
 366
 367        __set_current_state(TASK_RUNNING);
 368
 369        if (return_to_userland) {
 370                if (signal_pending(current) &&
 371                    !fatal_signal_pending(current)) {
 372                        /*
 373                         * If we got a SIGSTOP or SIGCONT and this is
 374                         * a normal userland page fault, just let
 375                         * userland return so the signal will be
 376                         * handled and gdb debugging works.  The page
 377                         * fault code immediately after we return from
 378                         * this function is going to release the
 379                         * mmap_sem and it's not depending on it
 380                         * (unlike gup would if we were not to return
 381                         * VM_FAULT_RETRY).
 382                         *
 383                         * If a fatal signal is pending we still take
 384                         * the streamlined VM_FAULT_RETRY failure path
 385                         * and there's no need to retake the mmap_sem
 386                         * in such case.
 387                         */
 388                        down_read(&mm->mmap_sem);
 389                        ret = 0;
 390                }
 391        }
 392
 393        /*
 394         * Here we race with the list_del; list_add in
 395         * userfaultfd_ctx_read(), however because we don't ever run
 396         * list_del_init() to refile across the two lists, the prev
 397         * and next pointers will never point to self. list_add also
 398         * would never let any of the two pointers to point to
 399         * self. So list_empty_careful won't risk to see both pointers
 400         * pointing to self at any time during the list refile. The
 401         * only case where list_del_init() is called is the full
 402         * removal in the wake function and there we don't re-list_add
 403         * and it's fine not to block on the spinlock. The uwq on this
 404         * kernel stack can be released after the list_del_init.
 405         */
 406        if (!list_empty_careful(&uwq.wq.task_list)) {
 407                spin_lock(&ctx->fault_pending_wqh.lock);
 408                /*
 409                 * No need of list_del_init(), the uwq on the stack
 410                 * will be freed shortly anyway.
 411                 */
 412                list_del(&uwq.wq.task_list);
 413                spin_unlock(&ctx->fault_pending_wqh.lock);
 414        }
 415
 416        /*
 417         * ctx may go away after this if the userfault pseudo fd is
 418         * already released.
 419         */
 420        userfaultfd_ctx_put(ctx);
 421
 422out:
 423        return ret;
 424}
 425
 426static int userfaultfd_release(struct inode *inode, struct file *file)
 427{
 428        struct userfaultfd_ctx *ctx = file->private_data;
 429        struct mm_struct *mm = ctx->mm;
 430        struct vm_area_struct *vma, *prev;
 431        /* len == 0 means wake all */
 432        struct userfaultfd_wake_range range = { .len = 0, };
 433        unsigned long new_flags;
 434
 435        ACCESS_ONCE(ctx->released) = true;
 436
 437        if (!mmget_not_zero(mm))
 438                goto wakeup;
 439
 440        /*
 441         * Flush page faults out of all CPUs. NOTE: all page faults
 442         * must be retried without returning VM_FAULT_SIGBUS if
 443         * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
 444         * changes while handle_userfault released the mmap_sem. So
 445         * it's critical that released is set to true (above), before
 446         * taking the mmap_sem for writing.
 447         */
 448        down_write(&mm->mmap_sem);
 449        prev = NULL;
 450        for (vma = mm->mmap; vma; vma = vma->vm_next) {
 451                cond_resched();
 452                BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
 453                       !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
 454                if (vma->vm_userfaultfd_ctx.ctx != ctx) {
 455                        prev = vma;
 456                        continue;
 457                }
 458                new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
 459                prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
 460                                 new_flags, vma->anon_vma,
 461                                 vma->vm_file, vma->vm_pgoff,
 462                                 vma_policy(vma),
 463                                 NULL_VM_UFFD_CTX);
 464                if (prev)
 465                        vma = prev;
 466                else
 467                        prev = vma;
 468                vma->vm_flags = new_flags;
 469                vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
 470        }
 471        up_write(&mm->mmap_sem);
 472        mmput(mm);
 473wakeup:
 474        /*
 475         * After no new page faults can wait on this fault_*wqh, flush
 476         * the last page faults that may have been already waiting on
 477         * the fault_*wqh.
