linux/kernel/exit.c
<<
>>
Prefs
   1/*
   2 *  linux/kernel/exit.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 */
   6
   7#include <linux/mm.h>
   8#include <linux/slab.h>
   9#include <linux/interrupt.h>
  10#include <linux/module.h>
  11#include <linux/capability.h>
  12#include <linux/completion.h>
  13#include <linux/personality.h>
  14#include <linux/tty.h>
  15#include <linux/iocontext.h>
  16#include <linux/key.h>
  17#include <linux/security.h>
  18#include <linux/cpu.h>
  19#include <linux/acct.h>
  20#include <linux/tsacct_kern.h>
  21#include <linux/file.h>
  22#include <linux/fdtable.h>
  23#include <linux/freezer.h>
  24#include <linux/binfmts.h>
  25#include <linux/nsproxy.h>
  26#include <linux/pid_namespace.h>
  27#include <linux/ptrace.h>
  28#include <linux/profile.h>
  29#include <linux/mount.h>
  30#include <linux/proc_fs.h>
  31#include <linux/kthread.h>
  32#include <linux/mempolicy.h>
  33#include <linux/taskstats_kern.h>
  34#include <linux/delayacct.h>
  35#include <linux/cgroup.h>
  36#include <linux/syscalls.h>
  37#include <linux/signal.h>
  38#include <linux/posix-timers.h>
  39#include <linux/cn_proc.h>
  40#include <linux/mutex.h>
  41#include <linux/futex.h>
  42#include <linux/pipe_fs_i.h>
  43#include <linux/audit.h> /* for audit_free() */
  44#include <linux/resource.h>
  45#include <linux/blkdev.h>
  46#include <linux/task_io_accounting_ops.h>
  47#include <linux/tracehook.h>
  48#include <linux/fs_struct.h>
  49#include <linux/init_task.h>
  50#include <linux/perf_event.h>
  51#include <trace/events/sched.h>
  52#include <linux/hw_breakpoint.h>
  53#include <linux/oom.h>
  54#include <linux/writeback.h>
  55#include <linux/shm.h>
  56#include <linux/kcov.h>
  57
  58#include <asm/uaccess.h>
  59#include <asm/unistd.h>
  60#include <asm/pgtable.h>
  61#include <asm/mmu_context.h>
  62
  63static void __unhash_process(struct task_struct *p, bool group_dead)
  64{
  65        nr_threads--;
  66        detach_pid(p, PIDTYPE_PID);
  67        if (group_dead) {
  68                detach_pid(p, PIDTYPE_PGID);
  69                detach_pid(p, PIDTYPE_SID);
  70
  71                list_del_rcu(&p->tasks);
  72                list_del_init(&p->sibling);
  73                __this_cpu_dec(process_counts);
  74        }
  75        list_del_rcu(&p->thread_group);
  76        list_del_rcu(&p->thread_node);
  77}
  78
  79/*
  80 * This function expects the tasklist_lock write-locked.
  81 */
  82static void __exit_signal(struct task_struct *tsk)
  83{
  84        struct signal_struct *sig = tsk->signal;
  85        bool group_dead = thread_group_leader(tsk);
  86        struct sighand_struct *sighand;
  87        struct tty_struct *uninitialized_var(tty);
  88        cputime_t utime, stime;
  89
  90        sighand = rcu_dereference_check(tsk->sighand,
  91                                        lockdep_tasklist_lock_is_held());
  92        spin_lock(&sighand->siglock);
  93
  94        posix_cpu_timers_exit(tsk);
  95        if (group_dead) {
  96                posix_cpu_timers_exit_group(tsk);
  97                tty = sig->tty;
  98                sig->tty = NULL;
  99        } else {
 100                /*
 101                 * This can only happen if the caller is de_thread().
 102                 * FIXME: this is the temporary hack, we should teach
 103                 * posix-cpu-timers to handle this case correctly.
 104                 */
 105                if (unlikely(has_group_leader_pid(tsk)))
 106                        posix_cpu_timers_exit_group(tsk);
 107
 108                /*
 109                 * If there is any task waiting for the group exit
 110                 * then notify it:
 111                 */
 112                if (sig->notify_count > 0 && !--sig->notify_count)
 113                        wake_up_process(sig->group_exit_task);
 114
 115                if (tsk == sig->curr_target)
 116                        sig->curr_target = next_thread(tsk);
 117        }
 118
 119        /*
 120         * Accumulate here the counters for all threads as they die. We could
 121         * skip the group leader because it is the last user of signal_struct,
 122         * but we want to avoid the race with thread_group_cputime() which can
 123         * see the empty ->thread_head list.
 124         */
 125        task_cputime(tsk, &utime, &stime);
 126        write_seqlock(&sig->stats_lock);
 127        sig->utime += utime;
 128        sig->stime += stime;
 129        sig->gtime += task_gtime(tsk);
 130        sig->min_flt += tsk->min_flt;
 131        sig->maj_flt += tsk->maj_flt;
 132        sig->nvcsw += tsk->nvcsw;
 133        sig->nivcsw += tsk->nivcsw;
 134        sig->inblock += task_io_get_inblock(tsk);
 135        sig->oublock += task_io_get_oublock(tsk);
 136        task_io_accounting_add(&sig->ioac, &tsk->ioac);
 137        sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
 138        sig->nr_threads--;
 139        __unhash_process(tsk, group_dead);
 140        write_sequnlock(&sig->stats_lock);
 141
 142        /*
 143         * Do this under ->siglock, we can race with another thread
 144         * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
 145         */
 146        flush_sigqueue(&tsk->pending);
 147        tsk->sighand = NULL;
 148        spin_unlock(&sighand->siglock);
 149
 150        __cleanup_sighand(sighand);
 151        clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
 152        if (group_dead) {
 153                flush_sigqueue(&sig->shared_pending);
 154                tty_kref_put(tty);
 155        }
 156}
 157
 158static void delayed_put_task_struct(struct rcu_head *rhp)
 159{
 160        struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
 161
 162        perf_event_delayed_put(tsk);
 163        trace_sched_process_free(tsk);
 164        put_task_struct(tsk);
 165}
 166
 167
 168void release_task(struct task_struct *p)
 169{
 170        struct task_struct *leader;
 171        int zap_leader;
 172repeat:
 173        /* don't need to get the RCU readlock here - the process is dead and
 174         * can't be modifying its own credentials. But shut RCU-lockdep up */
 175        rcu_read_lock();
 176        atomic_dec(&__task_cred(p)->user->processes);
 177        rcu_read_unlock();
 178
 179        proc_flush_task(p);
 180
 181        write_lock_irq(&tasklist_lock);
 182        ptrace_release_task(p);
 183        __exit_signal(p);
 184
 185        /*
 186         * If we are the last non-leader member of the thread
 187         * group, and the leader is zombie, then notify the
 188         * group leader's parent process. (if it wants notification.)
 189         */
 190        zap_leader = 0;
 191        leader = p->group_leader;
 192        if (leader != p && thread_group_empty(leader)
 193                        && leader->exit_state == EXIT_ZOMBIE) {
 194                /*
 195                 * If we were the last child thread and the leader has
 196                 * exited already, and the leader's parent ignores SIGCHLD,
 197                 * then we are the one who should release the leader.
