linux/kernel/printk/printk.c
<<
>>
Prefs
   1/*
   2 *  linux/kernel/printk.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 *
   6 * Modified to make sys_syslog() more flexible: added commands to
   7 * return the last 4k of kernel messages, regardless of whether
   8 * they've been read or not.  Added option to suppress kernel printk's
   9 * to the console.  Added hook for sending the console messages
  10 * elsewhere, in preparation for a serial line console (someday).
  11 * Ted Ts'o, 2/11/93.
  12 * Modified for sysctl support, 1/8/97, Chris Horn.
  13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul
  14 *     manfred@colorfullife.com
  15 * Rewrote bits to get rid of console_lock
  16 *      01Mar01 Andrew Morton
  17 */
  18
  19#include <linux/kernel.h>
  20#include <linux/mm.h>
  21#include <linux/tty.h>
  22#include <linux/tty_driver.h>
  23#include <linux/console.h>
  24#include <linux/init.h>
  25#include <linux/jiffies.h>
  26#include <linux/nmi.h>
  27#include <linux/module.h>
  28#include <linux/moduleparam.h>
  29#include <linux/delay.h>
  30#include <linux/smp.h>
  31#include <linux/security.h>
  32#include <linux/bootmem.h>
  33#include <linux/memblock.h>
  34#include <linux/syscalls.h>
  35#include <linux/kexec.h>
  36#include <linux/kdb.h>
  37#include <linux/ratelimit.h>
  38#include <linux/kmsg_dump.h>
  39#include <linux/syslog.h>
  40#include <linux/cpu.h>
  41#include <linux/notifier.h>
  42#include <linux/rculist.h>
  43#include <linux/poll.h>
  44#include <linux/irq_work.h>
  45#include <linux/utsname.h>
  46#include <linux/ctype.h>
  47#include <linux/uio.h>
  48
  49#include <asm/uaccess.h>
  50#include <asm/sections.h>
  51
  52#define CREATE_TRACE_POINTS
  53#include <trace/events/printk.h>
  54
  55#include "console_cmdline.h"
  56#include "braille.h"
  57#include "internal.h"
  58
  59int console_printk[4] = {
  60        CONSOLE_LOGLEVEL_DEFAULT,       /* console_loglevel */
  61        MESSAGE_LOGLEVEL_DEFAULT,       /* default_message_loglevel */
  62        CONSOLE_LOGLEVEL_MIN,           /* minimum_console_loglevel */
  63        CONSOLE_LOGLEVEL_DEFAULT,       /* default_console_loglevel */
  64};
  65
  66/*
  67 * Low level drivers may need that to know if they can schedule in
  68 * their unblank() callback or not. So let's export it.
  69 */
  70int oops_in_progress;
  71EXPORT_SYMBOL(oops_in_progress);
  72
  73/*
  74 * console_sem protects the console_drivers list, and also
  75 * provides serialisation for access to the entire console
  76 * driver system.
  77 */
  78static DEFINE_SEMAPHORE(console_sem);
  79struct console *console_drivers;
  80EXPORT_SYMBOL_GPL(console_drivers);
  81
  82#ifdef CONFIG_LOCKDEP
  83static struct lockdep_map console_lock_dep_map = {
  84        .name = "console_lock"
  85};
  86#endif
  87
  88enum devkmsg_log_bits {
  89        __DEVKMSG_LOG_BIT_ON = 0,
  90        __DEVKMSG_LOG_BIT_OFF,
  91        __DEVKMSG_LOG_BIT_LOCK,
  92};
  93
  94enum devkmsg_log_masks {
  95        DEVKMSG_LOG_MASK_ON             = BIT(__DEVKMSG_LOG_BIT_ON),
  96        DEVKMSG_LOG_MASK_OFF            = BIT(__DEVKMSG_LOG_BIT_OFF),
  97        DEVKMSG_LOG_MASK_LOCK           = BIT(__DEVKMSG_LOG_BIT_LOCK),
  98};
  99
 100/* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */
 101#define DEVKMSG_LOG_MASK_DEFAULT        0
 102
 103static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
 104
 105static int __control_devkmsg(char *str)
 106{
 107        if (!str)
 108                return -EINVAL;
 109
 110        if (!strncmp(str, "on", 2)) {
 111                devkmsg_log = DEVKMSG_LOG_MASK_ON;
 112                return 2;
 113        } else if (!strncmp(str, "off", 3)) {
 114                devkmsg_log = DEVKMSG_LOG_MASK_OFF;
 115                return 3;
 116        } else if (!strncmp(str, "ratelimit", 9)) {
 117                devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
 118                return 9;
 119        }
 120        return -EINVAL;
 121}
 122
 123static int __init control_devkmsg(char *str)
 124{
 125        if (__control_devkmsg(str) < 0)
 126                return 1;
 127
 128        /*
 129         * Set sysctl string accordingly:
 130         */
 131        if (devkmsg_log == DEVKMSG_LOG_MASK_ON) {
 132                memset(devkmsg_log_str, 0, DEVKMSG_STR_MAX_SIZE);
 133                strncpy(devkmsg_log_str, "on", 2);
 134        } else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF) {
 135                memset(devkmsg_log_str, 0, DEVKMSG_STR_MAX_SIZE);
 136                strncpy(devkmsg_log_str, "off", 3);
 137        }
 138        /* else "ratelimit" which is set by default. */
 139
 140        /*
 141         * Sysctl cannot change it anymore. The kernel command line setting of
 142         * this parameter is to force the setting to be permanent throughout the
 143         * runtime of the system. This is a precation measure against userspace
 144         * trying to be a smarta** and attempting to change it up on us.
 145         */
 146        devkmsg_log |= DEVKMSG_LOG_MASK_LOCK;
 147
 148        return 0;
 149}
 150__setup("printk.devkmsg=", control_devkmsg);
 151
 152char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit";
 153
 154int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write,
 155                              void __user *buffer, size_t *lenp, loff_t *ppos)
 156{
 157        char old_str[DEVKMSG_STR_MAX_SIZE];
 158        unsigned int old;
 159        int err;
 160
 161        if (write) {
 162                if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK)
 163                        return -EINVAL;
 164
 165                old = devkmsg_log;
 166                strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE);
 167        }
 168
 169        err = proc_dostring(table, write, buffer, lenp, ppos);
 170        if (err)
 171                return err;
 172
 173        if (write) {
 174                err = __control_devkmsg(devkmsg_log_str);
 175
 176                /*
 177                 * Do not accept an unknown string OR a known string with
 178                 * trailing crap...
 179                 */
 180                if (err < 0 || (err + 1 != *lenp)) {
 181
 182                        /* ... and restore old setting. */
 183                        devkmsg_log = old;
 184                        strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE);
 185
 186                        return -EINVAL;
 187                }
 188        }
 189
 190        return 0;
 191}
 192
 193/*
 194 * Number of registered extended console drivers.
 195 *
 196 * If extended consoles are present, in-kernel cont reassembly is disabled
 197 * and each fragment is stored as a separate log entry with proper
 198 * continuation flag so that every emitted message has full metadata.  This
 199 * doesn't change the result for regular consoles or /proc/kmsg.  For
 200 * /dev/kmsg, as long as the reader concatenates messages according to
 201 * consecutive continuation flags, the end result should be the same too.
 202 */
 203static int nr_ext_console_drivers;
 204
 205/*
 206 * Helper macros to handle lockdep when locking/unlocking console_sem. We use
 207 * macros instead of functions so that _RET_IP_ contains useful information.
 208 */
 209#define down_console_sem() do { \
 210        down(&console_sem);\
 211        mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
 212} while (0)
 213
 214static int __down_trylock_console_sem(unsigned long ip)
 215{
 216        if (down_trylock(&console_sem))
 217                return 1;
 218        mutex_acquire(&console_lock_dep_map, 0, 1, ip);
 219        return 0;
 220}
 221#define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
 222
 223#define up_console_sem() do { \
 224        mutex_release(&console_lock_dep_map, 1, _RET_IP_);\
 225        up(&console_sem);\
 226} while (0)
 227
 228/*
 229 * This is used for debugging the mess that is the VT code by
 230 * keeping track if we have the console semaphore held. It's
 231 * definitely not the perfect debug tool (we don't know if _WE_
 232 * hold it and are racing, but it helps tracking those weird code
 233 * paths in the console code where we end up in places I want
 234 * locked without the console sempahore held).
 235 */
 236static int console_locked, console_suspended;
 237
 238/*
 239 * If exclusive_console is non-NULL then only this console is to be printed to.
 240 */
 241static struct console *exclusive_console;
 242
 243/*
 244 *      Array of consoles built from command line options (console=)
 245 */
 246
 247#define MAX_CMDLINECONSOLES 8
 248
 249static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
 250
 251static int selected_console = -1;
 252static int preferred_console = -1;
 253int console_set_on_cmdline;
 254EXPORT_SYMBOL(console_set_on_cmdline);
 255
 256/* Flag: console code may call schedule() */
 257static int console_may_schedule;
 258
 259/*
 260 * The printk log buffer consists of a chain of concatenated variable
 261 * length records. Every record starts with a record header, containing
 262 * the overall length of the record.
 263 *
 264 * The heads to the first and last entry in the buffer, as well as the
 265 * sequence numbers of these entries are maintained when messages are
 266 * stored.
 267 *
 268 * If the heads indicate available messages, the length in the header
 269 * tells the start next message. A length == 0 for the next message
 270 * indicates a wrap-around to the beginning of the buffer.
 271 *
 272 * Every record carries the monotonic timestamp in microseconds, as well as
 273 * the standard userspace syslog level and syslog facility. The usual
 274 * kernel messages use LOG_KERN; userspace-injected messages always carry
 275 * a matching syslog facility, by default LOG_USER. The origin of every
 276 * message can be reliably determined that way.
 277 *
 278 * The human readable log message directly follows the message header. The
 279 * length of the message text is stored in the header, the stored message
 280 * is not terminated.
 281 *
 282 * Optionally, a message can carry a dictionary of properties (key/value pairs),
 283 * to provide userspace with a machine-readable message context.
 284 *
 285 * Examples for well-defined, commonly used property names are:
 286 *   DEVICE=b12:8               device identifier
 287 *                                b12:8         block dev_t
 288 *                                c127:3        char dev_t
 289 *                                n8            netdev ifindex
 290 *                                +sound:card0  subsystem:devname
 291 *   SUBSYSTEM=pci              driver-core subsystem name
 292 *
 293 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
 294 * follows directly after a '=' character. Every property is terminated by
 295 * a '\0' character. The last property is not terminated.
 296 *
 297 * Example of a message structure:
 298 *   0000  ff 8f 00 00 00 00 00 00      monotonic time in nsec
 299 *   0008  34 00                        record is 52 bytes long
 300 *   000a        0b 00                  text is 11 bytes long
 301 *   000c              1f 00            dictionary is 23 bytes long
 302 *   000e                    03 00      LOG_KERN (facility) LOG_ERR (level)
 303 *   0010  69 74 27 73 20 61 20 6c      "it's a l"
 304 *         69 6e 65                     "ine"
 305 *   001b           44 45 56 49 43      "DEVIC"
 306 *         45 3d 62 38 3a 32 00 44      "E=b8:2\0D"
 307 *         52 49 56 45 52 3d 62 75      "RIVER=bu"
 308 *         67                           "g"
 309 *   0032     00 00 00                  padding to next message header
 310 *
 311 * The 'struct printk_log' buffer header must never be directly exported to
 312 * userspace, it is a kernel-private implementation detail that might
 313 * need to be changed in the future, when the requirements change.
 314 *
 315 * /dev/kmsg exports the structured data in the following line format:
 316 *   "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
 317 *
 318 * Users of the export format should ignore possible additional values
 319 * separated by ',', and find the message after the ';' character.
 320 *
 321 * The optional key/value pairs are attached as continuation lines starting
 322 * with a space character and terminated by a newline. All possible
 323 * non-prinatable characters are escaped in the "\xff" notation.
 324 */
 325
 326enum log_flags {
 327        LOG_NOCONS      = 1,    /* already flushed, do not print to console */
 328        LOG_NEWLINE     = 2,    /* text ended with a newline */
 329        LOG_PREFIX      = 4,    /* text started with a prefix */
 330        LOG_CONT        = 8,    /* text is a fragment of a continuation line */
 331};
 332
 333struct printk_log {
 334        u64 ts_nsec;            /* timestamp in nanoseconds */
 335        u16 len;                /* length of entire record */
 336        u16 text_len;           /* length of text buffer */
 337        u16 dict_len;           /* length of dictionary buffer */
 338        u8 facility;            /* syslog facility */
 339        u8 flags:5;             /* internal record flags */
 340        u8 level:3;             /* syslog level */
 341}
 342#ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
 343__packed __aligned(4)
 344#endif
 345;
 346
 347/*
 348 * The logbuf_lock protects kmsg buffer, indices, counters.  This can be taken
 349 * within the scheduler's rq lock. It must be released before calling
 350 * console_unlock() or anything else that might wake up a process.
