linux/kernel/time/timekeeping.c
<<
>>
Prefs
   1/*
   2 *  linux/kernel/time/timekeeping.c
   3 *
   4 *  Kernel timekeeping code and accessor functions
   5 *
   6 *  This code was moved from linux/kernel/timer.c.
   7 *  Please see that file for copyright and history logs.
   8 *
   9 */
  10
  11#include <linux/timekeeper_internal.h>
  12#include <linux/module.h>
  13#include <linux/interrupt.h>
  14#include <linux/percpu.h>
  15#include <linux/init.h>
  16#include <linux/mm.h>
  17#include <linux/sched.h>
  18#include <linux/syscore_ops.h>
  19#include <linux/clocksource.h>
  20#include <linux/jiffies.h>
  21#include <linux/time.h>
  22#include <linux/tick.h>
  23#include <linux/stop_machine.h>
  24#include <linux/pvclock_gtod.h>
  25#include <linux/compiler.h>
  26
  27#include "tick-internal.h"
  28#include "ntp_internal.h"
  29#include "timekeeping_internal.h"
  30
  31#define TK_CLEAR_NTP            (1 << 0)
  32#define TK_MIRROR               (1 << 1)
  33#define TK_CLOCK_WAS_SET        (1 << 2)
  34
  35/*
  36 * The most important data for readout fits into a single 64 byte
  37 * cache line.
  38 */
  39static struct {
  40        seqcount_t              seq;
  41        struct timekeeper       timekeeper;
  42} tk_core ____cacheline_aligned;
  43
  44static DEFINE_RAW_SPINLOCK(timekeeper_lock);
  45static struct timekeeper shadow_timekeeper;
  46
  47/**
  48 * struct tk_fast - NMI safe timekeeper
  49 * @seq:        Sequence counter for protecting updates. The lowest bit
  50 *              is the index for the tk_read_base array
  51 * @base:       tk_read_base array. Access is indexed by the lowest bit of
  52 *              @seq.
  53 *
  54 * See @update_fast_timekeeper() below.
  55 */
  56struct tk_fast {
  57        seqcount_t              seq;
  58        struct tk_read_base     base[2];
  59};
  60
  61static struct tk_fast tk_fast_mono ____cacheline_aligned;
  62static struct tk_fast tk_fast_raw  ____cacheline_aligned;
  63
  64/* flag for if timekeeping is suspended */
  65int __read_mostly timekeeping_suspended;
  66
  67static inline void tk_normalize_xtime(struct timekeeper *tk)
  68{
  69        while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
  70                tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
  71                tk->xtime_sec++;
  72        }
  73}
  74
  75static inline struct timespec64 tk_xtime(struct timekeeper *tk)
  76{
  77        struct timespec64 ts;
  78
  79        ts.tv_sec = tk->xtime_sec;
  80        ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
  81        return ts;
  82}
  83
  84static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
  85{
  86        tk->xtime_sec = ts->tv_sec;
  87        tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
  88}
  89
  90static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
  91{
  92        tk->xtime_sec += ts->tv_sec;
  93        tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
  94        tk_normalize_xtime(tk);
  95}
  96
  97static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
  98{
  99        struct timespec64 tmp;
 100
 101        /*
 102         * Verify consistency of: offset_real = -wall_to_monotonic
 103         * before modifying anything
 104         */
 105        set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
 106                                        -tk->wall_to_monotonic.tv_nsec);
 107        WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
 108        tk->wall_to_monotonic = wtm;
 109        set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
 110        tk->offs_real = timespec64_to_ktime(tmp);
 111        tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
 112}
 113
 114static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
 115{
 116        tk->offs_boot = ktime_add(tk->offs_boot, delta);
 117}
 118
 119#ifdef CONFIG_DEBUG_TIMEKEEPING
 120#define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
 121
 122static void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
 123{
 124
 125        cycle_t max_cycles = tk->tkr_mono.clock->max_cycles;
 126        const char *name = tk->tkr_mono.clock->name;
 127
 128        if (offset > max_cycles) {
 129                printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
 130                                offset, name, max_cycles);
 131                printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
 132        } else {
 133                if (offset > (max_cycles >> 1)) {
 134                        printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
 135                                        offset, name, max_cycles >> 1);
 136                        printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
 137                }
 138        }
 139
 140        if (tk->underflow_seen) {
 141                if (jiffies - tk->last_warning > WARNING_FREQ) {
 142                        printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
 143                        printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
 144                        printk_deferred("         Your kernel is probably still fine.\n");
 145                        tk->last_warning = jiffies;
 146                }
 147                tk->underflow_seen = 0;
 148        }
 149
 150        if (tk->overflow_seen) {
 151                if (jiffies - tk->last_warning > WARNING_FREQ) {
 152                        printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
 153                        printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
 154                        printk_deferred("         Your kernel is probably still fine.\n");
 155                        tk->last_warning = jiffies;
 156                }
 157                tk->overflow_seen = 0;
 158        }
 159}
 160
 161static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
 162{
 163        struct timekeeper *tk = &tk_core.timekeeper;
 164        cycle_t now, last, mask, max, delta;
 165        unsigned int seq;
 166
 167        /*
 168         * Since we're called holding a seqlock, the data may shift
 169         * under us while we're doing the calculation. This can cause
 170         * false positives, since we'd note a problem but throw the
 171         * results away. So nest another seqlock here to atomically
 172         * grab the points we are checking with.
 173         */
 174        do {
 175                seq = read_seqcount_begin(&tk_core.seq);
 176                now = tkr->read(tkr->clock);
 177                last = tkr->cycle_last;
 178                mask = tkr->mask;
 179                max = tkr->clock->max_cycles;
 180        } while (read_seqcount_retry(&tk_core.seq, seq));
 181
 182        delta = clocksource_delta(now, last, mask);
 183
 184        /*
 185         * Try to catch underflows by checking if we are seeing small
 186         * mask-relative negative values.
