linux/kernel/fork.c
<<
>>
Prefs
   1/*
   2 *  linux/kernel/fork.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 */
   6
   7/*
   8 *  'fork.c' contains the help-routines for the 'fork' system call
   9 * (see also entry.S and others).
  10 * Fork is rather simple, once you get the hang of it, but the memory
  11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
  12 */
  13
  14#include <linux/slab.h>
  15#include <linux/init.h>
  16#include <linux/unistd.h>
  17#include <linux/module.h>
  18#include <linux/vmalloc.h>
  19#include <linux/completion.h>
  20#include <linux/personality.h>
  21#include <linux/mempolicy.h>
  22#include <linux/sem.h>
  23#include <linux/file.h>
  24#include <linux/fdtable.h>
  25#include <linux/iocontext.h>
  26#include <linux/key.h>
  27#include <linux/binfmts.h>
  28#include <linux/mman.h>
  29#include <linux/mmu_notifier.h>
  30#include <linux/fs.h>
  31#include <linux/mm.h>
  32#include <linux/vmacache.h>
  33#include <linux/nsproxy.h>
  34#include <linux/capability.h>
  35#include <linux/cpu.h>
  36#include <linux/cgroup.h>
  37#include <linux/security.h>
  38#include <linux/hugetlb.h>
  39#include <linux/seccomp.h>
  40#include <linux/swap.h>
  41#include <linux/syscalls.h>
  42#include <linux/jiffies.h>
  43#include <linux/futex.h>
  44#include <linux/compat.h>
  45#include <linux/kthread.h>
  46#include <linux/task_io_accounting_ops.h>
  47#include <linux/rcupdate.h>
  48#include <linux/ptrace.h>
  49#include <linux/mount.h>
  50#include <linux/audit.h>
  51#include <linux/memcontrol.h>
  52#include <linux/ftrace.h>
  53#include <linux/proc_fs.h>
  54#include <linux/profile.h>
  55#include <linux/rmap.h>
  56#include <linux/ksm.h>
  57#include <linux/acct.h>
  58#include <linux/tsacct_kern.h>
  59#include <linux/cn_proc.h>
  60#include <linux/freezer.h>
  61#include <linux/delayacct.h>
  62#include <linux/taskstats_kern.h>
  63#include <linux/random.h>
  64#include <linux/tty.h>
  65#include <linux/blkdev.h>
  66#include <linux/fs_struct.h>
  67#include <linux/magic.h>
  68#include <linux/perf_event.h>
  69#include <linux/posix-timers.h>
  70#include <linux/user-return-notifier.h>
  71#include <linux/oom.h>
  72#include <linux/khugepaged.h>
  73#include <linux/signalfd.h>
  74#include <linux/uprobes.h>
  75#include <linux/aio.h>
  76#include <linux/compiler.h>
  77#include <linux/sysctl.h>
  78#include <linux/kcov.h>
  79
  80#include <asm/pgtable.h>
  81#include <asm/pgalloc.h>
  82#include <asm/uaccess.h>
  83#include <asm/mmu_context.h>
  84#include <asm/cacheflush.h>
  85#include <asm/tlbflush.h>
  86
  87#include <trace/events/sched.h>
  88
  89#define CREATE_TRACE_POINTS
  90#include <trace/events/task.h>
  91
  92/*
  93 * Minimum number of threads to boot the kernel
  94 */
  95#define MIN_THREADS 20
  96
  97/*
  98 * Maximum number of threads
  99 */
 100#define MAX_THREADS FUTEX_TID_MASK
 101
 102/*
 103 * Protected counters by write_lock_irq(&tasklist_lock)
 104 */
 105unsigned long total_forks;      /* Handle normal Linux uptimes. */
 106int nr_threads;                 /* The idle threads do not count.. */
 107
 108int max_threads;                /* tunable limit on nr_threads */
 109
 110DEFINE_PER_CPU(unsigned long, process_counts) = 0;
 111
 112__cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
 113
 114#ifdef CONFIG_PROVE_RCU
 115int lockdep_tasklist_lock_is_held(void)
 116{
 117        return lockdep_is_held(&tasklist_lock);
 118}
 119EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
 120#endif /* #ifdef CONFIG_PROVE_RCU */
 121
 122int nr_processes(void)
 123{
 124        int cpu;
 125        int total = 0;
 126
 127        for_each_possible_cpu(cpu)
 128                total += per_cpu(process_counts, cpu);
 129
 130        return total;
 131}
 132
 133void __weak arch_release_task_struct(struct task_struct *tsk)
 134{
 135}
 136
 137#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
 138static struct kmem_cache *task_struct_cachep;
 139
 140static inline struct task_struct *alloc_task_struct_node(int node)
 141{
 142        return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
 143}
 144
 145static inline void free_task_struct(struct task_struct *tsk)
 146{
 147        kmem_cache_free(task_struct_cachep, tsk);
 148}
 149#endif
 150
 151void __weak arch_release_thread_stack(unsigned long *stack)
 152{
 153}
 154
 155#ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
 156
 157/*
 158 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
 159 * kmemcache based allocator.
 160 */
 161# if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
 162
 163#ifdef CONFIG_VMAP_STACK
 164/*
 165 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
 166 * flush.  Try to minimize the number of calls by caching stacks.
 167 */
 168#define NR_CACHED_STACKS 2
 169static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
 170#endif
 171
 172static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
 173{
 174#ifdef CONFIG_VMAP_STACK
 175        void *stack;
 176        int i;
 177
 178        local_irq_disable();
 179        for (i = 0; i < NR_CACHED_STACKS; i++) {
 180                struct vm_struct *s = this_cpu_read(cached_stacks[i]);
 181
 182                if (!s)
 183                        continue;
 184                this_cpu_write(cached_stacks[i], NULL);
 185
 186                tsk->stack_vm_area = s;
 187                local_irq_enable();
 188                return s->addr;
 189        }
 190        local_irq_enable();
 191
 192        stack = __vmalloc_node_range(THREAD_SIZE, THREAD_SIZE,
 193                                     VMALLOC_START, VMALLOC_END,
 194                                     THREADINFO_GFP | __GFP_HIGHMEM,
 195                                     PAGE_KERNEL,
 196                                     0, node, __builtin_return_address(0));
 197
 198        /*
 199         * We can't call find_vm_area() in interrupt context, and
 200         * free_thread_stack() can be called in interrupt context,
 201         * so cache the vm_struct.
 202         */
 203        if (stack)
 204                tsk->stack_vm_area = find_vm_area(stack);
 205        return stack;
 206#else
 207        struct page *page = alloc_pages_node(node, THREADINFO_GFP,
 208                                             THREAD_SIZE_ORDER);
 209
 210        return page ? page_address(page) : NULL;
 211#endif
 212}
 213
 214static inline void free_thread_stack(struct task_struct *tsk)
 215{
 216#ifdef CONFIG_VMAP_STACK
 217        if (task_stack_vm_area(tsk)) {
 218                unsigned long flags;
 219                int i;
 220
 221                local_irq_save(flags);
 222                for (i = 0; i < NR_CACHED_STACKS; i++) {
 223                        if (this_cpu_read(cached_stacks[i]))
 224                                continue;
 225
 226                        this_cpu_write(cached_stacks[i], tsk->stack_vm_area);
 227                        local_irq_restore(flags);
 228                        return;
 229                }
 230                local_irq_restore(flags);
 231
 232                vfree(tsk->stack);
 233                return;
 234        }
 235#endif
 236
 237        __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
 238}
 239# else
 240static struct kmem_cache *thread_stack_cache;
 241
 242static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
 243                                                  int node)
 244{
 245        return kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
 246}
 247
 248static void free_thread_stack(struct task_struct *tsk)
 249{
 250        kmem_cache_free(thread_stack_cache, tsk->stack);
 251}
 252
 253void thread_stack_cache_init(void)
 254{
 255        thread_stack_cache = kmem_cache_create("thread_stack", THREAD_SIZE,
 256                                              THREAD_SIZE, 0, NULL);
 257        BUG_ON(thread_stack_cache == NULL);
 258}
 259# endif
 260#endif
 261
 262/* SLAB cache for signal_struct structures (tsk->signal) */
 263static struct kmem_cache *signal_cachep;
 264
 265/* SLAB cache for sighand_struct structures (tsk->sighand) */
 266struct kmem_cache *sighand_cachep;
 267
 268/* SLAB cache for files_struct structures (tsk->files) */
 269struct kmem_cache *files_cachep;
 270
 271/* SLAB cache for fs_struct structures (tsk->fs) */
 272struct kmem_cache *fs_cachep;
 273
 274/* SLAB cache for vm_area_struct structures */
 275struct kmem_cache *vm_area_cachep;
 276
 277/* SLAB cache for mm_struct structures (tsk->mm) */
 278static struct kmem_cache *mm_cachep;
 279
 280static void account_kernel_stack(struct task_struct *tsk, int account)
 281{
 282        void *stack = task_stack_page(tsk);
 283        struct vm_struct *vm = task_stack_vm_area(tsk);
 284
 285        BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
 286
 287        if (vm) {
 288                int i;
 289
 290                BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
 291
 292                for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
 293                        mod_zone_page_state(page_zone(vm->pages[i]),
 294                                            NR_KERNEL_STACK_KB,
 295                                            PAGE_SIZE / 1024 * account);
 296                }
 297
 298                /* All stack pages belong to the same memcg. */
 299                memcg_kmem_update_page_stat(vm->pages[0], MEMCG_KERNEL_STACK_KB,
 300                                            account * (THREAD_SIZE / 1024));
 301        } else {
 302                /*
 303                 * All stack pages are in the same zone and belong to the
 304                 * same memcg.