 351 */
 352DEFINE_RAW_SPINLOCK(logbuf_lock);
 353
 354#ifdef CONFIG_PRINTK
 355DECLARE_WAIT_QUEUE_HEAD(log_wait);
 356/* the next printk record to read by syslog(READ) or /proc/kmsg */
 357static u64 syslog_seq;
 358static u32 syslog_idx;
 359static enum log_flags syslog_prev;
 360static size_t syslog_partial;
 361
 362/* index and sequence number of the first record stored in the buffer */
 363static u64 log_first_seq;
 364static u32 log_first_idx;
 365
 366/* index and sequence number of the next record to store in the buffer */
 367static u64 log_next_seq;
 368static u32 log_next_idx;
 369
 370/* the next printk record to write to the console */
 371static u64 console_seq;
 372static u32 console_idx;
 373static enum log_flags console_prev;
 374
 375/* the next printk record to read after the last 'clear' command */
 376static u64 clear_seq;
 377static u32 clear_idx;
 378
 379#define PREFIX_MAX              32
 380#define LOG_LINE_MAX            (1024 - PREFIX_MAX)
 381
 382#define LOG_LEVEL(v)            ((v) & 0x07)
 383#define LOG_FACILITY(v)         ((v) >> 3 & 0xff)
 384
 385/* record buffer */
 386#define LOG_ALIGN __alignof__(struct printk_log)
 387#define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
 388static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
 389static char *log_buf = __log_buf;
 390static u32 log_buf_len = __LOG_BUF_LEN;
 391
 392/* Return log buffer address */
 393char *log_buf_addr_get(void)
 394{
 395        return log_buf;
 396}
 397
 398/* Return log buffer size */
 399u32 log_buf_len_get(void)
 400{
 401        return log_buf_len;
 402}
 403
 404/* human readable text of the record */
 405static char *log_text(const struct printk_log *msg)
 406{
 407        return (char *)msg + sizeof(struct printk_log);
 408}
 409
 410/* optional key/value pair dictionary attached to the record */
 411static char *log_dict(const struct printk_log *msg)
 412{
 413        return (char *)msg + sizeof(struct printk_log) + msg->text_len;
 414}
 415
 416/* get record by index; idx must point to valid msg */
 417static struct printk_log *log_from_idx(u32 idx)
 418{
 419        struct printk_log *msg = (struct printk_log *)(log_buf + idx);
 420
 421        /*
 422         * A length == 0 record is the end of buffer marker. Wrap around and
 423         * read the message at the start of the buffer.
 424         */
 425        if (!msg->len)
 426                return (struct printk_log *)log_buf;
 427        return msg;
 428}
 429
 430/* get next record; idx must point to valid msg */
 431static u32 log_next(u32 idx)
 432{
 433        struct printk_log *msg = (struct printk_log *)(log_buf + idx);
 434
 435        /* length == 0 indicates the end of the buffer; wrap */
 436        /*
 437         * A length == 0 record is the end of buffer marker. Wrap around and
 438         * read the message at the start of the buffer as *this* one, and
 439         * return the one after that.
 440         */
 441        if (!msg->len) {
 442                msg = (struct printk_log *)log_buf;
 443                return msg->len;
 444        }
 445        return idx + msg->len;
 446}
 447
 448/*
 449 * Check whether there is enough free space for the given message.
 450 *
 451 * The same values of first_idx and next_idx mean that the buffer
 452 * is either empty or full.
 453 *
 454 * If the buffer is empty, we must respect the position of the indexes.
 455 * They cannot be reset to the beginning of the buffer.
 456 */
 457static int logbuf_has_space(u32 msg_size, bool empty)
 458{
 459        u32 free;
 460
 461        if (log_next_idx > log_first_idx || empty)
 462                free = max(log_buf_len - log_next_idx, log_first_idx);
 463        else
 464                free = log_first_idx - log_next_idx;
 465
 466        /*
 467         * We need space also for an empty header that signalizes wrapping
 468         * of the buffer.
 469         */
 470        return free >= msg_size + sizeof(struct printk_log);
 471}
 472
 473static int log_make_free_space(u32 msg_size)
 474{
 475        while (log_first_seq < log_next_seq &&
 476               !logbuf_has_space(msg_size, false)) {
 477                /* drop old messages until we have enough contiguous space */
 478                log_first_idx = log_next(log_first_idx);
 479                log_first_seq++;
 480        }
 481
 482        if (clear_seq < log_first_seq) {
 483                clear_seq = log_first_seq;
 484                clear_idx = log_first_idx;
 485        }
 486
 487        /* sequence numbers are equal, so the log buffer is empty */
 488        if (logbuf_has_space(msg_size, log_first_seq == log_next_seq))
 489                return 0;
 490
 491        return -ENOMEM;
 492}
 493
 494/* compute the message size including the padding bytes */
 495static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len)
 496{
 497        u32 size;
 498
 499        size = sizeof(struct printk_log) + text_len + dict_len;
 500        *pad_len = (-size) & (LOG_ALIGN - 1);
 501        size += *pad_len;
 502
 503        return size;
 504}
 505
 506/*
 507 * Define how much of the log buffer we could take at maximum. The value
 508 * must be greater than two. Note that only half of the buffer is available
 509 * when the index points to the middle.
 510 */
 511#define MAX_LOG_TAKE_PART 4
 512static const char trunc_msg[] = "<truncated>";
 513
 514static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len,
 515                        u16 *dict_len, u32 *pad_len)
 516{
 517        /*
 518         * The message should not take the whole buffer. Otherwise, it might
 519         * get removed too soon.
 520         */
 521        u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
 522        if (*text_len > max_text_len)
 523                *text_len = max_text_len;
 524        /* enable the warning message */
 525        *trunc_msg_len = strlen(trunc_msg);
 526        /* disable the "dict" completely */
 527        *dict_len = 0;
 528        /* compute the size again, count also the warning message */
 529        return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len);
 530}
 531
 532/* insert record into the buffer, discard old ones, update heads */
 533static int log_store(int facility, int level,
 534                     enum log_flags flags, u64 ts_nsec,
 535                     const char *dict, u16 dict_len,
 536                     const char *text, u16 text_len)
 537{
 538        struct printk_log *msg;
 539        u32 size, pad_len;
 540        u16 trunc_msg_len = 0;
 541
 542        /* number of '\0' padding bytes to next message */
 543        size = msg_used_size(text_len, dict_len, &pad_len);
 544
 545        if (log_make_free_space(size)) {
 546                /* truncate the message if it is too long for empty buffer */
 547                size = truncate_msg(&text_len, &trunc_msg_len,
 548                                    &dict_len, &pad_len);
 549                /* survive when the log buffer is too small for trunc_msg */
 550                if (log_make_free_space(size))
 551                        return 0;
 552        }
 553
 554        if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) {
 555                /*
 556                 * This message + an additional empty header does not fit
 557                 * at the end of the buffer. Add an empty header with len == 0
 558                 * to signify a wrap around.
 559                 */
 560                memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
 561                log_next_idx = 0;
 562        }
 563
 564        /* fill message */
 565        msg = (struct printk_log *)(log_buf + log_next_idx);
 566        memcpy(log_text(msg), text, text_len);
 567        msg->text_len = text_len;
 568        if (trunc_msg_len) {
 569                memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len);
 570                msg->text_len += trunc_msg_len;
 571        }
 572        memcpy(log_dict(msg), dict, dict_len);
 573        msg->dict_len = dict_len;
 574        msg->facility = facility;
 575        msg->level = level & 7;
 576        msg->flags = flags & 0x1f;
 577        if (ts_nsec > 0)
 578                msg->ts_nsec = ts_nsec;
 579        else
 580                msg->ts_nsec = local_clock();
 581        memset(log_dict(msg) + dict_len, 0, pad_len);
 582        msg->len = size;
 583
 584        /* insert message */
 585        log_next_idx += msg->len;
 586        log_next_seq++;
 587
 588        return msg->text_len;
 589}
 590
 591int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
 592
 593static int syslog_action_restricted(int type)
 594{
 595        if (dmesg_restrict)
 596                return 1;
 597        /*
 598         * Unless restricted, we allow "read all" and "get buffer size"
 599         * for everybody.
 600         */
 601        return type != SYSLOG_ACTION_READ_ALL &&
 602               type != SYSLOG_ACTION_SIZE_BUFFER;
 603}
 604
 605int check_syslog_permissions(int type, int source)
 606{
 607        /*
 608         * If this is from /proc/kmsg and we've already opened it, then we've
 609         * already done the capabilities checks at open time.
 610         */
 611        if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
 612                goto ok;
 613
 614        if (syslog_action_restricted(type)) {
 615                if (capable(CAP_SYSLOG))
 616                        goto ok;
 617                /*
 618                 * For historical reasons, accept CAP_SYS_ADMIN too, with
 619                 * a warning.
 620                 */
 621                if (capable(CAP_SYS_ADMIN)) {
 622                        pr_warn_once("%s (%d): Attempt to access syslog with "
 623                                     "CAP_SYS_ADMIN but no CAP_SYSLOG "
 624                                     "(deprecated).\n",
 625                                 current->comm, task_pid_nr(current));
 626                        goto ok;
 627                }
 628                return -EPERM;
 629        }
 630ok:
 631        return security_syslog(type);
 632}
 633EXPORT_SYMBOL_GPL(check_syslog_permissions);
 634
 635static void append_char(char **pp, char *e, char c)
 636{
 637        if (*pp < e)
 638                *(*pp)++ = c;
 639}
 640
 641static ssize_t msg_print_ext_header(char *buf, size_t size,
 642                                    struct printk_log *msg, u64 seq,
 643                                    enum log_flags prev_flags)
 644{
 645        u64 ts_usec = msg->ts_nsec;
 646        char cont = '-';
 647
 648        do_div(ts_usec, 1000);
 649
 650        /*
 651         * If we couldn't merge continuation line fragments during the print,
 652         * export the stored flags to allow an optional external merge of the
 653         * records. Merging the records isn't always neccessarily correct, like
 654         * when we hit a race during printing. In most cases though, it produces
 655         * better readable output. 'c' in the record flags mark the first
 656         * fragment of a line, '+' the following.
 657         */
 658        if (msg->flags & LOG_CONT)
 659                cont = (prev_flags & LOG_CONT) ? '+' : 'c';
 660
 661        return scnprintf(buf, size, "%u,%llu,%llu,%c;",
 662                       (msg->facility << 3) | msg->level, seq, ts_usec, cont);
 663}
 664
 665static ssize_t msg_print_ext_body(char *buf, size_t size,
 666                                  char *dict, size_t dict_len,
 667                                  char *text, size_t text_len)
 668{
 669        char *p = buf, *e = buf + size;
 670        size_t i;
 671
 672        /* escape non-printable characters */
 673        for (i = 0; i < text_len; i++) {
 674                unsigned char c = text[i];
 675
 676                if (c < ' ' || c >= 127 || c == '\\')
 677                        p += scnprintf(p, e - p, "\\x%02x", c);
 678                else
 679                        append_char(&p, e, c);
 680        }
 681        append_char(&p, e, '\n');
 682
 683        if (dict_len) {
 684                bool line = true;
 685
 686                for (i = 0; i < dict_len; i++) {
 687                        unsigned char c = dict[i];
 688
 689                        if (line) {
 690                                append_char(&p, e, ' ');
 691                                line = false;
 692                        }
 693
 694                        if (c == '\0') {
 695                                append_char(&p, e, '\n');
 696                                line = true;
 697                                continue;
 698                        }
 699
 700                        if (c < ' ' || c >= 127 || c == '\\') {
 701                                p += scnprintf(p, e - p, "\\x%02x", c);
 702                                continue;
 703                        }
 704
 705                        append_char(&p, e, c);
 706                }
 707                append_char(&p, e, '\n');
 708        }
 709
 710        return p - buf;
 711}
 712
 713/* /dev/kmsg - userspace message inject/listen interface */
 714struct devkmsg_user {
 715        u64 seq;
 716        u32 idx;
 717        enum log_flags prev;
 718        struct ratelimit_state rs;
 719        struct mutex lock;
 720        char buf[CONSOLE_EXT_LOG_MAX];
 721};
 722
 723static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
 724{
 725        char *buf, *line;
 726        int level = default_message_loglevel;
 727        int facility = 1;       /* LOG_USER */
 728        struct file *file = iocb->ki_filp;
 729        struct devkmsg_user *user = file->private_data;
 730        size_t len = iov_iter_count(from);
 731        ssize_t ret = len;
 732
 733        if (!user || len > LOG_LINE_MAX)
 734                return -EINVAL;
 735
 736        /* Ignore when user logging is disabled. */
 737        if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
 738                return len;
 739
 740        /* Ratelimit when not explicitly enabled. */
 741        if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) {
 742                if (!___ratelimit(&user->rs, current->comm))
 743                        return ret;
 744        }
 745
 746        buf = kmalloc(len+1, GFP_KERNEL);
 747        if (buf == NULL)
 748                return -ENOMEM;
 749
 750        buf[len] = '\0';
 751        if (copy_from_iter(buf, len, from) != len) {
 752                kfree(buf);
 753                return -EFAULT;
 754        }
 755
 756        /*
 757         * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
 758         * the decimal value represents 32bit, the lower 3 bit are the log
 759         * level, the rest are the log facility.
 760         *
 761         * If no prefix or no userspace facility is specified, we
 762         * enforce LOG_USER, to be able to reliably distinguish
 763         * kernel-generated messages from userspace-injected ones.
