linux/include/linux/mm_types.h
<<
>>
Prefs
   1#ifndef _LINUX_MM_TYPES_H
   2#define _LINUX_MM_TYPES_H
   3
   4#include <linux/auxvec.h>
   5#include <linux/types.h>
   6#include <linux/threads.h>
   7#include <linux/list.h>
   8#include <linux/spinlock.h>
   9#include <linux/rbtree.h>
  10#include <linux/rwsem.h>
  11#include <linux/completion.h>
  12#include <linux/cpumask.h>
  13#include <linux/uprobes.h>
  14#include <linux/page-flags-layout.h>
  15#include <linux/workqueue.h>
  16#include <asm/page.h>
  17#include <asm/mmu.h>
  18
  19#ifndef AT_VECTOR_SIZE_ARCH
  20#define AT_VECTOR_SIZE_ARCH 0
  21#endif
  22#define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1))
  23
  24struct address_space;
  25struct mem_cgroup;
  26
  27#define USE_SPLIT_PTE_PTLOCKS   (NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS)
  28#define USE_SPLIT_PMD_PTLOCKS   (USE_SPLIT_PTE_PTLOCKS && \
  29                IS_ENABLED(CONFIG_ARCH_ENABLE_SPLIT_PMD_PTLOCK))
  30#define ALLOC_SPLIT_PTLOCKS     (SPINLOCK_SIZE > BITS_PER_LONG/8)
  31
  32/*
  33 * Each physical page in the system has a struct page associated with
  34 * it to keep track of whatever it is we are using the page for at the
  35 * moment. Note that we have no way to track which tasks are using
  36 * a page, though if it is a pagecache page, rmap structures can tell us
  37 * who is mapping it.
  38 *
  39 * The objects in struct page are organized in double word blocks in
  40 * order to allows us to use atomic double word operations on portions
  41 * of struct page. That is currently only used by slub but the arrangement
  42 * allows the use of atomic double word operations on the flags/mapping
  43 * and lru list pointers also.
  44 */
  45struct page {
  46        /* First double word block */
  47        unsigned long flags;            /* Atomic flags, some possibly
  48                                         * updated asynchronously */
  49        union {
  50                struct address_space *mapping;  /* If low bit clear, points to
  51                                                 * inode address_space, or NULL.
  52                                                 * If page mapped as anonymous
  53                                                 * memory, low bit is set, and
  54                                                 * it points to anon_vma object:
  55                                                 * see PAGE_MAPPING_ANON below.
  56                                                 */
  57                void *s_mem;                    /* slab first object */
  58                atomic_t compound_mapcount;     /* first tail page */
  59                /* page_deferred_list().next     -- second tail page */
  60        };
  61
  62        /* Second double word */
  63        union {
  64                pgoff_t index;          /* Our offset within mapping. */
  65                void *freelist;         /* sl[aou]b first free object */
  66                /* page_deferred_list().prev    -- second tail page */
  67        };
  68
  69        union {
  70#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
  71        defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
  72                /* Used for cmpxchg_double in slub */
  73                unsigned long counters;
  74#else
  75                /*
  76                 * Keep _refcount separate from slub cmpxchg_double data.
  77                 * As the rest of the double word is protected by slab_lock
  78                 * but _refcount is not.
  79                 */
  80                unsigned counters;
  81#endif
  82                struct {
  83
  84                        union {
  85                                /*
  86                                 * Count of ptes mapped in mms, to show when
  87                                 * page is mapped & limit reverse map searches.
  88                                 *
  89                                 * Extra information about page type may be
  90                                 * stored here for pages that are never mapped,
  91                                 * in which case the value MUST BE <= -2.
  92                                 * See page-flags.h for more details.