 305                 */
 306                struct page *first_page = virt_to_page(stack);
 307
 308                mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
 309                                    THREAD_SIZE / 1024 * account);
 310
 311                memcg_kmem_update_page_stat(first_page, MEMCG_KERNEL_STACK_KB,
 312                                            account * (THREAD_SIZE / 1024));
 313        }
 314}
 315
 316static void release_task_stack(struct task_struct *tsk)
 317{
 318        if (WARN_ON(tsk->state != TASK_DEAD))
 319                return;  /* Better to leak the stack than to free prematurely */
 320
 321        account_kernel_stack(tsk, -1);
 322        arch_release_thread_stack(tsk->stack);
 323        free_thread_stack(tsk);
 324        tsk->stack = NULL;
 325#ifdef CONFIG_VMAP_STACK
 326        tsk->stack_vm_area = NULL;
 327#endif
 328}
 329
 330#ifdef CONFIG_THREAD_INFO_IN_TASK
 331void put_task_stack(struct task_struct *tsk)
 332{
 333        if (atomic_dec_and_test(&tsk->stack_refcount))
 334                release_task_stack(tsk);
 335}
 336#endif
 337
 338void free_task(struct task_struct *tsk)
 339{
 340#ifndef CONFIG_THREAD_INFO_IN_TASK
 341        /*
 342         * The task is finally done with both the stack and thread_info,
 343         * so free both.
 344         */
 345        release_task_stack(tsk);
 346#else
 347        /*
 348         * If the task had a separate stack allocation, it should be gone
 349         * by now.
 350         */
 351        WARN_ON_ONCE(atomic_read(&tsk->stack_refcount) != 0);
 352#endif
 353        rt_mutex_debug_task_free(tsk);
 354        ftrace_graph_exit_task(tsk);
 355        put_seccomp_filter(tsk);
 356        arch_release_task_struct(tsk);
 357        free_task_struct(tsk);
 358}
 359EXPORT_SYMBOL(free_task);
 360
 361static inline void free_signal_struct(struct signal_struct *sig)
 362{
 363        taskstats_tgid_free(sig);
 364        sched_autogroup_exit(sig);
 365        /*
 366         * __mmdrop is not safe to call from softirq context on x86 due to
 367         * pgd_dtor so postpone it to the async context
 368         */
 369        if (sig->oom_mm)
 370                mmdrop_async(sig->oom_mm);
 371        kmem_cache_free(signal_cachep, sig);
 372}
 373
 374static inline void put_signal_struct(struct signal_struct *sig)
 375{
 376        if (atomic_dec_and_test(&sig->sigcnt))
 377                free_signal_struct(sig);
 378}
 379
 380void __put_task_struct(struct task_struct *tsk)
 381{
 382        WARN_ON(!tsk->exit_state);
 383        WARN_ON(atomic_read(&tsk->usage));
 384        WARN_ON(tsk == current);
 385
 386        cgroup_free(tsk);
 387        task_numa_free(tsk);
 388        security_task_free(tsk);
 389        exit_creds(tsk);
 390        delayacct_tsk_free(tsk);
 391        put_signal_struct(tsk->signal);
 392
 393        if (!profile_handoff_task(tsk))
 394                free_task(tsk);
 395}
 396EXPORT_SYMBOL_GPL(__put_task_struct);
 397
 398void __init __weak arch_task_cache_init(void) { }
 399
 400/*
 401 * set_max_threads
 402 */
 403static void set_max_threads(unsigned int max_threads_suggested)
 404{
 405        u64 threads;
 406
 407        /*
 408         * The number of threads shall be limited such that the thread
 409         * structures may only consume a small part of the available memory.
 410         */
 411        if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
 412                threads = MAX_THREADS;
 413        else
 414                threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
 415                                    (u64) THREAD_SIZE * 8UL);
 416
 417        if (threads > max_threads_suggested)
 418                threads = max_threads_suggested;
 419
 420        max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
 421}
 422
 423#ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
 424/* Initialized by the architecture: */
 425int arch_task_struct_size __read_mostly;
 426#endif
 427
 428void __init fork_init(void)
 429{
 430        int i;
 431#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
 432#ifndef ARCH_MIN_TASKALIGN
 433#define ARCH_MIN_TASKALIGN      L1_CACHE_BYTES
 434#endif
 435        /* create a slab on which task_structs can be allocated */
 436        task_struct_cachep = kmem_cache_create("task_struct",
 437                        arch_task_struct_size, ARCH_MIN_TASKALIGN,
 438                        SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT, NULL);
 439#endif
 440
 441        /* do the arch specific task caches init */
 442        arch_task_cache_init();
 443
 444        set_max_threads(MAX_THREADS);
 445
 446        init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
 447        init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
 448        init_task.signal->rlim[RLIMIT_SIGPENDING] =
 449                init_task.signal->rlim[RLIMIT_NPROC];
 450
 451        for (i = 0; i < UCOUNT_COUNTS; i++) {
 452                init_user_ns.ucount_max[i] = max_threads/2;
 453        }
 454}
 455
 456int __weak arch_dup_task_struct(struct task_struct *dst,
 457                                               struct task_struct *src)
 458{
 459        *dst = *src;
 460        return 0;
 461}
 462
 463void set_task_stack_end_magic(struct task_struct *tsk)
 464{
 465        unsigned long *stackend;
 466
 467        stackend = end_of_stack(tsk);
 468        *stackend = STACK_END_MAGIC;    /* for overflow detection */
 469}
 470
 471static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
 472{
 473        struct task_struct *tsk;
 474        unsigned long *stack;
 475        struct vm_struct *stack_vm_area;
 476        int err;
 477
 478        if (node == NUMA_NO_NODE)
 479                node = tsk_fork_get_node(orig);
 480        tsk = alloc_task_struct_node(node);
 481        if (!tsk)
 482                return NULL;
 483
 484        stack = alloc_thread_stack_node(tsk, node);
 485        if (!stack)
 486                goto free_tsk;
 487
 488        stack_vm_area = task_stack_vm_area(tsk);
 489
 490        err = arch_dup_task_struct(tsk, orig);
 491
 492        /*
 493         * arch_dup_task_struct() clobbers the stack-related fields.  Make
 494         * sure they're properly initialized before using any stack-related
 495         * functions again.
 496         */
 497        tsk->stack = stack;
 498#ifdef CONFIG_VMAP_STACK
 499        tsk->stack_vm_area = stack_vm_area;
 500#endif
 501#ifdef CONFIG_THREAD_INFO_IN_TASK
 502        atomic_set(&tsk->stack_refcount, 1);
 503#endif
 504
 505        if (err)
 506                goto free_stack;
 507
 508#ifdef CONFIG_SECCOMP
 509        /*
 510         * We must handle setting up seccomp filters once we're under
 511         * the sighand lock in case orig has changed between now and
 512         * then. Until then, filter must be NULL to avoid messing up
 513         * the usage counts on the error path calling free_task.