 478         */
 479        spin_lock(&ctx->fault_pending_wqh.lock);
 480        __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
 481        __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, &range);
 482        spin_unlock(&ctx->fault_pending_wqh.lock);
 483
 484        wake_up_poll(&ctx->fd_wqh, POLLHUP);
 485        userfaultfd_ctx_put(ctx);
 486        return 0;
 487}
 488
 489/* fault_pending_wqh.lock must be hold by the caller */
 490static inline struct userfaultfd_wait_queue *find_userfault(
 491        struct userfaultfd_ctx *ctx)
 492{
 493        wait_queue_t *wq;
 494        struct userfaultfd_wait_queue *uwq;
 495
 496        VM_BUG_ON(!spin_is_locked(&ctx->fault_pending_wqh.lock));
 497
 498        uwq = NULL;
 499        if (!waitqueue_active(&ctx->fault_pending_wqh))
 500                goto out;
 501        /* walk in reverse to provide FIFO behavior to read userfaults */
 502        wq = list_last_entry(&ctx->fault_pending_wqh.task_list,
 503                             typeof(*wq), task_list);
 504        uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
 505out:
 506        return uwq;
 507}
 508
 509static unsigned int userfaultfd_poll(struct file *file, poll_table *wait)
 510{
 511        struct userfaultfd_ctx *ctx = file->private_data;
 512        unsigned int ret;
 513
 514        poll_wait(file, &ctx->fd_wqh, wait);
 515
 516        switch (ctx->state) {
 517        case UFFD_STATE_WAIT_API:
 518                return POLLERR;
 519        case UFFD_STATE_RUNNING:
 520                /*
 521                 * poll() never guarantees that read won't block.
 522                 * userfaults can be waken before they're read().
 523                 */
 524                if (unlikely(!(file->f_flags & O_NONBLOCK)))
 525                        return POLLERR;
 526                /*
 527                 * lockless access to see if there are pending faults
 528                 * __pollwait last action is the add_wait_queue but
 529                 * the spin_unlock would allow the waitqueue_active to
 530                 * pass above the actual list_add inside
 531                 * add_wait_queue critical section. So use a full
 532                 * memory barrier to serialize the list_add write of
 533                 * add_wait_queue() with the waitqueue_active read
 534                 * below.
 535                 */
 536                ret = 0;
 537                smp_mb();
 538                if (waitqueue_active(&ctx->fault_pending_wqh))
 539                        ret = POLLIN;
 540                return ret;
 541        default:
 542                BUG();
 543        }
 544}
 545
 546static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
 547                                    struct uffd_msg *msg)
 548{
 549        ssize_t ret;
 550        DECLARE_WAITQUEUE(wait, current);
 551        struct userfaultfd_wait_queue *uwq;
 552
 553        /* always take the fd_wqh lock before the fault_pending_wqh lock */
 554        spin_lock(&ctx->fd_wqh.lock);
 555        __add_wait_queue(&ctx->fd_wqh, &wait);
 556        for (;;) {
 557                set_current_state(TASK_INTERRUPTIBLE);
 558                spin_lock(&ctx->fault_pending_wqh.lock);
 559                uwq = find_userfault(ctx);
 560                if (uwq) {
 561                        /*
 562                         * Use a seqcount to repeat the lockless check
 563                         * in wake_userfault() to avoid missing
 564                         * wakeups because during the refile both
 565                         * waitqueue could become empty if this is the
 566                         * only userfault.
 567                         */
 568                        write_seqcount_begin(&ctx->refile_seq);
 569
 570                        /*
 571                         * The fault_pending_wqh.lock prevents the uwq
 572                         * to disappear from under us.
 573                         *
 574                         * Refile this userfault from
 575                         * fault_pending_wqh to fault_wqh, it's not
 576                         * pending anymore after we read it.
 577                         *
 578                         * Use list_del() by hand (as
 579                         * userfaultfd_wake_function also uses
 580                         * list_del_init() by hand) to be sure nobody
 581                         * changes __remove_wait_queue() to use
 582                         * list_del_init() in turn breaking the
 583                         * !list_empty_careful() check in
 584                         * handle_userfault(). The uwq->wq.task_list
 585                         * must never be empty at any time during the
 586                         * refile, or the waitqueue could disappear
 587                         * from under us. The "wait_queue_head_t"
 588                         * parameter of __remove_wait_queue() is unused
 589                         * anyway.
