linux/include/crypto/hash.h
<<
>>
Prefs
   1/*
   2 * Hash: Hash algorithms under the crypto API
   3 * 
   4 * Copyright (c) 2008 Herbert Xu <herbert@gondor.apana.org.au>
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License as published by the Free
   8 * Software Foundation; either version 2 of the License, or (at your option) 
   9 * any later version.
  10 *
  11 */
  12
  13#ifndef _CRYPTO_HASH_H
  14#define _CRYPTO_HASH_H
  15
  16#include <linux/crypto.h>
  17#include <linux/string.h>
  18
  19struct crypto_ahash;
  20
  21/**
  22 * DOC: Message Digest Algorithm Definitions
  23 *
  24 * These data structures define modular message digest algorithm
  25 * implementations, managed via crypto_register_ahash(),
  26 * crypto_register_shash(), crypto_unregister_ahash() and
  27 * crypto_unregister_shash().
  28 */
  29
  30/**
  31 * struct hash_alg_common - define properties of message digest
  32 * @digestsize: Size of the result of the transformation. A buffer of this size
  33 *              must be available to the @final and @finup calls, so they can
  34 *              store the resulting hash into it. For various predefined sizes,
  35 *              search include/crypto/ using
  36 *              git grep _DIGEST_SIZE include/crypto.
  37 * @statesize: Size of the block for partial state of the transformation. A
  38 *             buffer of this size must be passed to the @export function as it
  39 *             will save the partial state of the transformation into it. On the
  40 *             other side, the @import function will load the state from a
  41 *             buffer of this size as well.
  42 * @base: Start of data structure of cipher algorithm. The common data
  43 *        structure of crypto_alg contains information common to all ciphers.
  44 *        The hash_alg_common data structure now adds the hash-specific
  45 *        information.
  46 */
  47struct hash_alg_common {
  48        unsigned int digestsize;
  49        unsigned int statesize;
  50
  51        struct crypto_alg base;
  52};
  53
  54struct ahash_request {
  55        struct crypto_async_request base;
  56
  57        unsigned int nbytes;
  58        struct scatterlist *src;
  59        u8 *result;
  60
  61        /* This field may only be used by the ahash API code. */
  62        void *priv;
  63
  64        void *__ctx[] CRYPTO_MINALIGN_ATTR;
  65};
  66
  67#define AHASH_REQUEST_ON_STACK(name, ahash) \
  68        char __##name##_desc[sizeof(struct ahash_request) + \
  69                crypto_ahash_reqsize(ahash)] CRYPTO_MINALIGN_ATTR; \
  70        struct ahash_request *name = (void *)__##name##_desc
  71
  72/**
  73 * struct ahash_alg - asynchronous message digest definition
  74 * @init: Initialize the transformation context. Intended only to initialize the
  75 *        state of the HASH transformation at the beginning. This shall fill in
  76 *        the internal structures used during the entire duration of the whole
  77 *        transformation. No data processing happens at this point.
  78 * @update: Push a chunk of data into the driver for transformation. This
  79 *         function actually pushes blocks of data from upper layers into the
  80 *         driver, which then passes those to the hardware as seen fit. This
  81 *         function must not finalize the HASH transformation by calculating the
  82 *         final message digest as this only adds more data into the
  83 *         transformation. This function shall not modify the transformation
  84 *         context, as this function may be called in parallel with the same
  85 *         transformation object. Data processing can happen synchronously
  86 *         [SHASH] or asynchronously [AHASH] at this point.
  87 * @final: Retrieve result from the driver. This function finalizes the
  88 *         transformation and retrieves the resulting hash from the driver and
  89 *         pushes it back to upper layers. No data processing happens at this
  90 *         point.
  91 * @finup: Combination of @update and @final. This function is effectively a
  92 *         combination of @update and @final calls issued in sequence. As some
  93 *         hardware cannot do @update and @final separately, this callback was
  94 *         added to allow such hardware to be used at least by IPsec. Data
  95 *         processing can happen synchronously [SHASH] or asynchronously [AHASH]
  96 *         at this point.
  97 * @digest: Combination of @init and @update and @final. This function
  98 *          effectively behaves as the entire chain of operations, @init,
  99 *          @update and @final issued in sequence. Just like @finup, this was
 100 *          added for hardware which cannot do even the @finup, but can only do
 101 *          the whole transformation in one run. Data processing can happen
 102 *          synchronously [SHASH] or asynchronously [AHASH] at this point.