 198                 */
 199                zap_leader = do_notify_parent(leader, leader->exit_signal);
 200                if (zap_leader)
 201                        leader->exit_state = EXIT_DEAD;
 202        }
 203
 204        write_unlock_irq(&tasklist_lock);
 205        release_thread(p);
 206        call_rcu(&p->rcu, delayed_put_task_struct);
 207
 208        p = leader;
 209        if (unlikely(zap_leader))
 210                goto repeat;
 211}
 212
 213/*
 214 * Note that if this function returns a valid task_struct pointer (!NULL)
 215 * task->usage must remain >0 for the duration of the RCU critical section.
 216 */
 217struct task_struct *task_rcu_dereference(struct task_struct **ptask)
 218{
 219        struct sighand_struct *sighand;
 220        struct task_struct *task;
 221
 222        /*
 223         * We need to verify that release_task() was not called and thus
 224         * delayed_put_task_struct() can't run and drop the last reference
 225         * before rcu_read_unlock(). We check task->sighand != NULL,
 226         * but we can read the already freed and reused memory.
 227         */
 228retry:
 229        task = rcu_dereference(*ptask);
 230        if (!task)
 231                return NULL;
 232
 233        probe_kernel_address(&task->sighand, sighand);
 234
 235        /*
 236         * Pairs with atomic_dec_and_test() in put_task_struct(). If this task
 237         * was already freed we can not miss the preceding update of this
 238         * pointer.
 239         */
 240        smp_rmb();
 241        if (unlikely(task != READ_ONCE(*ptask)))
 242                goto retry;
 243
 244        /*
 245         * We've re-checked that "task == *ptask", now we have two different
 246         * cases:
 247         *
 248         * 1. This is actually the same task/task_struct. In this case
 249         *    sighand != NULL tells us it is still alive.
 250         *
 251         * 2. This is another task which got the same memory for task_struct.
 252         *    We can't know this of course, and we can not trust
 253         *    sighand != NULL.
 254         *
 255         *    In this case we actually return a random value, but this is
 256         *    correct.
 257         *
 258         *    If we return NULL - we can pretend that we actually noticed that
 259         *    *ptask was updated when the previous task has exited. Or pretend
 260         *    that probe_slab_address(&sighand) reads NULL.
 261         *
 262         *    If we return the new task (because sighand is not NULL for any
 263         *    reason) - this is fine too. This (new) task can't go away before
 264         *    another gp pass.
 265         *
 266         *    And note: We could even eliminate the false positive if re-read
 267         *    task->sighand once again to avoid the falsely NULL. But this case
 268         *    is very unlikely so we don't care.
 269         */
 270        if (!sighand)
 271                return NULL;
 272
 273        return task;
 274}
 275
 276struct task_struct *try_get_task_struct(struct task_struct **ptask)
 277{
 278        struct task_struct *task;
 279
 280        rcu_read_lock();
 281        task = task_rcu_dereference(ptask);
 282        if (task)
 283                get_task_struct(task);
 284        rcu_read_unlock();
 285
 286        return task;
 287}
 288
 289/*
 290 * Determine if a process group is "orphaned", according to the POSIX
 291 * definition in 2.2.2.52.  Orphaned process groups are not to be affected
 292 * by terminal-generated stop signals.  Newly orphaned process groups are
 293 * to receive a SIGHUP and a SIGCONT.
 294 *
 295 * "I ask you, have you ever known what it is to be an orphan?"
 296 */
 297static int will_become_orphaned_pgrp(struct pid *pgrp,
 298                                        struct task_struct *ignored_task)
 299{
 300        struct task_struct *p;
 301
 302        do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
 303                if ((p == ignored_task) ||
 304                    (p->exit_state && thread_group_empty(p)) ||
 305                    is_global_init(p->real_parent))
 306                        continue;
 307
 308                if (task_pgrp(p->real_parent) != pgrp &&
 309                    task_session(p->real_parent) == task_session(p))
 310                        return 0;
 311        } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
 312
 313        return 1;
 314}
 315
 316int is_current_pgrp_orphaned(void)
 317{
 318        int retval;
 319
 320        read_lock(&tasklist_lock);
 321        retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
 322        read_unlock(&tasklist_lock);
 323
 324        return retval;
 325}
 326
 327static bool has_stopped_jobs(struct pid *pgrp)
 328{
 329        struct task_struct *p;
 330
 331        do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
 332                if (p->signal->flags & SIGNAL_STOP_STOPPED)
 333                        return true;
 334        } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
 335
 336        return false;
 337}
 338
 339/*
 340 * Check to see if any process groups have become orphaned as
 341 * a result of our exiting, and if they have any stopped jobs,
 342 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
 343 */
 344static void
 345kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
 346{
 347        struct pid *pgrp = task_pgrp(tsk);
 348        struct task_struct *ignored_task = tsk;
 349
 350        if (!parent)
 351                /* exit: our father is in a different pgrp than
 352                 * we are and we were the only connection outside.
 353                 */
 354                parent = tsk->real_parent;
 355        else
 356                /* reparent: our child is in a different pgrp than
 357                 * we are, and it was the only connection outside.
 358                 */
 359                ignored_task = NULL;
 360
 361        if (task_pgrp(parent) != pgrp &&
 362            task_session(parent) == task_session(tsk) &&
 363            will_become_orphaned_pgrp(pgrp, ignored_task) &&
 364            has_stopped_jobs(pgrp)) {
 365                __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
 366                __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
 367        }
 368}
 369
 370#ifdef CONFIG_MEMCG
 371/*
 372 * A task is exiting.   If it owned this mm, find a new owner for the mm.
 373 */
 374void mm_update_next_owner(struct mm_struct *mm)
 375{
 376        struct task_struct *c, *g, *p = current;
 377
 378retry:
 379        /*
 380         * If the exiting or execing task is not the owner, it's
 381         * someone else's problem.
 382         */
 383        if (mm->owner != p)
 384                return;
 385        /*
 386         * The current owner is exiting/execing and there are no other
 387         * candidates.  Do not leave the mm pointing to a possibly
 388         * freed task structure.
 389         */
 390        if (atomic_read(&mm->mm_users) <= 1) {
 391                mm->owner = NULL;
 392                return;
 393        }
 394
 395        read_lock(&tasklist_lock);
 396        /*
 397         * Search in the children
 398         */
 399        list_for_each_entry(c, &p->children, sibling) {
 400                if (c->mm == mm)
 401                        goto assign_new_owner;
 402        }
 403
 404        /*
 405         * Search in the siblings
 406         */
 407        list_for_each_entry(c, &p->real_parent->children, sibling) {
 408                if (c->mm == mm)
 409                        goto assign_new_owner;
 410        }
 411
 412        /*
 413         * Search through everything else, we should not get here often.