 590                         */
 591                        list_del(&uwq->wq.task_list);
 592                        __add_wait_queue(&ctx->fault_wqh, &uwq->wq);
 593
 594                        write_seqcount_end(&ctx->refile_seq);
 595
 596                        /* careful to always initialize msg if ret == 0 */
 597                        *msg = uwq->msg;
 598                        spin_unlock(&ctx->fault_pending_wqh.lock);
 599                        ret = 0;
 600                        break;
 601                }
 602                spin_unlock(&ctx->fault_pending_wqh.lock);
 603                if (signal_pending(current)) {
 604                        ret = -ERESTARTSYS;
 605                        break;
 606                }
 607                if (no_wait) {
 608                        ret = -EAGAIN;
 609                        break;
 610                }
 611                spin_unlock(&ctx->fd_wqh.lock);
 612                schedule();
 613                spin_lock(&ctx->fd_wqh.lock);
 614        }
 615        __remove_wait_queue(&ctx->fd_wqh, &wait);
 616        __set_current_state(TASK_RUNNING);
 617        spin_unlock(&ctx->fd_wqh.lock);
 618
 619        return ret;
 620}
 621
 622static ssize_t userfaultfd_read(struct file *file, char __user *buf,
 623                                size_t count, loff_t *ppos)
 624{
 625        struct userfaultfd_ctx *ctx = file->private_data;
 626        ssize_t _ret, ret = 0;
 627        struct uffd_msg msg;
 628        int no_wait = file->f_flags & O_NONBLOCK;
 629
 630        if (ctx->state == UFFD_STATE_WAIT_API)
 631                return -EINVAL;
 632
 633        for (;;) {
 634                if (count < sizeof(msg))
 635                        return ret ? ret : -EINVAL;
 636                _ret = userfaultfd_ctx_read(ctx, no_wait, &msg);
 637                if (_ret < 0)
 638                        return ret ? ret : _ret;
 639                if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
 640                        return ret ? ret : -EFAULT;
 641                ret += sizeof(msg);
 642                buf += sizeof(msg);
 643                count -= sizeof(msg);
 644                /*
 645                 * Allow to read more than one fault at time but only
 646                 * block if waiting for the very first one.
 647                 */
 648                no_wait = O_NONBLOCK;
 649        }
 650}
 651
 652static void __wake_userfault(struct userfaultfd_ctx *ctx,
 653                             struct userfaultfd_wake_range *range)
 654{
 655        unsigned long start, end;
 656
 657        start = range->start;
 658        end = range->start + range->len;
 659
 660        spin_lock(&ctx->fault_pending_wqh.lock);
 661        /* wake all in the range and autoremove */
 662        if (waitqueue_active(&ctx->fault_pending_wqh))
 663                __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
 664                                     range);
 665        if (waitqueue_active(&ctx->fault_wqh))
 666                __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, range);
 667        spin_unlock(&ctx->fault_pending_wqh.lock);
 668}
 669
 670static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
 671                                           struct userfaultfd_wake_range *range)
 672{
 673        unsigned seq;
 674        bool need_wakeup;
 675
 676        /*
 677         * To be sure waitqueue_active() is not reordered by the CPU
 678         * before the pagetable update, use an explicit SMP memory
 679         * barrier here. PT lock release or up_read(mmap_sem) still
 680         * have release semantics that can allow the
 681         * waitqueue_active() to be reordered before the pte update.
 682         */
 683        smp_mb();
 684
 685        /*
 686         * Use waitqueue_active because it's very frequent to
 687         * change the address space atomically even if there are no
 688         * userfaults yet. So we take the spinlock only when we're
 689         * sure we've userfaults to wake.
