linux/kernel/time/hrtimer.c
<<
>>
Prefs
   1/*
   2 *  linux/kernel/hrtimer.c
   3 *
   4 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
   5 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
   6 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
   7 *
   8 *  High-resolution kernel timers
   9 *
  10 *  In contrast to the low-resolution timeout API implemented in
  11 *  kernel/timer.c, hrtimers provide finer resolution and accuracy
  12 *  depending on system configuration and capabilities.
  13 *
  14 *  These timers are currently used for:
  15 *   - itimers
  16 *   - POSIX timers
  17 *   - nanosleep
  18 *   - precise in-kernel timing
  19 *
  20 *  Started by: Thomas Gleixner and Ingo Molnar
  21 *
  22 *  Credits:
  23 *      based on kernel/timer.c
  24 *
  25 *      Help, testing, suggestions, bugfixes, improvements were
  26 *      provided by:
  27 *
  28 *      George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
  29 *      et. al.
  30 *
  31 *  For licencing details see kernel-base/COPYING
  32 */
  33
  34#include <linux/cpu.h>
  35#include <linux/export.h>
  36#include <linux/percpu.h>
  37#include <linux/hrtimer.h>
  38#include <linux/notifier.h>
  39#include <linux/syscalls.h>
  40#include <linux/kallsyms.h>
  41#include <linux/interrupt.h>
  42#include <linux/tick.h>
  43#include <linux/seq_file.h>
  44#include <linux/err.h>
  45#include <linux/debugobjects.h>
  46#include <linux/sched.h>
  47#include <linux/sched/sysctl.h>
  48#include <linux/sched/rt.h>
  49#include <linux/sched/deadline.h>
  50#include <linux/timer.h>
  51#include <linux/freezer.h>
  52
  53#include <asm/uaccess.h>
  54
  55#include <trace/events/timer.h>
  56
  57#include "tick-internal.h"
  58
  59/*
  60 * The timer bases:
  61 *
  62 * There are more clockids than hrtimer bases. Thus, we index
  63 * into the timer bases by the hrtimer_base_type enum. When trying
  64 * to reach a base using a clockid, hrtimer_clockid_to_base()
  65 * is used to convert from clockid to the proper hrtimer_base_type.
  66 */
  67DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
  68{
  69        .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
  70        .seq = SEQCNT_ZERO(hrtimer_bases.seq),
  71        .clock_base =
  72        {
  73                {
  74                        .index = HRTIMER_BASE_MONOTONIC,
  75                        .clockid = CLOCK_MONOTONIC,
  76                        .get_time = &ktime_get,
  77                },
  78                {
  79                        .index = HRTIMER_BASE_REALTIME,
  80                        .clockid = CLOCK_REALTIME,
  81                        .get_time = &ktime_get_real,
  82                },
  83                {
  84                        .index = HRTIMER_BASE_BOOTTIME,
  85                        .clockid = CLOCK_BOOTTIME,
  86                        .get_time = &ktime_get_boottime,
  87                },
  88                {
  89                        .index = HRTIMER_BASE_TAI,
  90                        .clockid = CLOCK_TAI,
  91                        .get_time = &ktime_get_clocktai,
  92                },
  93        }
  94};
  95
  96static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
  97        [CLOCK_REALTIME]        = HRTIMER_BASE_REALTIME,
  98        [CLOCK_MONOTONIC]       = HRTIMER_BASE_MONOTONIC,
  99        [CLOCK_BOOTTIME]        = HRTIMER_BASE_BOOTTIME,
 100        [CLOCK_TAI]             = HRTIMER_BASE_TAI,
 101};
 102
 103static inline int hrtimer_clockid_to_base(clockid_t clock_id)
 104{
 105        return hrtimer_clock_to_base_table[clock_id];
 106}
 107
 108/*
 109 * Functions and macros which are different for UP/SMP systems are kept in a
 110 * single place
 111 */
 112#ifdef CONFIG_SMP
 113
 114/*
 115 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
 116 * such that hrtimer_callback_running() can unconditionally dereference
 117 * timer->base->cpu_base
 118 */
 119static struct hrtimer_cpu_base migration_cpu_base = {
 120        .seq = SEQCNT_ZERO(migration_cpu_base),
 121        .clock_base = { { .cpu_base = &migration_cpu_base, }, },
 122};
 123
 124#define migration_base  migration_cpu_base.clock_base[0]
 125
 126/*
 127 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
 128 * means that all timers which are tied to this base via timer->base are
 129 * locked, and the base itself is locked too.
 130 *
 131 * So __run_timers/migrate_timers can safely modify all timers which could
 132 * be found on the lists/queues.
 133 *
 134 * When the timer's base is locked, and the timer removed from list, it is
 135 * possible to set timer->base = &migration_base and drop the lock: the timer
 136 * remains locked.
 137 */
 138static
 139struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
 140                                             unsigned long *flags)
 141{
 142        struct hrtimer_clock_base *base;
 143
 144        for (;;) {
 145                base = timer->base;
 146                if (likely(base != &migration_base)) {
 147                        raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
 148                        if (likely(base == timer->base))
 149                                return base;
 150                        /* The timer has migrated to another CPU: */
 151                        raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
 152                }
 153                cpu_relax();
 154        }
 155}
 156
 157/*
 158 * With HIGHRES=y we do not migrate the timer when it is expiring
 159 * before the next event on the target cpu because we cannot reprogram
 160 * the target cpu hardware and we would cause it to fire late.
 161 *
 162 * Called with cpu_base->lock of target cpu held.
 163 */
 164static int
 165hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
 166{
 167#ifdef CONFIG_HIGH_RES_TIMERS
 168        ktime_t expires;
 169
 170        if (!new_base->cpu_base->hres_active)
 171                return 0;
 172
 173        expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
 174        return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
 175#else
 176        return 0;
 177#endif
 178}
 179
 180#ifdef CONFIG_NO_HZ_COMMON
 181static inline
 182struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
 183                                         int pinned)
 184{
 185        if (pinned || !base->migration_enabled)
 186                return base;
 187        return &per_cpu(hrtimer_bases, get_nohz_timer_target());
 188}
 189#else
 190static inline
 191struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
 192                                         int pinned)
 193{
 194        return base;
 195}
 196#endif
 197
 198/*
 199 * We switch the timer base to a power-optimized selected CPU target,
 200 * if:
 201 *      - NO_HZ_COMMON is enabled
 202 *      - timer migration is enabled
 203 *      - the timer callback is not running
 204 *      - the timer is not the first expiring timer on the new target
 205 *
 206 * If one of the above requirements is not fulfilled we move the timer
 207 * to the current CPU or leave it on the previously assigned CPU if
 208 * the timer callback is currently running.
 209 */
 210static inline struct hrtimer_clock_base *
 211switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
 212                    int pinned)
 213{
 214        struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
 215        struct hrtimer_clock_base *new_base;
 216        int basenum = base->index;
 217
 218        this_cpu_base = this_cpu_ptr(&hrtimer_bases);
 219        new_cpu_base = get_target_base(this_cpu_base, pinned);
 220again:
 221        new_base = &new_cpu_base->clock_base[basenum];
 222
 223        if (base != new_base) {
 224                /*
 225                 * We are trying to move timer to new_base.