 414         */
 415        for_each_process(g) {
 416                if (g->flags & PF_KTHREAD)
 417                        continue;
 418                for_each_thread(g, c) {
 419                        if (c->mm == mm)
 420                                goto assign_new_owner;
 421                        if (c->mm)
 422                                break;
 423                }
 424        }
 425        read_unlock(&tasklist_lock);
 426        /*
 427         * We found no owner yet mm_users > 1: this implies that we are
 428         * most likely racing with swapoff (try_to_unuse()) or /proc or
 429         * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
 430         */
 431        mm->owner = NULL;
 432        return;
 433
 434assign_new_owner:
 435        BUG_ON(c == p);
 436        get_task_struct(c);
 437        /*
 438         * The task_lock protects c->mm from changing.
 439         * We always want mm->owner->mm == mm
 440         */
 441        task_lock(c);
 442        /*
 443         * Delay read_unlock() till we have the task_lock()
 444         * to ensure that c does not slip away underneath us
 445         */
 446        read_unlock(&tasklist_lock);
 447        if (c->mm != mm) {
 448                task_unlock(c);
 449                put_task_struct(c);
 450                goto retry;
 451        }
 452        mm->owner = c;
 453        task_unlock(c);
 454        put_task_struct(c);
 455}
 456#endif /* CONFIG_MEMCG */
 457
 458/*
 459 * Turn us into a lazy TLB process if we
 460 * aren't already..
 461 */
 462static void exit_mm(struct task_struct *tsk)
 463{
 464        struct mm_struct *mm = tsk->mm;
 465        struct core_state *core_state;
 466
 467        mm_release(tsk, mm);
 468        if (!mm)
 469                return;
 470        sync_mm_rss(mm);
 471        /*
 472         * Serialize with any possible pending coredump.
 473         * We must hold mmap_sem around checking core_state
 474         * and clearing tsk->mm.  The core-inducing thread
 475         * will increment ->nr_threads for each thread in the
 476         * group with ->mm != NULL.
 477         */
 478        down_read(&mm->mmap_sem);
 479        core_state = mm->core_state;
 480        if (core_state) {
 481                struct core_thread self;
 482
 483                up_read(&mm->mmap_sem);
 484
 485                self.task = tsk;
 486                self.next = xchg(&core_state->dumper.next, &self);
 487                /*
 488                 * Implies mb(), the result of xchg() must be visible
 489                 * to core_state->dumper.
 490                 */
 491                if (atomic_dec_and_test(&core_state->nr_threads))
 492                        complete(&core_state->startup);
 493
 494                for (;;) {
 495                        set_task_state(tsk, TASK_UNINTERRUPTIBLE);
 496                        if (!self.task) /* see coredump_finish() */
 497                                break;
 498                        freezable_schedule();
 499                }
 500                __set_task_state(tsk, TASK_RUNNING);
 501                down_read(&mm->mmap_sem);
 502        }
 503        atomic_inc(&mm->mm_count);
 504        BUG_ON(mm != tsk->active_mm);
 505        /* more a memory barrier than a real lock */
 506        task_lock(tsk);
 507        tsk->mm = NULL;
 508        up_read(&mm->mmap_sem);
 509        enter_lazy_tlb(mm, current);
 510        task_unlock(tsk);
 511        mm_update_next_owner(mm);
 512        mmput(mm);
 513        if (test_thread_flag(TIF_MEMDIE))
 514                exit_oom_victim();
 515}
 516
 517static struct task_struct *find_alive_thread(struct task_struct *p)
 518{
 519        struct task_struct *t;
 520
 521        for_each_thread(p, t) {
 522                if (!(t->flags & PF_EXITING))
 523                        return t;
 524        }
 525        return NULL;
 526}
 527
 528static struct task_struct *find_child_reaper(struct task_struct *father)
 529        __releases(&tasklist_lock)
 530        __acquires(&tasklist_lock)
 531{
 532        struct pid_namespace *pid_ns = task_active_pid_ns(father);
 533        struct task_struct *reaper = pid_ns->child_reaper;
 534
 535        if (likely(reaper != father))
 536                return reaper;
 537
 538        reaper = find_alive_thread(father);
 539        if (reaper) {
 540                pid_ns->child_reaper = reaper;
 541                return reaper;
 542        }
 543
 544        write_unlock_irq(&tasklist_lock);
 545        if (unlikely(pid_ns == &init_pid_ns)) {
 546                panic("Attempted to kill init! exitcode=0x%08x\n",
 547                        father->signal->group_exit_code ?: father->exit_code);
 548        }
 549        zap_pid_ns_processes(pid_ns);
 550        write_lock_irq(&tasklist_lock);
 551
 552        return father;
 553}
 554
 555/*
 556 * When we die, we re-parent all our children, and try to:
 557 * 1. give them to another thread in our thread group, if such a member exists
 558 * 2. give it to the first ancestor process which prctl'd itself as a
 559 *    child_subreaper for its children (like a service manager)
 560 * 3. give it to the init process (PID 1) in our pid namespace
 561 */
 562static struct task_struct *find_new_reaper(struct task_struct *father,
 563                                           struct task_struct *child_reaper)
 564{
 565        struct task_struct *thread, *reaper;
 566
 567        thread = find_alive_thread(father);
 568        if (thread)
 569                return thread;
 570
 571        if (father->signal->has_child_subreaper) {
 572                /*
 573                 * Find the first ->is_child_subreaper ancestor in our pid_ns.
 574                 * We start from father to ensure we can not look into another
 575                 * namespace, this is safe because all its threads are dead.
 576                 */
 577                for (reaper = father;
 578                     !same_thread_group(reaper, child_reaper);
 579                     reaper = reaper->real_parent) {
 580                        /* call_usermodehelper() descendants need this check */
 581                        if (reaper == &init_task)
 582                                break;
 583                        if (!reaper->signal->is_child_subreaper)
 584                                continue;
 585                        thread = find_alive_thread(reaper);
 586                        if (thread)
 587                                return thread;
 588                }
 589        }
 590
 591        return child_reaper;
 592}
 593
 594/*
 595* Any that need to be release_task'd are put on the @dead list.
 596 */
 597static void reparent_leader(struct task_struct *father, struct task_struct *p,
 598                                struct list_head *dead)
 599{
 600        if (unlikely(p->exit_state == EXIT_DEAD))
 601                return;
 602
 603        /* We don't want people slaying init. */
 604        p->exit_signal = SIGCHLD;
 605
 606        /* If it has exited notify the new parent about this child's death. */
 607        if (!p->ptrace &&
 608            p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
 609                if (do_notify_parent(p, p->exit_signal)) {
 610                        p->exit_state = EXIT_DEAD;
 611                        list_add(&p->ptrace_entry, dead);
 612                }
 613        }
 614
 615        kill_orphaned_pgrp(p, father);
 616}
 617
 618/*
 619 * This does two things:
 620 *
 621 * A.  Make init inherit all the child processes
 622 * B.  Check to see if any process groups have become orphaned
 623 *      as a result of our exiting, and if they have any stopped
 624 *      jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
 625 */
 626static void forget_original_parent(struct task_struct *father,
 627                                        struct list_head *dead)
 628{
 629        struct task_struct *p, *t, *reaper;
 630
 631        if (unlikely(!list_empty(&father->ptraced)))
 632                exit_ptrace(father, dead);
 633
 634        /* Can drop and reacquire tasklist_lock */
 635        reaper = find_child_reaper(father);
 636        if (list_empty(&father->children))
 637                return;
 638
 639        reaper = find_new_reaper(father, reaper);
 640        list_for_each_entry(p, &father->children, sibling) {
 641                for_each_thread(p, t) {
 642                        t->real_parent = reaper;
 643                        BUG_ON((!t->ptrace) != (t->parent == father));
 644                        if (likely(!t->ptrace))
 645                                t->parent = t->real_parent;
 646                        if (t->pdeath_signal)
 647                                group_send_sig_info(t->pdeath_signal,
 648                                                    SEND_SIG_NOINFO, t);
 649                }
 650                /*
 651                 * If this is a threaded reparent there is no need to
 652                 * notify anyone anything has happened.