 187         */
 188        if (unlikely((~delta & mask) < (mask >> 3))) {
 189                tk->underflow_seen = 1;
 190                delta = 0;
 191        }
 192
 193        /* Cap delta value to the max_cycles values to avoid mult overflows */
 194        if (unlikely(delta > max)) {
 195                tk->overflow_seen = 1;
 196                delta = tkr->clock->max_cycles;
 197        }
 198
 199        return delta;
 200}
 201#else
 202static inline void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
 203{
 204}
 205static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
 206{
 207        cycle_t cycle_now, delta;
 208
 209        /* read clocksource */
 210        cycle_now = tkr->read(tkr->clock);
 211
 212        /* calculate the delta since the last update_wall_time */
 213        delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
 214
 215        return delta;
 216}
 217#endif
 218
 219/**
 220 * tk_setup_internals - Set up internals to use clocksource clock.
 221 *
 222 * @tk:         The target timekeeper to setup.
 223 * @clock:              Pointer to clocksource.
 224 *
 225 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
 226 * pair and interval request.
 227 *
 228 * Unless you're the timekeeping code, you should not be using this!
 229 */
 230static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
 231{
 232        cycle_t interval;
 233        u64 tmp, ntpinterval;
 234        struct clocksource *old_clock;
 235
 236        ++tk->cs_was_changed_seq;
 237        old_clock = tk->tkr_mono.clock;
 238        tk->tkr_mono.clock = clock;
 239        tk->tkr_mono.read = clock->read;
 240        tk->tkr_mono.mask = clock->mask;
 241        tk->tkr_mono.cycle_last = tk->tkr_mono.read(clock);
 242
 243        tk->tkr_raw.clock = clock;
 244        tk->tkr_raw.read = clock->read;
 245        tk->tkr_raw.mask = clock->mask;
 246        tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
 247
 248        /* Do the ns -> cycle conversion first, using original mult */
 249        tmp = NTP_INTERVAL_LENGTH;
 250        tmp <<= clock->shift;
 251        ntpinterval = tmp;
 252        tmp += clock->mult/2;
 253        do_div(tmp, clock->mult);
 254        if (tmp == 0)
 255                tmp = 1;
 256
 257        interval = (cycle_t) tmp;
 258        tk->cycle_interval = interval;
 259
 260        /* Go back from cycles -> shifted ns */
 261        tk->xtime_interval = (u64) interval * clock->mult;
 262        tk->xtime_remainder = ntpinterval - tk->xtime_interval;
 263        tk->raw_interval =
 264                ((u64) interval * clock->mult) >> clock->shift;
 265
 266         /* if changing clocks, convert xtime_nsec shift units */
 267        if (old_clock) {
 268                int shift_change = clock->shift - old_clock->shift;
 269                if (shift_change < 0)
 270                        tk->tkr_mono.xtime_nsec >>= -shift_change;
 271                else
 272                        tk->tkr_mono.xtime_nsec <<= shift_change;
 273        }
 274        tk->tkr_raw.xtime_nsec = 0;
 275
 276        tk->tkr_mono.shift = clock->shift;
 277        tk->tkr_raw.shift = clock->shift;
 278
 279        tk->ntp_error = 0;
 280        tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
 281        tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
 282
 283        /*
 284         * The timekeeper keeps its own mult values for the currently
 285         * active clocksource. These value will be adjusted via NTP
 286         * to counteract clock drifting.
 287         */
 288        tk->tkr_mono.mult = clock->mult;
 289        tk->tkr_raw.mult = clock->mult;
 290        tk->ntp_err_mult = 0;
 291}
 292
 293/* Timekeeper helper functions. */
 294
 295#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
 296static u32 default_arch_gettimeoffset(void) { return 0; }
 297u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
 298#else
 299static inline u32 arch_gettimeoffset(void) { return 0; }
 300#endif
 301
 302static inline s64 timekeeping_delta_to_ns(struct tk_read_base *tkr,
 303                                          cycle_t delta)
 304{
 305        s64 nsec;
 306
 307        nsec = delta * tkr->mult + tkr->xtime_nsec;
 308        nsec >>= tkr->shift;
 309
 310        /* If arch requires, add in get_arch_timeoffset() */
 311        return nsec + arch_gettimeoffset();
 312}
 313
 314static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
 315{
 316        cycle_t delta;
 317
 318        delta = timekeeping_get_delta(tkr);
 319        return timekeeping_delta_to_ns(tkr, delta);
 320}
 321
 322static inline s64 timekeeping_cycles_to_ns(struct tk_read_base *tkr,
 323                                            cycle_t cycles)
 324{
 325        cycle_t delta;
 326
 327        /* calculate the delta since the last update_wall_time */
 328        delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
 329        return timekeeping_delta_to_ns(tkr, delta);
 330}
 331
 332/**
 333 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
 334 * @tkr: Timekeeping readout base from which we take the update
 335 *
 336 * We want to use this from any context including NMI and tracing /
 337 * instrumenting the timekeeping code itself.
 338 *
 339 * Employ the latch technique; see @raw_write_seqcount_latch.
 340 *
 341 * So if a NMI hits the update of base[0] then it will use base[1]
 342 * which is still consistent. In the worst case this can result is a
 343 * slightly wrong timestamp (a few nanoseconds). See
 344 * @ktime_get_mono_fast_ns.