 514         */
 515        tsk->seccomp.filter = NULL;
 516#endif
 517
 518        setup_thread_stack(tsk, orig);
 519        clear_user_return_notifier(tsk);
 520        clear_tsk_need_resched(tsk);
 521        set_task_stack_end_magic(tsk);
 522
 523#ifdef CONFIG_CC_STACKPROTECTOR
 524        tsk->stack_canary = get_random_int();
 525#endif
 526
 527        /*
 528         * One for us, one for whoever does the "release_task()" (usually
 529         * parent)
 530         */
 531        atomic_set(&tsk->usage, 2);
 532#ifdef CONFIG_BLK_DEV_IO_TRACE
 533        tsk->btrace_seq = 0;
 534#endif
 535        tsk->splice_pipe = NULL;
 536        tsk->task_frag.page = NULL;
 537        tsk->wake_q.next = NULL;
 538
 539        account_kernel_stack(tsk, 1);
 540
 541        kcov_task_init(tsk);
 542
 543        return tsk;
 544
 545free_stack:
 546        free_thread_stack(tsk);
 547free_tsk:
 548        free_task_struct(tsk);
 549        return NULL;
 550}
 551
 552#ifdef CONFIG_MMU
 553static __latent_entropy int dup_mmap(struct mm_struct *mm,
 554                                        struct mm_struct *oldmm)
 555{
 556        struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
 557        struct rb_node **rb_link, *rb_parent;
 558        int retval;
 559        unsigned long charge;
 560
 561        uprobe_start_dup_mmap();
 562        if (down_write_killable(&oldmm->mmap_sem)) {
 563                retval = -EINTR;
 564                goto fail_uprobe_end;
 565        }
 566        flush_cache_dup_mm(oldmm);
 567        uprobe_dup_mmap(oldmm, mm);
 568        /*
 569         * Not linked in yet - no deadlock potential:
 570         */
 571        down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
 572
 573        /* No ordering required: file already has been exposed. */
 574        RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
 575
 576        mm->total_vm = oldmm->total_vm;
 577        mm->data_vm = oldmm->data_vm;
 578        mm->exec_vm = oldmm->exec_vm;
 579        mm->stack_vm = oldmm->stack_vm;
 580
 581        rb_link = &mm->mm_rb.rb_node;
 582        rb_parent = NULL;
 583        pprev = &mm->mmap;
 584        retval = ksm_fork(mm, oldmm);
 585        if (retval)
 586                goto out;
 587        retval = khugepaged_fork(mm, oldmm);
 588        if (retval)
 589                goto out;
 590
 591        prev = NULL;
 592        for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
 593                struct file *file;
 594
 595                if (mpnt->vm_flags & VM_DONTCOPY) {
 596                        vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
 597                        continue;
 598                }
 599                charge = 0;
 600                if (mpnt->vm_flags & VM_ACCOUNT) {
 601                        unsigned long len = vma_pages(mpnt);
 602
 603                        if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
 604                                goto fail_nomem;
 605                        charge = len;
 606                }
 607                tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
 608                if (!tmp)
 609                        goto fail_nomem;
 610                *tmp = *mpnt;
 611                INIT_LIST_HEAD(&tmp->anon_vma_chain);
 612                retval = vma_dup_policy(mpnt, tmp);
 613                if (retval)
 614                        goto fail_nomem_policy;
 615                tmp->vm_mm = mm;
 616                if (anon_vma_fork(tmp, mpnt))
 617                        goto fail_nomem_anon_vma_fork;
 618                tmp->vm_flags &=
 619                        ~(VM_LOCKED|VM_LOCKONFAULT|VM_UFFD_MISSING|VM_UFFD_WP);
 620                tmp->vm_next = tmp->vm_prev = NULL;
 621                tmp->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
 622                file = tmp->vm_file;
 623                if (file) {
 624                        struct inode *inode = file_inode(file);
 625                        struct address_space *mapping = file->f_mapping;
 626
 627                        get_file(file);
 628                        if (tmp->vm_flags & VM_DENYWRITE)
 629                                atomic_dec(&inode->i_writecount);
 630                        i_mmap_lock_write(mapping);
 631                        if (tmp->vm_flags & VM_SHARED)
 632                                atomic_inc(&mapping->i_mmap_writable);
 633                        flush_dcache_mmap_lock(mapping);
 634                        /* insert tmp into the share list, just after mpnt */
 635                        vma_interval_tree_insert_after(tmp, mpnt,
 636                                        &mapping->i_mmap);
 637                        flush_dcache_mmap_unlock(mapping);
 638                        i_mmap_unlock_write(mapping);
 639                }
 640
 641                /*
 642                 * Clear hugetlb-related page reserves for children. This only
 643                 * affects MAP_PRIVATE mappings. Faults generated by the child
 644                 * are not guaranteed to succeed, even if read-only
 645                 */
 646                if (is_vm_hugetlb_page(tmp))
 647                        reset_vma_resv_huge_pages(tmp);
 648
 649                /*
 650                 * Link in the new vma and copy the page table entries.
 651                 */
 652                *pprev = tmp;
 653                pprev = &tmp->vm_next;
 654                tmp->vm_prev = prev;
 655                prev = tmp;
 656
 657                __vma_link_rb(mm, tmp, rb_link, rb_parent);
 658                rb_link = &tmp->vm_rb.rb_right;
 659                rb_parent = &tmp->vm_rb;
 660
 661                mm->map_count++;
 662                retval = copy_page_range(mm, oldmm, mpnt);
 663
 664                if (tmp->vm_ops && tmp->vm_ops->open)
 665                        tmp->vm_ops->open(tmp);
 666
 667                if (retval)
 668                        goto out;
 669        }
 670        /* a new mm has just been created */
 671        arch_dup_mmap(oldmm, mm);
 672        retval = 0;
 673out:
 674        up_write(&mm->mmap_sem);
 675        flush_tlb_mm(oldmm);
 676        up_write(&oldmm->mmap_sem);
 677fail_uprobe_end:
 678        uprobe_end_dup_mmap();
 679        return retval;
 680fail_nomem_anon_vma_fork:
 681        mpol_put(vma_policy(tmp));
 682fail_nomem_policy:
 683        kmem_cache_free(vm_area_cachep, tmp);
 684fail_nomem:
 685        retval = -ENOMEM;
 686        vm_unacct_memory(charge);
 687        goto out;
 688}
 689
 690static inline int mm_alloc_pgd(struct mm_struct *mm)
 691{
 692        mm->pgd = pgd_alloc(mm);
 693        if (unlikely(!mm->pgd))
 694                return -ENOMEM;
 695        return 0;
 696}
 697
 698static inline void mm_free_pgd(struct mm_struct *mm)
 699{
 700        pgd_free(mm, mm->pgd);
 701}
 702#else
 703static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
 704{
 705        down_write(&oldmm->mmap_sem);
 706        RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
 707        up_write(&oldmm->mmap_sem);
 708        return 0;
 709}
 710#define mm_alloc_pgd(mm)        (0)
 711#define mm_free_pgd(mm)
 712#endif /* CONFIG_MMU */
 713
 714__cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
 715
 716#define allocate_mm()   (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
 717#define free_mm(mm)     (kmem_cache_free(mm_cachep, (mm)))
 718
 719static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
 720
 721static int __init coredump_filter_setup(char *s)
 722{
 723        default_dump_filter =
 724                (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
 725                MMF_DUMP_FILTER_MASK;
 726        return 1;
 727}
 728
 729__setup("coredump_filter=", coredump_filter_setup);
 730
 731#include <linux/init_task.h>
 732
 733static void mm_init_aio(struct mm_struct *mm)
 734{
 735#ifdef CONFIG_AIO
 736        spin_lock_init(&mm->ioctx_lock);
 737        mm->ioctx_table = NULL;
 738#endif
 739}
 740
 741static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
 742{
 743#ifdef CONFIG_MEMCG
 744        mm->owner = p;
 745#endif
 746}
 747
 748static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
 749{
 750        mm->mmap = NULL;
 751        mm->mm_rb = RB_ROOT;
 752        mm->vmacache_seqnum = 0;
 753        atomic_set(&mm->mm_users, 1);
 754        atomic_set(&mm->mm_count, 1);
 755        init_rwsem(&mm->mmap_sem);
 756        INIT_LIST_HEAD(&mm->mmlist);
 757        mm->core_state = NULL;
 758        atomic_long_set(&mm->nr_ptes, 0);
 759        mm_nr_pmds_init(mm);
 760        mm->map_count = 0;
 761        mm->locked_vm = 0;
 762        mm->pinned_vm = 0;
 763        memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
 764        spin_lock_init(&mm->page_table_lock);
 765        mm_init_cpumask(mm);
 766        mm_init_aio(mm);
 767        mm_init_owner(mm, p);
 768        mmu_notifier_mm_init(mm);
 769        clear_tlb_flush_pending(mm);
 770#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
 771        mm->pmd_huge_pte = NULL;
 772#endif
 773
 774        if (current->mm) {
 775                mm->flags = current->mm->flags & MMF_INIT_MASK;
 776                mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
 777        } else {
 778                mm->flags = default_dump_filter;
 779                mm->def_flags = 0;
 780        }
 781
 782        if (mm_alloc_pgd(mm))
 783                goto fail_nopgd;
 784
 785        if (init_new_context(p, mm))
 786                goto fail_nocontext;
 787
 788        return mm;
 789
 790fail_nocontext:
 791        mm_free_pgd(mm);
 792fail_nopgd:
 793        free_mm(mm);
 794        return NULL;
 795}
 796
 797static void check_mm(struct mm_struct *mm)
 798{
 799        int i;
 800
 801        for (i = 0; i < NR_MM_COUNTERS; i++) {
 802                long x = atomic_long_read(&mm->rss_stat.count[i]);
 803
 804                if (unlikely(x))
 805                        printk(KERN_ALERT "BUG: Bad rss-counter state "
 806                                          "mm:%p idx:%d val:%ld\n", mm, i, x);
 807        }
 808
 809        if (atomic_long_read(&mm->nr_ptes))
 810                pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n",
 811                                atomic_long_read(&mm->nr_ptes));
 812        if (mm_nr_pmds(mm))
 813                pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n",
 814                                mm_nr_pmds(mm));
 815
 816#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
 817        VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
 818#endif
 819}
 820
 821/*
 822 * Allocate and initialize an mm_struct.
 823 */
 824struct mm_struct *mm_alloc(void)
 825{
 826        struct mm_struct *mm;
 827
 828        mm = allocate_mm();
 829        if (!mm)
 830                return NULL;
 831
 832        memset(mm, 0, sizeof(*mm));
 833        return mm_init(mm, current);
 834}
 835
 836/*
 837 * Called when the last reference to the mm
 838 * is dropped: either by a lazy thread or by
 839 * mmput. Free the page directory and the mm.
 840 */
 841void __mmdrop(struct mm_struct *mm)
 842{
 843        BUG_ON(mm == &init_mm);
 844        mm_free_pgd(mm);
 845        destroy_context(mm);
 846        mmu_notifier_mm_destroy(mm);
 847        check_mm(mm);
 848        free_mm(mm);
 849}
 850EXPORT_SYMBOL_GPL(__mmdrop);
 851
 852static inline void __mmput(struct mm_struct *mm)
 853{
 854        VM_BUG_ON(atomic_read(&mm->mm_users));
 855
 856        uprobe_clear_state(mm);
 857        exit_aio(mm);
 858        ksm_exit(mm);
 859        khugepaged_exit(mm); /* must run before exit_mmap */
 860        exit_mmap(mm);
 861        mm_put_huge_zero_page(mm);
 862        set_mm_exe_file(mm, NULL);
 863        if (!list_empty(&mm->mmlist)) {
 864                spin_lock(&mmlist_lock);
 865                list_del(&mm->mmlist);
 866                spin_unlock(&mmlist_lock);
 867        }
 868        if (mm->binfmt)
 869                module_put(mm->binfmt->module);
 870        set_bit(MMF_OOM_SKIP, &mm->flags);
 871        mmdrop(mm);
 872}
 873
 874/*
 875 * Decrement the use count and release all resources for an mm.