 103 * @setkey: Set optional key used by the hashing algorithm. Intended to push
 104 *          optional key used by the hashing algorithm from upper layers into
 105 *          the driver. This function can store the key in the transformation
 106 *          context or can outright program it into the hardware. In the former
 107 *          case, one must be careful to program the key into the hardware at
 108 *          appropriate time and one must be careful that .setkey() can be
 109 *          called multiple times during the existence of the transformation
 110 *          object. Not  all hashing algorithms do implement this function as it
 111 *          is only needed for keyed message digests. SHAx/MDx/CRCx do NOT
 112 *          implement this function. HMAC(MDx)/HMAC(SHAx)/CMAC(AES) do implement
 113 *          this function. This function must be called before any other of the
 114 *          @init, @update, @final, @finup, @digest is called. No data
 115 *          processing happens at this point.
 116 * @export: Export partial state of the transformation. This function dumps the
 117 *          entire state of the ongoing transformation into a provided block of
 118 *          data so it can be @import 'ed back later on. This is useful in case
 119 *          you want to save partial result of the transformation after
 120 *          processing certain amount of data and reload this partial result
 121 *          multiple times later on for multiple re-use. No data processing
 122 *          happens at this point.
 123 * @import: Import partial state of the transformation. This function loads the
 124 *          entire state of the ongoing transformation from a provided block of
 125 *          data so the transformation can continue from this point onward. No
 126 *          data processing happens at this point.
 127 * @halg: see struct hash_alg_common
 128 */
 129struct ahash_alg {
 130        int (*init)(struct ahash_request *req);
 131        int (*update)(struct ahash_request *req);
 132        int (*final)(struct ahash_request *req);
 133        int (*finup)(struct ahash_request *req);
 134        int (*digest)(struct ahash_request *req);
 135        int (*export)(struct ahash_request *req, void *out);
 136        int (*import)(struct ahash_request *req, const void *in);
 137        int (*setkey)(struct crypto_ahash *tfm, const u8 *key,
 138                      unsigned int keylen);
 139
 140        struct hash_alg_common halg;
 141};
 142
 143struct shash_desc {
 144        struct crypto_shash *tfm;
 145        u32 flags;
 146
 147        void *__ctx[] CRYPTO_MINALIGN_ATTR;
 148};
 149
 150#define SHASH_DESC_ON_STACK(shash, ctx)                           \
 151        char __##shash##_desc[sizeof(struct shash_desc) +         \
 152                crypto_shash_descsize(ctx)] CRYPTO_MINALIGN_ATTR; \
 153        struct shash_desc *shash = (struct shash_desc *)__##shash##_desc
 154
 155/**
 156 * struct shash_alg - synchronous message digest definition
 157 * @init: see struct ahash_alg
 158 * @update: see struct ahash_alg
 159 * @final: see struct ahash_alg
 160 * @finup: see struct ahash_alg
 161 * @digest: see struct ahash_alg
 162 * @export: see struct ahash_alg
 163 * @import: see struct ahash_alg
 164 * @setkey: see struct ahash_alg
 165 * @digestsize: see struct ahash_alg
 166 * @statesize: see struct ahash_alg
 167 * @descsize: Size of the operational state for the message digest. This state
 168 *            size is the memory size that needs to be allocated for
 169 *            shash_desc.__ctx
 170 * @base: internally used
 171 */
 172struct shash_alg {
 173        int (*init)(struct shash_desc *desc);
 174        int (*update)(struct shash_desc *desc, const u8 *data,
 175                      unsigned int len);
 176        int (*final)(struct shash_desc *desc, u8 *out);
 177        int (*finup)(struct shash_desc *desc, const u8 *data,
 178                     unsigned int len, u8 *out);
 179        int (*digest)(struct shash_desc *desc, const u8 *data,
 180                      unsigned int len, u8 *out);
 181        int (*export)(struct shash_desc *desc, void *out);
 182        int (*import)(struct shash_desc *desc, const void *in);
 183        int (*setkey)(struct crypto_shash *tfm, const u8 *key,
 184                      unsigned int keylen);
 185
 186        unsigned int descsize;
 187
 188        /* These fields must match hash_alg_common. */
 189        unsigned int digestsize
 190                __attribute__ ((aligned(__alignof__(struct hash_alg_common))));
 191        unsigned int statesize;
 192
 193        struct crypto_alg base;
 194};
 195
 196struct crypto_ahash {
 197        int (*init)(struct ahash_request *req);
 198        int (*update)(struct ahash_request *req);
 199        int (*final)(struct ahash_request *req);
 200        int (*finup)(struct ahash_request *req);
 201        int (*digest)(struct ahash_request *req);
 202        int (*export)(struct ahash_request *req, void *out);
 203        int (*import)(struct ahash_request *req, const void *in);
 204        int (*setkey)(struct crypto_ahash *tfm, const u8 *key,
 205                      unsigned int keylen);
 206
 207        unsigned int reqsize;
 208        bool has_setkey;
 209        struct crypto_tfm base;
 210};
 211
 212struct crypto_shash {
 213        unsigned int descsize;
 214        struct crypto_tfm base;
 215};
 216
 217/**
 218 * DOC: Asynchronous Message Digest API
 219 *
 220 * The asynchronous message digest API is used with the ciphers of type
 221 * CRYPTO_ALG_TYPE_AHASH (listed as type "ahash" in /proc/crypto)
 222 *
 223 * The asynchronous cipher operation discussion provided for the
 224 * CRYPTO_ALG_TYPE_ABLKCIPHER API applies here as well.