 226                 * However we can't change timer's base while it is running,
 227                 * so we keep it on the same CPU. No hassle vs. reprogramming
 228                 * the event source in the high resolution case. The softirq
 229                 * code will take care of this when the timer function has
 230                 * completed. There is no conflict as we hold the lock until
 231                 * the timer is enqueued.
 232                 */
 233                if (unlikely(hrtimer_callback_running(timer)))
 234                        return base;
 235
 236                /* See the comment in lock_hrtimer_base() */
 237                timer->base = &migration_base;
 238                raw_spin_unlock(&base->cpu_base->lock);
 239                raw_spin_lock(&new_base->cpu_base->lock);
 240
 241                if (new_cpu_base != this_cpu_base &&
 242                    hrtimer_check_target(timer, new_base)) {
 243                        raw_spin_unlock(&new_base->cpu_base->lock);
 244                        raw_spin_lock(&base->cpu_base->lock);
 245                        new_cpu_base = this_cpu_base;
 246                        timer->base = base;
 247                        goto again;
 248                }
 249                timer->base = new_base;
 250        } else {
 251                if (new_cpu_base != this_cpu_base &&
 252                    hrtimer_check_target(timer, new_base)) {
 253                        new_cpu_base = this_cpu_base;
 254                        goto again;
 255                }
 256        }
 257        return new_base;
 258}
 259
 260#else /* CONFIG_SMP */
 261
 262static inline struct hrtimer_clock_base *
 263lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
 264{
 265        struct hrtimer_clock_base *base = timer->base;
 266
 267        raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
 268
 269        return base;
 270}
 271
 272# define switch_hrtimer_base(t, b, p)   (b)
 273
 274#endif  /* !CONFIG_SMP */
 275
 276/*
 277 * Functions for the union type storage format of ktime_t which are
 278 * too large for inlining:
 279 */
 280#if BITS_PER_LONG < 64
 281/*
 282 * Divide a ktime value by a nanosecond value
 283 */
 284s64 __ktime_divns(const ktime_t kt, s64 div)
 285{
 286        int sft = 0;
 287        s64 dclc;
 288        u64 tmp;
 289
 290        dclc = ktime_to_ns(kt);
 291        tmp = dclc < 0 ? -dclc : dclc;
 292
 293        /* Make sure the divisor is less than 2^32: */
 294        while (div >> 32) {
 295                sft++;
 296                div >>= 1;
 297        }
 298        tmp >>= sft;
 299        do_div(tmp, (unsigned long) div);
 300        return dclc < 0 ? -tmp : tmp;
 301}
 302EXPORT_SYMBOL_GPL(__ktime_divns);
 303#endif /* BITS_PER_LONG >= 64 */
 304
 305/*
 306 * Add two ktime values and do a safety check for overflow:
 307 */
 308ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
 309{
 310        ktime_t res = ktime_add_unsafe(lhs, rhs);
 311
 312        /*
 313         * We use KTIME_SEC_MAX here, the maximum timeout which we can
 314         * return to user space in a timespec:
 315         */
 316        if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
 317                res = ktime_set(KTIME_SEC_MAX, 0);
 318
 319        return res;
 320}
 321
 322EXPORT_SYMBOL_GPL(ktime_add_safe);
 323
 324#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
 325
 326static struct debug_obj_descr hrtimer_debug_descr;
 327
 328static void *hrtimer_debug_hint(void *addr)
 329{
 330        return ((struct hrtimer *) addr)->function;
 331}
 332
 333/*
 334 * fixup_init is called when:
 335 * - an active object is initialized
 336 */
 337static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
 338{
 339        struct hrtimer *timer = addr;
 340
 341        switch (state) {
 342        case ODEBUG_STATE_ACTIVE:
 343                hrtimer_cancel(timer);
 344                debug_object_init(timer, &hrtimer_debug_descr);
 345                return true;
 346        default:
 347                return false;
 348        }
 349}
 350
 351/*
 352 * fixup_activate is called when:
 353 * - an active object is activated
 354 * - an unknown non-static object is activated
 355 */
 356static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
 357{
 358        switch (state) {
 359        case ODEBUG_STATE_ACTIVE:
 360                WARN_ON(1);
 361
 362        default:
 363                return false;
 364        }
 365}
 366
 367/*
 368 * fixup_free is called when:
 369 * - an active object is freed
 370 */
 371static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
 372{
 373        struct hrtimer *timer = addr;
 374
 375        switch (state) {
 376        case ODEBUG_STATE_ACTIVE:
 377                hrtimer_cancel(timer);
 378                debug_object_free(timer, &hrtimer_debug_descr);
 379                return true;
 380        default:
 381                return false;
 382        }
 383}
 384
 385static struct debug_obj_descr hrtimer_debug_descr = {
 386        .name           = "hrtimer",
 387        .debug_hint     = hrtimer_debug_hint,
 388        .fixup_init     = hrtimer_fixup_init,
 389        .fixup_activate = hrtimer_fixup_activate,
 390        .fixup_free     = hrtimer_fixup_free,
 391};
 392
 393static inline void debug_hrtimer_init(struct hrtimer *timer)
 394{
 395        debug_object_init(timer, &hrtimer_debug_descr);
 396}
 397
 398static inline void debug_hrtimer_activate(struct hrtimer *timer)
 399{
 400        debug_object_activate(timer, &hrtimer_debug_descr);
 401}
 402
 403static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
 404{
 405        debug_object_deactivate(timer, &hrtimer_debug_descr);
 406}
 407
 408static inline void debug_hrtimer_free(struct hrtimer *timer)
 409{
 410        debug_object_free(timer, &hrtimer_debug_descr);
 411}
 412
 413static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
 414                           enum hrtimer_mode mode);
 415
 416void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
 417                           enum hrtimer_mode mode)
 418{
 419        debug_object_init_on_stack(timer, &hrtimer_debug_descr);
 420        __hrtimer_init(timer, clock_id, mode);
 421}
 422EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
 423
 424void destroy_hrtimer_on_stack(struct hrtimer *timer)
 425{
 426        debug_object_free(timer, &hrtimer_debug_descr);
 427}
 428EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
 429
 430#else
 431static inline void debug_hrtimer_init(struct hrtimer *timer) { }
 432static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
 433static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
 434#endif
 435
 436static inline void
 437debug_init(struct hrtimer *timer, clockid_t clockid,
 438           enum hrtimer_mode mode)
 439{
 440        debug_hrtimer_init(timer);
 441        trace_hrtimer_init(timer, clockid, mode);
 442}
 443
 444static inline void debug_activate(struct hrtimer *timer)
 445{
 446        debug_hrtimer_activate(timer);
 447        trace_hrtimer_start(timer);
 448}
 449
 450static inline void debug_deactivate(struct hrtimer *timer)
 451{
 452        debug_hrtimer_deactivate(timer);
 453        trace_hrtimer_cancel(timer);
 454}
 455
 456#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
 457static inline void hrtimer_update_next_timer(struct hrtimer_cpu_base *cpu_base,
 458                                             struct hrtimer *timer)
 459{
 460#ifdef CONFIG_HIGH_RES_TIMERS
 461        cpu_base->next_timer = timer;
 462#endif
 463}
 464
 465static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base)
 466{
 467        struct hrtimer_clock_base *base = cpu_base->clock_base;
 468        ktime_t expires, expires_next = { .tv64 = KTIME_MAX };
 469        unsigned int active = cpu_base->active_bases;
 470
 471        hrtimer_update_next_timer(cpu_base, NULL);
 472        for (; active; base++, active >>= 1) {
 473                struct timerqueue_node *next;
 474                struct hrtimer *timer;
 475
 476                if (!(active & 0x01))
 477                        continue;
 478
 479                next = timerqueue_getnext(&base->active);
 480                timer = container_of(next, struct hrtimer, node);
 481                expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
 482                if (expires.tv64 < expires_next.tv64) {
 483                        expires_next = expires;
 484                        hrtimer_update_next_timer(cpu_base, timer);
 485                }
 486        }
 487        /*
 488         * clock_was_set() might have changed base->offset of any of
 489         * the clock bases so the result might be negative. Fix it up
 490         * to prevent a false positive in clockevents_program_event().