  93                                 */
  94                                atomic_t _mapcount;
  95
  96                                unsigned int active;            /* SLAB */
  97                                struct {                        /* SLUB */
  98                                        unsigned inuse:16;
  99                                        unsigned objects:15;
 100                                        unsigned frozen:1;
 101                                };
 102                                int units;                      /* SLOB */
 103                        };
 104                        /*
 105                         * Usage count, *USE WRAPPER FUNCTION* when manual
 106                         * accounting. See page_ref.h
 107                         */
 108                        atomic_t _refcount;
 109                };
 110        };
 111
 112        /*
 113         * Third double word block
 114         *
 115         * WARNING: bit 0 of the first word encode PageTail(). That means
 116         * the rest users of the storage space MUST NOT use the bit to
 117         * avoid collision and false-positive PageTail().
 118         */
 119        union {
 120                struct list_head lru;   /* Pageout list, eg. active_list
 121                                         * protected by zone_lru_lock !
 122                                         * Can be used as a generic list
 123                                         * by the page owner.
 124                                         */
 125                struct dev_pagemap *pgmap; /* ZONE_DEVICE pages are never on an
 126                                            * lru or handled by a slab
 127                                            * allocator, this points to the
 128                                            * hosting device page map.
 129                                            */
 130                struct {                /* slub per cpu partial pages */
 131                        struct page *next;      /* Next partial slab */
 132#ifdef CONFIG_64BIT
 133                        int pages;      /* Nr of partial slabs left */
 134                        int pobjects;   /* Approximate # of objects */
 135#else
 136                        short int pages;
 137                        short int pobjects;
 138#endif
 139                };
 140
 141                struct rcu_head rcu_head;       /* Used by SLAB
 142                                                 * when destroying via RCU
 143                                                 */
 144                /* Tail pages of compound page */
 145                struct {
 146                        unsigned long compound_head; /* If bit zero is set */
 147
 148                        /* First tail page only */
 149#ifdef CONFIG_64BIT
 150                        /*
 151                         * On 64 bit system we have enough space in struct page
 152                         * to encode compound_dtor and compound_order with
 153                         * unsigned int. It can help compiler generate better or
 154                         * smaller code on some archtectures.
 155                         */
 156                        unsigned int compound_dtor;
 157                        unsigned int compound_order;
 158#else
 159                        unsigned short int compound_dtor;
 160                        unsigned short int compound_order;
 161#endif
 162                };
 163
 164#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && USE_SPLIT_PMD_PTLOCKS
 165                struct {
 166                        unsigned long __pad;    /* do not overlay pmd_huge_pte
 167                                                 * with compound_head to avoid
 168                                                 * possible bit 0 collision.
 169                                                 */
 170                        pgtable_t pmd_huge_pte; /* protected by page->ptl */
 171                };
 172#endif
 173        };
 174
 175        /* Remainder is not double word aligned */
 176        union {
 177                unsigned long private;          /* Mapping-private opaque data:
 178                                                 * usually used for buffer_heads
 179                                                 * if PagePrivate set; used for
 180                                                 * swp_entry_t if PageSwapCache;
 181                                                 * indicates order in the buddy
 182                                                 * system if PG_buddy is set.
 183                                                 */
 184#if USE_SPLIT_PTE_PTLOCKS
 185#if ALLOC_SPLIT_PTLOCKS
 186                spinlock_t *ptl;
 187#else
 188                spinlock_t ptl;
 189#endif
 190#endif
 191                struct kmem_cache *slab_cache;  /* SL[AU]B: Pointer to slab */
 192        };
 193
 194#ifdef CONFIG_MEMCG
 195        struct mem_cgroup *mem_cgroup;
 196#endif
 197
 198        /*
 199         * On machines where all RAM is mapped into kernel address space,
 200         * we can simply calculate the virtual address. On machines with
 201         * highmem some memory is mapped into kernel virtual memory
 202         * dynamically, so we need a place to store that address.
 203         * Note that this field could be 16 bits on x86 ... ;)
 204         *
 205         * Architectures with slow multiplication can define
 206         * WANT_PAGE_VIRTUAL in asm/page.h
 207         */
 208#if defined(WANT_PAGE_VIRTUAL)
 209        void *virtual;                  /* Kernel virtual address (NULL if
 210                                           not kmapped, ie. highmem) */
 211#endif /* WANT_PAGE_VIRTUAL */
 212
 213#ifdef CONFIG_KMEMCHECK
 214        /*
 215         * kmemcheck wants to track the status of each byte in a page; this
 216         * is a pointer to such a status block. NULL if not tracked.