 653                 */
 654                if (!same_thread_group(reaper, father))
 655                        reparent_leader(father, p, dead);
 656        }
 657        list_splice_tail_init(&father->children, &reaper->children);
 658}
 659
 660/*
 661 * Send signals to all our closest relatives so that they know
 662 * to properly mourn us..
 663 */
 664static void exit_notify(struct task_struct *tsk, int group_dead)
 665{
 666        bool autoreap;
 667        struct task_struct *p, *n;
 668        LIST_HEAD(dead);
 669
 670        write_lock_irq(&tasklist_lock);
 671        forget_original_parent(tsk, &dead);
 672
 673        if (group_dead)
 674                kill_orphaned_pgrp(tsk->group_leader, NULL);
 675
 676        if (unlikely(tsk->ptrace)) {
 677                int sig = thread_group_leader(tsk) &&
 678                                thread_group_empty(tsk) &&
 679                                !ptrace_reparented(tsk) ?
 680                        tsk->exit_signal : SIGCHLD;
 681                autoreap = do_notify_parent(tsk, sig);
 682        } else if (thread_group_leader(tsk)) {
 683                autoreap = thread_group_empty(tsk) &&
 684                        do_notify_parent(tsk, tsk->exit_signal);
 685        } else {
 686                autoreap = true;
 687        }
 688
 689        tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
 690        if (tsk->exit_state == EXIT_DEAD)
 691                list_add(&tsk->ptrace_entry, &dead);
 692
 693        /* mt-exec, de_thread() is waiting for group leader */
 694        if (unlikely(tsk->signal->notify_count < 0))
 695                wake_up_process(tsk->signal->group_exit_task);
 696        write_unlock_irq(&tasklist_lock);
 697
 698        list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
 699                list_del_init(&p->ptrace_entry);
 700                release_task(p);
 701        }
 702}
 703
 704#ifdef CONFIG_DEBUG_STACK_USAGE
 705static void check_stack_usage(void)
 706{
 707        static DEFINE_SPINLOCK(low_water_lock);
 708        static int lowest_to_date = THREAD_SIZE;
 709        unsigned long free;
 710
 711        free = stack_not_used(current);
 712
 713        if (free >= lowest_to_date)
 714                return;
 715
 716        spin_lock(&low_water_lock);
 717        if (free < lowest_to_date) {
 718                pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
 719                        current->comm, task_pid_nr(current), free);
 720                lowest_to_date = free;
 721        }
 722        spin_unlock(&low_water_lock);
 723}
 724#else
 725static inline void check_stack_usage(void) {}
 726#endif
 727
 728void __noreturn do_exit(long code)
 729{
 730        struct task_struct *tsk = current;
 731        int group_dead;
 732        TASKS_RCU(int tasks_rcu_i);
 733
 734        profile_task_exit(tsk);
 735        kcov_task_exit(tsk);
 736
 737        WARN_ON(blk_needs_flush_plug(tsk));
 738
 739        if (unlikely(in_interrupt()))
 740                panic("Aiee, killing interrupt handler!");
 741        if (unlikely(!tsk->pid))
 742                panic("Attempted to kill the idle task!");
 743
 744        /*
 745         * If do_exit is called because this processes oopsed, it's possible
 746         * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
 747         * continuing. Amongst other possible reasons, this is to prevent
 748         * mm_release()->clear_child_tid() from writing to a user-controlled
 749         * kernel address.
 750         */
 751        set_fs(USER_DS);
 752
 753        ptrace_event(PTRACE_EVENT_EXIT, code);
 754
 755        validate_creds_for_do_exit(tsk);
 756
 757        /*
 758         * We're taking recursive faults here in do_exit. Safest is to just
 759         * leave this task alone and wait for reboot.
 760         */
 761        if (unlikely(tsk->flags & PF_EXITING)) {
 762                pr_alert("Fixing recursive fault but reboot is needed!\n");
 763                /*
 764                 * We can do this unlocked here. The futex code uses
 765                 * this flag just to verify whether the pi state
 766                 * cleanup has been done or not. In the worst case it
 767                 * loops once more. We pretend that the cleanup was
 768                 * done as there is no way to return. Either the
 769                 * OWNER_DIED bit is set by now or we push the blocked
 770                 * task into the wait for ever nirwana as well.
 771                 */
 772                tsk->flags |= PF_EXITPIDONE;
 773                set_current_state(TASK_UNINTERRUPTIBLE);
 774                schedule();
 775        }
 776
 777        exit_signals(tsk);  /* sets PF_EXITING */
 778        /*
 779         * Ensure that all new tsk->pi_lock acquisitions must observe
 780         * PF_EXITING. Serializes against futex.c:attach_to_pi_owner().
 781         */
 782        smp_mb();
 783        /*
 784         * Ensure that we must observe the pi_state in exit_mm() ->
 785         * mm_release() -> exit_pi_state_list().
 786         */
 787        raw_spin_unlock_wait(&tsk->pi_lock);
 788
 789        if (unlikely(in_atomic())) {
 790                pr_info("note: %s[%d] exited with preempt_count %d\n",
 791                        current->comm, task_pid_nr(current),
 792                        preempt_count());
 793                preempt_count_set(PREEMPT_ENABLED);
 794        }
 795
 796        /* sync mm's RSS info before statistics gathering */
 797        if (tsk->mm)
 798                sync_mm_rss(tsk->mm);
 799        acct_update_integrals(tsk);
 800        group_dead = atomic_dec_and_test(&tsk->signal->live);
 801        if (group_dead) {
 802                hrtimer_cancel(&tsk->signal->real_timer);
 803                exit_itimers(tsk->signal);
 804                if (tsk->mm)
 805                        setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
 806        }
 807        acct_collect(code, group_dead);
 808        if (group_dead)
 809                tty_audit_exit();
 810        audit_free(tsk);
 811
 812        tsk->exit_code = code;
 813        taskstats_exit(tsk, group_dead);
 814
 815        exit_mm(tsk);
 816
 817        if (group_dead)
 818                acct_process();
 819        trace_sched_process_exit(tsk);
 820
 821        exit_sem(tsk);
 822        exit_shm(tsk);
 823        exit_files(tsk);
 824        exit_fs(tsk);
 825        if (group_dead)
 826                disassociate_ctty(1);
 827        exit_task_namespaces(tsk);
 828        exit_task_work(tsk);
 829        exit_thread(tsk);
 830
 831        /*
 832         * Flush inherited counters to the parent - before the parent
 833         * gets woken up by child-exit notifications.