 764         */
 765        line = buf;
 766        if (line[0] == '<') {
 767                char *endp = NULL;
 768                unsigned int u;
 769
 770                u = simple_strtoul(line + 1, &endp, 10);
 771                if (endp && endp[0] == '>') {
 772                        level = LOG_LEVEL(u);
 773                        if (LOG_FACILITY(u) != 0)
 774                                facility = LOG_FACILITY(u);
 775                        endp++;
 776                        len -= endp - line;
 777                        line = endp;
 778                }
 779        }
 780
 781        printk_emit(facility, level, NULL, 0, "%s", line);
 782        kfree(buf);
 783        return ret;
 784}
 785
 786static ssize_t devkmsg_read(struct file *file, char __user *buf,
 787                            size_t count, loff_t *ppos)
 788{
 789        struct devkmsg_user *user = file->private_data;
 790        struct printk_log *msg;
 791        size_t len;
 792        ssize_t ret;
 793
 794        if (!user)
 795                return -EBADF;
 796
 797        ret = mutex_lock_interruptible(&user->lock);
 798        if (ret)
 799                return ret;
 800        raw_spin_lock_irq(&logbuf_lock);
 801        while (user->seq == log_next_seq) {
 802                if (file->f_flags & O_NONBLOCK) {
 803                        ret = -EAGAIN;
 804                        raw_spin_unlock_irq(&logbuf_lock);
 805                        goto out;
 806                }
 807
 808                raw_spin_unlock_irq(&logbuf_lock);
 809                ret = wait_event_interruptible(log_wait,
 810                                               user->seq != log_next_seq);
 811                if (ret)
 812                        goto out;
 813                raw_spin_lock_irq(&logbuf_lock);
 814        }
 815
 816        if (user->seq < log_first_seq) {
 817                /* our last seen message is gone, return error and reset */
 818                user->idx = log_first_idx;
 819                user->seq = log_first_seq;
 820                ret = -EPIPE;
 821                raw_spin_unlock_irq(&logbuf_lock);
 822                goto out;
 823        }
 824
 825        msg = log_from_idx(user->idx);
 826        len = msg_print_ext_header(user->buf, sizeof(user->buf),
 827                                   msg, user->seq, user->prev);
 828        len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len,
 829                                  log_dict(msg), msg->dict_len,
 830                                  log_text(msg), msg->text_len);
 831
 832        user->prev = msg->flags;
 833        user->idx = log_next(user->idx);
 834        user->seq++;
 835        raw_spin_unlock_irq(&logbuf_lock);
 836
 837        if (len > count) {
 838                ret = -EINVAL;
 839                goto out;
 840        }
 841
 842        if (copy_to_user(buf, user->buf, len)) {
 843                ret = -EFAULT;
 844                goto out;
 845        }
 846        ret = len;
 847out:
 848        mutex_unlock(&user->lock);
 849        return ret;
 850}
 851
 852static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
 853{
 854        struct devkmsg_user *user = file->private_data;
 855        loff_t ret = 0;
 856
 857        if (!user)
 858                return -EBADF;
 859        if (offset)
 860                return -ESPIPE;
 861
 862        raw_spin_lock_irq(&logbuf_lock);
 863        switch (whence) {
 864        case SEEK_SET:
 865                /* the first record */
 866                user->idx = log_first_idx;
 867                user->seq = log_first_seq;
 868                break;
 869        case SEEK_DATA:
 870                /*
 871                 * The first record after the last SYSLOG_ACTION_CLEAR,
 872                 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
 873                 * changes no global state, and does not clear anything.
 874                 */
 875                user->idx = clear_idx;
 876                user->seq = clear_seq;
 877                break;
 878        case SEEK_END:
 879                /* after the last record */
 880                user->idx = log_next_idx;
 881                user->seq = log_next_seq;
 882                break;
 883        default:
 884                ret = -EINVAL;
 885        }
 886        raw_spin_unlock_irq(&logbuf_lock);
 887        return ret;
 888}
 889
 890static unsigned int devkmsg_poll(struct file *file, poll_table *wait)
 891{
 892        struct devkmsg_user *user = file->private_data;
 893        int ret = 0;
 894
 895        if (!user)
 896                return POLLERR|POLLNVAL;
 897
 898        poll_wait(file, &log_wait, wait);
 899
 900        raw_spin_lock_irq(&logbuf_lock);
 901        if (user->seq < log_next_seq) {
 902                /* return error when data has vanished underneath us */
 903                if (user->seq < log_first_seq)
 904                        ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI;
 905                else
 906                        ret = POLLIN|POLLRDNORM;
 907        }
 908        raw_spin_unlock_irq(&logbuf_lock);
 909
 910        return ret;
 911}
 912
 913static int devkmsg_open(struct inode *inode, struct file *file)
 914{
 915        struct devkmsg_user *user;
 916        int err;
 917
 918        if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
 919                return -EPERM;
 920
 921        /* write-only does not need any file context */
 922        if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
 923                err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
 924                                               SYSLOG_FROM_READER);
 925                if (err)
 926                        return err;
 927        }
 928
 929        user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
 930        if (!user)
 931                return -ENOMEM;
 932
 933        ratelimit_default_init(&user->rs);
 934        ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE);
 935
 936        mutex_init(&user->lock);
 937
 938        raw_spin_lock_irq(&logbuf_lock);
 939        user->idx = log_first_idx;
 940        user->seq = log_first_seq;
 941        raw_spin_unlock_irq(&logbuf_lock);
 942
 943        file->private_data = user;
 944        return 0;
 945}
 946
 947static int devkmsg_release(struct inode *inode, struct file *file)
 948{
 949        struct devkmsg_user *user = file->private_data;
 950
 951        if (!user)
 952                return 0;
 953
 954        ratelimit_state_exit(&user->rs);
 955
 956        mutex_destroy(&user->lock);
 957        kfree(user);
 958        return 0;
 959}
 960
 961const struct file_operations kmsg_fops = {
 962        .open = devkmsg_open,
 963        .read = devkmsg_read,
 964        .write_iter = devkmsg_write,
 965        .llseek = devkmsg_llseek,
 966        .poll = devkmsg_poll,
 967        .release = devkmsg_release,
 968};
 969
 970#ifdef CONFIG_KEXEC_CORE
 971/*
 972 * This appends the listed symbols to /proc/vmcore
 973 *
 974 * /proc/vmcore is used by various utilities, like crash and makedumpfile to
 975 * obtain access to symbols that are otherwise very difficult to locate.  These
 976 * symbols are specifically used so that utilities can access and extract the
 977 * dmesg log from a vmcore file after a crash.
 978 */
 979void log_buf_kexec_setup(void)
 980{
 981        VMCOREINFO_SYMBOL(log_buf);
 982        VMCOREINFO_SYMBOL(log_buf_len);
 983        VMCOREINFO_SYMBOL(log_first_idx);
 984        VMCOREINFO_SYMBOL(clear_idx);
 985        VMCOREINFO_SYMBOL(log_next_idx);
 986        /*
 987         * Export struct printk_log size and field offsets. User space tools can
 988         * parse it and detect any changes to structure down the line.
 989         */
 990        VMCOREINFO_STRUCT_SIZE(printk_log);
 991        VMCOREINFO_OFFSET(printk_log, ts_nsec);
 992        VMCOREINFO_OFFSET(printk_log, len);
 993        VMCOREINFO_OFFSET(printk_log, text_len);
 994        VMCOREINFO_OFFSET(printk_log, dict_len);
 995}
 996#endif
 997
 998/* requested log_buf_len from kernel cmdline */
 999static unsigned long __initdata new_log_buf_len;
1000
1001/* we practice scaling the ring buffer by powers of 2 */
1002static void __init log_buf_len_update(unsigned size)
1003{
1004        if (size)
1005                size = roundup_pow_of_two(size);
1006        if (size > log_buf_len)
1007                new_log_buf_len = size;
1008}
1009
1010/* save requested log_buf_len since it's too early to process it */
1011static int __init log_buf_len_setup(char *str)
1012{
1013        unsigned size = memparse(str, &str);
1014
1015        log_buf_len_update(size);
1016
1017        return 0;
1018}
1019early_param("log_buf_len", log_buf_len_setup);
1020
1021#ifdef CONFIG_SMP
1022#define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
1023
1024static void __init log_buf_add_cpu(void)
1025{
1026        unsigned int cpu_extra;
1027
1028        /*
1029         * archs should set up cpu_possible_bits properly with
1030         * set_cpu_possible() after setup_arch() but just in
1031         * case lets ensure this is valid.
1032         */
1033        if (num_possible_cpus() == 1)
1034                return;
1035
1036        cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
1037
1038        /* by default this will only continue through for large > 64 CPUs */
1039        if (cpu_extra <= __LOG_BUF_LEN / 2)
1040                return;
1041
1042        pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
1043                __LOG_CPU_MAX_BUF_LEN);
1044        pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
1045                cpu_extra);
1046        pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
1047
1048        log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
1049}
1050#else /* !CONFIG_SMP */
1051static inline void log_buf_add_cpu(void) {}
1052#endif /* CONFIG_SMP */
1053
1054void __init setup_log_buf(int early)
1055{
1056        unsigned long flags;
1057        char *new_log_buf;
1058        int free;
1059
1060        if (log_buf != __log_buf)
1061                return;
1062
1063        if (!early && !new_log_buf_len)
1064                log_buf_add_cpu();
1065
1066        if (!new_log_buf_len)
1067                return;
1068
1069        if (early) {
1070                new_log_buf =
1071                        memblock_virt_alloc(new_log_buf_len, LOG_ALIGN);
1072        } else {
1073                new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len,
1074                                                          LOG_ALIGN);
1075        }
1076
1077        if (unlikely(!new_log_buf)) {
1078                pr_err("log_buf_len: %ld bytes not available\n",
1079                        new_log_buf_len);
1080                return;
1081        }
1082
1083        raw_spin_lock_irqsave(&logbuf_lock, flags);
1084        log_buf_len = new_log_buf_len;
1085        log_buf = new_log_buf;
1086        new_log_buf_len = 0;
1087        free = __LOG_BUF_LEN - log_next_idx;
1088        memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
1089        raw_spin_unlock_irqrestore(&logbuf_lock, flags);
1090
1091        pr_info("log_buf_len: %d bytes\n", log_buf_len);
1092        pr_info("early log buf free: %d(%d%%)\n",
1093                free, (free * 100) / __LOG_BUF_LEN);
1094}
1095
1096static bool __read_mostly ignore_loglevel;
1097
1098static int __init ignore_loglevel_setup(char *str)
1099{
1100        ignore_loglevel = true;
1101        pr_info("debug: ignoring loglevel setting.\n");
1102
1103        return 0;
1104}
1105
1106early_param("ignore_loglevel", ignore_loglevel_setup);
1107module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1108MODULE_PARM_DESC(ignore_loglevel,
1109                 "ignore loglevel setting (prints all kernel messages to the console)");
1110
1111static bool suppress_message_printing(int level)
1112{
1113        return (level >= console_loglevel && !ignore_loglevel);
1114}
1115
1116#ifdef CONFIG_BOOT_PRINTK_DELAY
1117
1118static int boot_delay; /* msecs delay after each printk during bootup */
1119static unsigned long long loops_per_msec;       /* based on boot_delay */
1120
1121static int __init boot_delay_setup(char *str)
1122{
1123        unsigned long lpj;
1124
1125        lpj = preset_lpj ? preset_lpj : 1000000;        /* some guess */
1126        loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
1127
1128        get_option(&str, &boot_delay);
1129        if (boot_delay > 10 * 1000)
1130                boot_delay = 0;
1131
1132        pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1133                "HZ: %d, loops_per_msec: %llu\n",
1134                boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1135        return 0;
1136}
1137early_param("boot_delay", boot_delay_setup);
1138
1139static void boot_delay_msec(int level)
1140{
1141        unsigned long long k;
1142        unsigned long timeout;
1143
1144        if ((boot_delay == 0 || system_state != SYSTEM_BOOTING)
1145                || suppress_message_printing(level)) {
1146                return;
1147        }
1148
1149        k = (unsigned long long)loops_per_msec * boot_delay;
1150
1151        timeout = jiffies + msecs_to_jiffies(boot_delay);
1152        while (k) {
1153                k--;
1154                cpu_relax();
1155                /*
1156                 * use (volatile) jiffies to prevent
1157                 * compiler reduction; loop termination via jiffies
1158                 * is secondary and may or may not happen.