 217         */
 218        void *shadow;
 219#endif
 220
 221#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
 222        int _last_cpupid;
 223#endif
 224}
 225/*
 226 * The struct page can be forced to be double word aligned so that atomic ops
 227 * on double words work. The SLUB allocator can make use of such a feature.
 228 */
 229#ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE
 230        __aligned(2 * sizeof(unsigned long))
 231#endif
 232;
 233
 234struct page_frag {
 235        struct page *page;
 236#if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
 237        __u32 offset;
 238        __u32 size;
 239#else
 240        __u16 offset;
 241        __u16 size;
 242#endif
 243};
 244
 245#define PAGE_FRAG_CACHE_MAX_SIZE        __ALIGN_MASK(32768, ~PAGE_MASK)
 246#define PAGE_FRAG_CACHE_MAX_ORDER       get_order(PAGE_FRAG_CACHE_MAX_SIZE)
 247
 248struct page_frag_cache {
 249        void * va;
 250#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
 251        __u16 offset;
 252        __u16 size;
 253#else
 254        __u32 offset;
 255#endif
 256        /* we maintain a pagecount bias, so that we dont dirty cache line
 257         * containing page->_refcount every time we allocate a fragment.
 258         */
 259        unsigned int            pagecnt_bias;
 260        bool pfmemalloc;
 261};
 262
 263typedef unsigned long vm_flags_t;
 264
 265/*
 266 * A region containing a mapping of a non-memory backed file under NOMMU
 267 * conditions.  These are held in a global tree and are pinned by the VMAs that
 268 * map parts of them.
 269 */
 270struct vm_region {
 271        struct rb_node  vm_rb;          /* link in global region tree */
 272        vm_flags_t      vm_flags;       /* VMA vm_flags */
 273        unsigned long   vm_start;       /* start address of region */
 274        unsigned long   vm_end;         /* region initialised to here */
 275        unsigned long   vm_top;         /* region allocated to here */
 276        unsigned long   vm_pgoff;       /* the offset in vm_file corresponding to vm_start */
 277        struct file     *vm_file;       /* the backing file or NULL */
 278
 279        int             vm_usage;       /* region usage count (access under nommu_region_sem) */
 280        bool            vm_icache_flushed : 1; /* true if the icache has been flushed for
 281                                                * this region */
 282};
 283
 284#ifdef CONFIG_USERFAULTFD
 285#define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) { NULL, })
 286struct vm_userfaultfd_ctx {
 287        struct userfaultfd_ctx *ctx;
 288};
 289#else /* CONFIG_USERFAULTFD */
 290#define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) {})
 291struct vm_userfaultfd_ctx {};
 292#endif /* CONFIG_USERFAULTFD */
 293
 294/*
 295 * This struct defines a memory VMM memory area. There is one of these
 296 * per VM-area/task.  A VM area is any part of the process virtual memory
 297 * space that has a special rule for the page-fault handlers (ie a shared
 298 * library, the executable area etc).
 299 */
 300struct vm_area_struct {
 301        /* The first cache line has the info for VMA tree walking. */
 302
 303        unsigned long vm_start;         /* Our start address within vm_mm. */
 304        unsigned long vm_end;           /* The first byte after our end address
 305                                           within vm_mm. */
 306
 307        /* linked list of VM areas per task, sorted by address */
 308        struct vm_area_struct *vm_next, *vm_prev;
 309
 310        struct rb_node vm_rb;
 311
 312        /*
 313         * Largest free memory gap in bytes to the left of this VMA.
 314         * Either between this VMA and vma->vm_prev, or between one of the
 315         * VMAs below us in the VMA rbtree and its ->vm_prev. This helps
 316         * get_unmapped_area find a free area of the right size.