 225 */
 226
 227static inline struct crypto_ahash *__crypto_ahash_cast(struct crypto_tfm *tfm)
 228{
 229        return container_of(tfm, struct crypto_ahash, base);
 230}
 231
 232/**
 233 * crypto_alloc_ahash() - allocate ahash cipher handle
 234 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
 235 *            ahash cipher
 236 * @type: specifies the type of the cipher
 237 * @mask: specifies the mask for the cipher
 238 *
 239 * Allocate a cipher handle for an ahash. The returned struct
 240 * crypto_ahash is the cipher handle that is required for any subsequent
 241 * API invocation for that ahash.
 242 *
 243 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
 244 *         of an error, PTR_ERR() returns the error code.
 245 */
 246struct crypto_ahash *crypto_alloc_ahash(const char *alg_name, u32 type,
 247                                        u32 mask);
 248
 249static inline struct crypto_tfm *crypto_ahash_tfm(struct crypto_ahash *tfm)
 250{
 251        return &tfm->base;
 252}
 253
 254/**
 255 * crypto_free_ahash() - zeroize and free the ahash handle
 256 * @tfm: cipher handle to be freed
 257 */
 258static inline void crypto_free_ahash(struct crypto_ahash *tfm)
 259{
 260        crypto_destroy_tfm(tfm, crypto_ahash_tfm(tfm));
 261}
 262
 263/**
 264 * crypto_has_ahash() - Search for the availability of an ahash.
 265 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
 266 *            ahash
 267 * @type: specifies the type of the ahash
 268 * @mask: specifies the mask for the ahash
 269 *
 270 * Return: true when the ahash is known to the kernel crypto API; false
 271 *         otherwise
 272 */
 273int crypto_has_ahash(const char *alg_name, u32 type, u32 mask);
 274
 275static inline const char *crypto_ahash_alg_name(struct crypto_ahash *tfm)
 276{
 277        return crypto_tfm_alg_name(crypto_ahash_tfm(tfm));
 278}
 279
 280static inline const char *crypto_ahash_driver_name(struct crypto_ahash *tfm)
 281{
 282        return crypto_tfm_alg_driver_name(crypto_ahash_tfm(tfm));
 283}
 284
 285static inline unsigned int crypto_ahash_alignmask(
 286        struct crypto_ahash *tfm)
 287{
 288        return crypto_tfm_alg_alignmask(crypto_ahash_tfm(tfm));
 289}
 290
 291/**
 292 * crypto_ahash_blocksize() - obtain block size for cipher
 293 * @tfm: cipher handle
 294 *
 295 * The block size for the message digest cipher referenced with the cipher
 296 * handle is returned.
 297 *
 298 * Return: block size of cipher
 299 */
 300static inline unsigned int crypto_ahash_blocksize(struct crypto_ahash *tfm)
 301{
 302        return crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
 303}
 304
 305static inline struct hash_alg_common *__crypto_hash_alg_common(
 306        struct crypto_alg *alg)
 307{
 308        return container_of(alg, struct hash_alg_common, base);
 309}
 310
 311static inline struct hash_alg_common *crypto_hash_alg_common(
 312        struct crypto_ahash *tfm)
 313{
 314        return __crypto_hash_alg_common(crypto_ahash_tfm(tfm)->__crt_alg);
 315}
 316
 317/**
 318 * crypto_ahash_digestsize() - obtain message digest size
 319 * @tfm: cipher handle
 320 *
 321 * The size for the message digest created by the message digest cipher
 322 * referenced with the cipher handle is returned.