 345 */
 346static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
 347{
 348        struct tk_read_base *base = tkf->base;
 349
 350        /* Force readers off to base[1] */
 351        raw_write_seqcount_latch(&tkf->seq);
 352
 353        /* Update base[0] */
 354        memcpy(base, tkr, sizeof(*base));
 355
 356        /* Force readers back to base[0] */
 357        raw_write_seqcount_latch(&tkf->seq);
 358
 359        /* Update base[1] */
 360        memcpy(base + 1, base, sizeof(*base));
 361}
 362
 363/**
 364 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
 365 *
 366 * This timestamp is not guaranteed to be monotonic across an update.
 367 * The timestamp is calculated by:
 368 *
 369 *      now = base_mono + clock_delta * slope
 370 *
 371 * So if the update lowers the slope, readers who are forced to the
 372 * not yet updated second array are still using the old steeper slope.
 373 *
 374 * tmono
 375 * ^
 376 * |    o  n
 377 * |   o n
 378 * |  u
 379 * | o
 380 * |o
 381 * |12345678---> reader order
 382 *
 383 * o = old slope
 384 * u = update
 385 * n = new slope
 386 *
 387 * So reader 6 will observe time going backwards versus reader 5.
 388 *
 389 * While other CPUs are likely to be able observe that, the only way
 390 * for a CPU local observation is when an NMI hits in the middle of
 391 * the update. Timestamps taken from that NMI context might be ahead
 392 * of the following timestamps. Callers need to be aware of that and
 393 * deal with it.
 394 */
 395static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
 396{
 397        struct tk_read_base *tkr;
 398        unsigned int seq;
 399        u64 now;
 400
 401        do {
 402                seq = raw_read_seqcount_latch(&tkf->seq);
 403                tkr = tkf->base + (seq & 0x01);
 404                now = ktime_to_ns(tkr->base);
 405
 406                now += timekeeping_delta_to_ns(tkr,
 407                                clocksource_delta(
 408                                        tkr->read(tkr->clock),
 409                                        tkr->cycle_last,
 410                                        tkr->mask));
 411        } while (read_seqcount_retry(&tkf->seq, seq));
 412
 413        return now;
 414}
 415
 416u64 ktime_get_mono_fast_ns(void)
 417{
 418        return __ktime_get_fast_ns(&tk_fast_mono);
 419}
 420EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
 421
 422u64 ktime_get_raw_fast_ns(void)
 423{
 424        return __ktime_get_fast_ns(&tk_fast_raw);
 425}
 426EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
 427
 428/* Suspend-time cycles value for halted fast timekeeper. */
 429static cycle_t cycles_at_suspend;
 430
 431static cycle_t dummy_clock_read(struct clocksource *cs)
 432{
 433        return cycles_at_suspend;
 434}
 435
 436/**
 437 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
 438 * @tk: Timekeeper to snapshot.
 439 *
 440 * It generally is unsafe to access the clocksource after timekeeping has been
 441 * suspended, so take a snapshot of the readout base of @tk and use it as the
 442 * fast timekeeper's readout base while suspended.  It will return the same
 443 * number of cycles every time until timekeeping is resumed at which time the
 444 * proper readout base for the fast timekeeper will be restored automatically.
 445 */
 446static void halt_fast_timekeeper(struct timekeeper *tk)
 447{
 448        static struct tk_read_base tkr_dummy;
 449        struct tk_read_base *tkr = &tk->tkr_mono;
 450
 451        memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
 452        cycles_at_suspend = tkr->read(tkr->clock);
 453        tkr_dummy.read = dummy_clock_read;
 454        update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
 455
 456        tkr = &tk->tkr_raw;
 457        memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
 458        tkr_dummy.read = dummy_clock_read;
 459        update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
 460}
 461
 462#ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
 463
 464static inline void update_vsyscall(struct timekeeper *tk)
 465{
 466        struct timespec xt, wm;
 467
 468        xt = timespec64_to_timespec(tk_xtime(tk));
 469        wm = timespec64_to_timespec(tk->wall_to_monotonic);
 470        update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult,
 471                            tk->tkr_mono.cycle_last);
 472}
 473
 474static inline void old_vsyscall_fixup(struct timekeeper *tk)
 475{
 476        s64 remainder;
 477
 478        /*
 479        * Store only full nanoseconds into xtime_nsec after rounding
 480        * it up and add the remainder to the error difference.
 481        * XXX - This is necessary to avoid small 1ns inconsistnecies caused
 482        * by truncating the remainder in vsyscalls. However, it causes
 483        * additional work to be done in timekeeping_adjust(). Once
 484        * the vsyscall implementations are converted to use xtime_nsec
 485        * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
 486        * users are removed, this can be killed.
 487        */
 488        remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1);
 489        if (remainder != 0) {
 490                tk->tkr_mono.xtime_nsec -= remainder;
 491                tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift;
 492                tk->ntp_error += remainder << tk->ntp_error_shift;
 493                tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift;
 494        }
 495}
 496#else
 497#define old_vsyscall_fixup(tk)
 498#endif
 499
 500static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
 501
 502static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
 503{
 504        raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
 505}
 506
 507/**
 508 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
 509 */
 510int pvclock_gtod_register_notifier(struct notifier_block *nb)
 511{
 512        struct timekeeper *tk = &tk_core.timekeeper;
 513        unsigned long flags;
 514        int ret;
 515
 516        raw_spin_lock_irqsave(&timekeeper_lock, flags);
 517        ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
 518        update_pvclock_gtod(tk, true);
 519        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
 520
 521        return ret;
 522}
 523EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
 524
 525/**
 526 * pvclock_gtod_unregister_notifier - unregister a pvclock
 527 * timedata update listener
 528 */
 529int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
 530{
 531        unsigned long flags;
 532        int ret;
 533
 534        raw_spin_lock_irqsave(&timekeeper_lock, flags);
 535        ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
 536        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
 537
 538        return ret;
 539}
 540EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
 541
 542/*
 543 * tk_update_leap_state - helper to update the next_leap_ktime
 544 */
 545static inline void tk_update_leap_state(struct timekeeper *tk)
 546{
 547        tk->next_leap_ktime = ntp_get_next_leap();
 548        if (tk->next_leap_ktime.tv64 != KTIME_MAX)
 549                /* Convert to monotonic time */
 550                tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
 551}
 552
 553/*
 554 * Update the ktime_t based scalar nsec members of the timekeeper
 555 */
 556static inline void tk_update_ktime_data(struct timekeeper *tk)
 557{
 558        u64 seconds;
 559        u32 nsec;
 560
 561        /*
 562         * The xtime based monotonic readout is:
 563         *      nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
 564         * The ktime based monotonic readout is:
 565         *      nsec = base_mono + now();
 566         * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
 567         */
 568        seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
 569        nsec = (u32) tk->wall_to_monotonic.tv_nsec;
 570        tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
 571
 572        /* Update the monotonic raw base */
 573        tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time);
 574
 575        /*
 576         * The sum of the nanoseconds portions of xtime and
 577         * wall_to_monotonic can be greater/equal one second. Take
 578         * this into account before updating tk->ktime_sec.