 690         */
 691        do {
 692                seq = read_seqcount_begin(&ctx->refile_seq);
 693                need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
 694                        waitqueue_active(&ctx->fault_wqh);
 695                cond_resched();
 696        } while (read_seqcount_retry(&ctx->refile_seq, seq));
 697        if (need_wakeup)
 698                __wake_userfault(ctx, range);
 699}
 700
 701static __always_inline int validate_range(struct mm_struct *mm,
 702                                          __u64 start, __u64 len)
 703{
 704        __u64 task_size = mm->task_size;
 705
 706        if (start & ~PAGE_MASK)
 707                return -EINVAL;
 708        if (len & ~PAGE_MASK)
 709                return -EINVAL;
 710        if (!len)
 711                return -EINVAL;
 712        if (start < mmap_min_addr)
 713                return -EINVAL;
 714        if (start >= task_size)
 715                return -EINVAL;
 716        if (len > task_size - start)
 717                return -EINVAL;
 718        return 0;
 719}
 720
 721static int userfaultfd_register(struct userfaultfd_ctx *ctx,
 722                                unsigned long arg)
 723{
 724        struct mm_struct *mm = ctx->mm;
 725        struct vm_area_struct *vma, *prev, *cur;
 726        int ret;
 727        struct uffdio_register uffdio_register;
 728        struct uffdio_register __user *user_uffdio_register;
 729        unsigned long vm_flags, new_flags;
 730        bool found;
 731        unsigned long start, end, vma_end;
 732
 733        user_uffdio_register = (struct uffdio_register __user *) arg;
 734
 735        ret = -EFAULT;
 736        if (copy_from_user(&uffdio_register, user_uffdio_register,
 737                           sizeof(uffdio_register)-sizeof(__u64)))
 738                goto out;
 739
 740        ret = -EINVAL;
 741        if (!uffdio_register.mode)
 742                goto out;
 743        if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
 744                                     UFFDIO_REGISTER_MODE_WP))
 745                goto out;
 746        vm_flags = 0;
 747        if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
 748                vm_flags |= VM_UFFD_MISSING;
 749        if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
 750                vm_flags |= VM_UFFD_WP;
 751                /*
 752                 * FIXME: remove the below error constraint by
 753                 * implementing the wprotect tracking mode.
 754                 */
 755                ret = -EINVAL;
 756                goto out;
 757        }
 758
 759        ret = validate_range(mm, uffdio_register.range.start,
 760                             uffdio_register.range.len);
 761        if (ret)
 762                goto out;
 763
 764        start = uffdio_register.range.start;
 765        end = start + uffdio_register.range.len;
 766
 767        ret = -ENOMEM;
 768        if (!mmget_not_zero(mm))
 769                goto out;
 770
 771        down_write(&mm->mmap_sem);
 772        vma = find_vma_prev(mm, start, &prev);
 773        if (!vma)
 774                goto out_unlock;
 775
 776        /* check that there's at least one vma in the range */
 777        ret = -EINVAL;
 778        if (vma->vm_start >= end)
 779                goto out_unlock;
 780
 781        /*
 782         * Search for not compatible vmas.
 783         *
 784         * FIXME: this shall be relaxed later so that it doesn't fail
 785         * on tmpfs backed vmas (in addition to the current allowance
 786         * on anonymous vmas).
 787         */
 788        found = false;
 789        for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
 790                cond_resched();
 791
 792                BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
 793                       !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
 794
 795                /* check not compatible vmas */
 796                ret = -EINVAL;
 797                if (cur->vm_ops)
 798                        goto out_unlock;
 799
 800                /*
 801                 * Check that this vma isn't already owned by a
 802                 * different userfaultfd. We can't allow more than one
 803                 * userfaultfd to own a single vma simultaneously or we
 804                 * wouldn't know which one to deliver the userfaults to.
 805                 */
 806                ret = -EBUSY;
 807                if (cur->vm_userfaultfd_ctx.ctx &&
 808                    cur->vm_userfaultfd_ctx.ctx != ctx)
 809                        goto out_unlock;
 810
 811                found = true;
 812        }
 813        BUG_ON(!found);
 814
 815        if (vma->vm_start < start)
 816                prev = vma;
 817
 818        ret = 0;
 819        do {
 820                cond_resched();
 821
 822                BUG_ON(vma->vm_ops);
 823                BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
 824                       vma->vm_userfaultfd_ctx.ctx != ctx);
 825
 826                /*
 827                 * Nothing to do: this vma is already registered into this
 828                 * userfaultfd and with the right tracking mode too.