 323 *
 324 *
 325 * Return: message digest size of cipher
 326 */
 327static inline unsigned int crypto_ahash_digestsize(struct crypto_ahash *tfm)
 328{
 329        return crypto_hash_alg_common(tfm)->digestsize;
 330}
 331
 332static inline unsigned int crypto_ahash_statesize(struct crypto_ahash *tfm)
 333{
 334        return crypto_hash_alg_common(tfm)->statesize;
 335}
 336
 337static inline u32 crypto_ahash_get_flags(struct crypto_ahash *tfm)
 338{
 339        return crypto_tfm_get_flags(crypto_ahash_tfm(tfm));
 340}
 341
 342static inline void crypto_ahash_set_flags(struct crypto_ahash *tfm, u32 flags)
 343{
 344        crypto_tfm_set_flags(crypto_ahash_tfm(tfm), flags);
 345}
 346
 347static inline void crypto_ahash_clear_flags(struct crypto_ahash *tfm, u32 flags)
 348{
 349        crypto_tfm_clear_flags(crypto_ahash_tfm(tfm), flags);
 350}
 351
 352/**
 353 * crypto_ahash_reqtfm() - obtain cipher handle from request
 354 * @req: asynchronous request handle that contains the reference to the ahash
 355 *       cipher handle
 356 *
 357 * Return the ahash cipher handle that is registered with the asynchronous
 358 * request handle ahash_request.
 359 *
 360 * Return: ahash cipher handle
 361 */
 362static inline struct crypto_ahash *crypto_ahash_reqtfm(
 363        struct ahash_request *req)
 364{
 365        return __crypto_ahash_cast(req->base.tfm);
 366}
 367
 368/**
 369 * crypto_ahash_reqsize() - obtain size of the request data structure
 370 * @tfm: cipher handle
 371 *
 372 * Return the size of the ahash state size. With the crypto_ahash_export
 373 * function, the caller can export the state into a buffer whose size is
 374 * defined with this function.
 375 *
 376 * Return: size of the ahash state
 377 */
 378static inline unsigned int crypto_ahash_reqsize(struct crypto_ahash *tfm)
 379{
 380        return tfm->reqsize;
 381}
 382
 383static inline void *ahash_request_ctx(struct ahash_request *req)
 384{
 385        return req->__ctx;
 386}
 387
 388/**
 389 * crypto_ahash_setkey - set key for cipher handle
 390 * @tfm: cipher handle
 391 * @key: buffer holding the key
 392 * @keylen: length of the key in bytes
 393 *
 394 * The caller provided key is set for the ahash cipher. The cipher
 395 * handle must point to a keyed hash in order for this function to succeed.
 396 *
 397 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
 398 */
 399int crypto_ahash_setkey(struct crypto_ahash *tfm, const u8 *key,
 400                        unsigned int keylen);
 401
 402static inline bool crypto_ahash_has_setkey(struct crypto_ahash *tfm)
 403{
 404        return tfm->has_setkey;
 405}
 406
 407/**
 408 * crypto_ahash_finup() - update and finalize message digest
 409 * @req: reference to the ahash_request handle that holds all information
 410 *       needed to perform the cipher operation
 411 *
 412 * This function is a "short-hand" for the function calls of
 413 * crypto_ahash_update and crypto_shash_final. The parameters have the same
 414 * meaning as discussed for those separate functions.
 415 *
 416 * Return: 0 if the message digest creation was successful; < 0 if an error
 417 *         occurred
 418 */
 419int crypto_ahash_finup(struct ahash_request *req);
 420
 421/**
 422 * crypto_ahash_final() - calculate message digest
 423 * @req: reference to the ahash_request handle that holds all information
 424 *       needed to perform the cipher operation
 425 *
 426 * Finalize the message digest operation and create the message digest
 427 * based on all data added to the cipher handle. The message digest is placed
 428 * into the output buffer registered with the ahash_request handle.
 429 *
 430 * Return: 0 if the message digest creation was successful; < 0 if an error
 431 *         occurred
 432 */
 433int crypto_ahash_final(struct ahash_request *req);
 434
 435/**
 436 * crypto_ahash_digest() - calculate message digest for a buffer
 437 * @req: reference to the ahash_request handle that holds all information
 438 *       needed to perform the cipher operation
 439 *
 440 * This function is a "short-hand" for the function calls of crypto_ahash_init,
 441 * crypto_ahash_update and crypto_ahash_final. The parameters have the same
 442 * meaning as discussed for those separate three functions.