 876 */
 877void mmput(struct mm_struct *mm)
 878{
 879        might_sleep();
 880
 881        if (atomic_dec_and_test(&mm->mm_users))
 882                __mmput(mm);
 883}
 884EXPORT_SYMBOL_GPL(mmput);
 885
 886#ifdef CONFIG_MMU
 887static void mmput_async_fn(struct work_struct *work)
 888{
 889        struct mm_struct *mm = container_of(work, struct mm_struct, async_put_work);
 890        __mmput(mm);
 891}
 892
 893void mmput_async(struct mm_struct *mm)
 894{
 895        if (atomic_dec_and_test(&mm->mm_users)) {
 896                INIT_WORK(&mm->async_put_work, mmput_async_fn);
 897                schedule_work(&mm->async_put_work);
 898        }
 899}
 900#endif
 901
 902/**
 903 * set_mm_exe_file - change a reference to the mm's executable file
 904 *
 905 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
 906 *
 907 * Main users are mmput() and sys_execve(). Callers prevent concurrent
 908 * invocations: in mmput() nobody alive left, in execve task is single
 909 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
 910 * mm->exe_file, but does so without using set_mm_exe_file() in order
 911 * to do avoid the need for any locks.
 912 */
 913void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
 914{
 915        struct file *old_exe_file;
 916
 917        /*
 918         * It is safe to dereference the exe_file without RCU as
 919         * this function is only called if nobody else can access
 920         * this mm -- see comment above for justification.
 921         */
 922        old_exe_file = rcu_dereference_raw(mm->exe_file);
 923
 924        if (new_exe_file)
 925                get_file(new_exe_file);
 926        rcu_assign_pointer(mm->exe_file, new_exe_file);
 927        if (old_exe_file)
 928                fput(old_exe_file);
 929}
 930
 931/**
 932 * get_mm_exe_file - acquire a reference to the mm's executable file
 933 *
 934 * Returns %NULL if mm has no associated executable file.
 935 * User must release file via fput().
 936 */
 937struct file *get_mm_exe_file(struct mm_struct *mm)
 938{
 939        struct file *exe_file;
 940
 941        rcu_read_lock();
 942        exe_file = rcu_dereference(mm->exe_file);
 943        if (exe_file && !get_file_rcu(exe_file))
 944                exe_file = NULL;
 945        rcu_read_unlock();
 946        return exe_file;
 947}
 948EXPORT_SYMBOL(get_mm_exe_file);
 949
 950/**
 951 * get_task_exe_file - acquire a reference to the task's executable file
 952 *
 953 * Returns %NULL if task's mm (if any) has no associated executable file or
 954 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
 955 * User must release file via fput().
 956 */
 957struct file *get_task_exe_file(struct task_struct *task)
 958{
 959        struct file *exe_file = NULL;
 960        struct mm_struct *mm;
 961
 962        task_lock(task);
 963        mm = task->mm;
 964        if (mm) {
 965                if (!(task->flags & PF_KTHREAD))
 966                        exe_file = get_mm_exe_file(mm);
 967        }
 968        task_unlock(task);
 969        return exe_file;
 970}
 971EXPORT_SYMBOL(get_task_exe_file);
 972
 973/**
 974 * get_task_mm - acquire a reference to the task's mm
 975 *
 976 * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
 977 * this kernel workthread has transiently adopted a user mm with use_mm,
 978 * to do its AIO) is not set and if so returns a reference to it, after
 979 * bumping up the use count.  User must release the mm via mmput()
 980 * after use.  Typically used by /proc and ptrace.
 981 */
 982struct mm_struct *get_task_mm(struct task_struct *task)
 983{
 984        struct mm_struct *mm;
 985
 986        task_lock(task);
 987        mm = task->mm;
 988        if (mm) {
 989                if (task->flags & PF_KTHREAD)
 990                        mm = NULL;
 991                else
 992                        atomic_inc(&mm->mm_users);
 993        }
 994        task_unlock(task);
 995        return mm;
 996}
 997EXPORT_SYMBOL_GPL(get_task_mm);
 998
 999struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1000{
1001        struct mm_struct *mm;
1002        int err;
1003
1004        err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
1005        if (err)
1006                return ERR_PTR(err);
1007
1008        mm = get_task_mm(task);
1009        if (mm && mm != current->mm &&
1010                        !ptrace_may_access(task, mode)) {
1011                mmput(mm);
1012                mm = ERR_PTR(-EACCES);
1013        }
1014        mutex_unlock(&task->signal->cred_guard_mutex);
1015
1016        return mm;
1017}
1018
1019static void complete_vfork_done(struct task_struct *tsk)
1020{
1021        struct completion *vfork;
1022
1023        task_lock(tsk);
1024        vfork = tsk->vfork_done;
1025        if (likely(vfork)) {
1026                tsk->vfork_done = NULL;
1027                complete(vfork);
1028        }
1029        task_unlock(tsk);
1030}
1031
1032static int wait_for_vfork_done(struct task_struct *child,
1033                                struct completion *vfork)
1034{
1035        int killed;
1036
1037        freezer_do_not_count();
1038        killed = wait_for_completion_killable(vfork);
1039        freezer_count();
1040
1041        if (killed) {
1042                task_lock(child);
1043                child->vfork_done = NULL;
1044                task_unlock(child);
1045        }
1046
1047        put_task_struct(child);
1048        return killed;
1049}
1050
1051/* Please note the differences between mmput and mm_release.
1052 * mmput is called whenever we stop holding onto a mm_struct,
1053 * error success whatever.
1054 *
1055 * mm_release is called after a mm_struct has been removed
1056 * from the current process.
1057 *
1058 * This difference is important for error handling, when we
1059 * only half set up a mm_struct for a new process and need to restore
1060 * the old one.  Because we mmput the new mm_struct before
1061 * restoring the old one. . .
1062 * Eric Biederman 10 January 1998
1063 */
1064void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1065{
1066        /* Get rid of any futexes when releasing the mm */
1067#ifdef CONFIG_FUTEX
1068        if (unlikely(tsk->robust_list)) {
1069                exit_robust_list(tsk);
1070                tsk->robust_list = NULL;
1071        }
1072#ifdef CONFIG_COMPAT
1073        if (unlikely(tsk->compat_robust_list)) {
1074                compat_exit_robust_list(tsk);
1075                tsk->compat_robust_list = NULL;
1076        }
1077#endif
1078        if (unlikely(!list_empty(&tsk->pi_state_list)))
1079                exit_pi_state_list(tsk);
1080#endif
1081
1082        uprobe_free_utask(tsk);
1083
1084        /* Get rid of any cached register state */
1085        deactivate_mm(tsk, mm);
1086
1087        /*
1088         * Signal userspace if we're not exiting with a core dump
1089         * because we want to leave the value intact for debugging
1090         * purposes.
1091         */
1092        if (tsk->clear_child_tid) {
1093                if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1094                    atomic_read(&mm->mm_users) > 1) {
1095                        /*
1096                         * We don't check the error code - if userspace has
1097                         * not set up a proper pointer then tough luck.
1098                         */
1099                        put_user(0, tsk->clear_child_tid);
1100                        sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
1101                                        1, NULL, NULL, 0);
1102                }
1103                tsk->clear_child_tid = NULL;
1104        }
1105
1106        /*
1107         * All done, finally we can wake up parent and return this mm to him.
1108         * Also kthread_stop() uses this completion for synchronization.
1109         */
1110        if (tsk->vfork_done)
1111                complete_vfork_done(tsk);
1112}
1113
1114/*
1115 * Allocate a new mm structure and copy contents from the
1116 * mm structure of the passed in task structure.
1117 */
1118static struct mm_struct *dup_mm(struct task_struct *tsk)
1119{
1120        struct mm_struct *mm, *oldmm = current->mm;
1121        int err;
1122
1123        mm = allocate_mm();
1124        if (!mm)
1125                goto fail_nomem;
1126
1127        memcpy(mm, oldmm, sizeof(*mm));
1128
1129        if (!mm_init(mm, tsk))
1130                goto fail_nomem;
1131
1132        err = dup_mmap(mm, oldmm);
1133        if (err)
1134                goto free_pt;
1135
1136        mm->hiwater_rss = get_mm_rss(mm);
1137        mm->hiwater_vm = mm->total_vm;
1138
1139        if (mm->binfmt && !try_module_get(mm->binfmt->module))
1140                goto free_pt;
1141
1142        return mm;
1143
1144free_pt:
1145        /* don't put binfmt in mmput, we haven't got module yet */
1146        mm->binfmt = NULL;
1147        mmput(mm);
1148
1149fail_nomem:
1150        return NULL;
1151}
1152
1153static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1154{
1155        struct mm_struct *mm, *oldmm;
1156        int retval;
1157
1158        tsk->min_flt = tsk->maj_flt = 0;
1159        tsk->nvcsw = tsk->nivcsw = 0;
1160#ifdef CONFIG_DETECT_HUNG_TASK
1161        tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1162#endif
1163
1164        tsk->mm = NULL;
1165        tsk->active_mm = NULL;
1166
1167        /*
1168         * Are we cloning a kernel thread?