 491         */
 492        if (expires_next.tv64 < 0)
 493                expires_next.tv64 = 0;
 494        return expires_next;
 495}
 496#endif
 497
 498static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
 499{
 500        ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
 501        ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
 502        ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
 503
 504        return ktime_get_update_offsets_now(&base->clock_was_set_seq,
 505                                            offs_real, offs_boot, offs_tai);
 506}
 507
 508/* High resolution timer related functions */
 509#ifdef CONFIG_HIGH_RES_TIMERS
 510
 511/*
 512 * High resolution timer enabled ?
 513 */
 514static bool hrtimer_hres_enabled __read_mostly  = true;
 515unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
 516EXPORT_SYMBOL_GPL(hrtimer_resolution);
 517
 518/*
 519 * Enable / Disable high resolution mode
 520 */
 521static int __init setup_hrtimer_hres(char *str)
 522{
 523        return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
 524}
 525
 526__setup("highres=", setup_hrtimer_hres);
 527
 528/*
 529 * hrtimer_high_res_enabled - query, if the highres mode is enabled
 530 */
 531static inline int hrtimer_is_hres_enabled(void)
 532{
 533        return hrtimer_hres_enabled;
 534}
 535
 536/*
 537 * Is the high resolution mode active ?
 538 */
 539static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
 540{
 541        return cpu_base->hres_active;
 542}
 543
 544static inline int hrtimer_hres_active(void)
 545{
 546        return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
 547}
 548
 549/*
 550 * Reprogram the event source with checking both queues for the
 551 * next event
 552 * Called with interrupts disabled and base->lock held
 553 */
 554static void
 555hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
 556{
 557        ktime_t expires_next;
 558
 559        if (!cpu_base->hres_active)
 560                return;
 561
 562        expires_next = __hrtimer_get_next_event(cpu_base);
 563
 564        if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
 565                return;
 566
 567        cpu_base->expires_next.tv64 = expires_next.tv64;
 568
 569        /*
 570         * If a hang was detected in the last timer interrupt then we
 571         * leave the hang delay active in the hardware. We want the
 572         * system to make progress. That also prevents the following
 573         * scenario:
 574         * T1 expires 50ms from now
 575         * T2 expires 5s from now
 576         *
 577         * T1 is removed, so this code is called and would reprogram
 578         * the hardware to 5s from now. Any hrtimer_start after that
 579         * will not reprogram the hardware due to hang_detected being
 580         * set. So we'd effectivly block all timers until the T2 event
 581         * fires.
 582         */
 583        if (cpu_base->hang_detected)
 584                return;
 585
 586        tick_program_event(cpu_base->expires_next, 1);
 587}
 588
 589/*
 590 * When a timer is enqueued and expires earlier than the already enqueued
 591 * timers, we have to check, whether it expires earlier than the timer for
 592 * which the clock event device was armed.
 593 *
 594 * Called with interrupts disabled and base->cpu_base.lock held
 595 */
 596static void hrtimer_reprogram(struct hrtimer *timer,
 597                              struct hrtimer_clock_base *base)
 598{
 599        struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
 600        ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
 601
 602        WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
 603
 604        /*
 605         * If the timer is not on the current cpu, we cannot reprogram
 606         * the other cpus clock event device.
 607         */
 608        if (base->cpu_base != cpu_base)
 609                return;
 610
 611        /*
 612         * If the hrtimer interrupt is running, then it will
 613         * reevaluate the clock bases and reprogram the clock event
 614         * device. The callbacks are always executed in hard interrupt
 615         * context so we don't need an extra check for a running
 616         * callback.
 617         */
 618        if (cpu_base->in_hrtirq)
 619                return;
 620
 621        /*
 622         * CLOCK_REALTIME timer might be requested with an absolute
 623         * expiry time which is less than base->offset. Set it to 0.
 624         */
 625        if (expires.tv64 < 0)
 626                expires.tv64 = 0;
 627
 628        if (expires.tv64 >= cpu_base->expires_next.tv64)
 629                return;
 630
 631        /* Update the pointer to the next expiring timer */
 632        cpu_base->next_timer = timer;
 633
 634        /*
 635         * If a hang was detected in the last timer interrupt then we
 636         * do not schedule a timer which is earlier than the expiry
 637         * which we enforced in the hang detection. We want the system
 638         * to make progress.
 639         */
 640        if (cpu_base->hang_detected)
 641                return;
 642
 643        /*
 644         * Program the timer hardware. We enforce the expiry for
 645         * events which are already in the past.
 646         */
 647        cpu_base->expires_next = expires;
 648        tick_program_event(expires, 1);
 649}
 650
 651/*
 652 * Initialize the high resolution related parts of cpu_base
 653 */
 654static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
 655{
 656        base->expires_next.tv64 = KTIME_MAX;
 657        base->hres_active = 0;
 658}
 659
 660/*
 661 * Retrigger next event is called after clock was set
 662 *
 663 * Called with interrupts disabled via on_each_cpu()
 664 */
 665static void retrigger_next_event(void *arg)
 666{
 667        struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
 668
 669        if (!base->hres_active)
 670                return;
 671
 672        raw_spin_lock(&base->lock);
 673        hrtimer_update_base(base);
 674        hrtimer_force_reprogram(base, 0);
 675        raw_spin_unlock(&base->lock);
 676}
 677
 678/*
 679 * Switch to high resolution mode
 680 */
 681static void hrtimer_switch_to_hres(void)
 682{
 683        struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
 684
 685        if (tick_init_highres()) {
 686                printk(KERN_WARNING "Could not switch to high resolution "
 687                                    "mode on CPU %d\n", base->cpu);
 688                return;
 689        }
 690        base->hres_active = 1;
 691        hrtimer_resolution = HIGH_RES_NSEC;
 692
 693        tick_setup_sched_timer();
 694        /* "Retrigger" the interrupt to get things going */
 695        retrigger_next_event(NULL);
 696}
 697
 698static void clock_was_set_work(struct work_struct *work)
 699{
 700        clock_was_set();
 701}
 702
 703static DECLARE_WORK(hrtimer_work, clock_was_set_work);
 704
 705/*
 706 * Called from timekeeping and resume code to reprogram the hrtimer
 707 * interrupt device on all cpus.