 829                 */
 830                if (vma->vm_userfaultfd_ctx.ctx == ctx &&
 831                    (vma->vm_flags & vm_flags) == vm_flags)
 832                        goto skip;
 833
 834                if (vma->vm_start > start)
 835                        start = vma->vm_start;
 836                vma_end = min(end, vma->vm_end);
 837
 838                new_flags = (vma->vm_flags & ~vm_flags) | vm_flags;
 839                prev = vma_merge(mm, prev, start, vma_end, new_flags,
 840                                 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
 841                                 vma_policy(vma),
 842                                 ((struct vm_userfaultfd_ctx){ ctx }));
 843                if (prev) {
 844                        vma = prev;
 845                        goto next;
 846                }
 847                if (vma->vm_start < start) {
 848                        ret = split_vma(mm, vma, start, 1);
 849                        if (ret)
 850                                break;
 851                }
 852                if (vma->vm_end > end) {
 853                        ret = split_vma(mm, vma, end, 0);
 854                        if (ret)
 855                                break;
 856                }
 857        next:
 858                /*
 859                 * In the vma_merge() successful mprotect-like case 8:
 860                 * the next vma was merged into the current one and
 861                 * the current one has not been updated yet.
 862                 */
 863                vma->vm_flags = new_flags;
 864                vma->vm_userfaultfd_ctx.ctx = ctx;
 865
 866        skip:
 867                prev = vma;
 868                start = vma->vm_end;
 869                vma = vma->vm_next;
 870        } while (vma && vma->vm_start < end);
 871out_unlock:
 872        up_write(&mm->mmap_sem);
 873        mmput(mm);
 874        if (!ret) {
 875                /*
 876                 * Now that we scanned all vmas we can already tell
 877                 * userland which ioctls methods are guaranteed to
 878                 * succeed on this range.
 879                 */
 880                if (put_user(UFFD_API_RANGE_IOCTLS,
 881                             &user_uffdio_register->ioctls))
 882                        ret = -EFAULT;
 883        }
 884out:
 885        return ret;
 886}
 887
 888static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
 889                                  unsigned long arg)
 890{
 891        struct mm_struct *mm = ctx->mm;
 892        struct vm_area_struct *vma, *prev, *cur;
 893        int ret;
 894        struct uffdio_range uffdio_unregister;
 895        unsigned long new_flags;
 896        bool found;
 897        unsigned long start, end, vma_end;
 898        const void __user *buf = (void __user *)arg;
 899
 900        ret = -EFAULT;
 901        if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
 902                goto out;
 903
 904        ret = validate_range(mm, uffdio_unregister.start,
 905                             uffdio_unregister.len);
 906        if (ret)
 907                goto out;
 908
 909        start = uffdio_unregister.start;
 910        end = start + uffdio_unregister.len;
 911
 912        ret = -ENOMEM;
 913        if (!mmget_not_zero(mm))
 914                goto out;
 915
 916        down_write(&mm->mmap_sem);
 917        vma = find_vma_prev(mm, start, &prev);
 918        if (!vma)
 919                goto out_unlock;
 920
 921        /* check that there's at least one vma in the range */
 922        ret = -EINVAL;
 923        if (vma->vm_start >= end)
 924                goto out_unlock;
 925
 926        /*
 927         * Search for not compatible vmas.
 928         *
 929         * FIXME: this shall be relaxed later so that it doesn't fail
 930         * on tmpfs backed vmas (in addition to the current allowance
 931         * on anonymous vmas).
 932         */
 933        found = false;
 934        ret = -EINVAL;
 935        for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
 936                cond_resched();
 937
 938                BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
 939                       !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
 940
 941                /*
 942                 * Check not compatible vmas, not strictly required
 943                 * here as not compatible vmas cannot have an
 944                 * userfaultfd_ctx registered on them, but this
 945                 * provides for more strict behavior to notice
 946                 * unregistration errors.