1159                 */
1160                if (time_after(jiffies, timeout))
1161                        break;
1162                touch_nmi_watchdog();
1163        }
1164}
1165#else
1166static inline void boot_delay_msec(int level)
1167{
1168}
1169#endif
1170
1171static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1172module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1173
1174static size_t print_time(u64 ts, char *buf)
1175{
1176        unsigned long rem_nsec;
1177
1178        if (!printk_time)
1179                return 0;
1180
1181        rem_nsec = do_div(ts, 1000000000);
1182
1183        if (!buf)
1184                return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts);
1185
1186        return sprintf(buf, "[%5lu.%06lu] ",
1187                       (unsigned long)ts, rem_nsec / 1000);
1188}
1189
1190static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf)
1191{
1192        size_t len = 0;
1193        unsigned int prefix = (msg->facility << 3) | msg->level;
1194
1195        if (syslog) {
1196                if (buf) {
1197                        len += sprintf(buf, "<%u>", prefix);
1198                } else {
1199                        len += 3;
1200                        if (prefix > 999)
1201                                len += 3;
1202                        else if (prefix > 99)
1203                                len += 2;
1204                        else if (prefix > 9)
1205                                len++;
1206                }
1207        }
1208
1209        len += print_time(msg->ts_nsec, buf ? buf + len : NULL);
1210        return len;
1211}
1212
1213static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
1214                             bool syslog, char *buf, size_t size)
1215{
1216        const char *text = log_text(msg);
1217        size_t text_size = msg->text_len;
1218        bool prefix = true;
1219        bool newline = true;
1220        size_t len = 0;
1221
1222        if ((prev & LOG_CONT) && !(msg->flags & LOG_PREFIX))
1223                prefix = false;
1224
1225        if (msg->flags & LOG_CONT) {
1226                if ((prev & LOG_CONT) && !(prev & LOG_NEWLINE))
1227                        prefix = false;
1228
1229                if (!(msg->flags & LOG_NEWLINE))
1230                        newline = false;
1231        }
1232
1233        do {
1234                const char *next = memchr(text, '\n', text_size);
1235                size_t text_len;
1236
1237                if (next) {
1238                        text_len = next - text;
1239                        next++;
1240                        text_size -= next - text;
1241                } else {
1242                        text_len = text_size;
1243                }
1244
1245                if (buf) {
1246                        if (print_prefix(msg, syslog, NULL) +
1247                            text_len + 1 >= size - len)
1248                                break;
1249
1250                        if (prefix)
1251                                len += print_prefix(msg, syslog, buf + len);
1252                        memcpy(buf + len, text, text_len);
1253                        len += text_len;
1254                        if (next || newline)
1255                                buf[len++] = '\n';
1256                } else {
1257                        /* SYSLOG_ACTION_* buffer size only calculation */
1258                        if (prefix)
1259                                len += print_prefix(msg, syslog, NULL);
1260                        len += text_len;
1261                        if (next || newline)
1262                                len++;
1263                }
1264
1265                prefix = true;
1266                text = next;
1267        } while (text);
1268
1269        return len;
1270}
1271
1272static int syslog_print(char __user *buf, int size)
1273{
1274        char *text;
1275        struct printk_log *msg;
1276        int len = 0;
1277
1278        text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1279        if (!text)
1280                return -ENOMEM;
1281
1282        while (size > 0) {
1283                size_t n;
1284                size_t skip;
1285
1286                raw_spin_lock_irq(&logbuf_lock);
1287                if (syslog_seq < log_first_seq) {
1288                        /* messages are gone, move to first one */
1289                        syslog_seq = log_first_seq;
1290                        syslog_idx = log_first_idx;
1291                        syslog_prev = 0;
1292                        syslog_partial = 0;
1293                }
1294                if (syslog_seq == log_next_seq) {
1295                        raw_spin_unlock_irq(&logbuf_lock);
1296                        break;
1297                }
1298
1299                skip = syslog_partial;
1300                msg = log_from_idx(syslog_idx);
1301                n = msg_print_text(msg, syslog_prev, true, text,
1302                                   LOG_LINE_MAX + PREFIX_MAX);
1303                if (n - syslog_partial <= size) {
1304                        /* message fits into buffer, move forward */
1305                        syslog_idx = log_next(syslog_idx);
1306                        syslog_seq++;
1307                        syslog_prev = msg->flags;
1308                        n -= syslog_partial;
1309                        syslog_partial = 0;
1310                } else if (!len){
1311                        /* partial read(), remember position */
1312                        n = size;
1313                        syslog_partial += n;
1314                } else
1315                        n = 0;
1316                raw_spin_unlock_irq(&logbuf_lock);
1317
1318                if (!n)
1319                        break;
1320
1321                if (copy_to_user(buf, text + skip, n)) {
1322                        if (!len)
1323                                len = -EFAULT;
1324                        break;
1325                }
1326
1327                len += n;
1328                size -= n;
1329                buf += n;
1330        }
1331
1332        kfree(text);
1333        return len;
1334}
1335
1336static int syslog_print_all(char __user *buf, int size, bool clear)
1337{
1338        char *text;
1339        int len = 0;
1340
1341        text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1342        if (!text)
1343                return -ENOMEM;
1344
1345        raw_spin_lock_irq(&logbuf_lock);
1346        if (buf) {
1347                u64 next_seq;
1348                u64 seq;
1349                u32 idx;
1350                enum log_flags prev;
1351
1352                /*
1353                 * Find first record that fits, including all following records,
1354                 * into the user-provided buffer for this dump.
1355                 */
1356                seq = clear_seq;
1357                idx = clear_idx;
1358                prev = 0;
1359                while (seq < log_next_seq) {
1360                        struct printk_log *msg = log_from_idx(idx);
1361
1362                        len += msg_print_text(msg, prev, true, NULL, 0);
1363                        prev = msg->flags;
1364                        idx = log_next(idx);
1365                        seq++;
1366                }
1367
1368                /* move first record forward until length fits into the buffer */
1369                seq = clear_seq;
1370                idx = clear_idx;
1371                prev = 0;
1372                while (len > size && seq < log_next_seq) {
1373                        struct printk_log *msg = log_from_idx(idx);
1374
1375                        len -= msg_print_text(msg, prev, true, NULL, 0);
1376                        prev = msg->flags;
1377                        idx = log_next(idx);
1378                        seq++;
1379                }
1380
1381                /* last message fitting into this dump */
1382                next_seq = log_next_seq;
1383
1384                len = 0;
1385                while (len >= 0 && seq < next_seq) {
1386                        struct printk_log *msg = log_from_idx(idx);
1387                        int textlen;
1388
1389                        textlen = msg_print_text(msg, prev, true, text,
1390                                                 LOG_LINE_MAX + PREFIX_MAX);
1391                        if (textlen < 0) {
1392                                len = textlen;
1393                                break;
1394                        }
1395                        idx = log_next(idx);
1396                        seq++;
1397                        prev = msg->flags;
1398
1399                        raw_spin_unlock_irq(&logbuf_lock);
1400                        if (copy_to_user(buf + len, text, textlen))
1401                                len = -EFAULT;
1402                        else
1403                                len += textlen;
1404                        raw_spin_lock_irq(&logbuf_lock);
1405
1406                        if (seq < log_first_seq) {
1407                                /* messages are gone, move to next one */
1408                                seq = log_first_seq;
1409                                idx = log_first_idx;
1410                                prev = 0;
1411                        }
1412                }
1413        }
1414
1415        if (clear) {
1416                clear_seq = log_next_seq;
1417                clear_idx = log_next_idx;
1418        }
1419        raw_spin_unlock_irq(&logbuf_lock);
1420
1421        kfree(text);
1422        return len;
1423}
1424
1425int do_syslog(int type, char __user *buf, int len, int source)
1426{
1427        bool clear = false;
1428        static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1429        int error;
1430
1431        error = check_syslog_permissions(type, source);
1432        if (error)
1433                goto out;
1434
1435        switch (type) {
1436        case SYSLOG_ACTION_CLOSE:       /* Close log */
1437                break;
1438        case SYSLOG_ACTION_OPEN:        /* Open log */
1439                break;
1440        case SYSLOG_ACTION_READ:        /* Read from log */
1441                error = -EINVAL;
1442                if (!buf || len < 0)
1443                        goto out;
1444                error = 0;
1445                if (!len)
1446                        goto out;
1447                if (!access_ok(VERIFY_WRITE, buf, len)) {
1448                        error = -EFAULT;
1449                        goto out;
1450                }
1451                error = wait_event_interruptible(log_wait,
1452                                                 syslog_seq != log_next_seq);
1453                if (error)
1454                        goto out;
1455                error = syslog_print(buf, len);
1456                break;
1457        /* Read/clear last kernel messages */
1458        case SYSLOG_ACTION_READ_CLEAR:
1459                clear = true;
1460                /* FALL THRU */
1461        /* Read last kernel messages */
1462        case SYSLOG_ACTION_READ_ALL:
1463                error = -EINVAL;
1464                if (!buf || len < 0)
1465                        goto out;
1466                error = 0;
1467                if (!len)
1468                        goto out;
1469                if (!access_ok(VERIFY_WRITE, buf, len)) {
1470                        error = -EFAULT;
1471                        goto out;
1472                }
1473                error = syslog_print_all(buf, len, clear);
1474                break;
1475        /* Clear ring buffer */
1476        case SYSLOG_ACTION_CLEAR:
1477                syslog_print_all(NULL, 0, true);
1478                break;
1479        /* Disable logging to console */
1480        case SYSLOG_ACTION_CONSOLE_OFF:
1481                if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1482                        saved_console_loglevel = console_loglevel;
1483                console_loglevel = minimum_console_loglevel;
1484                break;
1485        /* Enable logging to console */
1486        case SYSLOG_ACTION_CONSOLE_ON:
1487                if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1488                        console_loglevel = saved_console_loglevel;
1489                        saved_console_loglevel = LOGLEVEL_DEFAULT;
1490                }
1491                break;
1492        /* Set level of messages printed to console */
1493        case SYSLOG_ACTION_CONSOLE_LEVEL:
1494                error = -EINVAL;
1495                if (len < 1 || len > 8)
1496                        goto out;
1497                if (len < minimum_console_loglevel)
1498                        len = minimum_console_loglevel;
1499                console_loglevel = len;
1500                /* Implicitly re-enable logging to console */
1501                saved_console_loglevel = LOGLEVEL_DEFAULT;
1502                error = 0;
1503                break;
1504        /* Number of chars in the log buffer */
1505        case SYSLOG_ACTION_SIZE_UNREAD:
1506                raw_spin_lock_irq(&logbuf_lock);
1507                if (syslog_seq < log_first_seq) {
1508                        /* messages are gone, move to first one */
1509                        syslog_seq = log_first_seq;
1510                        syslog_idx = log_first_idx;
1511                        syslog_prev = 0;
1512                        syslog_partial = 0;
1513                }
1514                if (source == SYSLOG_FROM_PROC) {
1515                        /*
1516                         * Short-cut for poll(/"proc/kmsg") which simply checks
1517                         * for pending data, not the size; return the count of
1518                         * records, not the length.
1519                         */
1520                        error = log_next_seq - syslog_seq;
1521                } else {
1522                        u64 seq = syslog_seq;
1523                        u32 idx = syslog_idx;
1524                        enum log_flags prev = syslog_prev;
1525
1526                        error = 0;
1527                        while (seq < log_next_seq) {
1528                                struct printk_log *msg = log_from_idx(idx);
1529
1530                                error += msg_print_text(msg, prev, true, NULL, 0);
1531                                idx = log_next(idx);
1532                                seq++;
1533                                prev = msg->flags;
1534                        }
1535                        error -= syslog_partial;
1536                }
1537                raw_spin_unlock_irq(&logbuf_lock);
1538                break;
1539        /* Size of the log buffer */
1540        case SYSLOG_ACTION_SIZE_BUFFER:
1541                error = log_buf_len;
1542                break;
1543        default:
1544                error = -EINVAL;
1545                break;
1546        }
1547out:
1548        return error;
1549}
1550
1551SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1552{
1553        return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1554}
1555
1556/*
1557 * Call the console drivers, asking them to write out
1558 * log_buf[start] to log_buf[end - 1].
1559 * The console_lock must be held.
1560 */
1561static void call_console_drivers(int level,
1562                                 const char *ext_text, size_t ext_len,
1563                                 const char *text, size_t len)
1564{
1565        struct console *con;
1566
1567        trace_console(text, len);
1568
1569        if (!console_drivers)
1570                return;
1571
1572        for_each_console(con) {
1573                if (exclusive_console && con != exclusive_console)
1574                        continue;
1575                if (!(con->flags & CON_ENABLED))
1576                        continue;
1577                if (!con->write)
1578                        continue;
1579                if (!cpu_online(smp_processor_id()) &&
1580                    !(con->flags & CON_ANYTIME))
1581                        continue;
1582                if (con->flags & CON_EXTENDED)
1583                        con->write(con, ext_text, ext_len);
1584                else
1585                        con->write(con, text, len);
1586        }
1587}
1588
1589/*
1590 * Zap console related locks when oopsing.
1591 * To leave time for slow consoles to print a full oops,
1592 * only zap at most once every 30 seconds.
1593 */
1594static void zap_locks(void)
1595{
1596        static unsigned long oops_timestamp;
1597
1598        if (time_after_eq(jiffies, oops_timestamp) &&
1599            !time_after(jiffies, oops_timestamp + 30 * HZ))
1600                return;
1601
1602        oops_timestamp = jiffies;
1603
1604        debug_locks_off();
1605        /* If a crash is occurring, make sure we can't deadlock */
1606        raw_spin_lock_init(&logbuf_lock);
1607        /* And make sure that we print immediately */
1608        sema_init(&console_sem, 1);
1609}
1610
1611int printk_delay_msec __read_mostly;
1612
1613static inline void printk_delay(void)
1614{
1615        if (unlikely(printk_delay_msec)) {
1616                int m = printk_delay_msec;
1617
1618                while (m--) {
1619                        mdelay(1);
1620                        touch_nmi_watchdog();
1621                }
1622        }
1623}
1624
1625/*
1626 * Continuation lines are buffered, and not committed to the record buffer
1627 * until the line is complete, or a race forces it. The line fragments
1628 * though, are printed immediately to the consoles to ensure everything has
1629 * reached the console in case of a kernel crash.
1630 */
1631static struct cont {
1632        char buf[LOG_LINE_MAX];
1633        size_t len;                     /* length == 0 means unused buffer */
1634        size_t cons;                    /* bytes written to console */
1635        struct task_struct *owner;      /* task of first print*/
1636        u64 ts_nsec;                    /* time of first print */
1637        u8 level;                       /* log level of first message */
1638        u8 facility;                    /* log facility of first message */
1639        enum log_flags flags;           /* prefix, newline flags */
1640        bool flushed:1;                 /* buffer sealed and committed */
1641} cont;
1642
1643static void cont_flush(void)
1644{
1645        if (cont.flushed)
1646                return;
1647        if (cont.len == 0)
1648                return;
1649        if (cont.cons) {
1650                /*
1651                 * If a fragment of this line was directly flushed to the
1652                 * console; wait for the console to pick up the rest of the
1653                 * line. LOG_NOCONS suppresses a duplicated output.