 708 */
 709void clock_was_set_delayed(void)
 710{
 711        schedule_work(&hrtimer_work);
 712}
 713
 714#else
 715
 716static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *b) { return 0; }
 717static inline int hrtimer_hres_active(void) { return 0; }
 718static inline int hrtimer_is_hres_enabled(void) { return 0; }
 719static inline void hrtimer_switch_to_hres(void) { }
 720static inline void
 721hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
 722static inline int hrtimer_reprogram(struct hrtimer *timer,
 723                                    struct hrtimer_clock_base *base)
 724{
 725        return 0;
 726}
 727static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
 728static inline void retrigger_next_event(void *arg) { }
 729
 730#endif /* CONFIG_HIGH_RES_TIMERS */
 731
 732/*
 733 * Clock realtime was set
 734 *
 735 * Change the offset of the realtime clock vs. the monotonic
 736 * clock.
 737 *
 738 * We might have to reprogram the high resolution timer interrupt. On
 739 * SMP we call the architecture specific code to retrigger _all_ high
 740 * resolution timer interrupts. On UP we just disable interrupts and
 741 * call the high resolution interrupt code.
 742 */
 743void clock_was_set(void)
 744{
 745#ifdef CONFIG_HIGH_RES_TIMERS
 746        /* Retrigger the CPU local events everywhere */
 747        on_each_cpu(retrigger_next_event, NULL, 1);
 748#endif
 749        timerfd_clock_was_set();
 750}
 751
 752/*
 753 * During resume we might have to reprogram the high resolution timer
 754 * interrupt on all online CPUs.  However, all other CPUs will be
 755 * stopped with IRQs interrupts disabled so the clock_was_set() call
 756 * must be deferred.
 757 */
 758void hrtimers_resume(void)
 759{
 760        WARN_ONCE(!irqs_disabled(),
 761                  KERN_INFO "hrtimers_resume() called with IRQs enabled!");
 762
 763        /* Retrigger on the local CPU */
 764        retrigger_next_event(NULL);
 765        /* And schedule a retrigger for all others */
 766        clock_was_set_delayed();
 767}
 768
 769static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
 770{
 771#ifdef CONFIG_TIMER_STATS
 772        if (timer->start_site)
 773                return;
 774        timer->start_site = __builtin_return_address(0);
 775        memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
 776        timer->start_pid = current->pid;
 777#endif
 778}
 779
 780static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
 781{
 782#ifdef CONFIG_TIMER_STATS
 783        timer->start_site = NULL;
 784#endif
 785}
 786
 787static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
 788{
 789#ifdef CONFIG_TIMER_STATS
 790        if (likely(!timer_stats_active))
 791                return;
 792        timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
 793                                 timer->function, timer->start_comm, 0);
 794#endif
 795}
 796
 797/*
 798 * Counterpart to lock_hrtimer_base above:
 799 */
 800static inline
 801void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
 802{
 803        raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
 804}
 805
 806/**
 807 * hrtimer_forward - forward the timer expiry
 808 * @timer:      hrtimer to forward
 809 * @now:        forward past this time
 810 * @interval:   the interval to forward
 811 *
 812 * Forward the timer expiry so it will expire in the future.
 813 * Returns the number of overruns.
 814 *
 815 * Can be safely called from the callback function of @timer. If
 816 * called from other contexts @timer must neither be enqueued nor
 817 * running the callback and the caller needs to take care of
 818 * serialization.
 819 *
 820 * Note: This only updates the timer expiry value and does not requeue
 821 * the timer.
 822 */
 823u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
 824{
 825        u64 orun = 1;
 826        ktime_t delta;
 827
 828        delta = ktime_sub(now, hrtimer_get_expires(timer));
 829
 830        if (delta.tv64 < 0)
 831                return 0;
 832
 833        if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
 834                return 0;
 835
 836        if (interval.tv64 < hrtimer_resolution)
 837                interval.tv64 = hrtimer_resolution;
 838
 839        if (unlikely(delta.tv64 >= interval.tv64)) {
 840                s64 incr = ktime_to_ns(interval);
 841
 842                orun = ktime_divns(delta, incr);
 843                hrtimer_add_expires_ns(timer, incr * orun);
 844                if (hrtimer_get_expires_tv64(timer) > now.tv64)
 845                        return orun;
 846                /*
 847                 * This (and the ktime_add() below) is the
 848                 * correction for exact:
 849                 */
 850                orun++;
 851        }
 852        hrtimer_add_expires(timer, interval);
 853
 854        return orun;
 855}
 856EXPORT_SYMBOL_GPL(hrtimer_forward);
 857
 858/*
 859 * enqueue_hrtimer - internal function to (re)start a timer
 860 *
 861 * The timer is inserted in expiry order. Insertion into the
 862 * red black tree is O(log(n)). Must hold the base lock.
 863 *
 864 * Returns 1 when the new timer is the leftmost timer in the tree.
 865 */
 866static int enqueue_hrtimer(struct hrtimer *timer,
 867                           struct hrtimer_clock_base *base)
 868{
 869        debug_activate(timer);
 870
 871        base->cpu_base->active_bases |= 1 << base->index;
 872
 873        timer->state = HRTIMER_STATE_ENQUEUED;
 874
 875        return timerqueue_add(&base->active, &timer->node);
 876}
 877
 878/*
 879 * __remove_hrtimer - internal function to remove a timer
 880 *
 881 * Caller must hold the base lock.
 882 *
 883 * High resolution timer mode reprograms the clock event device when the
 884 * timer is the one which expires next. The caller can disable this by setting
 885 * reprogram to zero. This is useful, when the context does a reprogramming
 886 * anyway (e.g. timer interrupt)
 887 */
 888static void __remove_hrtimer(struct hrtimer *timer,
 889                             struct hrtimer_clock_base *base,
 890                             u8 newstate, int reprogram)
 891{
 892        struct hrtimer_cpu_base *cpu_base = base->cpu_base;
 893        u8 state = timer->state;
 894
 895        timer->state = newstate;
 896        if (!(state & HRTIMER_STATE_ENQUEUED))
 897                return;
 898
 899        if (!timerqueue_del(&base->active, &timer->node))
 900                cpu_base->active_bases &= ~(1 << base->index);
 901
 902#ifdef CONFIG_HIGH_RES_TIMERS
 903        /*
 904         * Note: If reprogram is false we do not update
 905         * cpu_base->next_timer. This happens when we remove the first
 906         * timer on a remote cpu. No harm as we never dereference
 907         * cpu_base->next_timer. So the worst thing what can happen is
 908         * an superflous call to hrtimer_force_reprogram() on the
 909         * remote cpu later on if the same timer gets enqueued again.