 579         */
 580        nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
 581        if (nsec >= NSEC_PER_SEC)
 582                seconds++;
 583        tk->ktime_sec = seconds;
 584}
 585
 586/* must hold timekeeper_lock */
 587static void timekeeping_update(struct timekeeper *tk, unsigned int action)
 588{
 589        if (action & TK_CLEAR_NTP) {
 590                tk->ntp_error = 0;
 591                ntp_clear();
 592        }
 593
 594        tk_update_leap_state(tk);
 595        tk_update_ktime_data(tk);
 596
 597        update_vsyscall(tk);
 598        update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
 599
 600        update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
 601        update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
 602
 603        if (action & TK_CLOCK_WAS_SET)
 604                tk->clock_was_set_seq++;
 605        /*
 606         * The mirroring of the data to the shadow-timekeeper needs
 607         * to happen last here to ensure we don't over-write the
 608         * timekeeper structure on the next update with stale data
 609         */
 610        if (action & TK_MIRROR)
 611                memcpy(&shadow_timekeeper, &tk_core.timekeeper,
 612                       sizeof(tk_core.timekeeper));
 613}
 614
 615/**
 616 * timekeeping_forward_now - update clock to the current time
 617 *
 618 * Forward the current clock to update its state since the last call to
 619 * update_wall_time(). This is useful before significant clock changes,
 620 * as it avoids having to deal with this time offset explicitly.
 621 */
 622static void timekeeping_forward_now(struct timekeeper *tk)
 623{
 624        struct clocksource *clock = tk->tkr_mono.clock;
 625        cycle_t cycle_now, delta;
 626        s64 nsec;
 627
 628        cycle_now = tk->tkr_mono.read(clock);
 629        delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
 630        tk->tkr_mono.cycle_last = cycle_now;
 631        tk->tkr_raw.cycle_last  = cycle_now;
 632
 633        tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
 634
 635        /* If arch requires, add in get_arch_timeoffset() */
 636        tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
 637
 638        tk_normalize_xtime(tk);
 639
 640        nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift);
 641        timespec64_add_ns(&tk->raw_time, nsec);
 642}
 643
 644/**
 645 * __getnstimeofday64 - Returns the time of day in a timespec64.
 646 * @ts:         pointer to the timespec to be set
 647 *
 648 * Updates the time of day in the timespec.
 649 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
 650 */
 651int __getnstimeofday64(struct timespec64 *ts)
 652{
 653        struct timekeeper *tk = &tk_core.timekeeper;
 654        unsigned long seq;
 655        s64 nsecs = 0;
 656
 657        do {
 658                seq = read_seqcount_begin(&tk_core.seq);
 659
 660                ts->tv_sec = tk->xtime_sec;
 661                nsecs = timekeeping_get_ns(&tk->tkr_mono);
 662
 663        } while (read_seqcount_retry(&tk_core.seq, seq));
 664
 665        ts->tv_nsec = 0;
 666        timespec64_add_ns(ts, nsecs);
 667
 668        /*
 669         * Do not bail out early, in case there were callers still using
 670         * the value, even in the face of the WARN_ON.
 671         */
 672        if (unlikely(timekeeping_suspended))
 673                return -EAGAIN;
 674        return 0;
 675}
 676EXPORT_SYMBOL(__getnstimeofday64);
 677
 678/**
 679 * getnstimeofday64 - Returns the time of day in a timespec64.
 680 * @ts:         pointer to the timespec64 to be set
 681 *
 682 * Returns the time of day in a timespec64 (WARN if suspended).