 834         *
 835         * because of cgroup mode, must be called before cgroup_exit()
 836         */
 837        perf_event_exit_task(tsk);
 838
 839        sched_autogroup_exit_task(tsk);
 840        cgroup_exit(tsk);
 841
 842        /*
 843         * FIXME: do that only when needed, using sched_exit tracepoint
 844         */
 845        flush_ptrace_hw_breakpoint(tsk);
 846
 847        TASKS_RCU(preempt_disable());
 848        TASKS_RCU(tasks_rcu_i = __srcu_read_lock(&tasks_rcu_exit_srcu));
 849        TASKS_RCU(preempt_enable());
 850        exit_notify(tsk, group_dead);
 851        proc_exit_connector(tsk);
 852        mpol_put_task_policy(tsk);
 853#ifdef CONFIG_FUTEX
 854        if (unlikely(current->pi_state_cache))
 855                kfree(current->pi_state_cache);
 856#endif
 857        /*
 858         * Make sure we are holding no locks:
 859         */
 860        debug_check_no_locks_held();
 861        /*
 862         * We can do this unlocked here. The futex code uses this flag
 863         * just to verify whether the pi state cleanup has been done
 864         * or not. In the worst case it loops once more.
 865         */
 866        tsk->flags |= PF_EXITPIDONE;
 867
 868        if (tsk->io_context)
 869                exit_io_context(tsk);
 870
 871        if (tsk->splice_pipe)
 872                free_pipe_info(tsk->splice_pipe);
 873
 874        if (tsk->task_frag.page)
 875                put_page(tsk->task_frag.page);
 876
 877        validate_creds_for_do_exit(tsk);
 878
 879        check_stack_usage();
 880        preempt_disable();
 881        if (tsk->nr_dirtied)
 882                __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
 883        exit_rcu();
 884        TASKS_RCU(__srcu_read_unlock(&tasks_rcu_exit_srcu, tasks_rcu_i));
 885
 886        do_task_dead();
 887}
 888EXPORT_SYMBOL_GPL(do_exit);
 889
 890void complete_and_exit(struct completion *comp, long code)
 891{
 892        if (comp)
 893                complete(comp);
 894
 895        do_exit(code);
 896}
 897EXPORT_SYMBOL(complete_and_exit);
 898
 899SYSCALL_DEFINE1(exit, int, error_code)
 900{
 901        do_exit((error_code&0xff)<<8);
 902}
 903
 904/*
 905 * Take down every thread in the group.  This is called by fatal signals
 906 * as well as by sys_exit_group (below).
 907 */
 908void
 909do_group_exit(int exit_code)
 910{
 911        struct signal_struct *sig = current->signal;
 912
 913        BUG_ON(exit_code & 0x80); /* core dumps don't get here */
 914
 915        if (signal_group_exit(sig))
 916                exit_code = sig->group_exit_code;
 917        else if (!thread_group_empty(current)) {
 918                struct sighand_struct *const sighand = current->sighand;
 919
 920                spin_lock_irq(&sighand->siglock);
 921                if (signal_group_exit(sig))
 922                        /* Another thread got here before we took the lock.  */
 923                        exit_code = sig->group_exit_code;
 924                else {
 925                        sig->group_exit_code = exit_code;
 926                        sig->flags = SIGNAL_GROUP_EXIT;
 927                        zap_other_threads(current);
 928                }
 929                spin_unlock_irq(&sighand->siglock);
 930        }
 931
 932        do_exit(exit_code);
 933        /* NOTREACHED */
 934}
 935
 936/*
 937 * this kills every thread in the thread group. Note that any externally
 938 * wait4()-ing process will get the correct exit code - even if this
 939 * thread is not the thread group leader.
 940 */
 941SYSCALL_DEFINE1(exit_group, int, error_code)
 942{
 943        do_group_exit((error_code & 0xff) << 8);
 944        /* NOTREACHED */
 945        return 0;
 946}
 947
 948struct wait_opts {
 949        enum pid_type           wo_type;
 950        int                     wo_flags;
 951        struct pid              *wo_pid;
 952
 953        struct siginfo __user   *wo_info;
 954        int __user              *wo_stat;
 955        struct rusage __user    *wo_rusage;
 956
 957        wait_queue_t            child_wait;
 958        int                     notask_error;
 959};
 960
 961static inline
 962struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
 963{
 964        if (type != PIDTYPE_PID)
 965                task = task->group_leader;
 966        return task->pids[type].pid;
 967}
 968
 969static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
 970{
 971        return  wo->wo_type == PIDTYPE_MAX ||
 972                task_pid_type(p, wo->wo_type) == wo->wo_pid;
 973}
 974
 975static int
 976eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
 977{
 978        if (!eligible_pid(wo, p))
 979                return 0;
 980
 981        /*
 982         * Wait for all children (clone and not) if __WALL is set or
 983         * if it is traced by us.
 984         */
 985        if (ptrace || (wo->wo_flags & __WALL))
 986                return 1;
 987
 988        /*
 989         * Otherwise, wait for clone children *only* if __WCLONE is set;
 990         * otherwise, wait for non-clone children *only*.
 991         *
 992         * Note: a "clone" child here is one that reports to its parent
 993         * using a signal other than SIGCHLD, or a non-leader thread which
 994         * we can only see if it is traced by us.
 995         */
 996        if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
 997                return 0;
 998
 999        return 1;
1000}
1001
1002static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
1003                                pid_t pid, uid_t uid, int why, int status)
1004{
1005        struct siginfo __user *infop;
1006        int retval = wo->wo_rusage
1007                ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1008
1009        put_task_struct(p);
1010        infop = wo->wo_info;
1011        if (infop) {
1012                if (!retval)
1013                        retval = put_user(SIGCHLD, &infop->si_signo);
1014                if (!retval)
1015                        retval = put_user(0, &infop->si_errno);
1016                if (!retval)
1017                        retval = put_user((short)why, &infop->si_code);
1018                if (!retval)
1019                        retval = put_user(pid, &infop->si_pid);
1020                if (!retval)
1021                        retval = put_user(uid, &infop->si_uid);
1022                if (!retval)
1023                        retval = put_user(status, &infop->si_status);
1024        }
1025        if (!retval)
1026                retval = pid;
1027        return retval;
1028}
1029
1030/*
1031 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1032 * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1033 * the lock and this task is uninteresting.  If we return nonzero, we have
1034 * released the lock and the system call should return.
1035 */
1036static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1037{
1038        int state, retval, status;
1039        pid_t pid = task_pid_vnr(p);
1040        uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1041        struct siginfo __user *infop;
1042
1043        if (!likely(wo->wo_flags & WEXITED))
1044                return 0;
1045
1046        if (unlikely(wo->wo_flags & WNOWAIT)) {
1047                int exit_code = p->exit_code;
1048                int why;
1049
1050                get_task_struct(p);
1051                read_unlock(&tasklist_lock);
1052                sched_annotate_sleep();
1053
1054                if ((exit_code & 0x7f) == 0) {
1055                        why = CLD_EXITED;
1056                        status = exit_code >> 8;
1057                } else {
1058                        why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1059                        status = exit_code & 0x7f;
1060                }
1061                return wait_noreap_copyout(wo, p, pid, uid, why, status);
1062        }
1063        /*
1064         * Move the task's state to DEAD/TRACE, only one thread can do this.