 317         */
 318        unsigned long rb_subtree_gap;
 319
 320        /* Second cache line starts here. */
 321
 322        struct mm_struct *vm_mm;        /* The address space we belong to. */
 323        pgprot_t vm_page_prot;          /* Access permissions of this VMA. */
 324        unsigned long vm_flags;         /* Flags, see mm.h. */
 325
 326        /*
 327         * For areas with an address space and backing store,
 328         * linkage into the address_space->i_mmap interval tree.
 329         */
 330        struct {
 331                struct rb_node rb;
 332                unsigned long rb_subtree_last;
 333        } shared;
 334
 335        /*
 336         * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
 337         * list, after a COW of one of the file pages.  A MAP_SHARED vma
 338         * can only be in the i_mmap tree.  An anonymous MAP_PRIVATE, stack
 339         * or brk vma (with NULL file) can only be in an anon_vma list.
 340         */
 341        struct list_head anon_vma_chain; /* Serialized by mmap_sem &
 342                                          * page_table_lock */
 343        struct anon_vma *anon_vma;      /* Serialized by page_table_lock */
 344
 345        /* Function pointers to deal with this struct. */
 346        const struct vm_operations_struct *vm_ops;
 347
 348        /* Information about our backing store: */
 349        unsigned long vm_pgoff;         /* Offset (within vm_file) in PAGE_SIZE
 350                                           units */
 351        struct file * vm_file;          /* File we map to (can be NULL). */
 352        void * vm_private_data;         /* was vm_pte (shared mem) */
 353
 354#ifndef CONFIG_MMU
 355        struct vm_region *vm_region;    /* NOMMU mapping region */
 356#endif
 357#ifdef CONFIG_NUMA
 358        struct mempolicy *vm_policy;    /* NUMA policy for the VMA */
 359#endif
 360        struct vm_userfaultfd_ctx vm_userfaultfd_ctx;
 361};
 362
 363struct core_thread {
 364        struct task_struct *task;
 365        struct core_thread *next;
 366};
 367
 368struct core_state {
 369        atomic_t nr_threads;
 370        struct core_thread dumper;
 371        struct completion startup;
 372};
 373
 374enum {
 375        MM_FILEPAGES,   /* Resident file mapping pages */
 376        MM_ANONPAGES,   /* Resident anonymous pages */
 377        MM_SWAPENTS,    /* Anonymous swap entries */
 378        MM_SHMEMPAGES,  /* Resident shared memory pages */
 379        NR_MM_COUNTERS
 380};
 381
 382#if USE_SPLIT_PTE_PTLOCKS && defined(CONFIG_MMU)
 383#define SPLIT_RSS_COUNTING
 384/* per-thread cached information, */
 385struct task_rss_stat {
 386        int events;     /* for synchronization threshold */
 387        int count[NR_MM_COUNTERS];
 388};
 389#endif /* USE_SPLIT_PTE_PTLOCKS */
 390
 391struct mm_rss_stat {
 392        atomic_long_t count[NR_MM_COUNTERS];
 393};
 394
 395struct kioctx_table;
 396struct mm_struct {
 397        struct vm_area_struct *mmap;            /* list of VMAs */
 398        struct rb_root mm_rb;
 399        u32 vmacache_seqnum;                   /* per-thread vmacache */
 400#ifdef CONFIG_MMU
 401        unsigned long (*get_unmapped_area) (struct file *filp,
 402                                unsigned long addr, unsigned long len,
 403                                unsigned long pgoff, unsigned long flags);
 404#endif
 405        unsigned long mmap_base;                /* base of mmap area */
 406        unsigned long mmap_legacy_base;         /* base of mmap area in bottom-up allocations */
 407        unsigned long task_size;                /* size of task vm space */
 408        unsigned long highest_vm_end;           /* highest vma end address */
 409        pgd_t * pgd;
 410        atomic_t mm_users;                      /* How many users with user space? */
 411        atomic_t mm_count;                      /* How many references to "struct mm_struct" (users count as 1) */
 412        atomic_long_t nr_ptes;                  /* PTE page table pages */