 947                 */
 948                if (cur->vm_ops)
 949                        goto out_unlock;
 950
 951                found = true;
 952        }
 953        BUG_ON(!found);
 954
 955        if (vma->vm_start < start)
 956                prev = vma;
 957
 958        ret = 0;
 959        do {
 960                cond_resched();
 961
 962                BUG_ON(vma->vm_ops);
 963
 964                /*
 965                 * Nothing to do: this vma is already registered into this
 966                 * userfaultfd and with the right tracking mode too.
 967                 */
 968                if (!vma->vm_userfaultfd_ctx.ctx)
 969                        goto skip;
 970
 971                if (vma->vm_start > start)
 972                        start = vma->vm_start;
 973                vma_end = min(end, vma->vm_end);
 974
 975                new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
 976                prev = vma_merge(mm, prev, start, vma_end, new_flags,
 977                                 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
 978                                 vma_policy(vma),
 979                                 NULL_VM_UFFD_CTX);
 980                if (prev) {
 981                        vma = prev;
 982                        goto next;
 983                }
 984                if (vma->vm_start < start) {
 985                        ret = split_vma(mm, vma, start, 1);
 986                        if (ret)
 987                                break;
 988                }
 989                if (vma->vm_end > end) {
 990                        ret = split_vma(mm, vma, end, 0);
 991                        if (ret)
 992                                break;
 993                }
 994        next:
 995                /*
 996                 * In the vma_merge() successful mprotect-like case 8:
 997                 * the next vma was merged into the current one and
 998                 * the current one has not been updated yet.
 999                 */
1000                vma->vm_flags = new_flags;
1001                vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1002
1003        skip:
1004                prev = vma;
1005                start = vma->vm_end;
1006                vma = vma->vm_next;
1007        } while (vma && vma->vm_start < end);
1008out_unlock:
1009        up_write(&mm->mmap_sem);
1010        mmput(mm);
1011out:
1012        return ret;
1013}
1014
1015/*
1016 * userfaultfd_wake may be used in combination with the
1017 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1018 */
1019static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1020                            unsigned long arg)
1021{
1022        int ret;
1023        struct uffdio_range uffdio_wake;
1024        struct userfaultfd_wake_range range;
1025        const void __user *buf = (void __user *)arg;
1026
1027        ret = -EFAULT;
1028        if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1029                goto out;
1030
1031        ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1032        if (ret)
1033                goto out;
1034
1035        range.start = uffdio_wake.start;
1036        range.len = uffdio_wake.len;
1037
1038        /*
1039         * len == 0 means wake all and we don't want to wake all here,
1040         * so check it again to be sure.
1041         */
1042        VM_BUG_ON(!range.len);
1043
1044        wake_userfault(ctx, &range);
1045        ret = 0;
1046
1047out:
1048        return ret;
1049}
1050
1051static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1052                            unsigned long arg)
1053{
1054        __s64 ret;
1055        struct uffdio_copy uffdio_copy;
1056        struct uffdio_copy __user *user_uffdio_copy;
1057        struct userfaultfd_wake_range range;
1058
1059        user_uffdio_copy = (struct uffdio_copy __user *) arg;
1060
1061        ret = -EFAULT;
1062        if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1063                           /* don't copy "copy" last field */
1064                           sizeof(uffdio_copy)-sizeof(__s64)))
1065                goto out;
1066
1067        ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1068        if (ret)
1069                goto out;
1070        /*
1071         * double check for wraparound just in case. copy_from_user()
1072         * will later check uffdio_copy.src + uffdio_copy.len to fit
1073         * in the userland range.