1654                 */
1655                log_store(cont.facility, cont.level, cont.flags | LOG_NOCONS,
1656                          cont.ts_nsec, NULL, 0, cont.buf, cont.len);
1657                cont.flushed = true;
1658        } else {
1659                /*
1660                 * If no fragment of this line ever reached the console,
1661                 * just submit it to the store and free the buffer.
1662                 */
1663                log_store(cont.facility, cont.level, cont.flags, 0,
1664                          NULL, 0, cont.buf, cont.len);
1665                cont.len = 0;
1666        }
1667}
1668
1669static bool cont_add(int facility, int level, enum log_flags flags, const char *text, size_t len)
1670{
1671        if (cont.len && cont.flushed)
1672                return false;
1673
1674        /*
1675         * If ext consoles are present, flush and skip in-kernel
1676         * continuation.  See nr_ext_console_drivers definition.  Also, if
1677         * the line gets too long, split it up in separate records.
1678         */
1679        if (nr_ext_console_drivers || cont.len + len > sizeof(cont.buf)) {
1680                cont_flush();
1681                return false;
1682        }
1683
1684        if (!cont.len) {
1685                cont.facility = facility;
1686                cont.level = level;
1687                cont.owner = current;
1688                cont.ts_nsec = local_clock();
1689                cont.flags = flags;
1690                cont.cons = 0;
1691                cont.flushed = false;
1692        }
1693
1694        memcpy(cont.buf + cont.len, text, len);
1695        cont.len += len;
1696
1697        // The original flags come from the first line,
1698        // but later continuations can add a newline.
1699        if (flags & LOG_NEWLINE) {
1700                cont.flags |= LOG_NEWLINE;
1701                cont_flush();
1702        }
1703
1704        if (cont.len > (sizeof(cont.buf) * 80) / 100)
1705                cont_flush();
1706
1707        return true;
1708}
1709
1710static size_t cont_print_text(char *text, size_t size)
1711{
1712        size_t textlen = 0;
1713        size_t len;
1714
1715        if (cont.cons == 0 && (console_prev & LOG_NEWLINE)) {
1716                textlen += print_time(cont.ts_nsec, text);
1717                size -= textlen;
1718        }
1719
1720        len = cont.len - cont.cons;
1721        if (len > 0) {
1722                if (len+1 > size)
1723                        len = size-1;
1724                memcpy(text + textlen, cont.buf + cont.cons, len);
1725                textlen += len;
1726                cont.cons = cont.len;
1727        }
1728
1729        if (cont.flushed) {
1730                if (cont.flags & LOG_NEWLINE)
1731                        text[textlen++] = '\n';
1732                /* got everything, release buffer */
1733                cont.len = 0;
1734        }
1735        return textlen;
1736}
1737
1738static size_t log_output(int facility, int level, enum log_flags lflags, const char *dict, size_t dictlen, char *text, size_t text_len)
1739{
1740        /*
1741         * If an earlier line was buffered, and we're a continuation
1742         * write from the same process, try to add it to the buffer.
1743         */
1744        if (cont.len) {
1745                if (cont.owner == current && (lflags & LOG_CONT)) {
1746                        if (cont_add(facility, level, lflags, text, text_len))
1747                                return text_len;
1748                }
1749                /* Otherwise, make sure it's flushed */
1750                cont_flush();
1751        }
1752
1753        /* Skip empty continuation lines that couldn't be added - they just flush */
1754        if (!text_len && (lflags & LOG_CONT))
1755                return 0;
1756
1757        /* If it doesn't end in a newline, try to buffer the current line */
1758        if (!(lflags & LOG_NEWLINE)) {
1759                if (cont_add(facility, level, lflags, text, text_len))
1760                        return text_len;
1761        }
1762
1763        /* Store it in the record log */
1764        return log_store(facility, level, lflags, 0, dict, dictlen, text, text_len);
1765}
1766
1767asmlinkage int vprintk_emit(int facility, int level,
1768                            const char *dict, size_t dictlen,
1769                            const char *fmt, va_list args)
1770{
1771        static bool recursion_bug;
1772        static char textbuf[LOG_LINE_MAX];
1773        char *text = textbuf;
1774        size_t text_len = 0;
1775        enum log_flags lflags = 0;
1776        unsigned long flags;
1777        int this_cpu;
1778        int printed_len = 0;
1779        int nmi_message_lost;
1780        bool in_sched = false;
1781        /* cpu currently holding logbuf_lock in this function */
1782        static unsigned int logbuf_cpu = UINT_MAX;
1783
1784        if (level == LOGLEVEL_SCHED) {
1785                level = LOGLEVEL_DEFAULT;
1786                in_sched = true;
1787        }
1788
1789        boot_delay_msec(level);
1790        printk_delay();
1791
1792        local_irq_save(flags);
1793        this_cpu = smp_processor_id();
1794
1795        /*
1796         * Ouch, printk recursed into itself!
1797         */
1798        if (unlikely(logbuf_cpu == this_cpu)) {
1799                /*
1800                 * If a crash is occurring during printk() on this CPU,
1801                 * then try to get the crash message out but make sure
1802                 * we can't deadlock. Otherwise just return to avoid the
1803                 * recursion and return - but flag the recursion so that
1804                 * it can be printed at the next appropriate moment:
1805                 */
1806                if (!oops_in_progress && !lockdep_recursing(current)) {
1807                        recursion_bug = true;
1808                        local_irq_restore(flags);
1809                        return 0;
1810                }
1811                zap_locks();
1812        }
1813
1814        lockdep_off();
1815        /* This stops the holder of console_sem just where we want him */
1816        raw_spin_lock(&logbuf_lock);
1817        logbuf_cpu = this_cpu;
1818
1819        if (unlikely(recursion_bug)) {
1820                static const char recursion_msg[] =
1821                        "BUG: recent printk recursion!";
1822
1823                recursion_bug = false;
1824                /* emit KERN_CRIT message */
1825                printed_len += log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0,
1826                                         NULL, 0, recursion_msg,
1827                                         strlen(recursion_msg));
1828        }
1829
1830        nmi_message_lost = get_nmi_message_lost();
1831        if (unlikely(nmi_message_lost)) {
1832                text_len = scnprintf(textbuf, sizeof(textbuf),
1833                                     "BAD LUCK: lost %d message(s) from NMI context!",
1834                                     nmi_message_lost);
1835                printed_len += log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0,
1836                                         NULL, 0, textbuf, text_len);
1837        }
1838
1839        /*
1840         * The printf needs to come first; we need the syslog
1841         * prefix which might be passed-in as a parameter.
1842         */
1843        text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1844
1845        /* mark and strip a trailing newline */
1846        if (text_len && text[text_len-1] == '\n') {
1847                text_len--;
1848                lflags |= LOG_NEWLINE;
1849        }
1850
1851        /* strip kernel syslog prefix and extract log level or control flags */
1852        if (facility == 0) {
1853                int kern_level;
1854
1855                while ((kern_level = printk_get_level(text)) != 0) {
1856                        switch (kern_level) {
1857                        case '0' ... '7':
1858                                if (level == LOGLEVEL_DEFAULT)
1859                                        level = kern_level - '0';
1860                                /* fallthrough */
1861                        case 'd':       /* KERN_DEFAULT */
1862                                lflags |= LOG_PREFIX;
1863                                break;
1864                        case 'c':       /* KERN_CONT */
1865                                lflags |= LOG_CONT;
1866                        }
1867
1868                        text_len -= 2;
1869                        text += 2;
1870                }
1871        }
1872
1873        if (level == LOGLEVEL_DEFAULT)
1874                level = default_message_loglevel;
1875
1876        if (dict)
1877                lflags |= LOG_PREFIX|LOG_NEWLINE;
1878
1879        printed_len += log_output(facility, level, lflags, dict, dictlen, text, text_len);
1880
1881        logbuf_cpu = UINT_MAX;
1882        raw_spin_unlock(&logbuf_lock);
1883        lockdep_on();
1884        local_irq_restore(flags);
1885
1886        /* If called from the scheduler, we can not call up(). */
1887        if (!in_sched) {
1888                lockdep_off();
1889                /*
1890                 * Try to acquire and then immediately release the console
1891                 * semaphore.  The release will print out buffers and wake up
1892                 * /dev/kmsg and syslog() users.
1893                 */
1894                if (console_trylock())
1895                        console_unlock();
1896                lockdep_on();
1897        }
1898
1899        return printed_len;
1900}
1901EXPORT_SYMBOL(vprintk_emit);
1902
1903asmlinkage int vprintk(const char *fmt, va_list args)
1904{
1905        return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
1906}
1907EXPORT_SYMBOL(vprintk);
1908
1909asmlinkage int printk_emit(int facility, int level,
1910                           const char *dict, size_t dictlen,
1911                           const char *fmt, ...)
1912{
1913        va_list args;
1914        int r;
1915
1916        va_start(args, fmt);
1917        r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1918        va_end(args);
1919
1920        return r;
1921}
1922EXPORT_SYMBOL(printk_emit);
1923
1924int vprintk_default(const char *fmt, va_list args)
1925{
1926        int r;
1927
1928#ifdef CONFIG_KGDB_KDB
1929        if (unlikely(kdb_trap_printk)) {
1930                r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args);
1931                return r;
1932        }
1933#endif
1934        r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
1935
1936        return r;
1937}
1938EXPORT_SYMBOL_GPL(vprintk_default);
1939
1940/**
1941 * printk - print a kernel message
1942 * @fmt: format string
1943 *
1944 * This is printk(). It can be called from any context. We want it to work.
1945 *
1946 * We try to grab the console_lock. If we succeed, it's easy - we log the
1947 * output and call the console drivers.  If we fail to get the semaphore, we
1948 * place the output into the log buffer and return. The current holder of
1949 * the console_sem will notice the new output in console_unlock(); and will
1950 * send it to the consoles before releasing the lock.
1951 *
1952 * One effect of this deferred printing is that code which calls printk() and
1953 * then changes console_loglevel may break. This is because console_loglevel
1954 * is inspected when the actual printing occurs.
1955 *
1956 * See also:
1957 * printf(3)
1958 *
1959 * See the vsnprintf() documentation for format string extensions over C99.
1960 */
1961asmlinkage __visible int printk(const char *fmt, ...)
1962{
1963        va_list args;
1964        int r;
1965
1966        va_start(args, fmt);
1967        r = vprintk_func(fmt, args);
1968        va_end(args);
1969
1970        return r;
1971}
1972EXPORT_SYMBOL(printk);
1973
1974#else /* CONFIG_PRINTK */
1975
1976#define LOG_LINE_MAX            0
1977#define PREFIX_MAX              0
1978
1979static u64 syslog_seq;
1980static u32 syslog_idx;
1981static u64 console_seq;
1982static u32 console_idx;
1983static enum log_flags syslog_prev;
1984static u64 log_first_seq;
1985static u32 log_first_idx;
1986static u64 log_next_seq;
1987static enum log_flags console_prev;
1988static struct cont {
1989        size_t len;
1990        size_t cons;
1991        u8 level;
1992        bool flushed:1;
1993} cont;
1994static char *log_text(const struct printk_log *msg) { return NULL; }
1995static char *log_dict(const struct printk_log *msg) { return NULL; }
1996static struct printk_log *log_from_idx(u32 idx) { return NULL; }
1997static u32 log_next(u32 idx) { return 0; }
1998static ssize_t msg_print_ext_header(char *buf, size_t size,
1999                                    struct printk_log *msg, u64 seq,
2000                                    enum log_flags prev_flags) { return 0; }
2001static ssize_t msg_print_ext_body(char *buf, size_t size,
2002                                  char *dict, size_t dict_len,
2003                                  char *text, size_t text_len) { return 0; }
2004static void call_console_drivers(int level,
2005                                 const char *ext_text, size_t ext_len,
2006                                 const char *text, size_t len) {}
2007static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
2008                             bool syslog, char *buf, size_t size) { return 0; }
2009static size_t cont_print_text(char *text, size_t size) { return 0; }
2010static bool suppress_message_printing(int level) { return false; }
2011
2012/* Still needs to be defined for users */
2013DEFINE_PER_CPU(printk_func_t, printk_func);
2014
2015#endif /* CONFIG_PRINTK */
2016
2017#ifdef CONFIG_EARLY_PRINTK
2018struct console *early_console;
2019
2020asmlinkage __visible void early_printk(const char *fmt, ...)
2021{
2022        va_list ap;
2023        char buf[512];
2024        int n;
2025
2026        if (!early_console)
2027                return;
2028
2029        va_start(ap, fmt);
2030        n = vscnprintf(buf, sizeof(buf), fmt, ap);
2031        va_end(ap);
2032
2033        early_console->write(early_console, buf, n);
2034}
2035#endif
2036
2037static int __add_preferred_console(char *name, int idx, char *options,
2038                                   char *brl_options)
2039{
2040        struct console_cmdline *c;
2041        int i;
2042
2043        /*
2044         *      See if this tty is not yet registered, and
2045         *      if we have a slot free.