 413#if CONFIG_PGTABLE_LEVELS > 2
 414        atomic_long_t nr_pmds;                  /* PMD page table pages */
 415#endif
 416        int map_count;                          /* number of VMAs */
 417
 418        spinlock_t page_table_lock;             /* Protects page tables and some counters */
 419        struct rw_semaphore mmap_sem;
 420
 421        struct list_head mmlist;                /* List of maybe swapped mm's.  These are globally strung
 422                                                 * together off init_mm.mmlist, and are protected
 423                                                 * by mmlist_lock
 424                                                 */
 425
 426
 427        unsigned long hiwater_rss;      /* High-watermark of RSS usage */
 428        unsigned long hiwater_vm;       /* High-water virtual memory usage */
 429
 430        unsigned long total_vm;         /* Total pages mapped */
 431        unsigned long locked_vm;        /* Pages that have PG_mlocked set */
 432        unsigned long pinned_vm;        /* Refcount permanently increased */
 433        unsigned long data_vm;          /* VM_WRITE & ~VM_SHARED & ~VM_STACK */
 434        unsigned long exec_vm;          /* VM_EXEC & ~VM_WRITE & ~VM_STACK */
 435        unsigned long stack_vm;         /* VM_STACK */
 436        unsigned long def_flags;
 437        unsigned long start_code, end_code, start_data, end_data;
 438        unsigned long start_brk, brk, start_stack;
 439        unsigned long arg_start, arg_end, env_start, env_end;
 440
 441        unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */
 442
 443        /*
 444         * Special counters, in some configurations protected by the
 445         * page_table_lock, in other configurations by being atomic.
 446         */
 447        struct mm_rss_stat rss_stat;
 448
 449        struct linux_binfmt *binfmt;
 450
 451        cpumask_var_t cpu_vm_mask_var;
 452
 453        /* Architecture-specific MM context */
 454        mm_context_t context;
 455
 456        unsigned long flags; /* Must use atomic bitops to access the bits */
 457
 458        struct core_state *core_state; /* coredumping support */
 459#ifdef CONFIG_AIO
 460        spinlock_t                      ioctx_lock;
 461        struct kioctx_table __rcu       *ioctx_table;
 462#endif
 463#ifdef CONFIG_MEMCG
 464        /*
 465         * "owner" points to a task that is regarded as the canonical
 466         * user/owner of this mm. All of the following must be true in
 467         * order for it to be changed:
 468         *
 469         * current == mm->owner
 470         * current->mm != mm
 471         * new_owner->mm == mm
 472         * new_owner->alloc_lock is held
 473         */
 474        struct task_struct __rcu *owner;
 475#endif
 476
 477        /* store ref to file /proc/<pid>/exe symlink points to */
 478        struct file __rcu *exe_file;
 479#ifdef CONFIG_MMU_NOTIFIER
 480        struct mmu_notifier_mm *mmu_notifier_mm;
 481#endif
 482#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
 483        pgtable_t pmd_huge_pte; /* protected by page_table_lock */
 484#endif
 485#ifdef CONFIG_CPUMASK_OFFSTACK
 486        struct cpumask cpumask_allocation;
 487#endif
 488#ifdef CONFIG_NUMA_BALANCING
 489        /*
 490         * numa_next_scan is the next time that the PTEs will be marked
 491         * pte_numa. NUMA hinting faults will gather statistics and migrate
 492         * pages to new nodes if necessary.
 493         */
 494        unsigned long numa_next_scan;
 495
 496        /* Restart point for scanning and setting pte_numa */
 497        unsigned long numa_scan_offset;
 498
 499        /* numa_scan_seq prevents two threads setting pte_numa */
 500        int numa_scan_seq;
 501#endif
 502#if defined(CONFIG_NUMA_BALANCING) || defined(CONFIG_COMPACTION)
 503        /*
 504         * An operation with batched TLB flushing is going on. Anything that
 505         * can move process memory needs to flush the TLB when moving a
 506         * PROT_NONE or PROT_NUMA mapped page.