1065         */
1066        state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1067                EXIT_TRACE : EXIT_DEAD;
1068        if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1069                return 0;
1070        /*
1071         * We own this thread, nobody else can reap it.
1072         */
1073        read_unlock(&tasklist_lock);
1074        sched_annotate_sleep();
1075
1076        /*
1077         * Check thread_group_leader() to exclude the traced sub-threads.
1078         */
1079        if (state == EXIT_DEAD && thread_group_leader(p)) {
1080                struct signal_struct *sig = p->signal;
1081                struct signal_struct *psig = current->signal;
1082                unsigned long maxrss;
1083                cputime_t tgutime, tgstime;
1084
1085                /*
1086                 * The resource counters for the group leader are in its
1087                 * own task_struct.  Those for dead threads in the group
1088                 * are in its signal_struct, as are those for the child
1089                 * processes it has previously reaped.  All these
1090                 * accumulate in the parent's signal_struct c* fields.
1091                 *
1092                 * We don't bother to take a lock here to protect these
1093                 * p->signal fields because the whole thread group is dead
1094                 * and nobody can change them.
1095                 *
1096                 * psig->stats_lock also protects us from our sub-theads
1097                 * which can reap other children at the same time. Until
1098                 * we change k_getrusage()-like users to rely on this lock
1099                 * we have to take ->siglock as well.
1100                 *
1101                 * We use thread_group_cputime_adjusted() to get times for
1102                 * the thread group, which consolidates times for all threads
1103                 * in the group including the group leader.
1104                 */
1105                thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1106                spin_lock_irq(&current->sighand->siglock);
1107                write_seqlock(&psig->stats_lock);
1108                psig->cutime += tgutime + sig->cutime;
1109                psig->cstime += tgstime + sig->cstime;
1110                psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1111                psig->cmin_flt +=
1112                        p->min_flt + sig->min_flt + sig->cmin_flt;
1113                psig->cmaj_flt +=
1114                        p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1115                psig->cnvcsw +=
1116                        p->nvcsw + sig->nvcsw + sig->cnvcsw;
1117                psig->cnivcsw +=
1118                        p->nivcsw + sig->nivcsw + sig->cnivcsw;
1119                psig->cinblock +=
1120                        task_io_get_inblock(p) +
1121                        sig->inblock + sig->cinblock;
1122                psig->coublock +=
1123                        task_io_get_oublock(p) +
1124                        sig->oublock + sig->coublock;
1125                maxrss = max(sig->maxrss, sig->cmaxrss);
1126                if (psig->cmaxrss < maxrss)
1127                        psig->cmaxrss = maxrss;
1128                task_io_accounting_add(&psig->ioac, &p->ioac);
1129                task_io_accounting_add(&psig->ioac, &sig->ioac);
1130                write_sequnlock(&psig->stats_lock);
1131                spin_unlock_irq(&current->sighand->siglock);
1132        }
1133
1134        retval = wo->wo_rusage
1135                ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1136        status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1137                ? p->signal->group_exit_code : p->exit_code;
1138        if (!retval && wo->wo_stat)
1139                retval = put_user(status, wo->wo_stat);
1140
1141        infop = wo->wo_info;
1142        if (!retval && infop)
1143                retval = put_user(SIGCHLD, &infop->si_signo);
1144        if (!retval && infop)
1145                retval = put_user(0, &infop->si_errno);
1146        if (!retval && infop) {
1147                int why;
1148
1149                if ((status & 0x7f) == 0) {
1150                        why = CLD_EXITED;
1151                        status >>= 8;
1152                } else {
1153                        why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1154                        status &= 0x7f;
1155                }
1156                retval = put_user((short)why, &infop->si_code);
1157                if (!retval)
1158                        retval = put_user(status, &infop->si_status);
1159        }
1160        if (!retval && infop)
1161                retval = put_user(pid, &infop->si_pid);
1162        if (!retval && infop)
1163                retval = put_user(uid, &infop->si_uid);
1164        if (!retval)
1165                retval = pid;
1166
1167        if (state == EXIT_TRACE) {
1168                write_lock_irq(&tasklist_lock);
1169                /* We dropped tasklist, ptracer could die and untrace */
1170                ptrace_unlink(p);
1171
1172                /* If parent wants a zombie, don't release it now */
1173                state = EXIT_ZOMBIE;
1174                if (do_notify_parent(p, p->exit_signal))
1175                        state = EXIT_DEAD;
1176                p->exit_state = state;
1177                write_unlock_irq(&tasklist_lock);
1178        }
1179        if (state == EXIT_DEAD)
1180                release_task(p);
1181
1182        return retval;
1183}
1184
1185static int *task_stopped_code(struct task_struct *p, bool ptrace)
1186{
1187        if (ptrace) {
1188                if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1189                        return &p->exit_code;
1190        } else {
1191                if (p->signal->flags & SIGNAL_STOP_STOPPED)
1192                        return &p->signal->group_exit_code;
1193        }
1194        return NULL;
1195}
1196
1197/**
1198 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1199 * @wo: wait options
1200 * @ptrace: is the wait for ptrace
1201 * @p: task to wait for
1202 *
1203 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1204 *
1205 * CONTEXT:
1206 * read_lock(&tasklist_lock), which is released if return value is
1207 * non-zero.  Also, grabs and releases @p->sighand->siglock.
1208 *
1209 * RETURNS:
1210 * 0 if wait condition didn't exist and search for other wait conditions
1211 * should continue.  Non-zero return, -errno on failure and @p's pid on
1212 * success, implies that tasklist_lock is released and wait condition
1213 * search should terminate.
1214 */
1215static int wait_task_stopped(struct wait_opts *wo,
1216                                int ptrace, struct task_struct *p)
1217{
1218        struct siginfo __user *infop;
1219        int retval, exit_code, *p_code, why;
1220        uid_t uid = 0; /* unneeded, required by compiler */
1221        pid_t pid;
1222
1223        /*
1224         * Traditionally we see ptrace'd stopped tasks regardless of options.
1225         */
1226        if (!ptrace && !(wo->wo_flags & WUNTRACED))
1227                return 0;
1228
1229        if (!task_stopped_code(p, ptrace))
1230                return 0;
1231
1232        exit_code = 0;
1233        spin_lock_irq(&p->sighand->siglock);
1234
1235        p_code = task_stopped_code(p, ptrace);
1236        if (unlikely(!p_code))
1237                goto unlock_sig;
1238
1239        exit_code = *p_code;
1240        if (!exit_code)
1241                goto unlock_sig;
1242
1243        if (!unlikely(wo->wo_flags & WNOWAIT))
1244                *p_code = 0;
1245
1246        uid = from_kuid_munged(current_user_ns(), task_uid(p));
1247unlock_sig:
1248        spin_unlock_irq(&p->sighand->siglock);
1249        if (!exit_code)
1250                return 0;
1251
1252        /*
1253         * Now we are pretty sure this task is interesting.