2046         */
2047        for (i = 0, c = console_cmdline;
2048             i < MAX_CMDLINECONSOLES && c->name[0];
2049             i++, c++) {
2050                if (strcmp(c->name, name) == 0 && c->index == idx) {
2051                        if (!brl_options)
2052                                selected_console = i;
2053                        return 0;
2054                }
2055        }
2056        if (i == MAX_CMDLINECONSOLES)
2057                return -E2BIG;
2058        if (!brl_options)
2059                selected_console = i;
2060        strlcpy(c->name, name, sizeof(c->name));
2061        c->options = options;
2062        braille_set_options(c, brl_options);
2063
2064        c->index = idx;
2065        return 0;
2066}
2067/*
2068 * Set up a console.  Called via do_early_param() in init/main.c
2069 * for each "console=" parameter in the boot command line.
2070 */
2071static int __init console_setup(char *str)
2072{
2073        char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
2074        char *s, *options, *brl_options = NULL;
2075        int idx;
2076
2077        if (_braille_console_setup(&str, &brl_options))
2078                return 1;
2079
2080        /*
2081         * Decode str into name, index, options.
2082         */
2083        if (str[0] >= '0' && str[0] <= '9') {
2084                strcpy(buf, "ttyS");
2085                strncpy(buf + 4, str, sizeof(buf) - 5);
2086        } else {
2087                strncpy(buf, str, sizeof(buf) - 1);
2088        }
2089        buf[sizeof(buf) - 1] = 0;
2090        options = strchr(str, ',');
2091        if (options)
2092                *(options++) = 0;
2093#ifdef __sparc__
2094        if (!strcmp(str, "ttya"))
2095                strcpy(buf, "ttyS0");
2096        if (!strcmp(str, "ttyb"))
2097                strcpy(buf, "ttyS1");
2098#endif
2099        for (s = buf; *s; s++)
2100                if (isdigit(*s) || *s == ',')
2101                        break;
2102        idx = simple_strtoul(s, NULL, 10);
2103        *s = 0;
2104
2105        __add_preferred_console(buf, idx, options, brl_options);
2106        console_set_on_cmdline = 1;
2107        return 1;
2108}
2109__setup("console=", console_setup);
2110
2111/**
2112 * add_preferred_console - add a device to the list of preferred consoles.
2113 * @name: device name
2114 * @idx: device index
2115 * @options: options for this console
2116 *
2117 * The last preferred console added will be used for kernel messages
2118 * and stdin/out/err for init.  Normally this is used by console_setup
2119 * above to handle user-supplied console arguments; however it can also
2120 * be used by arch-specific code either to override the user or more
2121 * commonly to provide a default console (ie from PROM variables) when
2122 * the user has not supplied one.
2123 */
2124int add_preferred_console(char *name, int idx, char *options)
2125{
2126        return __add_preferred_console(name, idx, options, NULL);
2127}
2128
2129bool console_suspend_enabled = true;
2130EXPORT_SYMBOL(console_suspend_enabled);
2131
2132static int __init console_suspend_disable(char *str)
2133{
2134        console_suspend_enabled = false;
2135        return 1;
2136}
2137__setup("no_console_suspend", console_suspend_disable);
2138module_param_named(console_suspend, console_suspend_enabled,
2139                bool, S_IRUGO | S_IWUSR);
2140MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2141        " and hibernate operations");
2142
2143/**
2144 * suspend_console - suspend the console subsystem
2145 *
2146 * This disables printk() while we go into suspend states
2147 */
2148void suspend_console(void)
2149{
2150        if (!console_suspend_enabled)
2151                return;
2152        printk("Suspending console(s) (use no_console_suspend to debug)\n");
2153        console_lock();
2154        console_suspended = 1;
2155        up_console_sem();
2156}
2157
2158void resume_console(void)
2159{
2160        if (!console_suspend_enabled)
2161                return;
2162        down_console_sem();
2163        console_suspended = 0;
2164        console_unlock();
2165}
2166
2167/**
2168 * console_cpu_notify - print deferred console messages after CPU hotplug
2169 * @self: notifier struct
2170 * @action: CPU hotplug event
2171 * @hcpu: unused
2172 *
2173 * If printk() is called from a CPU that is not online yet, the messages
2174 * will be spooled but will not show up on the console.  This function is
2175 * called when a new CPU comes online (or fails to come up), and ensures
2176 * that any such output gets printed.
2177 */
2178static int console_cpu_notify(struct notifier_block *self,
2179        unsigned long action, void *hcpu)
2180{
2181        switch (action) {
2182        case CPU_ONLINE:
2183        case CPU_DEAD:
2184        case CPU_DOWN_FAILED:
2185        case CPU_UP_CANCELED:
2186                console_lock();
2187                console_unlock();
2188        }
2189        return NOTIFY_OK;
2190}
2191
2192/**
2193 * console_lock - lock the console system for exclusive use.
2194 *
2195 * Acquires a lock which guarantees that the caller has
2196 * exclusive access to the console system and the console_drivers list.
2197 *
2198 * Can sleep, returns nothing.
2199 */
2200void console_lock(void)
2201{
2202        might_sleep();
2203
2204        down_console_sem();
2205        if (console_suspended)
2206                return;
2207        console_locked = 1;
2208        console_may_schedule = 1;
2209}
2210EXPORT_SYMBOL(console_lock);
2211
2212/**
2213 * console_trylock - try to lock the console system for exclusive use.
2214 *
2215 * Try to acquire a lock which guarantees that the caller has exclusive
2216 * access to the console system and the console_drivers list.
2217 *
2218 * returns 1 on success, and 0 on failure to acquire the lock.
2219 */
2220int console_trylock(void)
2221{
2222        if (down_trylock_console_sem())
2223                return 0;
2224        if (console_suspended) {
2225                up_console_sem();
2226                return 0;
2227        }
2228        console_locked = 1;
2229        /*
2230         * When PREEMPT_COUNT disabled we can't reliably detect if it's
2231         * safe to schedule (e.g. calling printk while holding a spin_lock),
2232         * because preempt_disable()/preempt_enable() are just barriers there
2233         * and preempt_count() is always 0.
2234         *
2235         * RCU read sections have a separate preemption counter when
2236         * PREEMPT_RCU enabled thus we must take extra care and check
2237         * rcu_preempt_depth(), otherwise RCU read sections modify
2238         * preempt_count().
2239         */
2240        console_may_schedule = !oops_in_progress &&
2241                        preemptible() &&
2242                        !rcu_preempt_depth();
2243        return 1;
2244}
2245EXPORT_SYMBOL(console_trylock);
2246
2247int is_console_locked(void)
2248{
2249        return console_locked;
2250}
2251
2252/*
2253 * Check if we have any console that is capable of printing while cpu is
2254 * booting or shutting down. Requires console_sem.
2255 */
2256static int have_callable_console(void)
2257{
2258        struct console *con;
2259
2260        for_each_console(con)
2261                if ((con->flags & CON_ENABLED) &&
2262                                (con->flags & CON_ANYTIME))
2263                        return 1;
2264
2265        return 0;
2266}
2267
2268/*
2269 * Can we actually use the console at this time on this cpu?
2270 *
2271 * Console drivers may assume that per-cpu resources have been allocated. So
2272 * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
2273 * call them until this CPU is officially up.
2274 */
2275static inline int can_use_console(void)
2276{
2277        return cpu_online(raw_smp_processor_id()) || have_callable_console();
2278}
2279
2280static void console_cont_flush(char *text, size_t size)
2281{
2282        unsigned long flags;
2283        size_t len;
2284
2285        raw_spin_lock_irqsave(&logbuf_lock, flags);
2286
2287        if (!cont.len)
2288                goto out;
2289
2290        if (suppress_message_printing(cont.level)) {
2291                cont.cons = cont.len;
2292                if (cont.flushed)
2293                        cont.len = 0;
2294                goto out;
2295        }
2296
2297        /*
2298         * We still queue earlier records, likely because the console was
2299         * busy. The earlier ones need to be printed before this one, we
2300         * did not flush any fragment so far, so just let it queue up.
2301         */
2302        if (console_seq < log_next_seq && !cont.cons)
2303                goto out;
2304
2305        len = cont_print_text(text, size);
2306        raw_spin_unlock(&logbuf_lock);
2307        stop_critical_timings();
2308        call_console_drivers(cont.level, NULL, 0, text, len);
2309        start_critical_timings();
2310        local_irq_restore(flags);
2311        return;
2312out:
2313        raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2314}
2315
2316/**
2317 * console_unlock - unlock the console system
2318 *
2319 * Releases the console_lock which the caller holds on the console system
2320 * and the console driver list.
2321 *
2322 * While the console_lock was held, console output may have been buffered
2323 * by printk().  If this is the case, console_unlock(); emits
2324 * the output prior to releasing the lock.
2325 *
2326 * If there is output waiting, we wake /dev/kmsg and syslog() users.
2327 *
2328 * console_unlock(); may be called from any context.
2329 */
2330void console_unlock(void)
2331{
2332        static char ext_text[CONSOLE_EXT_LOG_MAX];
2333        static char text[LOG_LINE_MAX + PREFIX_MAX];
2334        static u64 seen_seq;
2335        unsigned long flags;
2336        bool wake_klogd = false;
2337        bool do_cond_resched, retry;
2338
2339        if (console_suspended) {
2340                up_console_sem();
2341                return;
2342        }
2343
2344        /*
2345         * Console drivers are called under logbuf_lock, so
2346         * @console_may_schedule should be cleared before; however, we may
2347         * end up dumping a lot of lines, for example, if called from
2348         * console registration path, and should invoke cond_resched()
2349         * between lines if allowable.  Not doing so can cause a very long
2350         * scheduling stall on a slow console leading to RCU stall and
2351         * softlockup warnings which exacerbate the issue with more
2352         * messages practically incapacitating the system.
2353         */
2354        do_cond_resched = console_may_schedule;
2355        console_may_schedule = 0;
2356
2357again:
2358        /*
2359         * We released the console_sem lock, so we need to recheck if
2360         * cpu is online and (if not) is there at least one CON_ANYTIME
2361         * console.
2362         */
2363        if (!can_use_console()) {
2364                console_locked = 0;
2365                up_console_sem();
2366                return;
2367        }
2368
2369        /* flush buffered message fragment immediately to console */
2370        console_cont_flush(text, sizeof(text));
2371
2372        for (;;) {
2373                struct printk_log *msg;
2374                size_t ext_len = 0;
2375                size_t len;
2376                int level;
2377
2378                raw_spin_lock_irqsave(&logbuf_lock, flags);
2379                if (seen_seq != log_next_seq) {
2380                        wake_klogd = true;
2381                        seen_seq = log_next_seq;
2382                }
2383
2384                if (console_seq < log_first_seq) {
2385                        len = sprintf(text, "** %u printk messages dropped ** ",
2386                                      (unsigned)(log_first_seq - console_seq));
2387
2388                        /* messages are gone, move to first one */
2389                        console_seq = log_first_seq;
2390                        console_idx = log_first_idx;
2391                        console_prev = 0;
2392                } else {
2393                        len = 0;
2394                }
2395skip:
2396                if (console_seq == log_next_seq)
2397                        break;
2398
2399                msg = log_from_idx(console_idx);
2400                level = msg->level;
2401                if ((msg->flags & LOG_NOCONS) ||
2402                                suppress_message_printing(level)) {
2403                        /*
2404                         * Skip record we have buffered and already printed
2405                         * directly to the console when we received it, and
2406                         * record that has level above the console loglevel.
2407                         */
2408                        console_idx = log_next(console_idx);
2409                        console_seq++;
2410                        /*
2411                         * We will get here again when we register a new
2412                         * CON_PRINTBUFFER console. Clear the flag so we
2413                         * will properly dump everything later.
2414                         */
2415                        msg->flags &= ~LOG_NOCONS;
2416                        console_prev = msg->flags;
2417                        goto skip;
2418                }
2419
2420                len += msg_print_text(msg, console_prev, false,
2421                                      text + len, sizeof(text) - len);
2422                if (nr_ext_console_drivers) {
2423                        ext_len = msg_print_ext_header(ext_text,
2424                                                sizeof(ext_text),
2425                                                msg, console_seq, console_prev);
2426                        ext_len += msg_print_ext_body(ext_text + ext_len,
2427                                                sizeof(ext_text) - ext_len,
2428                                                log_dict(msg), msg->dict_len,
2429                                                log_text(msg), msg->text_len);
2430                }
2431                console_idx = log_next(console_idx);
2432                console_seq++;
2433                console_prev = msg->flags;
2434                raw_spin_unlock(&logbuf_lock);
2435
2436                stop_critical_timings();        /* don't trace print latency */
2437                call_console_drivers(level, ext_text, ext_len, text, len);
2438                start_critical_timings();
2439                local_irq_restore(flags);
2440
2441                if (do_cond_resched)
2442                        cond_resched();
2443        }
2444        console_locked = 0;
2445
2446        /* Release the exclusive_console once it is used */
2447        if (unlikely(exclusive_console))
2448                exclusive_console = NULL;
2449
2450        raw_spin_unlock(&logbuf_lock);
2451
2452        up_console_sem();
2453
2454        /*
2455         * Someone could have filled up the buffer again, so re-check if there's
2456         * something to flush. In case we cannot trylock the console_sem again,
2457         * there's a new owner and the console_unlock() from them will do the
2458         * flush, no worries.
2459         */
2460        raw_spin_lock(&logbuf_lock);
2461        retry = console_seq != log_next_seq;
2462        raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2463
2464        if (retry && console_trylock())
2465                goto again;
2466
2467        if (wake_klogd)
2468                wake_up_klogd();
2469}
2470EXPORT_SYMBOL(console_unlock);
2471
2472/**
2473 * console_conditional_schedule - yield the CPU if required
2474 *
2475 * If the console code is currently allowed to sleep, and
2476 * if this CPU should yield the CPU to another task, do
2477 * so here.