 507         */
 508        bool tlb_flush_pending;
 509#endif
 510        struct uprobes_state uprobes_state;
 511#ifdef CONFIG_X86_INTEL_MPX
 512        /* address of the bounds directory */
 513        void __user *bd_addr;
 514#endif
 515#ifdef CONFIG_HUGETLB_PAGE
 516        atomic_long_t hugetlb_usage;
 517#endif
 518        struct work_struct async_put_work;
 519};
 520
 521static inline void mm_init_cpumask(struct mm_struct *mm)
 522{
 523#ifdef CONFIG_CPUMASK_OFFSTACK
 524        mm->cpu_vm_mask_var = &mm->cpumask_allocation;
 525#endif
 526        cpumask_clear(mm->cpu_vm_mask_var);
 527}
 528
 529/* Future-safe accessor for struct mm_struct's cpu_vm_mask. */
 530static inline cpumask_t *mm_cpumask(struct mm_struct *mm)
 531{
 532        return mm->cpu_vm_mask_var;
 533}
 534
 535#if defined(CONFIG_NUMA_BALANCING) || defined(CONFIG_COMPACTION)
 536/*
 537 * Memory barriers to keep this state in sync are graciously provided by
 538 * the page table locks, outside of which no page table modifications happen.
 539 * The barriers below prevent the compiler from re-ordering the instructions
 540 * around the memory barriers that are already present in the code.
 541 */
 542static inline bool mm_tlb_flush_pending(struct mm_struct *mm)
 543{
 544        barrier();
 545        return mm->tlb_flush_pending;
 546}
 547static inline void set_tlb_flush_pending(struct mm_struct *mm)
 548{
 549        mm->tlb_flush_pending = true;
 550
 551        /*
 552         * Guarantee that the tlb_flush_pending store does not leak into the
 553         * critical section updating the page tables
 554         */
 555        smp_mb__before_spinlock();
 556}
 557/* Clearing is done after a TLB flush, which also provides a barrier. */
 558static inline void clear_tlb_flush_pending(struct mm_struct *mm)
 559{
 560        barrier();
 561        mm->tlb_flush_pending = false;
 562}
 563#else
 564static inline bool mm_tlb_flush_pending(struct mm_struct *mm)
 565{
 566        return false;
 567}
 568static inline void set_tlb_flush_pending(struct mm_struct *mm)
 569{
 570}
 571static inline void clear_tlb_flush_pending(struct mm_struct *mm)
 572{
 573}
 574#endif
 575
 576struct vm_fault;
 577
 578struct vm_special_mapping {
 579        const char *name;       /* The name, e.g. "[vdso]". */
 580
 581        /*
 582         * If .fault is not provided, this points to a
 583         * NULL-terminated array of pages that back the special mapping.
 584         *
 585         * This must not be NULL unless .fault is provided.
 586         */
 587        struct page **pages;
 588
 589        /*
 590         * If non-NULL, then this is called to resolve page faults
 591         * on the special mapping.  If used, .pages is not checked.
 592         */
 593        int (*fault)(const struct vm_special_mapping *sm,
 594                     struct vm_area_struct *vma,
 595                     struct vm_fault *vmf);
 596
 597        int (*mremap)(const struct vm_special_mapping *sm,
 598                     struct vm_area_struct *new_vma);
 599};
 600
 601enum tlb_flush_reason {
 602        TLB_FLUSH_ON_TASK_SWITCH,
 603        TLB_REMOTE_SHOOTDOWN,
 604        TLB_LOCAL_SHOOTDOWN,
 605        TLB_LOCAL_MM_SHOOTDOWN,
 606        TLB_REMOTE_SEND_IPI,
 607        NR_TLB_FLUSH_REASONS,
 608};
 609
 610 /*
 611  * A swap entry has to fit into a "unsigned long", as the entry is hidden
 612  * in the "index" field of the swapper address space.
 613  */
 614typedef struct {
 615        unsigned long val;
 616} swp_entry_t;
 617
 618#endif /* _LINUX_MM_TYPES_H */
 619