1254         * Make sure it doesn't get reaped out from under us while we
1255         * give up the lock and then examine it below.  We don't want to
1256         * keep holding onto the tasklist_lock while we call getrusage and
1257         * possibly take page faults for user memory.
1258         */
1259        get_task_struct(p);
1260        pid = task_pid_vnr(p);
1261        why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1262        read_unlock(&tasklist_lock);
1263        sched_annotate_sleep();
1264
1265        if (unlikely(wo->wo_flags & WNOWAIT))
1266                return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1267
1268        retval = wo->wo_rusage
1269                ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1270        if (!retval && wo->wo_stat)
1271                retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1272
1273        infop = wo->wo_info;
1274        if (!retval && infop)
1275                retval = put_user(SIGCHLD, &infop->si_signo);
1276        if (!retval && infop)
1277                retval = put_user(0, &infop->si_errno);
1278        if (!retval && infop)
1279                retval = put_user((short)why, &infop->si_code);
1280        if (!retval && infop)
1281                retval = put_user(exit_code, &infop->si_status);
1282        if (!retval && infop)
1283                retval = put_user(pid, &infop->si_pid);
1284        if (!retval && infop)
1285                retval = put_user(uid, &infop->si_uid);
1286        if (!retval)
1287                retval = pid;
1288        put_task_struct(p);
1289
1290        BUG_ON(!retval);
1291        return retval;
1292}
1293
1294/*
1295 * Handle do_wait work for one task in a live, non-stopped state.
1296 * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1297 * the lock and this task is uninteresting.  If we return nonzero, we have
1298 * released the lock and the system call should return.
1299 */
1300static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1301{
1302        int retval;
1303        pid_t pid;
1304        uid_t uid;
1305
1306        if (!unlikely(wo->wo_flags & WCONTINUED))
1307                return 0;
1308
1309        if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1310                return 0;
1311
1312        spin_lock_irq(&p->sighand->siglock);
1313        /* Re-check with the lock held.  */
1314        if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1315                spin_unlock_irq(&p->sighand->siglock);
1316                return 0;
1317        }
1318        if (!unlikely(wo->wo_flags & WNOWAIT))
1319                p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1320        uid = from_kuid_munged(current_user_ns(), task_uid(p));
1321        spin_unlock_irq(&p->sighand->siglock);
1322
1323        pid = task_pid_vnr(p);
1324        get_task_struct(p);
1325        read_unlock(&tasklist_lock);
1326        sched_annotate_sleep();
1327
1328        if (!wo->wo_info) {
1329                retval = wo->wo_rusage
1330                        ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1331                put_task_struct(p);
1332                if (!retval && wo->wo_stat)
1333                        retval = put_user(0xffff, wo->wo_stat);
1334                if (!retval)
1335                        retval = pid;
1336        } else {
1337                retval = wait_noreap_copyout(wo, p, pid, uid,
1338                                             CLD_CONTINUED, SIGCONT);
1339                BUG_ON(retval == 0);
1340        }
1341
1342        return retval;
1343}
1344
1345/*
1346 * Consider @p for a wait by @parent.
1347 *
1348 * -ECHILD should be in ->notask_error before the first call.
1349 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1350 * Returns zero if the search for a child should continue;
1351 * then ->notask_error is 0 if @p is an eligible child,
1352 * or another error from security_task_wait(), or still -ECHILD.
1353 */
1354static int wait_consider_task(struct wait_opts *wo, int ptrace,
1355                                struct task_struct *p)
1356{
1357        /*
1358         * We can race with wait_task_zombie() from another thread.
1359         * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1360         * can't confuse the checks below.
1361         */
1362        int exit_state = ACCESS_ONCE(p->exit_state);
1363        int ret;
1364
1365        if (unlikely(exit_state == EXIT_DEAD))
1366                return 0;
1367
1368        ret = eligible_child(wo, ptrace, p);
1369        if (!ret)
1370                return ret;
1371
1372        ret = security_task_wait(p);
1373        if (unlikely(ret < 0)) {
1374                /*
1375                 * If we have not yet seen any eligible child,
1376                 * then let this error code replace -ECHILD.
1377                 * A permission error will give the user a clue
1378                 * to look for security policy problems, rather
1379                 * than for mysterious wait bugs.
1380                 */
1381                if (wo->notask_error)
1382                        wo->notask_error = ret;
1383                return 0;
1384        }
1385
1386        if (unlikely(exit_state == EXIT_TRACE)) {
1387                /*
1388                 * ptrace == 0 means we are the natural parent. In this case
1389                 * we should clear notask_error, debugger will notify us.
1390                 */
1391                if (likely(!ptrace))
1392                        wo->notask_error = 0;
1393                return 0;
1394        }
1395
1396        if (likely(!ptrace) && unlikely(p->ptrace)) {
1397                /*
1398                 * If it is traced by its real parent's group, just pretend
1399                 * the caller is ptrace_do_wait() and reap this child if it
1400                 * is zombie.
1401                 *
1402                 * This also hides group stop state from real parent; otherwise
1403                 * a single stop can be reported twice as group and ptrace stop.
1404                 * If a ptracer wants to distinguish these two events for its
1405                 * own children it should create a separate process which takes
1406                 * the role of real parent.
1407                 */
1408                if (!ptrace_reparented(p))
1409                        ptrace = 1;
1410        }
1411
1412        /* slay zombie? */
1413        if (exit_state == EXIT_ZOMBIE) {
1414                /* we don't reap group leaders with subthreads */
1415                if (!delay_group_leader(p)) {
1416                        /*
1417                         * A zombie ptracee is only visible to its ptracer.
1418                         * Notification and reaping will be cascaded to the
1419                         * real parent when the ptracer detaches.
1420                         */
1421                        if (unlikely(ptrace) || likely(!p->ptrace))
1422                                return wait_task_zombie(wo, p);
1423                }
1424
1425                /*
1426                 * Allow access to stopped/continued state via zombie by
1427                 * falling through.  Clearing of notask_error is complex.
1428                 *
1429                 * When !@ptrace:
1430                 *
1431                 * If WEXITED is set, notask_error should naturally be
1432                 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1433                 * so, if there are live subthreads, there are events to
1434                 * wait for.  If all subthreads are dead, it's still safe
1435                 * to clear - this function will be called again in finite
1436                 * amount time once all the subthreads are released and
1437                 * will then return without clearing.
1438                 *
1439                 * When @ptrace:
1440                 *
1441                 * Stopped state is per-task and thus can't change once the
1442                 * target task dies.  Only continued and exited can happen.
1443                 * Clear notask_error if WCONTINUED | WEXITED.
1444                 */
1445                if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1446                        wo->notask_error = 0;
1447        } else {
1448                /*
1449                 * @p is alive and it's gonna stop, continue or exit, so
1450                 * there always is something to wait for.
1451                 */
1452                wo->notask_error = 0;
1453        }
1454
1455        /*
1456         * Wait for stopped.  Depending on @ptrace, different stopped state
1457         * is used and the two don't interact with each other.