1169         *
1170         * We need to steal a active VM for that..
1171         */
1172        oldmm = current->mm;
1173        if (!oldmm)
1174                return 0;
1175
1176        /* initialize the new vmacache entries */
1177        vmacache_flush(tsk);
1178
1179        if (clone_flags & CLONE_VM) {
1180                atomic_inc(&oldmm->mm_users);
1181                mm = oldmm;
1182                goto good_mm;
1183        }
1184
1185        retval = -ENOMEM;
1186        mm = dup_mm(tsk);
1187        if (!mm)
1188                goto fail_nomem;
1189
1190good_mm:
1191        tsk->mm = mm;
1192        tsk->active_mm = mm;
1193        return 0;
1194
1195fail_nomem:
1196        return retval;
1197}
1198
1199static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1200{
1201        struct fs_struct *fs = current->fs;
1202        if (clone_flags & CLONE_FS) {
1203                /* tsk->fs is already what we want */
1204                spin_lock(&fs->lock);
1205                if (fs->in_exec) {
1206                        spin_unlock(&fs->lock);
1207                        return -EAGAIN;
1208                }
1209                fs->users++;
1210                spin_unlock(&fs->lock);
1211                return 0;
1212        }
1213        tsk->fs = copy_fs_struct(fs);
1214        if (!tsk->fs)
1215                return -ENOMEM;
1216        return 0;
1217}
1218
1219static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1220{
1221        struct files_struct *oldf, *newf;
1222        int error = 0;
1223
1224        /*
1225         * A background process may not have any files ...
1226         */
1227        oldf = current->files;
1228        if (!oldf)
1229                goto out;
1230
1231        if (clone_flags & CLONE_FILES) {
1232                atomic_inc(&oldf->count);
1233                goto out;
1234        }
1235
1236        newf = dup_fd(oldf, &error);
1237        if (!newf)
1238                goto out;
1239
1240        tsk->files = newf;
1241        error = 0;
1242out:
1243        return error;
1244}
1245
1246static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1247{
1248#ifdef CONFIG_BLOCK
1249        struct io_context *ioc = current->io_context;
1250        struct io_context *new_ioc;
1251
1252        if (!ioc)
1253                return 0;
1254        /*
1255         * Share io context with parent, if CLONE_IO is set
1256         */
1257        if (clone_flags & CLONE_IO) {
1258                ioc_task_link(ioc);
1259                tsk->io_context = ioc;
1260        } else if (ioprio_valid(ioc->ioprio)) {
1261                new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1262                if (unlikely(!new_ioc))
1263                        return -ENOMEM;
1264
1265                new_ioc->ioprio = ioc->ioprio;
1266                put_io_context(new_ioc);
1267        }
1268#endif
1269        return 0;
1270}
1271
1272static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1273{
1274        struct sighand_struct *sig;
1275
1276        if (clone_flags & CLONE_SIGHAND) {
1277                atomic_inc(&current->sighand->count);
1278                return 0;
1279        }
1280        sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1281        rcu_assign_pointer(tsk->sighand, sig);
1282        if (!sig)
1283                return -ENOMEM;
1284
1285        atomic_set(&sig->count, 1);
1286        memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1287        return 0;
1288}
1289
1290void __cleanup_sighand(struct sighand_struct *sighand)
1291{
1292        if (atomic_dec_and_test(&sighand->count)) {
1293                signalfd_cleanup(sighand);
1294                /*
1295                 * sighand_cachep is SLAB_DESTROY_BY_RCU so we can free it
1296                 * without an RCU grace period, see __lock_task_sighand().
1297                 */
1298                kmem_cache_free(sighand_cachep, sighand);
1299        }
1300}
1301
1302/*
1303 * Initialize POSIX timer handling for a thread group.
1304 */
1305static void posix_cpu_timers_init_group(struct signal_struct *sig)
1306{
1307        unsigned long cpu_limit;
1308
1309        cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1310        if (cpu_limit != RLIM_INFINITY) {
1311                sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1312                sig->cputimer.running = true;
1313        }
1314
1315        /* The timer lists. */
1316        INIT_LIST_HEAD(&sig->cpu_timers[0]);
1317        INIT_LIST_HEAD(&sig->cpu_timers[1]);
1318        INIT_LIST_HEAD(&sig->cpu_timers[2]);
1319}
1320
1321static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1322{
1323        struct signal_struct *sig;
1324
1325        if (clone_flags & CLONE_THREAD)
1326                return 0;
1327
1328        sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1329        tsk->signal = sig;
1330        if (!sig)
1331                return -ENOMEM;
1332
1333        sig->nr_threads = 1;
1334        atomic_set(&sig->live, 1);
1335        atomic_set(&sig->sigcnt, 1);
1336
1337        /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1338        sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1339        tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1340
1341        init_waitqueue_head(&sig->wait_chldexit);
1342        sig->curr_target = tsk;
1343        init_sigpending(&sig->shared_pending);
1344        INIT_LIST_HEAD(&sig->posix_timers);
1345        seqlock_init(&sig->stats_lock);
1346        prev_cputime_init(&sig->prev_cputime);
1347
1348        hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1349        sig->real_timer.function = it_real_fn;
1350
1351        task_lock(current->group_leader);
1352        memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1353        task_unlock(current->group_leader);
1354
1355        posix_cpu_timers_init_group(sig);
1356
1357        tty_audit_fork(sig);
1358        sched_autogroup_fork(sig);
1359
1360        sig->oom_score_adj = current->signal->oom_score_adj;
1361        sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1362
1363        sig->has_child_subreaper = current->signal->has_child_subreaper ||
1364                                   current->signal->is_child_subreaper;
1365
1366        mutex_init(&sig->cred_guard_mutex);
1367
1368        return 0;
1369}
1370
1371static void copy_seccomp(struct task_struct *p)
1372{
1373#ifdef CONFIG_SECCOMP
1374        /*
1375         * Must be called with sighand->lock held, which is common to
1376         * all threads in the group. Holding cred_guard_mutex is not
1377         * needed because this new task is not yet running and cannot
1378         * be racing exec.
1379         */
1380        assert_spin_locked(&current->sighand->siglock);
1381
1382        /* Ref-count the new filter user, and assign it. */
1383        get_seccomp_filter(current);
1384        p->seccomp = current->seccomp;
1385
1386        /*
1387         * Explicitly enable no_new_privs here in case it got set
1388         * between the task_struct being duplicated and holding the
1389         * sighand lock. The seccomp state and nnp must be in sync.
1390         */
1391        if (task_no_new_privs(current))
1392                task_set_no_new_privs(p);
1393
1394        /*
1395         * If the parent gained a seccomp mode after copying thread
1396         * flags and between before we held the sighand lock, we have
1397         * to manually enable the seccomp thread flag here.
1398         */
1399        if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1400                set_tsk_thread_flag(p, TIF_SECCOMP);
1401#endif
1402}
1403
1404SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1405{
1406        current->clear_child_tid = tidptr;
1407
1408        return task_pid_vnr(current);
1409}
1410
1411static void rt_mutex_init_task(struct task_struct *p)
1412{
1413        raw_spin_lock_init(&p->pi_lock);
1414#ifdef CONFIG_RT_MUTEXES
1415        p->pi_waiters = RB_ROOT;
1416        p->pi_waiters_leftmost = NULL;
1417        p->pi_blocked_on = NULL;
1418#endif
1419}
1420
1421/*
1422 * Initialize POSIX timer handling for a single task.
1423 */
1424static void posix_cpu_timers_init(struct task_struct *tsk)
1425{
1426        tsk->cputime_expires.prof_exp = 0;
1427        tsk->cputime_expires.virt_exp = 0;
1428        tsk->cputime_expires.sched_exp = 0;
1429        INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1430        INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1431        INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1432}
1433
1434static inline void
1435init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1436{
1437         task->pids[type].pid = pid;
1438}
1439
1440/*
1441 * This creates a new process as a copy of the old one,
1442 * but does not actually start it yet.
1443 *
1444 * It copies the registers, and all the appropriate
1445 * parts of the process environment (as per the clone
1446 * flags). The actual kick-off is left to the caller.
1447 */
1448static __latent_entropy struct task_struct *copy_process(
1449                                        unsigned long clone_flags,
1450                                        unsigned long stack_start,
1451                                        unsigned long stack_size,
1452                                        int __user *child_tidptr,
1453                                        struct pid *pid,
1454                                        int trace,
1455                                        unsigned long tls,
1456                                        int node)
1457{
1458        int retval;
1459        struct task_struct *p;
1460
1461        if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1462                return ERR_PTR(-EINVAL);
1463
1464        if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1465                return ERR_PTR(-EINVAL);
1466
1467        /*
1468         * Thread groups must share signals as well, and detached threads
1469         * can only be started up within the thread group.
1470         */
1471        if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1472                return ERR_PTR(-EINVAL);
1473
1474        /*
1475         * Shared signal handlers imply shared VM. By way of the above,
1476         * thread groups also imply shared VM. Blocking this case allows
1477         * for various simplifications in other code.
1478         */
1479        if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1480                return ERR_PTR(-EINVAL);
1481
1482        /*
1483         * Siblings of global init remain as zombies on exit since they are
1484         * not reaped by their parent (swapper). To solve this and to avoid
1485         * multi-rooted process trees, prevent global and container-inits
1486         * from creating siblings.