 910         */
 911        if (reprogram && timer == cpu_base->next_timer)
 912                hrtimer_force_reprogram(cpu_base, 1);
 913#endif
 914}
 915
 916/*
 917 * remove hrtimer, called with base lock held
 918 */
 919static inline int
 920remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
 921{
 922        if (hrtimer_is_queued(timer)) {
 923                u8 state = timer->state;
 924                int reprogram;
 925
 926                /*
 927                 * Remove the timer and force reprogramming when high
 928                 * resolution mode is active and the timer is on the current
 929                 * CPU. If we remove a timer on another CPU, reprogramming is
 930                 * skipped. The interrupt event on this CPU is fired and
 931                 * reprogramming happens in the interrupt handler. This is a
 932                 * rare case and less expensive than a smp call.
 933                 */
 934                debug_deactivate(timer);
 935                timer_stats_hrtimer_clear_start_info(timer);
 936                reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
 937
 938                if (!restart)
 939                        state = HRTIMER_STATE_INACTIVE;
 940
 941                __remove_hrtimer(timer, base, state, reprogram);
 942                return 1;
 943        }
 944        return 0;
 945}
 946
 947static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
 948                                            const enum hrtimer_mode mode)
 949{
 950#ifdef CONFIG_TIME_LOW_RES
 951        /*
 952         * CONFIG_TIME_LOW_RES indicates that the system has no way to return
 953         * granular time values. For relative timers we add hrtimer_resolution
 954         * (i.e. one jiffie) to prevent short timeouts.
 955         */
 956        timer->is_rel = mode & HRTIMER_MODE_REL;
 957        if (timer->is_rel)
 958                tim = ktime_add_safe(tim, ktime_set(0, hrtimer_resolution));
 959#endif
 960        return tim;
 961}
 962
 963/**
 964 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
 965 * @timer:      the timer to be added
 966 * @tim:        expiry time
 967 * @delta_ns:   "slack" range for the timer
 968 * @mode:       expiry mode: absolute (HRTIMER_MODE_ABS) or
 969 *              relative (HRTIMER_MODE_REL)
 970 */
 971void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
 972                            u64 delta_ns, const enum hrtimer_mode mode)
 973{
 974        struct hrtimer_clock_base *base, *new_base;
 975        unsigned long flags;
 976        int leftmost;
 977
 978        base = lock_hrtimer_base(timer, &flags);
 979
 980        /* Remove an active timer from the queue: */
 981        remove_hrtimer(timer, base, true);
 982
 983        if (mode & HRTIMER_MODE_REL)
 984                tim = ktime_add_safe(tim, base->get_time());
 985
 986        tim = hrtimer_update_lowres(timer, tim, mode);
 987
 988        hrtimer_set_expires_range_ns(timer, tim, delta_ns);
 989
 990        /* Switch the timer base, if necessary: */
 991        new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
 992
 993        timer_stats_hrtimer_set_start_info(timer);
 994
 995        leftmost = enqueue_hrtimer(timer, new_base);
 996        if (!leftmost)
 997                goto unlock;
 998
 999        if (!hrtimer_is_hres_active(timer)) {
1000                /*
1001                 * Kick to reschedule the next tick to handle the new timer
1002                 * on dynticks target.
1003                 */
1004                if (new_base->cpu_base->nohz_active)
1005                        wake_up_nohz_cpu(new_base->cpu_base->cpu);
1006        } else {
1007                hrtimer_reprogram(timer, new_base);
1008        }
1009unlock:
1010        unlock_hrtimer_base(timer, &flags);
1011}
1012EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1013
1014/**
1015 * hrtimer_try_to_cancel - try to deactivate a timer
1016 * @timer:      hrtimer to stop
1017 *
1018 * Returns:
1019 *  0 when the timer was not active
1020 *  1 when the timer was active
1021 * -1 when the timer is currently excuting the callback function and
1022 *    cannot be stopped
1023 */
1024int hrtimer_try_to_cancel(struct hrtimer *timer)
1025{
1026        struct hrtimer_clock_base *base;
1027        unsigned long flags;
1028        int ret = -1;
1029
1030        /*
1031         * Check lockless first. If the timer is not active (neither
1032         * enqueued nor running the callback, nothing to do here.  The
1033         * base lock does not serialize against a concurrent enqueue,
1034         * so we can avoid taking it.
1035         */
1036        if (!hrtimer_active(timer))
1037                return 0;
1038
1039        base = lock_hrtimer_base(timer, &flags);
1040
1041        if (!hrtimer_callback_running(timer))
1042                ret = remove_hrtimer(timer, base, false);
1043
1044        unlock_hrtimer_base(timer, &flags);
1045
1046        return ret;
1047
1048}
1049EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1050
1051/**
1052 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1053 * @timer:      the timer to be cancelled
1054 *
1055 * Returns:
1056 *  0 when the timer was not active
1057 *  1 when the timer was active
1058 */
1059int hrtimer_cancel(struct hrtimer *timer)
1060{
1061        for (;;) {
1062                int ret = hrtimer_try_to_cancel(timer);
1063
1064                if (ret >= 0)
1065                        return ret;
1066                cpu_relax();
1067        }
1068}
1069EXPORT_SYMBOL_GPL(hrtimer_cancel);
1070
1071/**
1072 * hrtimer_get_remaining - get remaining time for the timer
1073 * @timer:      the timer to read
1074 * @adjust:     adjust relative timers when CONFIG_TIME_LOW_RES=y
1075 */
1076ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1077{
1078        unsigned long flags;
1079        ktime_t rem;
1080
1081        lock_hrtimer_base(timer, &flags);
1082        if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
1083                rem = hrtimer_expires_remaining_adjusted(timer);
1084        else
1085                rem = hrtimer_expires_remaining(timer);
1086        unlock_hrtimer_base(timer, &flags);
1087
1088        return rem;
1089}
1090EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1091
1092#ifdef CONFIG_NO_HZ_COMMON
1093/**
1094 * hrtimer_get_next_event - get the time until next expiry event
1095 *
1096 * Returns the next expiry time or KTIME_MAX if no timer is pending.
1097 */
1098u64 hrtimer_get_next_event(void)
1099{
1100        struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1101        u64 expires = KTIME_MAX;
1102        unsigned long flags;
1103
1104        raw_spin_lock_irqsave(&cpu_base->lock, flags);
1105
1106        if (!__hrtimer_hres_active(cpu_base))
1107                expires = __hrtimer_get_next_event(cpu_base).tv64;
1108
1109        raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1110
1111        return expires;
1112}
1113#endif
1114
1115static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1116                           enum hrtimer_mode mode)
1117{
1118        struct hrtimer_cpu_base *cpu_base;
1119        int base;
1120
1121        memset(timer, 0, sizeof(struct hrtimer));
1122
1123        cpu_base = raw_cpu_ptr(&hrtimer_bases);
1124
1125        if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1126                clock_id = CLOCK_MONOTONIC;
1127
1128        base = hrtimer_clockid_to_base(clock_id);
1129        timer->base = &cpu_base->clock_base[base];
1130        timerqueue_init(&timer->node);
1131
1132#ifdef CONFIG_TIMER_STATS
1133        timer->start_site = NULL;
1134        timer->start_pid = -1;
1135        memset(timer->start_comm, 0, TASK_COMM_LEN);
1136#endif
1137}
1138
1139/**
1140 * hrtimer_init - initialize a timer to the given clock
1141 * @timer:      the timer to be initialized
1142 * @clock_id:   the clock to be used
1143 * @mode:       timer mode abs/rel
1144 */
1145void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1146                  enum hrtimer_mode mode)
1147{
1148        debug_init(timer, clock_id, mode);
1149        __hrtimer_init(timer, clock_id, mode);
1150}
1151EXPORT_SYMBOL_GPL(hrtimer_init);
1152
1153/*
1154 * A timer is active, when it is enqueued into the rbtree or the
1155 * callback function is running or it's in the state of being migrated
1156 * to another cpu.