1458         */
1459        ret = wait_task_stopped(wo, ptrace, p);
1460        if (ret)
1461                return ret;
1462
1463        /*
1464         * Wait for continued.  There's only one continued state and the
1465         * ptracer can consume it which can confuse the real parent.  Don't
1466         * use WCONTINUED from ptracer.  You don't need or want it.
1467         */
1468        return wait_task_continued(wo, p);
1469}
1470
1471/*
1472 * Do the work of do_wait() for one thread in the group, @tsk.
1473 *
1474 * -ECHILD should be in ->notask_error before the first call.
1475 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1476 * Returns zero if the search for a child should continue; then
1477 * ->notask_error is 0 if there were any eligible children,
1478 * or another error from security_task_wait(), or still -ECHILD.
1479 */
1480static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1481{
1482        struct task_struct *p;
1483
1484        list_for_each_entry(p, &tsk->children, sibling) {
1485                int ret = wait_consider_task(wo, 0, p);
1486
1487                if (ret)
1488                        return ret;
1489        }
1490
1491        return 0;
1492}
1493
1494static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1495{
1496        struct task_struct *p;
1497
1498        list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1499                int ret = wait_consider_task(wo, 1, p);
1500
1501                if (ret)
1502                        return ret;
1503        }
1504
1505        return 0;
1506}
1507
1508static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1509                                int sync, void *key)
1510{
1511        struct wait_opts *wo = container_of(wait, struct wait_opts,
1512                                                child_wait);
1513        struct task_struct *p = key;
1514
1515        if (!eligible_pid(wo, p))
1516                return 0;
1517
1518        if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1519                return 0;
1520
1521        return default_wake_function(wait, mode, sync, key);
1522}
1523
1524void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1525{
1526        __wake_up_sync_key(&parent->signal->wait_chldexit,
1527                                TASK_INTERRUPTIBLE, 1, p);
1528}
1529
1530static long do_wait(struct wait_opts *wo)
1531{
1532        struct task_struct *tsk;
1533        int retval;
1534
1535        trace_sched_process_wait(wo->wo_pid);
1536
1537        init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1538        wo->child_wait.private = current;
1539        add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1540repeat:
1541        /*
1542         * If there is nothing that can match our criteria, just get out.
1543         * We will clear ->notask_error to zero if we see any child that
1544         * might later match our criteria, even if we are not able to reap
1545         * it yet.
1546         */
1547        wo->notask_error = -ECHILD;
1548        if ((wo->wo_type < PIDTYPE_MAX) &&
1549           (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1550                goto notask;
1551
1552        set_current_state(TASK_INTERRUPTIBLE);
1553        read_lock(&tasklist_lock);
1554        tsk = current;
1555        do {
1556                retval = do_wait_thread(wo, tsk);
1557                if (retval)
1558                        goto end;
1559
1560                retval = ptrace_do_wait(wo, tsk);
1561                if (retval)
1562                        goto end;
1563
1564                if (wo->wo_flags & __WNOTHREAD)
1565                        break;
1566        } while_each_thread(current, tsk);
1567        read_unlock(&tasklist_lock);
1568
1569notask:
1570        retval = wo->notask_error;
1571        if (!retval && !(wo->wo_flags & WNOHANG)) {
1572                retval = -ERESTARTSYS;
1573                if (!signal_pending(current)) {
1574                        schedule();
1575                        goto repeat;
1576                }
1577        }
1578end:
1579        __set_current_state(TASK_RUNNING);
1580        remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1581        return retval;
1582}
1583
1584SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1585                infop, int, options, struct rusage __user *, ru)
1586{
1587        struct wait_opts wo;
1588        struct pid *pid = NULL;
1589        enum pid_type type;
1590        long ret;
1591
1592        if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1593                        __WNOTHREAD|__WCLONE|__WALL))
1594                return -EINVAL;
1595        if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1596                return -EINVAL;
1597
1598        switch (which) {
1599        case P_ALL:
1600                type = PIDTYPE_MAX;
1601                break;
1602        case P_PID:
1603                type = PIDTYPE_PID;
1604                if (upid <= 0)
1605                        return -EINVAL;
1606                break;
1607        case P_PGID:
1608                type = PIDTYPE_PGID;
1609                if (upid <= 0)
1610                        return -EINVAL;
1611                break;
1612        default:
1613                return -EINVAL;
1614        }
1615
1616        if (type < PIDTYPE_MAX)
1617                pid = find_get_pid(upid);
1618
1619        wo.wo_type      = type;
1620        wo.wo_pid       = pid;
1621        wo.wo_flags     = options;
1622        wo.wo_info      = infop;
1623        wo.wo_stat      = NULL;
1624        wo.wo_rusage    = ru;
1625        ret = do_wait(&wo);
1626
1627        if (ret > 0) {
1628                ret = 0;
1629        } else if (infop) {
1630                /*
1631                 * For a WNOHANG return, clear out all the fields
1632                 * we would set so the user can easily tell the
1633                 * difference.
1634                 */
1635                if (!ret)
1636                        ret = put_user(0, &infop->si_signo);
1637                if (!ret)
1638                        ret = put_user(0, &infop->si_errno);
1639                if (!ret)
1640                        ret = put_user(0, &infop->si_code);
1641                if (!ret)
1642                        ret = put_user(0, &infop->si_pid);
1643                if (!ret)
1644                        ret = put_user(0, &infop->si_uid);
1645                if (!ret)
1646                        ret = put_user(0, &infop->si_status);
1647        }
1648
1649        put_pid(pid);
1650        return ret;
1651}
1652
1653SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1654                int, options, struct rusage __user *, ru)
1655{
1656        struct wait_opts wo;
1657        struct pid *pid = NULL;
1658        enum pid_type type;
1659        long ret;
1660
1661        if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1662                        __WNOTHREAD|__WCLONE|__WALL))
1663                return -EINVAL;
1664
1665        if (upid == -1)
1666                type = PIDTYPE_MAX;
1667        else if (upid < 0) {
1668                type = PIDTYPE_PGID;
1669                pid = find_get_pid(-upid);
1670        } else if (upid == 0) {
1671                type = PIDTYPE_PGID;
1672                pid = get_task_pid(current, PIDTYPE_PGID);
1673        } else /* upid > 0 */ {
1674                type = PIDTYPE_PID;
1675                pid = find_get_pid(upid);
1676        }
1677
1678        wo.wo_type      = type;
1679        wo.wo_pid       = pid;
1680        wo.wo_flags     = options | WEXITED;
1681        wo.wo_info      = NULL;
1682        wo.wo_stat      = stat_addr;
1683        wo.wo_rusage    = ru;
1684        ret = do_wait(&wo);
1685        put_pid(pid);
1686
1687        return ret;
1688}
1689
1690#ifdef __ARCH_WANT_SYS_WAITPID
1691
1692/*
1693 * sys_waitpid() remains for compatibility. waitpid() should be
1694 * implemented by calling sys_wait4() from libc.a.
1695 */
1696SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1697{
1698        return sys_wait4(pid, stat_addr, options, NULL);
1699}
1700
1701#endif
1702