 683 */
 684void getnstimeofday64(struct timespec64 *ts)
 685{
 686        WARN_ON(__getnstimeofday64(ts));
 687}
 688EXPORT_SYMBOL(getnstimeofday64);
 689
 690ktime_t ktime_get(void)
 691{
 692        struct timekeeper *tk = &tk_core.timekeeper;
 693        unsigned int seq;
 694        ktime_t base;
 695        s64 nsecs;
 696
 697        WARN_ON(timekeeping_suspended);
 698
 699        do {
 700                seq = read_seqcount_begin(&tk_core.seq);
 701                base = tk->tkr_mono.base;
 702                nsecs = timekeeping_get_ns(&tk->tkr_mono);
 703
 704        } while (read_seqcount_retry(&tk_core.seq, seq));
 705
 706        return ktime_add_ns(base, nsecs);
 707}
 708EXPORT_SYMBOL_GPL(ktime_get);
 709
 710u32 ktime_get_resolution_ns(void)
 711{
 712        struct timekeeper *tk = &tk_core.timekeeper;
 713        unsigned int seq;
 714        u32 nsecs;
 715
 716        WARN_ON(timekeeping_suspended);
 717
 718        do {
 719                seq = read_seqcount_begin(&tk_core.seq);
 720                nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
 721        } while (read_seqcount_retry(&tk_core.seq, seq));
 722
 723        return nsecs;
 724}
 725EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
 726
 727static ktime_t *offsets[TK_OFFS_MAX] = {
 728        [TK_OFFS_REAL]  = &tk_core.timekeeper.offs_real,
 729        [TK_OFFS_BOOT]  = &tk_core.timekeeper.offs_boot,
 730        [TK_OFFS_TAI]   = &tk_core.timekeeper.offs_tai,
 731};
 732
 733ktime_t ktime_get_with_offset(enum tk_offsets offs)
 734{
 735        struct timekeeper *tk = &tk_core.timekeeper;
 736        unsigned int seq;
 737        ktime_t base, *offset = offsets[offs];
 738        s64 nsecs;
 739
 740        WARN_ON(timekeeping_suspended);
 741
 742        do {
 743                seq = read_seqcount_begin(&tk_core.seq);
 744                base = ktime_add(tk->tkr_mono.base, *offset);
 745                nsecs = timekeeping_get_ns(&tk->tkr_mono);
 746
 747        } while (read_seqcount_retry(&tk_core.seq, seq));
 748
 749        return ktime_add_ns(base, nsecs);
 750
 751}
 752EXPORT_SYMBOL_GPL(ktime_get_with_offset);
 753
 754/**
 755 * ktime_mono_to_any() - convert mononotic time to any other time
 756 * @tmono:      time to convert.
 757 * @offs:       which offset to use
 758 */
 759ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
 760{
 761        ktime_t *offset = offsets[offs];
 762        unsigned long seq;
 763        ktime_t tconv;
 764
 765        do {
 766                seq = read_seqcount_begin(&tk_core.seq);
 767                tconv = ktime_add(tmono, *offset);
 768        } while (read_seqcount_retry(&tk_core.seq, seq));
 769
 770        return tconv;
 771}
 772EXPORT_SYMBOL_GPL(ktime_mono_to_any);
 773
 774/**
 775 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
 776 */
 777ktime_t ktime_get_raw(void)
 778{
 779        struct timekeeper *tk = &tk_core.timekeeper;
 780        unsigned int seq;
 781        ktime_t base;
 782        s64 nsecs;
 783
 784        do {
 785                seq = read_seqcount_begin(&tk_core.seq);
 786                base = tk->tkr_raw.base;
 787                nsecs = timekeeping_get_ns(&tk->tkr_raw);
 788
 789        } while (read_seqcount_retry(&tk_core.seq, seq));
 790
 791        return ktime_add_ns(base, nsecs);
 792}
 793EXPORT_SYMBOL_GPL(ktime_get_raw);
 794
 795/**
 796 * ktime_get_ts64 - get the monotonic clock in timespec64 format
 797 * @ts:         pointer to timespec variable
 798 *
 799 * The function calculates the monotonic clock from the realtime
 800 * clock and the wall_to_monotonic offset and stores the result
 801 * in normalized timespec64 format in the variable pointed to by @ts.
 802 */
 803void ktime_get_ts64(struct timespec64 *ts)
 804{
 805        struct timekeeper *tk = &tk_core.timekeeper;
 806        struct timespec64 tomono;
 807        s64 nsec;
 808        unsigned int seq;
 809
 810        WARN_ON(timekeeping_suspended);
 811
 812        do {
 813                seq = read_seqcount_begin(&tk_core.seq);
 814                ts->tv_sec = tk->xtime_sec;
 815                nsec = timekeeping_get_ns(&tk->tkr_mono);
 816                tomono = tk->wall_to_monotonic;
 817
 818        } while (read_seqcount_retry(&tk_core.seq, seq));
 819
 820        ts->tv_sec += tomono.tv_sec;
 821        ts->tv_nsec = 0;
 822        timespec64_add_ns(ts, nsec + tomono.tv_nsec);
 823}
 824EXPORT_SYMBOL_GPL(ktime_get_ts64);
 825
 826/**
 827 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
 828 *
 829 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
 830 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
 831 * works on both 32 and 64 bit systems. On 32 bit systems the readout
 832 * covers ~136 years of uptime which should be enough to prevent
 833 * premature wrap arounds.
 834 */
 835time64_t ktime_get_seconds(void)
 836{
 837        struct timekeeper *tk = &tk_core.timekeeper;
 838
 839        WARN_ON(timekeeping_suspended);
 840        return tk->ktime_sec;
 841}
 842EXPORT_SYMBOL_GPL(ktime_get_seconds);
 843
 844/**
 845 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
 846 *
 847 * Returns the wall clock seconds since 1970. This replaces the
 848 * get_seconds() interface which is not y2038 safe on 32bit systems.
 849 *
 850 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
 851 * 32bit systems the access must be protected with the sequence
 852 * counter to provide "atomic" access to the 64bit tk->xtime_sec
 853 * value.
 854 */
 855time64_t ktime_get_real_seconds(void)
 856{
 857        struct timekeeper *tk = &tk_core.timekeeper;
 858        time64_t seconds;
 859        unsigned int seq;
 860
 861        if (IS_ENABLED(CONFIG_64BIT))
 862                return tk->xtime_sec;
 863
 864        do {
 865                seq = read_seqcount_begin(&tk_core.seq);
 866                seconds = tk->xtime_sec;
 867
 868        } while (read_seqcount_retry(&tk_core.seq, seq));
 869
 870        return seconds;
 871}
 872EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
 873
 874/**
 875 * __ktime_get_real_seconds - The same as ktime_get_real_seconds
 876 * but without the sequence counter protect. This internal function
 877 * is called just when timekeeping lock is already held.