2478 *
2479 * Must be called within console_lock();.
2480 */
2481void __sched console_conditional_schedule(void)
2482{
2483        if (console_may_schedule)
2484                cond_resched();
2485}
2486EXPORT_SYMBOL(console_conditional_schedule);
2487
2488void console_unblank(void)
2489{
2490        struct console *c;
2491
2492        /*
2493         * console_unblank can no longer be called in interrupt context unless
2494         * oops_in_progress is set to 1..
2495         */
2496        if (oops_in_progress) {
2497                if (down_trylock_console_sem() != 0)
2498                        return;
2499        } else
2500                console_lock();
2501
2502        console_locked = 1;
2503        console_may_schedule = 0;
2504        for_each_console(c)
2505                if ((c->flags & CON_ENABLED) && c->unblank)
2506                        c->unblank();
2507        console_unlock();
2508}
2509
2510/**
2511 * console_flush_on_panic - flush console content on panic
2512 *
2513 * Immediately output all pending messages no matter what.
2514 */
2515void console_flush_on_panic(void)
2516{
2517        /*
2518         * If someone else is holding the console lock, trylock will fail
2519         * and may_schedule may be set.  Ignore and proceed to unlock so
2520         * that messages are flushed out.  As this can be called from any
2521         * context and we don't want to get preempted while flushing,
2522         * ensure may_schedule is cleared.
2523         */
2524        console_trylock();
2525        console_may_schedule = 0;
2526        console_unlock();
2527}
2528
2529/*
2530 * Return the console tty driver structure and its associated index
2531 */
2532struct tty_driver *console_device(int *index)
2533{
2534        struct console *c;
2535        struct tty_driver *driver = NULL;
2536
2537        console_lock();
2538        for_each_console(c) {
2539                if (!c->device)
2540                        continue;
2541                driver = c->device(c, index);
2542                if (driver)
2543                        break;
2544        }
2545        console_unlock();
2546        return driver;
2547}
2548
2549/*
2550 * Prevent further output on the passed console device so that (for example)
2551 * serial drivers can disable console output before suspending a port, and can
2552 * re-enable output afterwards.
2553 */
2554void console_stop(struct console *console)
2555{
2556        console_lock();
2557        console->flags &= ~CON_ENABLED;
2558        console_unlock();
2559}
2560EXPORT_SYMBOL(console_stop);
2561
2562void console_start(struct console *console)
2563{
2564        console_lock();
2565        console->flags |= CON_ENABLED;
2566        console_unlock();
2567}
2568EXPORT_SYMBOL(console_start);
2569
2570static int __read_mostly keep_bootcon;
2571
2572static int __init keep_bootcon_setup(char *str)
2573{
2574        keep_bootcon = 1;
2575        pr_info("debug: skip boot console de-registration.\n");
2576
2577        return 0;
2578}
2579
2580early_param("keep_bootcon", keep_bootcon_setup);
2581
2582/*
2583 * The console driver calls this routine during kernel initialization
2584 * to register the console printing procedure with printk() and to
2585 * print any messages that were printed by the kernel before the
2586 * console driver was initialized.
2587 *
2588 * This can happen pretty early during the boot process (because of
2589 * early_printk) - sometimes before setup_arch() completes - be careful
2590 * of what kernel features are used - they may not be initialised yet.
2591 *
2592 * There are two types of consoles - bootconsoles (early_printk) and
2593 * "real" consoles (everything which is not a bootconsole) which are
2594 * handled differently.
2595 *  - Any number of bootconsoles can be registered at any time.
2596 *  - As soon as a "real" console is registered, all bootconsoles
2597 *    will be unregistered automatically.
2598 *  - Once a "real" console is registered, any attempt to register a
2599 *    bootconsoles will be rejected
2600 */
2601void register_console(struct console *newcon)
2602{
2603        int i;
2604        unsigned long flags;
2605        struct console *bcon = NULL;
2606        struct console_cmdline *c;
2607
2608        if (console_drivers)
2609                for_each_console(bcon)
2610                        if (WARN(bcon == newcon,
2611                                        "console '%s%d' already registered\n",
2612                                        bcon->name, bcon->index))
2613                                return;
2614
2615        /*
2616         * before we register a new CON_BOOT console, make sure we don't
2617         * already have a valid console
2618         */
2619        if (console_drivers && newcon->flags & CON_BOOT) {
2620                /* find the last or real console */
2621                for_each_console(bcon) {
2622                        if (!(bcon->flags & CON_BOOT)) {
2623                                pr_info("Too late to register bootconsole %s%d\n",
2624                                        newcon->name, newcon->index);
2625                                return;
2626                        }
2627                }
2628        }
2629
2630        if (console_drivers && console_drivers->flags & CON_BOOT)
2631                bcon = console_drivers;
2632
2633        if (preferred_console < 0 || bcon || !console_drivers)
2634                preferred_console = selected_console;
2635
2636        /*
2637         *      See if we want to use this console driver. If we
2638         *      didn't select a console we take the first one
2639         *      that registers here.
2640         */
2641        if (preferred_console < 0) {
2642                if (newcon->index < 0)
2643                        newcon->index = 0;
2644                if (newcon->setup == NULL ||
2645                    newcon->setup(newcon, NULL) == 0) {
2646                        newcon->flags |= CON_ENABLED;
2647                        if (newcon->device) {
2648                                newcon->flags |= CON_CONSDEV;
2649                                preferred_console = 0;
2650                        }
2651                }
2652        }
2653
2654        /*
2655         *      See if this console matches one we selected on
2656         *      the command line.
2657         */
2658        for (i = 0, c = console_cmdline;
2659             i < MAX_CMDLINECONSOLES && c->name[0];
2660             i++, c++) {
2661                if (!newcon->match ||
2662                    newcon->match(newcon, c->name, c->index, c->options) != 0) {
2663                        /* default matching */
2664                        BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
2665                        if (strcmp(c->name, newcon->name) != 0)
2666                                continue;
2667                        if (newcon->index >= 0 &&
2668                            newcon->index != c->index)
2669                                continue;
2670                        if (newcon->index < 0)
2671                                newcon->index = c->index;
2672
2673                        if (_braille_register_console(newcon, c))
2674                                return;
2675
2676                        if (newcon->setup &&
2677                            newcon->setup(newcon, c->options) != 0)
2678                                break;
2679                }
2680
2681                newcon->flags |= CON_ENABLED;
2682                if (i == selected_console) {
2683                        newcon->flags |= CON_CONSDEV;
2684                        preferred_console = selected_console;
2685                }
2686                break;
2687        }
2688
2689        if (!(newcon->flags & CON_ENABLED))
2690                return;
2691
2692        /*
2693         * If we have a bootconsole, and are switching to a real console,
2694         * don't print everything out again, since when the boot console, and
2695         * the real console are the same physical device, it's annoying to
2696         * see the beginning boot messages twice
2697         */
2698        if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2699                newcon->flags &= ~CON_PRINTBUFFER;
2700
2701        /*
2702         *      Put this console in the list - keep the
2703         *      preferred driver at the head of the list.
2704         */
2705        console_lock();
2706        if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2707                newcon->next = console_drivers;
2708                console_drivers = newcon;
2709                if (newcon->next)
2710                        newcon->next->flags &= ~CON_CONSDEV;
2711        } else {
2712                newcon->next = console_drivers->next;
2713                console_drivers->next = newcon;
2714        }
2715
2716        if (newcon->flags & CON_EXTENDED)
2717                if (!nr_ext_console_drivers++)
2718                        pr_info("printk: continuation disabled due to ext consoles, expect more fragments in /dev/kmsg\n");
2719
2720        if (newcon->flags & CON_PRINTBUFFER) {
2721                /*
2722                 * console_unlock(); will print out the buffered messages
2723                 * for us.
2724                 */
2725                raw_spin_lock_irqsave(&logbuf_lock, flags);
2726                console_seq = syslog_seq;
2727                console_idx = syslog_idx;
2728                console_prev = syslog_prev;
2729                raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2730                /*
2731                 * We're about to replay the log buffer.  Only do this to the
2732                 * just-registered console to avoid excessive message spam to
2733                 * the already-registered consoles.
2734                 */
2735                exclusive_console = newcon;
2736        }
2737        console_unlock();
2738        console_sysfs_notify();
2739
2740        /*
2741         * By unregistering the bootconsoles after we enable the real console
2742         * we get the "console xxx enabled" message on all the consoles -
2743         * boot consoles, real consoles, etc - this is to ensure that end
2744         * users know there might be something in the kernel's log buffer that
2745         * went to the bootconsole (that they do not see on the real console)
2746         */
2747        pr_info("%sconsole [%s%d] enabled\n",
2748                (newcon->flags & CON_BOOT) ? "boot" : "" ,
2749                newcon->name, newcon->index);
2750        if (bcon &&
2751            ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2752            !keep_bootcon) {
2753                /* We need to iterate through all boot consoles, to make
2754                 * sure we print everything out, before we unregister them.
2755                 */
2756                for_each_console(bcon)
2757                        if (bcon->flags & CON_BOOT)
2758                                unregister_console(bcon);
2759        }
2760}
2761EXPORT_SYMBOL(register_console);
2762
2763int unregister_console(struct console *console)
2764{
2765        struct console *a, *b;
2766        int res;
2767
2768        pr_info("%sconsole [%s%d] disabled\n",
2769                (console->flags & CON_BOOT) ? "boot" : "" ,
2770                console->name, console->index);
2771
2772        res = _braille_unregister_console(console);
2773        if (res)
2774                return res;
2775
2776        res = 1;
2777        console_lock();
2778        if (console_drivers == console) {
2779                console_drivers=console->next;
2780                res = 0;
2781        } else if (console_drivers) {
2782                for (a=console_drivers->next, b=console_drivers ;
2783                     a; b=a, a=b->next) {
2784                        if (a == console) {
2785                                b->next = a->next;
2786                                res = 0;
2787                                break;
2788                        }
2789                }
2790        }
2791
2792        if (!res && (console->flags & CON_EXTENDED))
2793                nr_ext_console_drivers--;
2794
2795        /*
2796         * If this isn't the last console and it has CON_CONSDEV set, we
2797         * need to set it on the next preferred console.
2798         */
2799        if (console_drivers != NULL && console->flags & CON_CONSDEV)
2800                console_drivers->flags |= CON_CONSDEV;
2801
2802        console->flags &= ~CON_ENABLED;
2803        console_unlock();
2804        console_sysfs_notify();
2805        return res;
2806}
2807EXPORT_SYMBOL(unregister_console);
2808
2809/*
2810 * Some boot consoles access data that is in the init section and which will
2811 * be discarded after the initcalls have been run. To make sure that no code
2812 * will access this data, unregister the boot consoles in a late initcall.
2813 *
2814 * If for some reason, such as deferred probe or the driver being a loadable
2815 * module, the real console hasn't registered yet at this point, there will
2816 * be a brief interval in which no messages are logged to the console, which
2817 * makes it difficult to diagnose problems that occur during this time.
2818 *
2819 * To mitigate this problem somewhat, only unregister consoles whose memory
2820 * intersects with the init section. Note that code exists elsewhere to get
2821 * rid of the boot console as soon as the proper console shows up, so there
2822 * won't be side-effects from postponing the removal.
2823 */
2824static int __init printk_late_init(void)
2825{
2826        struct console *con;
2827
2828        for_each_console(con) {
2829                if (!keep_bootcon && con->flags & CON_BOOT) {
2830                        /*
2831                         * Make sure to unregister boot consoles whose data
2832                         * resides in the init section before the init section
2833                         * is discarded. Boot consoles whose data will stick
2834                         * around will automatically be unregistered when the
2835                         * proper console replaces them.
2836                         */
2837                        if (init_section_intersects(con, sizeof(*con)))
2838                                unregister_console(con);
2839                }
2840        }
2841        hotcpu_notifier(console_cpu_notify, 0);
2842        return 0;
2843}
2844late_initcall(printk_late_init);
2845
2846#if defined CONFIG_PRINTK
2847/*
2848 * Delayed printk version, for scheduler-internal messages:
2849 */
2850#define PRINTK_PENDING_WAKEUP   0x01
2851#define PRINTK_PENDING_OUTPUT   0x02
2852
2853static DEFINE_PER_CPU(int, printk_pending);
2854
2855static void wake_up_klogd_work_func(struct irq_work *irq_work)
2856{
2857        int pending = __this_cpu_xchg(printk_pending, 0);
2858
2859        if (pending & PRINTK_PENDING_OUTPUT) {
2860                /* If trylock fails, someone else is doing the printing */
2861                if (console_trylock())
2862                        console_unlock();
2863        }
2864
2865        if (pending & PRINTK_PENDING_WAKEUP)
2866                wake_up_interruptible(&log_wait);
2867}
2868
2869static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
2870        .func = wake_up_klogd_work_func,
2871        .flags = IRQ_WORK_LAZY,
2872};
2873
2874void wake_up_klogd(void)
2875{
2876        preempt_disable();
2877        if (waitqueue_active(&log_wait)) {
2878                this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
2879                irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2880        }
2881        preempt_enable();
2882}
2883
2884int printk_deferred(const char *fmt, ...)
2885{
2886        va_list args;
2887        int r;
2888
2889        preempt_disable();
2890        va_start(args, fmt);
2891        r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args);
2892        va_end(args);
2893
2894        __this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
2895        irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2896        preempt_enable();
2897
2898        return r;
2899}
2900
2901/*
2902 * printk rate limiting, lifted from the networking subsystem.