1487         */
1488        if ((clone_flags & CLONE_PARENT) &&
1489                                current->signal->flags & SIGNAL_UNKILLABLE)
1490                return ERR_PTR(-EINVAL);
1491
1492        /*
1493         * If the new process will be in a different pid or user namespace
1494         * do not allow it to share a thread group with the forking task.
1495         */
1496        if (clone_flags & CLONE_THREAD) {
1497                if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1498                    (task_active_pid_ns(current) !=
1499                                current->nsproxy->pid_ns_for_children))
1500                        return ERR_PTR(-EINVAL);
1501        }
1502
1503        retval = security_task_create(clone_flags);
1504        if (retval)
1505                goto fork_out;
1506
1507        retval = -ENOMEM;
1508        p = dup_task_struct(current, node);
1509        if (!p)
1510                goto fork_out;
1511
1512        ftrace_graph_init_task(p);
1513
1514        rt_mutex_init_task(p);
1515
1516#ifdef CONFIG_PROVE_LOCKING
1517        DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1518        DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1519#endif
1520        retval = -EAGAIN;
1521        if (atomic_read(&p->real_cred->user->processes) >=
1522                        task_rlimit(p, RLIMIT_NPROC)) {
1523                if (p->real_cred->user != INIT_USER &&
1524                    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1525                        goto bad_fork_free;
1526        }
1527        current->flags &= ~PF_NPROC_EXCEEDED;
1528
1529        retval = copy_creds(p, clone_flags);
1530        if (retval < 0)
1531                goto bad_fork_free;
1532
1533        /*
1534         * If multiple threads are within copy_process(), then this check
1535         * triggers too late. This doesn't hurt, the check is only there
1536         * to stop root fork bombs.
1537         */
1538        retval = -EAGAIN;
1539        if (nr_threads >= max_threads)
1540                goto bad_fork_cleanup_count;
1541
1542        delayacct_tsk_init(p);  /* Must remain after dup_task_struct() */
1543        p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1544        p->flags |= PF_FORKNOEXEC;
1545        INIT_LIST_HEAD(&p->children);
1546        INIT_LIST_HEAD(&p->sibling);
1547        rcu_copy_process(p);
1548        p->vfork_done = NULL;
1549        spin_lock_init(&p->alloc_lock);
1550
1551        init_sigpending(&p->pending);
1552
1553        p->utime = p->stime = p->gtime = 0;
1554        p->utimescaled = p->stimescaled = 0;
1555        prev_cputime_init(&p->prev_cputime);
1556
1557#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1558        seqcount_init(&p->vtime_seqcount);
1559        p->vtime_snap = 0;
1560        p->vtime_snap_whence = VTIME_INACTIVE;
1561#endif
1562
1563#if defined(SPLIT_RSS_COUNTING)
1564        memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1565#endif
1566
1567        p->default_timer_slack_ns = current->timer_slack_ns;
1568
1569        task_io_accounting_init(&p->ioac);
1570        acct_clear_integrals(p);
1571
1572        posix_cpu_timers_init(p);
1573
1574        p->start_time = ktime_get_ns();
1575        p->real_start_time = ktime_get_boot_ns();
1576        p->io_context = NULL;
1577        p->audit_context = NULL;
1578        cgroup_fork(p);
1579#ifdef CONFIG_NUMA
1580        p->mempolicy = mpol_dup(p->mempolicy);
1581        if (IS_ERR(p->mempolicy)) {
1582                retval = PTR_ERR(p->mempolicy);
1583                p->mempolicy = NULL;
1584                goto bad_fork_cleanup_threadgroup_lock;
1585        }
1586#endif
1587#ifdef CONFIG_CPUSETS
1588        p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1589        p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1590        seqcount_init(&p->mems_allowed_seq);
1591#endif
1592#ifdef CONFIG_TRACE_IRQFLAGS
1593        p->irq_events = 0;
1594        p->hardirqs_enabled = 0;
1595        p->hardirq_enable_ip = 0;
1596        p->hardirq_enable_event = 0;
1597        p->hardirq_disable_ip = _THIS_IP_;
1598        p->hardirq_disable_event = 0;
1599        p->softirqs_enabled = 1;
1600        p->softirq_enable_ip = _THIS_IP_;
1601        p->softirq_enable_event = 0;
1602        p->softirq_disable_ip = 0;
1603        p->softirq_disable_event = 0;
1604        p->hardirq_context = 0;
1605        p->softirq_context = 0;
1606#endif
1607
1608        p->pagefault_disabled = 0;
1609
1610#ifdef CONFIG_LOCKDEP
1611        p->lockdep_depth = 0; /* no locks held yet */
1612        p->curr_chain_key = 0;
1613        p->lockdep_recursion = 0;
1614#endif
1615
1616#ifdef CONFIG_DEBUG_MUTEXES
1617        p->blocked_on = NULL; /* not blocked yet */
1618#endif
1619#ifdef CONFIG_BCACHE
1620        p->sequential_io        = 0;
1621        p->sequential_io_avg    = 0;
1622#endif
1623
1624        /* Perform scheduler related setup. Assign this task to a CPU. */
1625        retval = sched_fork(clone_flags, p);
1626        if (retval)
1627                goto bad_fork_cleanup_policy;
1628
1629        retval = perf_event_init_task(p);
1630        if (retval)
1631                goto bad_fork_cleanup_policy;
1632        retval = audit_alloc(p);
1633        if (retval)
1634                goto bad_fork_cleanup_perf;
1635        /* copy all the process information */
1636        shm_init_task(p);
1637        retval = copy_semundo(clone_flags, p);
1638        if (retval)
1639                goto bad_fork_cleanup_audit;
1640        retval = copy_files(clone_flags, p);
1641        if (retval)
1642                goto bad_fork_cleanup_semundo;
1643        retval = copy_fs(clone_flags, p);
1644        if (retval)
1645                goto bad_fork_cleanup_files;
1646        retval = copy_sighand(clone_flags, p);
1647        if (retval)
1648                goto bad_fork_cleanup_fs;
1649        retval = copy_signal(clone_flags, p);
1650        if (retval)
1651                goto bad_fork_cleanup_sighand;
1652        retval = copy_mm(clone_flags, p);
1653        if (retval)
1654                goto bad_fork_cleanup_signal;
1655        retval = copy_namespaces(clone_flags, p);
1656        if (retval)
1657                goto bad_fork_cleanup_mm;
1658        retval = copy_io(clone_flags, p);
1659        if (retval)
1660                goto bad_fork_cleanup_namespaces;
1661        retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1662        if (retval)
1663                goto bad_fork_cleanup_io;
1664
1665        if (pid != &init_struct_pid) {
1666                pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1667                if (IS_ERR(pid)) {
1668                        retval = PTR_ERR(pid);
1669                        goto bad_fork_cleanup_thread;
1670                }
1671        }
1672
1673        p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1674        /*
1675         * Clear TID on mm_release()?
1676         */
1677        p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1678#ifdef CONFIG_BLOCK
1679        p->plug = NULL;
1680#endif
1681#ifdef CONFIG_FUTEX
1682        p->robust_list = NULL;
1683#ifdef CONFIG_COMPAT
1684        p->compat_robust_list = NULL;
1685#endif
1686        INIT_LIST_HEAD(&p->pi_state_list);
1687        p->pi_state_cache = NULL;
1688#endif
1689        /*
1690         * sigaltstack should be cleared when sharing the same VM
1691         */
1692        if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1693                sas_ss_reset(p);
1694
1695        /*
1696         * Syscall tracing and stepping should be turned off in the
1697         * child regardless of CLONE_PTRACE.
1698         */
1699        user_disable_single_step(p);
1700        clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1701#ifdef TIF_SYSCALL_EMU
1702        clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1703#endif
1704        clear_all_latency_tracing(p);
1705
1706        /* ok, now we should be set up.. */
1707        p->pid = pid_nr(pid);
1708        if (clone_flags & CLONE_THREAD) {
1709                p->exit_signal = -1;
1710                p->group_leader = current->group_leader;
1711                p->tgid = current->tgid;
1712        } else {
1713                if (clone_flags & CLONE_PARENT)
1714                        p->exit_signal = current->group_leader->exit_signal;
1715                else
1716                        p->exit_signal = (clone_flags & CSIGNAL);
1717                p->group_leader = p;
1718                p->tgid = p->pid;
1719        }
1720
1721        p->nr_dirtied = 0;
1722        p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1723        p->dirty_paused_when = 0;
1724
1725        p->pdeath_signal = 0;
1726        INIT_LIST_HEAD(&p->thread_group);
1727        p->task_works = NULL;
1728
1729        threadgroup_change_begin(current);
1730        /*
1731         * Ensure that the cgroup subsystem policies allow the new process to be
1732         * forked. It should be noted the the new process's css_set can be changed
1733         * between here and cgroup_post_fork() if an organisation operation is in
1734         * progress.
1735         */
1736        retval = cgroup_can_fork(p);
1737        if (retval)
1738                goto bad_fork_free_pid;
1739
1740        /*
1741         * Make it visible to the rest of the system, but dont wake it up yet.
1742         * Need tasklist lock for parent etc handling!
1743         */
1744        write_lock_irq(&tasklist_lock);
1745
1746        /* CLONE_PARENT re-uses the old parent */
1747        if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1748                p->real_parent = current->real_parent;
1749                p->parent_exec_id = current->parent_exec_id;
1750        } else {
1751                p->real_parent = current;
1752                p->parent_exec_id = current->self_exec_id;
1753        }
1754
1755        spin_lock(&current->sighand->siglock);
1756
1757        /*
1758         * Copy seccomp details explicitly here, in case they were changed
1759         * before holding sighand lock.