 878 */
 879time64_t __ktime_get_real_seconds(void)
 880{
 881        struct timekeeper *tk = &tk_core.timekeeper;
 882
 883        return tk->xtime_sec;
 884}
 885
 886/**
 887 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
 888 * @systime_snapshot:   pointer to struct receiving the system time snapshot
 889 */
 890void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
 891{
 892        struct timekeeper *tk = &tk_core.timekeeper;
 893        unsigned long seq;
 894        ktime_t base_raw;
 895        ktime_t base_real;
 896        s64 nsec_raw;
 897        s64 nsec_real;
 898        cycle_t now;
 899
 900        WARN_ON_ONCE(timekeeping_suspended);
 901
 902        do {
 903                seq = read_seqcount_begin(&tk_core.seq);
 904
 905                now = tk->tkr_mono.read(tk->tkr_mono.clock);
 906                systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
 907                systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
 908                base_real = ktime_add(tk->tkr_mono.base,
 909                                      tk_core.timekeeper.offs_real);
 910                base_raw = tk->tkr_raw.base;
 911                nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
 912                nsec_raw  = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
 913        } while (read_seqcount_retry(&tk_core.seq, seq));
 914
 915        systime_snapshot->cycles = now;
 916        systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
 917        systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
 918}
 919EXPORT_SYMBOL_GPL(ktime_get_snapshot);
 920
 921/* Scale base by mult/div checking for overflow */
 922static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
 923{
 924        u64 tmp, rem;
 925
 926        tmp = div64_u64_rem(*base, div, &rem);
 927
 928        if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
 929            ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
 930                return -EOVERFLOW;
 931        tmp *= mult;
 932        rem *= mult;
 933
 934        do_div(rem, div);
 935        *base = tmp + rem;
 936        return 0;
 937}
 938
 939/**
 940 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
 941 * @history:                    Snapshot representing start of history
 942 * @partial_history_cycles:     Cycle offset into history (fractional part)
 943 * @total_history_cycles:       Total history length in cycles
 944 * @discontinuity:              True indicates clock was set on history period
 945 * @ts:                         Cross timestamp that should be adjusted using
 946 *      partial/total ratio
 947 *
 948 * Helper function used by get_device_system_crosststamp() to correct the
 949 * crosstimestamp corresponding to the start of the current interval to the
 950 * system counter value (timestamp point) provided by the driver. The
 951 * total_history_* quantities are the total history starting at the provided
 952 * reference point and ending at the start of the current interval. The cycle
 953 * count between the driver timestamp point and the start of the current
 954 * interval is partial_history_cycles.
 955 */
 956static int adjust_historical_crosststamp(struct system_time_snapshot *history,
 957                                         cycle_t partial_history_cycles,
 958                                         cycle_t total_history_cycles,
 959                                         bool discontinuity,
 960                                         struct system_device_crosststamp *ts)
 961{
 962        struct timekeeper *tk = &tk_core.timekeeper;
 963        u64 corr_raw, corr_real;
 964        bool interp_forward;
 965        int ret;
 966
 967        if (total_history_cycles == 0 || partial_history_cycles == 0)
 968                return 0;
 969
 970        /* Interpolate shortest distance from beginning or end of history */
 971        interp_forward = partial_history_cycles > total_history_cycles/2 ?
 972                true : false;
 973        partial_history_cycles = interp_forward ?
 974                total_history_cycles - partial_history_cycles :
 975                partial_history_cycles;
 976
 977        /*
 978         * Scale the monotonic raw time delta by:
 979         *      partial_history_cycles / total_history_cycles
 980         */
 981        corr_raw = (u64)ktime_to_ns(
 982                ktime_sub(ts->sys_monoraw, history->raw));
 983        ret = scale64_check_overflow(partial_history_cycles,
 984                                     total_history_cycles, &corr_raw);
 985        if (ret)
 986                return ret;
 987
 988        /*
 989         * If there is a discontinuity in the history, scale monotonic raw
 990         *      correction by:
 991         *      mult(real)/mult(raw) yielding the realtime correction
 992         * Otherwise, calculate the realtime correction similar to monotonic
 993         *      raw calculation
 994         */
 995        if (discontinuity) {
 996                corr_real = mul_u64_u32_div
 997                        (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
 998        } else {
 999                corr_real = (u64)ktime_to_ns(
1000                        ktime_sub(ts->sys_realtime, history->real));
1001                ret = scale64_check_overflow(partial_history_cycles,
1002                                             total_history_cycles, &corr_real);
1003                if (ret)
1004                        return ret;
1005        }
1006
1007        /* Fixup monotonic raw and real time time values */
1008        if (interp_forward) {
1009                ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1010                ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1011        } else {
1012                ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1013                ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1014        }
1015
1016        return 0;
1017}
1018
1019/*
1020 * cycle_between - true if test occurs chronologically between before and after
1021 */
1022static bool cycle_between(cycle_t before, cycle_t test, cycle_t after)
1023{
1024        if (test > before && test < after)
1025                return true;
1026        if (test < before && before > after)
1027                return true;
1028        return false;
1029}
1030
1031/**
1032 * get_device_system_crosststamp - Synchronously capture system/device timestamp
1033 * @get_time_fn:        Callback to get simultaneous device time and
1034 *      system counter from the device driver
1035 * @ctx:                Context passed to get_time_fn()
1036 * @history_begin:      Historical reference point used to interpolate system
1037 *      time when counter provided by the driver is before the current interval
1038 * @xtstamp:            Receives simultaneously captured system and device time
1039 *
1040 * Reads a timestamp from a device and correlates it to system time
1041 */
1042int get_device_system_crosststamp(int (*get_time_fn)
1043                                  (ktime_t *device_time,
1044                                   struct system_counterval_t *sys_counterval,
1045                                   void *ctx),
1046                                  void *ctx,
1047                                  struct system_time_snapshot *history_begin,
1048                                  struct system_device_crosststamp *xtstamp)
1049{
1050        struct system_counterval_t system_counterval;
1051        struct timekeeper *tk = &tk_core.timekeeper;
1052        cycle_t cycles, now, interval_start;
1053        unsigned int clock_was_set_seq = 0;
1054        ktime_t base_real, base_raw;
1055        s64 nsec_real, nsec_raw;
1056        u8 cs_was_changed_seq;
1057        unsigned long seq;
1058        bool do_interp;
1059        int ret;
1060
1061        do {
1062                seq = read_seqcount_begin(&tk_core.seq);
1063                /*
1064                 * Try to synchronously capture device time and a system
1065                 * counter value calling back into the device driver
1066                 */
1067                ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1068                if (ret)
1069                        return ret;
1070
1071                /*
1072                 * Verify that the clocksource associated with the captured
1073                 * system counter value is the same as the currently installed
1074                 * timekeeper clocksource
1075                 */
1076                if (tk->tkr_mono.clock != system_counterval.cs)
1077                        return -ENODEV;
1078                cycles = system_counterval.cycles;
1079
1080                /*
1081                 * Check whether the system counter value provided by the
1082                 * device driver is on the current timekeeping interval.