 443 *
 444 * Return: 0 if the message digest creation was successful; < 0 if an error
 445 *         occurred
 446 */
 447int crypto_ahash_digest(struct ahash_request *req);
 448
 449/**
 450 * crypto_ahash_export() - extract current message digest state
 451 * @req: reference to the ahash_request handle whose state is exported
 452 * @out: output buffer of sufficient size that can hold the hash state
 453 *
 454 * This function exports the hash state of the ahash_request handle into the
 455 * caller-allocated output buffer out which must have sufficient size (e.g. by
 456 * calling crypto_ahash_reqsize).
 457 *
 458 * Return: 0 if the export was successful; < 0 if an error occurred
 459 */
 460static inline int crypto_ahash_export(struct ahash_request *req, void *out)
 461{
 462        return crypto_ahash_reqtfm(req)->export(req, out);
 463}
 464
 465/**
 466 * crypto_ahash_import() - import message digest state
 467 * @req: reference to ahash_request handle the state is imported into
 468 * @in: buffer holding the state
 469 *
 470 * This function imports the hash state into the ahash_request handle from the
 471 * input buffer. That buffer should have been generated with the
 472 * crypto_ahash_export function.
 473 *
 474 * Return: 0 if the import was successful; < 0 if an error occurred
 475 */
 476static inline int crypto_ahash_import(struct ahash_request *req, const void *in)
 477{
 478        return crypto_ahash_reqtfm(req)->import(req, in);
 479}
 480
 481/**
 482 * crypto_ahash_init() - (re)initialize message digest handle
 483 * @req: ahash_request handle that already is initialized with all necessary
 484 *       data using the ahash_request_* API functions
 485 *
 486 * The call (re-)initializes the message digest referenced by the ahash_request
 487 * handle. Any potentially existing state created by previous operations is
 488 * discarded.
 489 *
 490 * Return: 0 if the message digest initialization was successful; < 0 if an
 491 *         error occurred
 492 */
 493static inline int crypto_ahash_init(struct ahash_request *req)
 494{
 495        return crypto_ahash_reqtfm(req)->init(req);
 496}
 497
 498/**
 499 * crypto_ahash_update() - add data to message digest for processing
 500 * @req: ahash_request handle that was previously initialized with the
 501 *       crypto_ahash_init call.
 502 *
 503 * Updates the message digest state of the &ahash_request handle. The input data
 504 * is pointed to by the scatter/gather list registered in the &ahash_request
 505 * handle
 506 *
 507 * Return: 0 if the message digest update was successful; < 0 if an error
 508 *         occurred
 509 */
 510static inline int crypto_ahash_update(struct ahash_request *req)
 511{
 512        return crypto_ahash_reqtfm(req)->update(req);
 513}
 514
 515/**
 516 * DOC: Asynchronous Hash Request Handle
 517 *
 518 * The &ahash_request data structure contains all pointers to data
 519 * required for the asynchronous cipher operation. This includes the cipher
 520 * handle (which can be used by multiple &ahash_request instances), pointer
 521 * to plaintext and the message digest output buffer, asynchronous callback
 522 * function, etc. It acts as a handle to the ahash_request_* API calls in a
 523 * similar way as ahash handle to the crypto_ahash_* API calls.
 524 */
 525
 526/**
 527 * ahash_request_set_tfm() - update cipher handle reference in request
 528 * @req: request handle to be modified
 529 * @tfm: cipher handle that shall be added to the request handle
 530 *
 531 * Allow the caller to replace the existing ahash handle in the request
 532 * data structure with a different one.
 533 */
 534static inline void ahash_request_set_tfm(struct ahash_request *req,
 535                                         struct crypto_ahash *tfm)
 536{
 537        req->base.tfm = crypto_ahash_tfm(tfm);
 538}
 539
 540/**
 541 * ahash_request_alloc() - allocate request data structure
 542 * @tfm: cipher handle to be registered with the request
 543 * @gfp: memory allocation flag that is handed to kmalloc by the API call.
 544 *
 545 * Allocate the request data structure that must be used with the ahash
 546 * message digest API calls. During
 547 * the allocation, the provided ahash handle
 548 * is registered in the request data structure.