1760         */
1761        copy_seccomp(p);
1762
1763        /*
1764         * Process group and session signals need to be delivered to just the
1765         * parent before the fork or both the parent and the child after the
1766         * fork. Restart if a signal comes in before we add the new process to
1767         * it's process group.
1768         * A fatal signal pending means that current will exit, so the new
1769         * thread can't slip out of an OOM kill (or normal SIGKILL).
1770        */
1771        recalc_sigpending();
1772        if (signal_pending(current)) {
1773                spin_unlock(&current->sighand->siglock);
1774                write_unlock_irq(&tasklist_lock);
1775                retval = -ERESTARTNOINTR;
1776                goto bad_fork_cancel_cgroup;
1777        }
1778
1779        if (likely(p->pid)) {
1780                ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1781
1782                init_task_pid(p, PIDTYPE_PID, pid);
1783                if (thread_group_leader(p)) {
1784                        init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1785                        init_task_pid(p, PIDTYPE_SID, task_session(current));
1786
1787                        if (is_child_reaper(pid)) {
1788                                ns_of_pid(pid)->child_reaper = p;
1789                                p->signal->flags |= SIGNAL_UNKILLABLE;
1790                        }
1791
1792                        p->signal->leader_pid = pid;
1793                        p->signal->tty = tty_kref_get(current->signal->tty);
1794                        list_add_tail(&p->sibling, &p->real_parent->children);
1795                        list_add_tail_rcu(&p->tasks, &init_task.tasks);
1796                        attach_pid(p, PIDTYPE_PGID);
1797                        attach_pid(p, PIDTYPE_SID);
1798                        __this_cpu_inc(process_counts);
1799                } else {
1800                        current->signal->nr_threads++;
1801                        atomic_inc(&current->signal->live);
1802                        atomic_inc(&current->signal->sigcnt);
1803                        list_add_tail_rcu(&p->thread_group,
1804                                          &p->group_leader->thread_group);
1805                        list_add_tail_rcu(&p->thread_node,
1806                                          &p->signal->thread_head);
1807                }
1808                attach_pid(p, PIDTYPE_PID);
1809                nr_threads++;
1810        }
1811
1812        total_forks++;
1813        spin_unlock(&current->sighand->siglock);
1814        syscall_tracepoint_update(p);
1815        write_unlock_irq(&tasklist_lock);
1816
1817        proc_fork_connector(p);
1818        cgroup_post_fork(p);
1819        threadgroup_change_end(current);
1820        perf_event_fork(p);
1821
1822        trace_task_newtask(p, clone_flags);
1823        uprobe_copy_process(p, clone_flags);
1824
1825        return p;
1826
1827bad_fork_cancel_cgroup:
1828        cgroup_cancel_fork(p);
1829bad_fork_free_pid:
1830        threadgroup_change_end(current);
1831        if (pid != &init_struct_pid)
1832                free_pid(pid);
1833bad_fork_cleanup_thread:
1834        exit_thread(p);
1835bad_fork_cleanup_io:
1836        if (p->io_context)
1837                exit_io_context(p);
1838bad_fork_cleanup_namespaces:
1839        exit_task_namespaces(p);
1840bad_fork_cleanup_mm:
1841        if (p->mm)
1842                mmput(p->mm);
1843bad_fork_cleanup_signal:
1844        if (!(clone_flags & CLONE_THREAD))
1845                free_signal_struct(p->signal);
1846bad_fork_cleanup_sighand:
1847        __cleanup_sighand(p->sighand);
1848bad_fork_cleanup_fs:
1849        exit_fs(p); /* blocking */
1850bad_fork_cleanup_files:
1851        exit_files(p); /* blocking */
1852bad_fork_cleanup_semundo:
1853        exit_sem(p);
1854bad_fork_cleanup_audit:
1855        audit_free(p);
1856bad_fork_cleanup_perf:
1857        perf_event_free_task(p);
1858bad_fork_cleanup_policy:
1859#ifdef CONFIG_NUMA
1860        mpol_put(p->mempolicy);
1861bad_fork_cleanup_threadgroup_lock:
1862#endif
1863        delayacct_tsk_free(p);
1864bad_fork_cleanup_count:
1865        atomic_dec(&p->cred->user->processes);
1866        exit_creds(p);
1867bad_fork_free:
1868        p->state = TASK_DEAD;
1869        put_task_stack(p);
1870        free_task(p);
1871fork_out:
1872        return ERR_PTR(retval);
1873}
1874
1875static inline void init_idle_pids(struct pid_link *links)
1876{
1877        enum pid_type type;
1878
1879        for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1880                INIT_HLIST_NODE(&links[type].node); /* not really needed */
1881                links[type].pid = &init_struct_pid;
1882        }
1883}
1884
1885struct task_struct *fork_idle(int cpu)
1886{
1887        struct task_struct *task;
1888        task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
1889                            cpu_to_node(cpu));
1890        if (!IS_ERR(task)) {
1891                init_idle_pids(task->pids);
1892                init_idle(task, cpu);
1893        }
1894
1895        return task;
1896}
1897
1898/*
1899 *  Ok, this is the main fork-routine.
1900 *
1901 * It copies the process, and if successful kick-starts
1902 * it and waits for it to finish using the VM if required.
1903 */
1904long _do_fork(unsigned long clone_flags,
1905              unsigned long stack_start,
1906              unsigned long stack_size,
1907              int __user *parent_tidptr,
1908              int __user *child_tidptr,
1909              unsigned long tls)
1910{
1911        struct task_struct *p;
1912        int trace = 0;
1913        long nr;
1914
1915        /*
1916         * Determine whether and which event to report to ptracer.  When
1917         * called from kernel_thread or CLONE_UNTRACED is explicitly
1918         * requested, no event is reported; otherwise, report if the event
1919         * for the type of forking is enabled.
1920         */
1921        if (!(clone_flags & CLONE_UNTRACED)) {
1922                if (clone_flags & CLONE_VFORK)
1923                        trace = PTRACE_EVENT_VFORK;
1924                else if ((clone_flags & CSIGNAL) != SIGCHLD)
1925                        trace = PTRACE_EVENT_CLONE;
1926                else
1927                        trace = PTRACE_EVENT_FORK;
1928
1929                if (likely(!ptrace_event_enabled(current, trace)))
1930                        trace = 0;
1931        }
1932
1933        p = copy_process(clone_flags, stack_start, stack_size,
1934                         child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
1935        add_latent_entropy();
1936        /*
1937         * Do this prior waking up the new thread - the thread pointer
1938         * might get invalid after that point, if the thread exits quickly.
1939         */
1940        if (!IS_ERR(p)) {
1941                struct completion vfork;
1942                struct pid *pid;
1943
1944                trace_sched_process_fork(current, p);
1945
1946                pid = get_task_pid(p, PIDTYPE_PID);
1947                nr = pid_vnr(pid);
1948
1949                if (clone_flags & CLONE_PARENT_SETTID)
1950                        put_user(nr, parent_tidptr);
1951
1952                if (clone_flags & CLONE_VFORK) {
1953                        p->vfork_done = &vfork;
1954                        init_completion(&vfork);
1955                        get_task_struct(p);
1956                }
1957
1958                wake_up_new_task(p);
1959
1960                /* forking complete and child started to run, tell ptracer */
1961                if (unlikely(trace))
1962                        ptrace_event_pid(trace, pid);
1963
1964                if (clone_flags & CLONE_VFORK) {
1965                        if (!wait_for_vfork_done(p, &vfork))
1966                                ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1967                }
1968
1969                put_pid(pid);
1970        } else {
1971                nr = PTR_ERR(p);
1972        }
1973        return nr;
1974}
1975
1976#ifndef CONFIG_HAVE_COPY_THREAD_TLS
1977/* For compatibility with architectures that call do_fork directly rather than
1978 * using the syscall entry points below. */
1979long do_fork(unsigned long clone_flags,
1980              unsigned long stack_start,
1981              unsigned long stack_size,
1982              int __user *parent_tidptr,
1983              int __user *child_tidptr)
1984{
1985        return _do_fork(clone_flags, stack_start, stack_size,
1986                        parent_tidptr, child_tidptr, 0);
1987}
1988#endif
1989
1990/*
1991 * Create a kernel thread.