1083                 */
1084                now = tk->tkr_mono.read(tk->tkr_mono.clock);
1085                interval_start = tk->tkr_mono.cycle_last;
1086                if (!cycle_between(interval_start, cycles, now)) {
1087                        clock_was_set_seq = tk->clock_was_set_seq;
1088                        cs_was_changed_seq = tk->cs_was_changed_seq;
1089                        cycles = interval_start;
1090                        do_interp = true;
1091                } else {
1092                        do_interp = false;
1093                }
1094
1095                base_real = ktime_add(tk->tkr_mono.base,
1096                                      tk_core.timekeeper.offs_real);
1097                base_raw = tk->tkr_raw.base;
1098
1099                nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
1100                                                     system_counterval.cycles);
1101                nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
1102                                                    system_counterval.cycles);
1103        } while (read_seqcount_retry(&tk_core.seq, seq));
1104
1105        xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1106        xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1107
1108        /*
1109         * Interpolate if necessary, adjusting back from the start of the
1110         * current interval
1111         */
1112        if (do_interp) {
1113                cycle_t partial_history_cycles, total_history_cycles;
1114                bool discontinuity;
1115
1116                /*
1117                 * Check that the counter value occurs after the provided
1118                 * history reference and that the history doesn't cross a
1119                 * clocksource change
1120                 */
1121                if (!history_begin ||
1122                    !cycle_between(history_begin->cycles,
1123                                   system_counterval.cycles, cycles) ||
1124                    history_begin->cs_was_changed_seq != cs_was_changed_seq)
1125                        return -EINVAL;
1126                partial_history_cycles = cycles - system_counterval.cycles;
1127                total_history_cycles = cycles - history_begin->cycles;
1128                discontinuity =
1129                        history_begin->clock_was_set_seq != clock_was_set_seq;
1130
1131                ret = adjust_historical_crosststamp(history_begin,
1132                                                    partial_history_cycles,
1133                                                    total_history_cycles,
1134                                                    discontinuity, xtstamp);
1135                if (ret)
1136                        return ret;
1137        }
1138
1139        return 0;
1140}
1141EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1142
1143/**
1144 * do_gettimeofday - Returns the time of day in a timeval
1145 * @tv:         pointer to the timeval to be set
1146 *
1147 * NOTE: Users should be converted to using getnstimeofday()
1148 */
1149void do_gettimeofday(struct timeval *tv)
1150{
1151        struct timespec64 now;
1152
1153        getnstimeofday64(&now);
1154        tv->tv_sec = now.tv_sec;
1155        tv->tv_usec = now.tv_nsec/1000;
1156}
1157EXPORT_SYMBOL(do_gettimeofday);
1158
1159/**
1160 * do_settimeofday64 - Sets the time of day.
1161 * @ts:     pointer to the timespec64 variable containing the new time
1162 *
1163 * Sets the time of day to the new time and update NTP and notify hrtimers
1164 */
1165int do_settimeofday64(const struct timespec64 *ts)
1166{
1167        struct timekeeper *tk = &tk_core.timekeeper;
1168        struct timespec64 ts_delta, xt;
1169        unsigned long flags;
1170        int ret = 0;
1171
1172        if (!timespec64_valid_strict(ts))
1173                return -EINVAL;
1174
1175        raw_spin_lock_irqsave(&timekeeper_lock, flags);
1176        write_seqcount_begin(&tk_core.seq);
1177
1178        timekeeping_forward_now(tk);
1179
1180        xt = tk_xtime(tk);
1181        ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
1182        ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1183
1184        if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
1185                ret = -EINVAL;
1186                goto out;
1187        }
1188
1189        tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1190
1191        tk_set_xtime(tk, ts);
1192out:
1193        timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1194
1195        write_seqcount_end(&tk_core.seq);
1196        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1197
1198        /* signal hrtimers about time change */
1199        clock_was_set();
1200
1201        return ret;
1202}
1203EXPORT_SYMBOL(do_settimeofday64);
1204
1205/**
1206 * timekeeping_inject_offset - Adds or subtracts from the current time.
1207 * @tv:         pointer to the timespec variable containing the offset
1208 *
1209 * Adds or subtracts an offset value from the current time.