1074         */
1075        ret = -EINVAL;
1076        if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1077                goto out;
1078        if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE)
1079                goto out;
1080        if (mmget_not_zero(ctx->mm)) {
1081                ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1082                                   uffdio_copy.len);
1083                mmput(ctx->mm);
1084        }
1085        if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1086                return -EFAULT;
1087        if (ret < 0)
1088                goto out;
1089        BUG_ON(!ret);
1090        /* len == 0 would wake all */
1091        range.len = ret;
1092        if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1093                range.start = uffdio_copy.dst;
1094                wake_userfault(ctx, &range);
1095        }
1096        ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1097out:
1098        return ret;
1099}
1100
1101static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1102                                unsigned long arg)
1103{
1104        __s64 ret;
1105        struct uffdio_zeropage uffdio_zeropage;
1106        struct uffdio_zeropage __user *user_uffdio_zeropage;
1107        struct userfaultfd_wake_range range;
1108
1109        user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1110
1111        ret = -EFAULT;
1112        if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1113                           /* don't copy "zeropage" last field */
1114                           sizeof(uffdio_zeropage)-sizeof(__s64)))
1115                goto out;
1116
1117        ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1118                             uffdio_zeropage.range.len);
1119        if (ret)
1120                goto out;
1121        ret = -EINVAL;
1122        if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1123                goto out;
1124
1125        if (mmget_not_zero(ctx->mm)) {
1126                ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1127                                     uffdio_zeropage.range.len);
1128                mmput(ctx->mm);
1129        }
1130        if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1131                return -EFAULT;
1132        if (ret < 0)
1133                goto out;
1134        /* len == 0 would wake all */
1135        BUG_ON(!ret);
1136        range.len = ret;
1137        if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1138                range.start = uffdio_zeropage.range.start;
1139                wake_userfault(ctx, &range);
1140        }
1141        ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1142out:
1143        return ret;
1144}
1145
1146/*
1147 * userland asks for a certain API version and we return which bits
1148 * and ioctl commands are implemented in this kernel for such API
1149 * version or -EINVAL if unknown.
1150 */
1151static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1152                           unsigned long arg)
1153{
1154        struct uffdio_api uffdio_api;
1155        void __user *buf = (void __user *)arg;
1156        int ret;
1157
1158        ret = -EINVAL;
1159        if (ctx->state != UFFD_STATE_WAIT_API)
1160                goto out;
1161        ret = -EFAULT;
1162        if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1163                goto out;
1164        if (uffdio_api.api != UFFD_API || uffdio_api.features) {
1165                memset(&uffdio_api, 0, sizeof(uffdio_api));
1166                if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1167                        goto out;
1168                ret = -EINVAL;
1169                goto out;
1170        }
1171        uffdio_api.features = UFFD_API_FEATURES;
1172        uffdio_api.ioctls = UFFD_API_IOCTLS;
1173        ret = -EFAULT;
1174        if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1175                goto out;
1176        ctx->state = UFFD_STATE_RUNNING;
1177        ret = 0;
1178out:
1179        return ret;
1180}
1181
1182static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1183                              unsigned long arg)
1184{
1185        int ret = -EINVAL;
1186        struct userfaultfd_ctx *ctx = file->private_data;
1187
1188        if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API)
1189                return -EINVAL;
1190
1191        switch(cmd) {
1192        case UFFDIO_API:
1193                ret = userfaultfd_api(ctx, arg);
1194                break;
1195        case UFFDIO_REGISTER:
1196                ret = userfaultfd_register(ctx, arg);
1197                break;
1198        case UFFDIO_UNREGISTER:
1199                ret = userfaultfd_unregister(ctx, arg);
1200                break;
1201        case UFFDIO_WAKE:
1202                ret = userfaultfd_wake(ctx, arg);
1203                break;
1204        case UFFDIO_COPY:
1205                ret = userfaultfd_copy(ctx, arg);
1206                break;
1207        case UFFDIO_ZEROPAGE:
1208                ret = userfaultfd_zeropage(ctx, arg);
1209                break;
1210        }
1211        return ret;
1212}
1213
1214#ifdef CONFIG_PROC_FS
1215static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
1216{
1217        struct userfaultfd_ctx *ctx = f->private_data;
1218        wait_queue_t *wq;
1219        struct userfaultfd_wait_queue *uwq;
1220        unsigned long pending = 0, total = 0;
1221
1222        spin_lock(&ctx->fault_pending_wqh.lock);
1223        list_for_each_entry(wq, &ctx->fault_pending_wqh.task_list, task_list) {
1224                uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
1225                pending++;
1226                total++;
1227        }
1228        list_for_each_entry(wq, &ctx->fault_wqh.task_list, task_list) {
1229                uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
1230                total++;
1231        }
1232        spin_unlock(&ctx->fault_pending_wqh.lock);
1233
1234        /*
1235         * If more protocols will be added, there will be all shown
1236         * separated by a space. Like this:
1237         *      protocols: aa:... bb:...