 549 *
 550 * Return: allocated request handle in case of success, or NULL if out of memory
 551 */
 552static inline struct ahash_request *ahash_request_alloc(
 553        struct crypto_ahash *tfm, gfp_t gfp)
 554{
 555        struct ahash_request *req;
 556
 557        req = kmalloc(sizeof(struct ahash_request) +
 558                      crypto_ahash_reqsize(tfm), gfp);
 559
 560        if (likely(req))
 561                ahash_request_set_tfm(req, tfm);
 562
 563        return req;
 564}
 565
 566/**
 567 * ahash_request_free() - zeroize and free the request data structure
 568 * @req: request data structure cipher handle to be freed
 569 */
 570static inline void ahash_request_free(struct ahash_request *req)
 571{
 572        kzfree(req);
 573}
 574
 575static inline void ahash_request_zero(struct ahash_request *req)
 576{
 577        memzero_explicit(req, sizeof(*req) +
 578                              crypto_ahash_reqsize(crypto_ahash_reqtfm(req)));
 579}
 580
 581static inline struct ahash_request *ahash_request_cast(
 582        struct crypto_async_request *req)
 583{
 584        return container_of(req, struct ahash_request, base);
 585}
 586
 587/**
 588 * ahash_request_set_callback() - set asynchronous callback function
 589 * @req: request handle
 590 * @flags: specify zero or an ORing of the flags
 591 *         CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
 592 *         increase the wait queue beyond the initial maximum size;
 593 *         CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
 594 * @compl: callback function pointer to be registered with the request handle
 595 * @data: The data pointer refers to memory that is not used by the kernel
 596 *        crypto API, but provided to the callback function for it to use. Here,
 597 *        the caller can provide a reference to memory the callback function can
 598 *        operate on. As the callback function is invoked asynchronously to the
 599 *        related functionality, it may need to access data structures of the
 600 *        related functionality which can be referenced using this pointer. The
 601 *        callback function can access the memory via the "data" field in the
 602 *        &crypto_async_request data structure provided to the callback function.
 603 *
 604 * This function allows setting the callback function that is triggered once
 605 * the cipher operation completes.
 606 *
 607 * The callback function is registered with the &ahash_request handle and
 608 * must comply with the following template
 609 *
 610 *      void callback_function(struct crypto_async_request *req, int error)
 611 */
 612static inline void ahash_request_set_callback(struct ahash_request *req,
 613                                              u32 flags,
 614                                              crypto_completion_t compl,
 615                                              void *data)
 616{
 617        req->base.complete = compl;
 618        req->base.data = data;
 619        req->base.flags = flags;
 620}
 621
 622/**
 623 * ahash_request_set_crypt() - set data buffers
 624 * @req: ahash_request handle to be updated
 625 * @src: source scatter/gather list
 626 * @result: buffer that is filled with the message digest -- the caller must
 627 *          ensure that the buffer has sufficient space by, for example, calling
 628 *          crypto_ahash_digestsize()
 629 * @nbytes: number of bytes to process from the source scatter/gather list
 630 *
 631 * By using this call, the caller references the source scatter/gather list.
 632 * The source scatter/gather list points to the data the message digest is to
 633 * be calculated for.
 634 */
 635static inline void ahash_request_set_crypt(struct ahash_request *req,
 636                                           struct scatterlist *src, u8 *result,
 637                                           unsigned int nbytes)
 638{
 639        req->src = src;
 640        req->nbytes = nbytes;
 641        req->result = result;
 642}
 643
 644/**
 645 * DOC: Synchronous Message Digest API
 646 *
 647 * The synchronous message digest API is used with the ciphers of type
 648 * CRYPTO_ALG_TYPE_SHASH (listed as type "shash" in /proc/crypto)
 649 *
 650 * The message digest API is able to maintain state information for the
 651 * caller.
 652 *
 653 * The synchronous message digest API can store user-related context in in its
 654 * shash_desc request data structure.
 655 */
 656
 657/**
 658 * crypto_alloc_shash() - allocate message digest handle
 659 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
 660 *            message digest cipher
 661 * @type: specifies the type of the cipher
 662 * @mask: specifies the mask for the cipher
 663 *
 664 * Allocate a cipher handle for a message digest. The returned &struct
 665 * crypto_shash is the cipher handle that is required for any subsequent
 666 * API invocation for that message digest.
 667 *
 668 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
 669 *         of an error, PTR_ERR() returns the error code.