1157 *
1158 * It is important for this function to not return a false negative.
1159 */
1160bool hrtimer_active(const struct hrtimer *timer)
1161{
1162        struct hrtimer_cpu_base *cpu_base;
1163        unsigned int seq;
1164
1165        do {
1166                cpu_base = READ_ONCE(timer->base->cpu_base);
1167                seq = raw_read_seqcount_begin(&cpu_base->seq);
1168
1169                if (timer->state != HRTIMER_STATE_INACTIVE ||
1170                    cpu_base->running == timer)
1171                        return true;
1172
1173        } while (read_seqcount_retry(&cpu_base->seq, seq) ||
1174                 cpu_base != READ_ONCE(timer->base->cpu_base));
1175
1176        return false;
1177}
1178EXPORT_SYMBOL_GPL(hrtimer_active);
1179
1180/*
1181 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1182 * distinct sections:
1183 *
1184 *  - queued:   the timer is queued
1185 *  - callback: the timer is being ran
1186 *  - post:     the timer is inactive or (re)queued
1187 *
1188 * On the read side we ensure we observe timer->state and cpu_base->running
1189 * from the same section, if anything changed while we looked at it, we retry.
1190 * This includes timer->base changing because sequence numbers alone are
1191 * insufficient for that.
1192 *
1193 * The sequence numbers are required because otherwise we could still observe
1194 * a false negative if the read side got smeared over multiple consequtive
1195 * __run_hrtimer() invocations.
1196 */
1197
1198static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1199                          struct hrtimer_clock_base *base,
1200                          struct hrtimer *timer, ktime_t *now)
1201{
1202        enum hrtimer_restart (*fn)(struct hrtimer *);
1203        int restart;
1204
1205        lockdep_assert_held(&cpu_base->lock);
1206
1207        debug_deactivate(timer);
1208        cpu_base->running = timer;
1209
1210        /*
1211         * Separate the ->running assignment from the ->state assignment.
1212         *
1213         * As with a regular write barrier, this ensures the read side in
1214         * hrtimer_active() cannot observe cpu_base->running == NULL &&
1215         * timer->state == INACTIVE.
1216         */
1217        raw_write_seqcount_barrier(&cpu_base->seq);
1218
1219        __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1220        timer_stats_account_hrtimer(timer);
1221        fn = timer->function;
1222
1223        /*
1224         * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
1225         * timer is restarted with a period then it becomes an absolute
1226         * timer. If its not restarted it does not matter.
1227         */
1228        if (IS_ENABLED(CONFIG_TIME_LOW_RES))
1229                timer->is_rel = false;
1230
1231        /*
1232         * Because we run timers from hardirq context, there is no chance
1233         * they get migrated to another cpu, therefore its safe to unlock
1234         * the timer base.
1235         */
1236        raw_spin_unlock(&cpu_base->lock);
1237        trace_hrtimer_expire_entry(timer, now);
1238        restart = fn(timer);
1239        trace_hrtimer_expire_exit(timer);
1240        raw_spin_lock(&cpu_base->lock);
1241
1242        /*
1243         * Note: We clear the running state after enqueue_hrtimer and
1244         * we do not reprogram the event hardware. Happens either in
1245         * hrtimer_start_range_ns() or in hrtimer_interrupt()
1246         *
1247         * Note: Because we dropped the cpu_base->lock above,
1248         * hrtimer_start_range_ns() can have popped in and enqueued the timer
1249         * for us already.
1250         */
1251        if (restart != HRTIMER_NORESTART &&
1252            !(timer->state & HRTIMER_STATE_ENQUEUED))
1253                enqueue_hrtimer(timer, base);
1254
1255        /*
1256         * Separate the ->running assignment from the ->state assignment.
1257         *
1258         * As with a regular write barrier, this ensures the read side in
1259         * hrtimer_active() cannot observe cpu_base->running == NULL &&
1260         * timer->state == INACTIVE.
1261         */
1262        raw_write_seqcount_barrier(&cpu_base->seq);
1263
1264        WARN_ON_ONCE(cpu_base->running != timer);
1265        cpu_base->running = NULL;
1266}
1267
1268static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now)
1269{
1270        struct hrtimer_clock_base *base = cpu_base->clock_base;
1271        unsigned int active = cpu_base->active_bases;
1272
1273        for (; active; base++, active >>= 1) {
1274                struct timerqueue_node *node;
1275                ktime_t basenow;
1276
1277                if (!(active & 0x01))
1278                        continue;
1279
1280                basenow = ktime_add(now, base->offset);
1281
1282                while ((node = timerqueue_getnext(&base->active))) {
1283                        struct hrtimer *timer;
1284
1285                        timer = container_of(node, struct hrtimer, node);
1286
1287                        /*
1288                         * The immediate goal for using the softexpires is
1289                         * minimizing wakeups, not running timers at the
1290                         * earliest interrupt after their soft expiration.
1291                         * This allows us to avoid using a Priority Search
1292                         * Tree, which can answer a stabbing querry for
1293                         * overlapping intervals and instead use the simple
1294                         * BST we already have.
1295                         * We don't add extra wakeups by delaying timers that
1296                         * are right-of a not yet expired timer, because that
1297                         * timer will have to trigger a wakeup anyway.
1298                         */
1299                        if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer))
1300                                break;
1301
1302                        __run_hrtimer(cpu_base, base, timer, &basenow);
1303                }
1304        }
1305}
1306
1307#ifdef CONFIG_HIGH_RES_TIMERS
1308
1309/*
1310 * High resolution timer interrupt
1311 * Called with interrupts disabled
1312 */
1313void hrtimer_interrupt(struct clock_event_device *dev)
1314{
1315        struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1316        ktime_t expires_next, now, entry_time, delta;
1317        int retries = 0;
1318
1319        BUG_ON(!cpu_base->hres_active);
1320        cpu_base->nr_events++;
1321        dev->next_event.tv64 = KTIME_MAX;
1322
1323        raw_spin_lock(&cpu_base->lock);
1324        entry_time = now = hrtimer_update_base(cpu_base);
1325retry:
1326        cpu_base->in_hrtirq = 1;
1327        /*
1328         * We set expires_next to KTIME_MAX here with cpu_base->lock
1329         * held to prevent that a timer is enqueued in our queue via
1330         * the migration code. This does not affect enqueueing of
1331         * timers which run their callback and need to be requeued on
1332         * this CPU.