1238         */
1239        seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
1240                   pending, total, UFFD_API, UFFD_API_FEATURES,
1241                   UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
1242}
1243#endif
1244
1245static const struct file_operations userfaultfd_fops = {
1246#ifdef CONFIG_PROC_FS
1247        .show_fdinfo    = userfaultfd_show_fdinfo,
1248#endif
1249        .release        = userfaultfd_release,
1250        .poll           = userfaultfd_poll,
1251        .read           = userfaultfd_read,
1252        .unlocked_ioctl = userfaultfd_ioctl,
1253        .compat_ioctl   = userfaultfd_ioctl,
1254        .llseek         = noop_llseek,
1255};
1256
1257static void init_once_userfaultfd_ctx(void *mem)
1258{
1259        struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
1260
1261        init_waitqueue_head(&ctx->fault_pending_wqh);
1262        init_waitqueue_head(&ctx->fault_wqh);
1263        init_waitqueue_head(&ctx->fd_wqh);
1264        seqcount_init(&ctx->refile_seq);
1265}
1266
1267/**
1268 * userfaultfd_file_create - Creates an userfaultfd file pointer.
1269 * @flags: Flags for the userfaultfd file.
1270 *
1271 * This function creates an userfaultfd file pointer, w/out installing
1272 * it into the fd table. This is useful when the userfaultfd file is
1273 * used during the initialization of data structures that require
1274 * extra setup after the userfaultfd creation. So the userfaultfd
1275 * creation is split into the file pointer creation phase, and the
1276 * file descriptor installation phase.  In this way races with
1277 * userspace closing the newly installed file descriptor can be
1278 * avoided.  Returns an userfaultfd file pointer, or a proper error
1279 * pointer.
1280 */
1281static struct file *userfaultfd_file_create(int flags)
1282{
1283        struct file *file;
1284        struct userfaultfd_ctx *ctx;
1285
1286        BUG_ON(!current->mm);
1287
1288        /* Check the UFFD_* constants for consistency.  */
1289        BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
1290        BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
1291
1292        file = ERR_PTR(-EINVAL);
1293        if (flags & ~UFFD_SHARED_FCNTL_FLAGS)
1294                goto out;
1295
1296        file = ERR_PTR(-ENOMEM);
1297        ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
1298        if (!ctx)
1299                goto out;
1300
1301        atomic_set(&ctx->refcount, 1);
1302        ctx->flags = flags;
1303        ctx->state = UFFD_STATE_WAIT_API;
1304        ctx->released = false;
1305        ctx->mm = current->mm;
1306        /* prevent the mm struct to be freed */
1307        atomic_inc(&ctx->mm->mm_count);
1308
1309        file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, ctx,
1310                                  O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS));
1311        if (IS_ERR(file)) {
1312                mmdrop(ctx->mm);
1313                kmem_cache_free(userfaultfd_ctx_cachep, ctx);
1314        }
1315out:
1316        return file;
1317}
1318
1319SYSCALL_DEFINE1(userfaultfd, int, flags)
1320{
1321        int fd, error;
1322        struct file *file;
1323
1324        error = get_unused_fd_flags(flags & UFFD_SHARED_FCNTL_FLAGS);
1325        if (error < 0)
1326                return error;
1327        fd = error;
1328
1329        file = userfaultfd_file_create(flags);
1330        if (IS_ERR(file)) {
1331                error = PTR_ERR(file);
1332                goto err_put_unused_fd;
1333        }
1334        fd_install(fd, file);
1335
1336        return fd;
1337
1338err_put_unused_fd:
1339        put_unused_fd(fd);
1340
1341        return error;
1342}
1343
1344static int __init userfaultfd_init(void)
1345{
1346        userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
1347                                                sizeof(struct userfaultfd_ctx),
1348                                                0,
1349                                                SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1350                                                init_once_userfaultfd_ctx);
1351        return 0;
1352}
1353__initcall(userfaultfd_init);
1354