 670 */
 671struct crypto_shash *crypto_alloc_shash(const char *alg_name, u32 type,
 672                                        u32 mask);
 673
 674static inline struct crypto_tfm *crypto_shash_tfm(struct crypto_shash *tfm)
 675{
 676        return &tfm->base;
 677}
 678
 679/**
 680 * crypto_free_shash() - zeroize and free the message digest handle
 681 * @tfm: cipher handle to be freed
 682 */
 683static inline void crypto_free_shash(struct crypto_shash *tfm)
 684{
 685        crypto_destroy_tfm(tfm, crypto_shash_tfm(tfm));
 686}
 687
 688static inline const char *crypto_shash_alg_name(struct crypto_shash *tfm)
 689{
 690        return crypto_tfm_alg_name(crypto_shash_tfm(tfm));
 691}
 692
 693static inline const char *crypto_shash_driver_name(struct crypto_shash *tfm)
 694{
 695        return crypto_tfm_alg_driver_name(crypto_shash_tfm(tfm));
 696}
 697
 698static inline unsigned int crypto_shash_alignmask(
 699        struct crypto_shash *tfm)
 700{
 701        return crypto_tfm_alg_alignmask(crypto_shash_tfm(tfm));
 702}
 703
 704/**
 705 * crypto_shash_blocksize() - obtain block size for cipher
 706 * @tfm: cipher handle
 707 *
 708 * The block size for the message digest cipher referenced with the cipher
 709 * handle is returned.
 710 *
 711 * Return: block size of cipher
 712 */
 713static inline unsigned int crypto_shash_blocksize(struct crypto_shash *tfm)
 714{
 715        return crypto_tfm_alg_blocksize(crypto_shash_tfm(tfm));
 716}
 717
 718static inline struct shash_alg *__crypto_shash_alg(struct crypto_alg *alg)
 719{
 720        return container_of(alg, struct shash_alg, base);
 721}
 722
 723static inline struct shash_alg *crypto_shash_alg(struct crypto_shash *tfm)
 724{
 725        return __crypto_shash_alg(crypto_shash_tfm(tfm)->__crt_alg);
 726}
 727
 728/**
 729 * crypto_shash_digestsize() - obtain message digest size
 730 * @tfm: cipher handle
 731 *
 732 * The size for the message digest created by the message digest cipher
 733 * referenced with the cipher handle is returned.
 734 *
 735 * Return: digest size of cipher
 736 */
 737static inline unsigned int crypto_shash_digestsize(struct crypto_shash *tfm)
 738{
 739        return crypto_shash_alg(tfm)->digestsize;
 740}
 741
 742static inline unsigned int crypto_shash_statesize(struct crypto_shash *tfm)
 743{
 744        return crypto_shash_alg(tfm)->statesize;
 745}
 746
 747static inline u32 crypto_shash_get_flags(struct crypto_shash *tfm)
 748{
 749        return crypto_tfm_get_flags(crypto_shash_tfm(tfm));
 750}
 751
 752static inline void crypto_shash_set_flags(struct crypto_shash *tfm, u32 flags)
 753{
 754        crypto_tfm_set_flags(crypto_shash_tfm(tfm), flags);
 755}
 756
 757static inline void crypto_shash_clear_flags(struct crypto_shash *tfm, u32 flags)
 758{
 759        crypto_tfm_clear_flags(crypto_shash_tfm(tfm), flags);
 760}
 761
 762/**
 763 * crypto_shash_descsize() - obtain the operational state size
 764 * @tfm: cipher handle
 765 *
 766 * The size of the operational state the cipher needs during operation is
 767 * returned for the hash referenced with the cipher handle. This size is
 768 * required to calculate the memory requirements to allow the caller allocating
 769 * sufficient memory for operational state.
 770 *
 771 * The operational state is defined with struct shash_desc where the size of
 772 * that data structure is to be calculated as
 773 * sizeof(struct shash_desc) + crypto_shash_descsize(alg)
 774 *
 775 * Return: size of the operational state
 776 */
 777static inline unsigned int crypto_shash_descsize(struct crypto_shash *tfm)
 778{
 779        return tfm->descsize;
 780}
 781
 782static inline void *shash_desc_ctx(struct shash_desc *desc)
 783{
 784        return desc->__ctx;
 785}
 786
 787/**
 788 * crypto_shash_setkey() - set key for message digest
 789 * @tfm: cipher handle
 790 * @key: buffer holding the key
 791 * @keylen: length of the key in bytes
 792 *
 793 * The caller provided key is set for the keyed message digest cipher. The
 794 * cipher handle must point to a keyed message digest cipher in order for this
 795 * function to succeed.