1333         */
1334        cpu_base->expires_next.tv64 = KTIME_MAX;
1335
1336        __hrtimer_run_queues(cpu_base, now);
1337
1338        /* Reevaluate the clock bases for the next expiry */
1339        expires_next = __hrtimer_get_next_event(cpu_base);
1340        /*
1341         * Store the new expiry value so the migration code can verify
1342         * against it.
1343         */
1344        cpu_base->expires_next = expires_next;
1345        cpu_base->in_hrtirq = 0;
1346        raw_spin_unlock(&cpu_base->lock);
1347
1348        /* Reprogramming necessary ? */
1349        if (!tick_program_event(expires_next, 0)) {
1350                cpu_base->hang_detected = 0;
1351                return;
1352        }
1353
1354        /*
1355         * The next timer was already expired due to:
1356         * - tracing
1357         * - long lasting callbacks
1358         * - being scheduled away when running in a VM
1359         *
1360         * We need to prevent that we loop forever in the hrtimer
1361         * interrupt routine. We give it 3 attempts to avoid
1362         * overreacting on some spurious event.
1363         *
1364         * Acquire base lock for updating the offsets and retrieving
1365         * the current time.
1366         */
1367        raw_spin_lock(&cpu_base->lock);
1368        now = hrtimer_update_base(cpu_base);
1369        cpu_base->nr_retries++;
1370        if (++retries < 3)
1371                goto retry;
1372        /*
1373         * Give the system a chance to do something else than looping
1374         * here. We stored the entry time, so we know exactly how long
1375         * we spent here. We schedule the next event this amount of
1376         * time away.
1377         */
1378        cpu_base->nr_hangs++;
1379        cpu_base->hang_detected = 1;
1380        raw_spin_unlock(&cpu_base->lock);
1381        delta = ktime_sub(now, entry_time);
1382        if ((unsigned int)delta.tv64 > cpu_base->max_hang_time)
1383                cpu_base->max_hang_time = (unsigned int) delta.tv64;
1384        /*
1385         * Limit it to a sensible value as we enforce a longer
1386         * delay. Give the CPU at least 100ms to catch up.
1387         */
1388        if (delta.tv64 > 100 * NSEC_PER_MSEC)
1389                expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1390        else
1391                expires_next = ktime_add(now, delta);
1392        tick_program_event(expires_next, 1);
1393        printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1394                    ktime_to_ns(delta));
1395}
1396
1397/*
1398 * local version of hrtimer_peek_ahead_timers() called with interrupts
1399 * disabled.
1400 */
1401static inline void __hrtimer_peek_ahead_timers(void)
1402{
1403        struct tick_device *td;
1404
1405        if (!hrtimer_hres_active())
1406                return;
1407
1408        td = this_cpu_ptr(&tick_cpu_device);
1409        if (td && td->evtdev)
1410                hrtimer_interrupt(td->evtdev);
1411}
1412
1413#else /* CONFIG_HIGH_RES_TIMERS */
1414
1415static inline void __hrtimer_peek_ahead_timers(void) { }
1416
1417#endif  /* !CONFIG_HIGH_RES_TIMERS */
1418
1419/*
1420 * Called from run_local_timers in hardirq context every jiffy
1421 */
1422void hrtimer_run_queues(void)
1423{
1424        struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1425        ktime_t now;
1426
1427        if (__hrtimer_hres_active(cpu_base))
1428                return;
1429
1430        /*
1431         * This _is_ ugly: We have to check periodically, whether we
1432         * can switch to highres and / or nohz mode. The clocksource
1433         * switch happens with xtime_lock held. Notification from
1434         * there only sets the check bit in the tick_oneshot code,
1435         * otherwise we might deadlock vs. xtime_lock.
1436         */
1437        if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1438                hrtimer_switch_to_hres();
1439                return;
1440        }
1441
1442        raw_spin_lock(&cpu_base->lock);
1443        now = hrtimer_update_base(cpu_base);
1444        __hrtimer_run_queues(cpu_base, now);
1445        raw_spin_unlock(&cpu_base->lock);
1446}
1447
1448/*
1449 * Sleep related functions:
1450 */
1451static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1452{
1453        struct hrtimer_sleeper *t =
1454                container_of(timer, struct hrtimer_sleeper, timer);
1455        struct task_struct *task = t->task;
1456
1457        t->task = NULL;
1458        if (task)
1459                wake_up_process(task);
1460
1461        return HRTIMER_NORESTART;
1462}
1463
1464void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1465{
1466        sl->timer.function = hrtimer_wakeup;
1467        sl->task = task;
1468}
1469EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1470
1471static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1472{
1473        hrtimer_init_sleeper(t, current);
1474
1475        do {
1476                set_current_state(TASK_INTERRUPTIBLE);
1477                hrtimer_start_expires(&t->timer, mode);
1478
1479                if (likely(t->task))
1480                        freezable_schedule();
1481
1482                hrtimer_cancel(&t->timer);
1483                mode = HRTIMER_MODE_ABS;
1484
1485        } while (t->task && !signal_pending(current));
1486
1487        __set_current_state(TASK_RUNNING);
1488
1489        return t->task == NULL;
1490}
1491
1492static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1493{
1494        struct timespec rmt;
1495        ktime_t rem;
1496
1497        rem = hrtimer_expires_remaining(timer);
1498        if (rem.tv64 <= 0)
1499                return 0;
1500        rmt = ktime_to_timespec(rem);
1501
1502        if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1503                return -EFAULT;
1504
1505        return 1;
1506}
1507
1508long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1509{
1510        struct hrtimer_sleeper t;
1511        struct timespec __user  *rmtp;
1512        int ret = 0;
1513
1514        hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1515                                HRTIMER_MODE_ABS);
1516        hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1517
1518        if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1519                goto out;
1520
1521        rmtp = restart->nanosleep.rmtp;
1522        if (rmtp) {
1523                ret = update_rmtp(&t.timer, rmtp);
1524                if (ret <= 0)
1525                        goto out;
1526        }
1527
1528        /* The other values in restart are already filled in */
1529        ret = -ERESTART_RESTARTBLOCK;
1530out:
1531        destroy_hrtimer_on_stack(&t.timer);
1532        return ret;
1533}
1534
1535long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1536                       const enum hrtimer_mode mode, const clockid_t clockid)
1537{
1538        struct restart_block *restart;
1539        struct hrtimer_sleeper t;
1540        int ret = 0;
1541        u64 slack;
1542
1543        slack = current->timer_slack_ns;
1544        if (dl_task(current) || rt_task(current))
1545                slack = 0;
1546
1547        hrtimer_init_on_stack(&t.timer, clockid, mode);
1548        hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1549        if (do_nanosleep(&t, mode))
1550                goto out;
1551
1552        /* Absolute timers do not update the rmtp value and restart: */
1553        if (mode == HRTIMER_MODE_ABS) {
1554                ret = -ERESTARTNOHAND;
1555                goto out;
1556        }
1557
1558        if (rmtp) {
1559                ret = update_rmtp(&t.timer, rmtp);
1560                if (ret <= 0)
1561                        goto out;
1562        }
1563
1564        restart = &current->restart_block;
1565        restart->fn = hrtimer_nanosleep_restart;
1566        restart->nanosleep.clockid = t.timer.base->clockid;
1567        restart->nanosleep.rmtp = rmtp;
1568        restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1569
1570        ret = -ERESTART_RESTARTBLOCK;
1571out:
1572        destroy_hrtimer_on_stack(&t.timer);
1573        return ret;
1574}
1575
1576SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1577                struct timespec __user *, rmtp)
1578{
1579        struct timespec tu;
1580
1581        if (copy_from_user(&tu, rqtp, sizeof(tu)))
1582                return -EFAULT;
1583
1584        if (!timespec_valid(&tu))
1585                return -EINVAL;
1586
1587        return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1588}
1589
1590/*
1591 * Functions related to boot-time initialization:
1592 */
1593int hrtimers_prepare_cpu(unsigned int cpu)
1594{
1595        struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1596        int i;
1597
1598        for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1599                cpu_base->clock_base[i].cpu_base = cpu_base;
1600                timerqueue_init_head(&cpu_base->clock_base[i].active);
1601        }
1602
1603        cpu_base->cpu = cpu;
1604        hrtimer_init_hres(cpu_base);
1605        return 0;
1606}
1607
1608#ifdef CONFIG_HOTPLUG_CPU
1609
1610static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1611                                struct hrtimer_clock_base *new_base)
1612{
1613        struct hrtimer *timer;
1614        struct timerqueue_node *node;
1615
1616        while ((node = timerqueue_getnext(&old_base->active))) {
1617                timer = container_of(node, struct hrtimer, node);
1618                BUG_ON(hrtimer_callback_running(timer));
1619                debug_deactivate(timer);
1620
1621                /*
1622                 * Mark it as ENQUEUED not INACTIVE otherwise the
1623                 * timer could be seen as !active and just vanish away
1624                 * under us on another CPU
1625                 */
1626                __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
1627                timer->base = new_base;
1628                /*
1629                 * Enqueue the timers on the new cpu. This does not
1630                 * reprogram the event device in case the timer
1631                 * expires before the earliest on this CPU, but we run
1632                 * hrtimer_interrupt after we migrated everything to
1633                 * sort out already expired timers and reprogram the
1634                 * event device.