2903 *
2904 * This enforces a rate limit: not more than 10 kernel messages
2905 * every 5s to make a denial-of-service attack impossible.
2906 */
2907DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2908
2909int __printk_ratelimit(const char *func)
2910{
2911        return ___ratelimit(&printk_ratelimit_state, func);
2912}
2913EXPORT_SYMBOL(__printk_ratelimit);
2914
2915/**
2916 * printk_timed_ratelimit - caller-controlled printk ratelimiting
2917 * @caller_jiffies: pointer to caller's state
2918 * @interval_msecs: minimum interval between prints
2919 *
2920 * printk_timed_ratelimit() returns true if more than @interval_msecs
2921 * milliseconds have elapsed since the last time printk_timed_ratelimit()
2922 * returned true.
2923 */
2924bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2925                        unsigned int interval_msecs)
2926{
2927        unsigned long elapsed = jiffies - *caller_jiffies;
2928
2929        if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
2930                return false;
2931
2932        *caller_jiffies = jiffies;
2933        return true;
2934}
2935EXPORT_SYMBOL(printk_timed_ratelimit);
2936
2937static DEFINE_SPINLOCK(dump_list_lock);
2938static LIST_HEAD(dump_list);
2939
2940/**
2941 * kmsg_dump_register - register a kernel log dumper.
2942 * @dumper: pointer to the kmsg_dumper structure
2943 *
2944 * Adds a kernel log dumper to the system. The dump callback in the
2945 * structure will be called when the kernel oopses or panics and must be
2946 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2947 */
2948int kmsg_dump_register(struct kmsg_dumper *dumper)
2949{
2950        unsigned long flags;
2951        int err = -EBUSY;
2952
2953        /* The dump callback needs to be set */
2954        if (!dumper->dump)
2955                return -EINVAL;
2956
2957        spin_lock_irqsave(&dump_list_lock, flags);
2958        /* Don't allow registering multiple times */
2959        if (!dumper->registered) {
2960                dumper->registered = 1;
2961                list_add_tail_rcu(&dumper->list, &dump_list);
2962                err = 0;
2963        }
2964        spin_unlock_irqrestore(&dump_list_lock, flags);
2965
2966        return err;
2967}
2968EXPORT_SYMBOL_GPL(kmsg_dump_register);
2969
2970/**
2971 * kmsg_dump_unregister - unregister a kmsg dumper.
2972 * @dumper: pointer to the kmsg_dumper structure
2973 *
2974 * Removes a dump device from the system. Returns zero on success and
2975 * %-EINVAL otherwise.
2976 */
2977int kmsg_dump_unregister(struct kmsg_dumper *dumper)
2978{
2979        unsigned long flags;
2980        int err = -EINVAL;
2981
2982        spin_lock_irqsave(&dump_list_lock, flags);
2983        if (dumper->registered) {
2984                dumper->registered = 0;
2985                list_del_rcu(&dumper->list);
2986                err = 0;
2987        }
2988        spin_unlock_irqrestore(&dump_list_lock, flags);
2989        synchronize_rcu();
2990
2991        return err;
2992}
2993EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
2994
2995static bool always_kmsg_dump;
2996module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
2997
2998/**
2999 * kmsg_dump - dump kernel log to kernel message dumpers.
3000 * @reason: the reason (oops, panic etc) for dumping
3001 *
3002 * Call each of the registered dumper's dump() callback, which can
3003 * retrieve the kmsg records with kmsg_dump_get_line() or
3004 * kmsg_dump_get_buffer().
3005 */
3006void kmsg_dump(enum kmsg_dump_reason reason)
3007{
3008        struct kmsg_dumper *dumper;
3009        unsigned long flags;
3010
3011        if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
3012                return;
3013
3014        rcu_read_lock();
3015        list_for_each_entry_rcu(dumper, &dump_list, list) {
3016                if (dumper->max_reason && reason > dumper->max_reason)
3017                        continue;
3018
3019                /* initialize iterator with data about the stored records */
3020                dumper->active = true;
3021
3022                raw_spin_lock_irqsave(&logbuf_lock, flags);
3023                dumper->cur_seq = clear_seq;
3024                dumper->cur_idx = clear_idx;
3025                dumper->next_seq = log_next_seq;
3026                dumper->next_idx = log_next_idx;
3027                raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3028
3029                /* invoke dumper which will iterate over records */
3030                dumper->dump(dumper, reason);
3031
3032                /* reset iterator */
3033                dumper->active = false;
3034        }
3035        rcu_read_unlock();
3036}
3037
3038/**
3039 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
3040 * @dumper: registered kmsg dumper
3041 * @syslog: include the "<4>" prefixes
3042 * @line: buffer to copy the line to
3043 * @size: maximum size of the buffer
3044 * @len: length of line placed into buffer
3045 *
3046 * Start at the beginning of the kmsg buffer, with the oldest kmsg
3047 * record, and copy one record into the provided buffer.
3048 *
3049 * Consecutive calls will return the next available record moving
3050 * towards the end of the buffer with the youngest messages.
3051 *
3052 * A return value of FALSE indicates that there are no more records to
3053 * read.
3054 *
3055 * The function is similar to kmsg_dump_get_line(), but grabs no locks.
3056 */
3057bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
3058                               char *line, size_t size, size_t *len)
3059{
3060        struct printk_log *msg;
3061        size_t l = 0;
3062        bool ret = false;
3063
3064        if (!dumper->active)
3065                goto out;
3066
3067        if (dumper->cur_seq < log_first_seq) {
3068                /* messages are gone, move to first available one */
3069                dumper->cur_seq = log_first_seq;
3070                dumper->cur_idx = log_first_idx;
3071        }
3072
3073        /* last entry */
3074        if (dumper->cur_seq >= log_next_seq)
3075                goto out;
3076
3077        msg = log_from_idx(dumper->cur_idx);
3078        l = msg_print_text(msg, 0, syslog, line, size);
3079
3080        dumper->cur_idx = log_next(dumper->cur_idx);
3081        dumper->cur_seq++;
3082        ret = true;
3083out:
3084        if (len)
3085                *len = l;
3086        return ret;
3087}
3088
3089/**
3090 * kmsg_dump_get_line - retrieve one kmsg log line
3091 * @dumper: registered kmsg dumper
3092 * @syslog: include the "<4>" prefixes
3093 * @line: buffer to copy the line to
3094 * @size: maximum size of the buffer
3095 * @len: length of line placed into buffer
3096 *
3097 * Start at the beginning of the kmsg buffer, with the oldest kmsg
3098 * record, and copy one record into the provided buffer.
3099 *
3100 * Consecutive calls will return the next available record moving
3101 * towards the end of the buffer with the youngest messages.
3102 *
3103 * A return value of FALSE indicates that there are no more records to
3104 * read.
3105 */
3106bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
3107                        char *line, size_t size, size_t *len)
3108{
3109        unsigned long flags;
3110        bool ret;
3111
3112        raw_spin_lock_irqsave(&logbuf_lock, flags);
3113        ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
3114        raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3115
3116        return ret;
3117}
3118EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
3119
3120/**
3121 * kmsg_dump_get_buffer - copy kmsg log lines
3122 * @dumper: registered kmsg dumper
3123 * @syslog: include the "<4>" prefixes
3124 * @buf: buffer to copy the line to
3125 * @size: maximum size of the buffer
3126 * @len: length of line placed into buffer
3127 *
3128 * Start at the end of the kmsg buffer and fill the provided buffer
3129 * with as many of the the *youngest* kmsg records that fit into it.
3130 * If the buffer is large enough, all available kmsg records will be
3131 * copied with a single call.
3132 *
3133 * Consecutive calls will fill the buffer with the next block of
3134 * available older records, not including the earlier retrieved ones.
3135 *
3136 * A return value of FALSE indicates that there are no more records to
3137 * read.
3138 */
3139bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
3140                          char *buf, size_t size, size_t *len)
3141{
3142        unsigned long flags;
3143        u64 seq;
3144        u32 idx;
3145        u64 next_seq;
3146        u32 next_idx;
3147        enum log_flags prev;
3148        size_t l = 0;
3149        bool ret = false;
3150
3151        if (!dumper->active)
3152                goto out;
3153
3154        raw_spin_lock_irqsave(&logbuf_lock, flags);
3155        if (dumper->cur_seq < log_first_seq) {
3156                /* messages are gone, move to first available one */
3157                dumper->cur_seq = log_first_seq;
3158                dumper->cur_idx = log_first_idx;
3159        }
3160
3161        /* last entry */
3162        if (dumper->cur_seq >= dumper->next_seq) {
3163                raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3164                goto out;
3165        }
3166
3167        /* calculate length of entire buffer */
3168        seq = dumper->cur_seq;
3169        idx = dumper->cur_idx;
3170        prev = 0;
3171        while (seq < dumper->next_seq) {
3172                struct printk_log *msg = log_from_idx(idx);
3173
3174                l += msg_print_text(msg, prev, true, NULL, 0);
3175                idx = log_next(idx);
3176                seq++;
3177                prev = msg->flags;
3178        }
3179
3180        /* move first record forward until length fits into the buffer */
3181        seq = dumper->cur_seq;
3182        idx = dumper->cur_idx;
3183        prev = 0;
3184        while (l > size && seq < dumper->next_seq) {
3185                struct printk_log *msg = log_from_idx(idx);
3186
3187                l -= msg_print_text(msg, prev, true, NULL, 0);
3188                idx = log_next(idx);
3189                seq++;
3190                prev = msg->flags;
3191        }
3192
3193        /* last message in next interation */
3194        next_seq = seq;
3195        next_idx = idx;
3196
3197        l = 0;
3198        while (seq < dumper->next_seq) {
3199                struct printk_log *msg = log_from_idx(idx);
3200
3201                l += msg_print_text(msg, prev, syslog, buf + l, size - l);
3202                idx = log_next(idx);
3203                seq++;
3204                prev = msg->flags;
3205        }
3206
3207        dumper->next_seq = next_seq;
3208        dumper->next_idx = next_idx;
3209        ret = true;
3210        raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3211out:
3212        if (len)
3213                *len = l;
3214        return ret;
3215}
3216EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
3217
3218/**
3219 * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
3220 * @dumper: registered kmsg dumper
3221 *
3222 * Reset the dumper's iterator so that kmsg_dump_get_line() and
3223 * kmsg_dump_get_buffer() can be called again and used multiple
3224 * times within the same dumper.dump() callback.
3225 *
3226 * The function is similar to kmsg_dump_rewind(), but grabs no locks.
3227 */
3228void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
3229{
3230        dumper->cur_seq = clear_seq;
3231        dumper->cur_idx = clear_idx;
3232        dumper->next_seq = log_next_seq;
3233        dumper->next_idx = log_next_idx;
3234}
3235
3236/**
3237 * kmsg_dump_rewind - reset the interator
3238 * @dumper: registered kmsg dumper
3239 *
3240 * Reset the dumper's iterator so that kmsg_dump_get_line() and
3241 * kmsg_dump_get_buffer() can be called again and used multiple
3242 * times within the same dumper.dump() callback.
3243 */
3244void kmsg_dump_rewind(struct kmsg_dumper *dumper)
3245{
3246        unsigned long flags;
3247
3248        raw_spin_lock_irqsave(&logbuf_lock, flags);
3249        kmsg_dump_rewind_nolock(dumper);
3250        raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3251}
3252EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
3253
3254static char dump_stack_arch_desc_str[128];
3255
3256/**
3257 * dump_stack_set_arch_desc - set arch-specific str to show with task dumps
3258 * @fmt: printf-style format string
3259 * @...: arguments for the format string
3260 *
3261 * The configured string will be printed right after utsname during task
3262 * dumps.  Usually used to add arch-specific system identifiers.  If an
3263 * arch wants to make use of such an ID string, it should initialize this
3264 * as soon as possible during boot.
3265 */
3266void __init dump_stack_set_arch_desc(const char *fmt, ...)
3267{
3268        va_list args;
3269
3270        va_start(args, fmt);
3271        vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str),
3272                  fmt, args);
3273        va_end(args);
3274}
3275
3276/**
3277 * dump_stack_print_info - print generic debug info for dump_stack()
3278 * @log_lvl: log level
3279 *
3280 * Arch-specific dump_stack() implementations can use this function to
3281 * print out the same debug information as the generic dump_stack().
3282 */
3283void dump_stack_print_info(const char *log_lvl)
3284{
3285        printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n",
3286               log_lvl, raw_smp_processor_id(), current->pid, current->comm,
3287               print_tainted(), init_utsname()->release,
3288               (int)strcspn(init_utsname()->version, " "),
3289               init_utsname()->version);
3290
3291        if (dump_stack_arch_desc_str[0] != '\0')
3292                printk("%sHardware name: %s\n",
3293                       log_lvl, dump_stack_arch_desc_str);
3294
3295        print_worker_info(log_lvl, current);
3296}
3297
3298/**
3299 * show_regs_print_info - print generic debug info for show_regs()
3300 * @log_lvl: log level
3301 *
3302 * show_regs() implementations can use this function to print out generic
3303 * debug information.
3304 */
3305void show_regs_print_info(const char *log_lvl)
3306{
3307        dump_stack_print_info(log_lvl);
3308
3309        printk("%stask: %p task.stack: %p\n",
3310               log_lvl, current, task_stack_page(current));
3311}
3312
3313#endif
3314