 796 *
 797 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
 798 */
 799int crypto_shash_setkey(struct crypto_shash *tfm, const u8 *key,
 800                        unsigned int keylen);
 801
 802/**
 803 * crypto_shash_digest() - calculate message digest for buffer
 804 * @desc: see crypto_shash_final()
 805 * @data: see crypto_shash_update()
 806 * @len: see crypto_shash_update()
 807 * @out: see crypto_shash_final()
 808 *
 809 * This function is a "short-hand" for the function calls of crypto_shash_init,
 810 * crypto_shash_update and crypto_shash_final. The parameters have the same
 811 * meaning as discussed for those separate three functions.
 812 *
 813 * Return: 0 if the message digest creation was successful; < 0 if an error
 814 *         occurred
 815 */
 816int crypto_shash_digest(struct shash_desc *desc, const u8 *data,
 817                        unsigned int len, u8 *out);
 818
 819/**
 820 * crypto_shash_export() - extract operational state for message digest
 821 * @desc: reference to the operational state handle whose state is exported
 822 * @out: output buffer of sufficient size that can hold the hash state
 823 *
 824 * This function exports the hash state of the operational state handle into the
 825 * caller-allocated output buffer out which must have sufficient size (e.g. by
 826 * calling crypto_shash_descsize).
 827 *
 828 * Return: 0 if the export creation was successful; < 0 if an error occurred
 829 */
 830static inline int crypto_shash_export(struct shash_desc *desc, void *out)
 831{
 832        return crypto_shash_alg(desc->tfm)->export(desc, out);
 833}
 834
 835/**
 836 * crypto_shash_import() - import operational state
 837 * @desc: reference to the operational state handle the state imported into
 838 * @in: buffer holding the state
 839 *
 840 * This function imports the hash state into the operational state handle from
 841 * the input buffer. That buffer should have been generated with the
 842 * crypto_ahash_export function.
 843 *
 844 * Return: 0 if the import was successful; < 0 if an error occurred
 845 */
 846static inline int crypto_shash_import(struct shash_desc *desc, const void *in)
 847{
 848        return crypto_shash_alg(desc->tfm)->import(desc, in);
 849}
 850
 851/**
 852 * crypto_shash_init() - (re)initialize message digest
 853 * @desc: operational state handle that is already filled
 854 *
 855 * The call (re-)initializes the message digest referenced by the
 856 * operational state handle. Any potentially existing state created by
 857 * previous operations is discarded.
 858 *
 859 * Return: 0 if the message digest initialization was successful; < 0 if an
 860 *         error occurred
 861 */
 862static inline int crypto_shash_init(struct shash_desc *desc)
 863{
 864        return crypto_shash_alg(desc->tfm)->init(desc);
 865}
 866
 867/**
 868 * crypto_shash_update() - add data to message digest for processing
 869 * @desc: operational state handle that is already initialized
 870 * @data: input data to be added to the message digest
 871 * @len: length of the input data
 872 *
 873 * Updates the message digest state of the operational state handle.
 874 *
 875 * Return: 0 if the message digest update was successful; < 0 if an error
 876 *         occurred
 877 */
 878int crypto_shash_update(struct shash_desc *desc, const u8 *data,
 879                        unsigned int len);
 880
 881/**
 882 * crypto_shash_final() - calculate message digest
 883 * @desc: operational state handle that is already filled with data
 884 * @out: output buffer filled with the message digest
 885 *
 886 * Finalize the message digest operation and create the message digest
 887 * based on all data added to the cipher handle. The message digest is placed
 888 * into the output buffer. The caller must ensure that the output buffer is
 889 * large enough by using crypto_shash_digestsize.
 890 *
 891 * Return: 0 if the message digest creation was successful; < 0 if an error
 892 *         occurred
 893 */
 894int crypto_shash_final(struct shash_desc *desc, u8 *out);
 895
 896/**
 897 * crypto_shash_finup() - calculate message digest of buffer
 898 * @desc: see crypto_shash_final()
 899 * @data: see crypto_shash_update()
 900 * @len: see crypto_shash_update()
 901 * @out: see crypto_shash_final()
 902 *
 903 * This function is a "short-hand" for the function calls of
 904 * crypto_shash_update and crypto_shash_final. The parameters have the same
 905 * meaning as discussed for those separate functions.
 906 *
 907 * Return: 0 if the message digest creation was successful; < 0 if an error
 908 *         occurred
 909 */
 910int crypto_shash_finup(struct shash_desc *desc, const u8 *data,
 911                       unsigned int len, u8 *out);
 912
 913static inline void shash_desc_zero(struct shash_desc *desc)
 914{
 915        memzero_explicit(desc,
 916                         sizeof(*desc) + crypto_shash_descsize(desc->tfm));
 917}
 918
 919#endif  /* _CRYPTO_HASH_H */
 920