1992 */
1993pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1994{
1995        return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
1996                (unsigned long)arg, NULL, NULL, 0);
1997}
1998
1999#ifdef __ARCH_WANT_SYS_FORK
2000SYSCALL_DEFINE0(fork)
2001{
2002#ifdef CONFIG_MMU
2003        return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
2004#else
2005        /* can not support in nommu mode */
2006        return -EINVAL;
2007#endif
2008}
2009#endif
2010
2011#ifdef __ARCH_WANT_SYS_VFORK
2012SYSCALL_DEFINE0(vfork)
2013{
2014        return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
2015                        0, NULL, NULL, 0);
2016}
2017#endif
2018
2019#ifdef __ARCH_WANT_SYS_CLONE
2020#ifdef CONFIG_CLONE_BACKWARDS
2021SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2022                 int __user *, parent_tidptr,
2023                 unsigned long, tls,
2024                 int __user *, child_tidptr)
2025#elif defined(CONFIG_CLONE_BACKWARDS2)
2026SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2027                 int __user *, parent_tidptr,
2028                 int __user *, child_tidptr,
2029                 unsigned long, tls)
2030#elif defined(CONFIG_CLONE_BACKWARDS3)
2031SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2032                int, stack_size,
2033                int __user *, parent_tidptr,
2034                int __user *, child_tidptr,
2035                unsigned long, tls)
2036#else
2037SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2038                 int __user *, parent_tidptr,
2039                 int __user *, child_tidptr,
2040                 unsigned long, tls)
2041#endif
2042{
2043        return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
2044}
2045#endif
2046
2047#ifndef ARCH_MIN_MMSTRUCT_ALIGN
2048#define ARCH_MIN_MMSTRUCT_ALIGN 0
2049#endif
2050
2051static void sighand_ctor(void *data)
2052{
2053        struct sighand_struct *sighand = data;
2054
2055        spin_lock_init(&sighand->siglock);
2056        init_waitqueue_head(&sighand->signalfd_wqh);
2057}
2058
2059void __init proc_caches_init(void)
2060{
2061        sighand_cachep = kmem_cache_create("sighand_cache",
2062                        sizeof(struct sighand_struct), 0,
2063                        SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
2064                        SLAB_NOTRACK|SLAB_ACCOUNT, sighand_ctor);
2065        signal_cachep = kmem_cache_create("signal_cache",
2066                        sizeof(struct signal_struct), 0,
2067                        SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2068                        NULL);
2069        files_cachep = kmem_cache_create("files_cache",
2070                        sizeof(struct files_struct), 0,
2071                        SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2072                        NULL);
2073        fs_cachep = kmem_cache_create("fs_cache",
2074                        sizeof(struct fs_struct), 0,
2075                        SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2076                        NULL);
2077        /*
2078         * FIXME! The "sizeof(struct mm_struct)" currently includes the
2079         * whole struct cpumask for the OFFSTACK case. We could change
2080         * this to *only* allocate as much of it as required by the
2081         * maximum number of CPU's we can ever have.  The cpumask_allocation
2082         * is at the end of the structure, exactly for that reason.
2083         */
2084        mm_cachep = kmem_cache_create("mm_struct",
2085                        sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
2086                        SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2087                        NULL);
2088        vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2089        mmap_init();
2090        nsproxy_cache_init();
2091}
2092
2093/*
2094 * Check constraints on flags passed to the unshare system call.
2095 */
2096static int check_unshare_flags(unsigned long unshare_flags)
2097{
2098        if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2099                                CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2100                                CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2101                                CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2102                return -EINVAL;
2103        /*
2104         * Not implemented, but pretend it works if there is nothing
2105         * to unshare.  Note that unsharing the address space or the
2106         * signal handlers also need to unshare the signal queues (aka
2107         * CLONE_THREAD).
2108         */
2109        if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2110                if (!thread_group_empty(current))
2111                        return -EINVAL;
2112        }
2113        if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2114                if (atomic_read(&current->sighand->count) > 1)
2115                        return -EINVAL;
2116        }
2117        if (unshare_flags & CLONE_VM) {
2118                if (!current_is_single_threaded())
2119                        return -EINVAL;
2120        }
2121
2122        return 0;
2123}
2124
2125/*
2126 * Unshare the filesystem structure if it is being shared
2127 */
2128static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2129{
2130        struct fs_struct *fs = current->fs;
2131
2132        if (!(unshare_flags & CLONE_FS) || !fs)
2133                return 0;
2134
2135        /* don't need lock here; in the worst case we'll do useless copy */
2136        if (fs->users == 1)
2137                return 0;
2138
2139        *new_fsp = copy_fs_struct(fs);
2140        if (!*new_fsp)
2141                return -ENOMEM;
2142
2143        return 0;
2144}
2145
2146/*
2147 * Unshare file descriptor table if it is being shared
2148 */
2149static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2150{
2151        struct files_struct *fd = current->files;
2152        int error = 0;
2153
2154        if ((unshare_flags & CLONE_FILES) &&
2155            (fd && atomic_read(&fd->count) > 1)) {
2156                *new_fdp = dup_fd(fd, &error);
2157                if (!*new_fdp)
2158                        return error;
2159        }
2160
2161        return 0;
2162}
2163
2164/*
2165 * unshare allows a process to 'unshare' part of the process
2166 * context which was originally shared using clone.  copy_*
2167 * functions used by do_fork() cannot be used here directly
2168 * because they modify an inactive task_struct that is being
2169 * constructed. Here we are modifying the current, active,
2170 * task_struct.
2171 */
2172SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2173{
2174        struct fs_struct *fs, *new_fs = NULL;
2175        struct files_struct *fd, *new_fd = NULL;
2176        struct cred *new_cred = NULL;
2177        struct nsproxy *new_nsproxy = NULL;
2178        int do_sysvsem = 0;
2179        int err;
2180
2181        /*
2182         * If unsharing a user namespace must also unshare the thread group
2183         * and unshare the filesystem root and working directories.
2184         */
2185        if (unshare_flags & CLONE_NEWUSER)
2186                unshare_flags |= CLONE_THREAD | CLONE_FS;
2187        /*
2188         * If unsharing vm, must also unshare signal handlers.
2189         */
2190        if (unshare_flags & CLONE_VM)
2191                unshare_flags |= CLONE_SIGHAND;
2192        /*
2193         * If unsharing a signal handlers, must also unshare the signal queues.
2194         */
2195        if (unshare_flags & CLONE_SIGHAND)
2196                unshare_flags |= CLONE_THREAD;
2197        /*
2198         * If unsharing namespace, must also unshare filesystem information.
2199         */
2200        if (unshare_flags & CLONE_NEWNS)
2201                unshare_flags |= CLONE_FS;
2202
2203        err = check_unshare_flags(unshare_flags);
2204        if (err)
2205                goto bad_unshare_out;
2206        /*
2207         * CLONE_NEWIPC must also detach from the undolist: after switching
2208         * to a new ipc namespace, the semaphore arrays from the old
2209         * namespace are unreachable.
2210         */
2211        if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2212                do_sysvsem = 1;
2213        err = unshare_fs(unshare_flags, &new_fs);
2214        if (err)
2215                goto bad_unshare_out;
2216        err = unshare_fd(unshare_flags, &new_fd);
2217        if (err)
2218                goto bad_unshare_cleanup_fs;
2219        err = unshare_userns(unshare_flags, &new_cred);
2220        if (err)
2221                goto bad_unshare_cleanup_fd;
2222        err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2223                                         new_cred, new_fs);
2224        if (err)
2225                goto bad_unshare_cleanup_cred;
2226
2227        if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2228                if (do_sysvsem) {
2229                        /*
2230                         * CLONE_SYSVSEM is equivalent to sys_exit().
2231                         */
2232                        exit_sem(current);
2233                }
2234                if (unshare_flags & CLONE_NEWIPC) {
2235                        /* Orphan segments in old ns (see sem above). */
2236                        exit_shm(current);
2237                        shm_init_task(current);
2238                }
2239
2240                if (new_nsproxy)
2241                        switch_task_namespaces(current, new_nsproxy);
2242
2243                task_lock(current);
2244
2245                if (new_fs) {
2246                        fs = current->fs;
2247                        spin_lock(&fs->lock);
2248                        current->fs = new_fs;
2249                        if (--fs->users)
2250                                new_fs = NULL;
2251                        else
2252                                new_fs = fs;
2253                        spin_unlock(&fs->lock);
2254                }
2255
2256                if (new_fd) {
2257                        fd = current->files;
2258                        current->files = new_fd;
2259                        new_fd = fd;
2260                }
2261
2262                task_unlock(current);
2263
2264                if (new_cred) {
2265                        /* Install the new user namespace */
2266                        commit_creds(new_cred);
2267                        new_cred = NULL;
2268                }
2269        }
2270
2271bad_unshare_cleanup_cred:
2272        if (new_cred)
2273                put_cred(new_cred);
2274bad_unshare_cleanup_fd:
2275        if (new_fd)
2276                put_files_struct(new_fd);
2277
2278bad_unshare_cleanup_fs:
2279        if (new_fs)
2280                free_fs_struct(new_fs);
2281
2282bad_unshare_out:
2283        return err;
2284}
2285
2286/*
2287 *      Helper to unshare the files of the current task.
2288 *      We don't want to expose copy_files internals to
2289 *      the exec layer of the kernel.
2290 */
2291
2292int unshare_files(struct files_struct **displaced)
2293{
2294        struct task_struct *task = current;
2295        struct files_struct *copy = NULL;
2296        int error;
2297
2298        error = unshare_fd(CLONE_FILES, &copy);
2299        if (error || !copy) {
2300                *displaced = NULL;
2301                return error;
2302        }
2303        *displaced = task->files;
2304        task_lock(task);
2305        task->files = copy;
2306        task_unlock(task);
2307        return 0;
2308}
2309
2310int sysctl_max_threads(struct ctl_table *table, int write,
2311                       void __user *buffer, size_t *lenp, loff_t *ppos)
2312{
2313        struct ctl_table t;
2314        int ret;
2315        int threads = max_threads;
2316        int min = MIN_THREADS;
2317        int max = MAX_THREADS;
2318
2319        t = *table;
2320        t.data = &threads;
2321        t.extra1 = &min;
2322        t.extra2 = &max;
2323
2324        ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2325        if (ret || !write)
2326                return ret;
2327
2328        set_max_threads(threads);
2329
2330        return 0;
2331}
2332