1635                 */
1636                enqueue_hrtimer(timer, new_base);
1637        }
1638}
1639
1640int hrtimers_dead_cpu(unsigned int scpu)
1641{
1642        struct hrtimer_cpu_base *old_base, *new_base;
1643        int i;
1644
1645        BUG_ON(cpu_online(scpu));
1646        tick_cancel_sched_timer(scpu);
1647
1648        local_irq_disable();
1649        old_base = &per_cpu(hrtimer_bases, scpu);
1650        new_base = this_cpu_ptr(&hrtimer_bases);
1651        /*
1652         * The caller is globally serialized and nobody else
1653         * takes two locks at once, deadlock is not possible.
1654         */
1655        raw_spin_lock(&new_base->lock);
1656        raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1657
1658        for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1659                migrate_hrtimer_list(&old_base->clock_base[i],
1660                                     &new_base->clock_base[i]);
1661        }
1662
1663        raw_spin_unlock(&old_base->lock);
1664        raw_spin_unlock(&new_base->lock);
1665
1666        /* Check, if we got expired work to do */
1667        __hrtimer_peek_ahead_timers();
1668        local_irq_enable();
1669        return 0;
1670}
1671
1672#endif /* CONFIG_HOTPLUG_CPU */
1673
1674void __init hrtimers_init(void)
1675{
1676        hrtimers_prepare_cpu(smp_processor_id());
1677}
1678
1679/**
1680 * schedule_hrtimeout_range_clock - sleep until timeout
1681 * @expires:    timeout value (ktime_t)
1682 * @delta:      slack in expires timeout (ktime_t)
1683 * @mode:       timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1684 * @clock:      timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1685 */
1686int __sched
1687schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
1688                               const enum hrtimer_mode mode, int clock)
1689{
1690        struct hrtimer_sleeper t;
1691
1692        /*
1693         * Optimize when a zero timeout value is given. It does not
1694         * matter whether this is an absolute or a relative time.
1695         */
1696        if (expires && !expires->tv64) {
1697                __set_current_state(TASK_RUNNING);
1698                return 0;
1699        }
1700
1701        /*
1702         * A NULL parameter means "infinite"
1703         */
1704        if (!expires) {
1705                schedule();
1706                return -EINTR;
1707        }
1708
1709        hrtimer_init_on_stack(&t.timer, clock, mode);
1710        hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1711
1712        hrtimer_init_sleeper(&t, current);
1713
1714        hrtimer_start_expires(&t.timer, mode);
1715
1716        if (likely(t.task))
1717                schedule();
1718
1719        hrtimer_cancel(&t.timer);
1720        destroy_hrtimer_on_stack(&t.timer);
1721
1722        __set_current_state(TASK_RUNNING);
1723
1724        return !t.task ? 0 : -EINTR;
1725}
1726
1727/**
1728 * schedule_hrtimeout_range - sleep until timeout
1729 * @expires:    timeout value (ktime_t)
1730 * @delta:      slack in expires timeout (ktime_t)
1731 * @mode:       timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1732 *
1733 * Make the current task sleep until the given expiry time has
1734 * elapsed. The routine will return immediately unless
1735 * the current task state has been set (see set_current_state()).
1736 *
1737 * The @delta argument gives the kernel the freedom to schedule the
1738 * actual wakeup to a time that is both power and performance friendly.
1739 * The kernel give the normal best effort behavior for "@expires+@delta",
1740 * but may decide to fire the timer earlier, but no earlier than @expires.
1741 *
1742 * You can set the task state as follows -
1743 *
1744 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1745 * pass before the routine returns.
1746 *
1747 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1748 * delivered to the current task.
1749 *
1750 * The current task state is guaranteed to be TASK_RUNNING when this
1751 * routine returns.
1752 *
1753 * Returns 0 when the timer has expired otherwise -EINTR
1754 */
1755int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
1756                                     const enum hrtimer_mode mode)
1757{
1758        return schedule_hrtimeout_range_clock(expires, delta, mode,
1759                                              CLOCK_MONOTONIC);
1760}
1761EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1762
1763/**
1764 * schedule_hrtimeout - sleep until timeout
1765 * @expires:    timeout value (ktime_t)
1766 * @mode:       timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1767 *
1768 * Make the current task sleep until the given expiry time has
1769 * elapsed. The routine will return immediately unless
1770 * the current task state has been set (see set_current_state()).
1771 *
1772 * You can set the task state as follows -
1773 *
1774 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1775 * pass before the routine returns.
1776 *
1777 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1778 * delivered to the current task.
1779 *
1780 * The current task state is guaranteed to be TASK_RUNNING when this
1781 * routine returns.
1782 *
1783 * Returns 0 when the timer has expired otherwise -EINTR
1784 */
1785int __sched schedule_hrtimeout(ktime_t *expires,
1786                               const enum hrtimer_mode mode)
1787{
1788        return schedule_hrtimeout_range(expires, 0, mode);
1789}
1790EXPORT_SYMBOL_GPL(schedule_hrtimeout);
1791