1210 */
1211int timekeeping_inject_offset(struct timespec *ts)
1212{
1213        struct timekeeper *tk = &tk_core.timekeeper;
1214        unsigned long flags;
1215        struct timespec64 ts64, tmp;
1216        int ret = 0;
1217
1218        if (!timespec_inject_offset_valid(ts))
1219                return -EINVAL;
1220
1221        ts64 = timespec_to_timespec64(*ts);
1222
1223        raw_spin_lock_irqsave(&timekeeper_lock, flags);
1224        write_seqcount_begin(&tk_core.seq);
1225
1226        timekeeping_forward_now(tk);
1227
1228        /* Make sure the proposed value is valid */
1229        tmp = timespec64_add(tk_xtime(tk),  ts64);
1230        if (timespec64_compare(&tk->wall_to_monotonic, &ts64) > 0 ||
1231            !timespec64_valid_strict(&tmp)) {
1232                ret = -EINVAL;
1233                goto error;
1234        }
1235
1236        tk_xtime_add(tk, &ts64);
1237        tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
1238
1239error: /* even if we error out, we forwarded the time, so call update */
1240        timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1241
1242        write_seqcount_end(&tk_core.seq);
1243        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1244
1245        /* signal hrtimers about time change */
1246        clock_was_set();
1247
1248        return ret;
1249}
1250EXPORT_SYMBOL(timekeeping_inject_offset);
1251
1252
1253/**
1254 * timekeeping_get_tai_offset - Returns current TAI offset from UTC
1255 *
1256 */
1257s32 timekeeping_get_tai_offset(void)
1258{
1259        struct timekeeper *tk = &tk_core.timekeeper;
1260        unsigned int seq;
1261        s32 ret;
1262
1263        do {
1264                seq = read_seqcount_begin(&tk_core.seq);
1265                ret = tk->tai_offset;
1266        } while (read_seqcount_retry(&tk_core.seq, seq));
1267
1268        return ret;
1269}
1270
1271/**
1272 * __timekeeping_set_tai_offset - Lock free worker function
1273 *
1274 */
1275static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1276{
1277        tk->tai_offset = tai_offset;
1278        tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1279}
1280
1281/**
1282 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
1283 *
1284 */
1285void timekeeping_set_tai_offset(s32 tai_offset)
1286{
1287        struct timekeeper *tk = &tk_core.timekeeper;
1288        unsigned long flags;
1289
1290        raw_spin_lock_irqsave(&timekeeper_lock, flags);
1291        write_seqcount_begin(&tk_core.seq);
1292        __timekeeping_set_tai_offset(tk, tai_offset);
1293        timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1294        write_seqcount_end(&tk_core.seq);
1295        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1296        clock_was_set();
1297}
1298
1299/**
1300 * change_clocksource - Swaps clocksources if a new one is available
1301 *
1302 * Accumulates current time interval and initializes new clocksource
1303 */
1304static int change_clocksource(void *data)
1305{
1306        struct timekeeper *tk = &tk_core.timekeeper;
1307        struct clocksource *new, *old;
1308        unsigned long flags;
1309
1310        new = (struct clocksource *) data;
1311
1312        raw_spin_lock_irqsave(&timekeeper_lock, flags);
1313        write_seqcount_begin(&tk_core.seq);
1314
1315        timekeeping_forward_now(tk);
1316        /*
1317         * If the cs is in module, get a module reference. Succeeds
1318         * for built-in code (owner == NULL) as well.
1319         */
1320        if (try_module_get(new->owner)) {
1321                if (!new->enable || new->enable(new) == 0) {
1322                        old = tk->tkr_mono.clock;
1323                        tk_setup_internals(tk, new);
1324                        if (old->disable)
1325                                old->disable(old);
1326                        module_put(old->owner);
1327                } else {
1328                        module_put(new->owner);
1329                }
1330        }
1331        timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1332
1333        write_seqcount_end(&tk_core.seq);
1334        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1335
1336        return 0;
1337}
1338
1339/**
1340 * timekeeping_notify - Install a new clock source
1341 * @clock:              pointer to the clock source
1342 *
1343 * This function is called from clocksource.c after a new, better clock
1344 * source has been registered. The caller holds the clocksource_mutex.
1345 */
1346int timekeeping_notify(struct clocksource *clock)
1347{
1348        struct timekeeper *tk = &tk_core.timekeeper;
1349
1350        if (tk->tkr_mono.clock == clock)
1351                return 0;
1352        stop_machine(change_clocksource, clock, NULL);
1353        tick_clock_notify();
1354        return tk->tkr_mono.clock == clock ? 0 : -1;
1355}
1356
1357/**
1358 * getrawmonotonic64 - Returns the raw monotonic time in a timespec
1359 * @ts:         pointer to the timespec64 to be set
1360 *
1361 * Returns the raw monotonic time (completely un-modified by ntp)
1362 */
1363void getrawmonotonic64(struct timespec64 *ts)
1364{
1365        struct timekeeper *tk = &tk_core.timekeeper;
1366        struct timespec64 ts64;
1367        unsigned long seq;
1368        s64 nsecs;
1369
1370        do {
1371                seq = read_seqcount_begin(&tk_core.seq);
1372                nsecs = timekeeping_get_ns(&tk->tkr_raw);
1373                ts64 = tk->raw_time;
1374
1375        } while (read_seqcount_retry(&tk_core.seq, seq));
1376
1377        timespec64_add_ns(&ts64, nsecs);
1378        *ts = ts64;
1379}
1380EXPORT_SYMBOL(getrawmonotonic64);
1381
1382
1383/**
1384 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1385 */
1386int timekeeping_valid_for_hres(void)
1387{
1388        struct timekeeper *tk = &tk_core.timekeeper;
1389        unsigned long seq;
1390        int ret;
1391
1392        do {
1393                seq = read_seqcount_begin(&tk_core.seq);
1394
1395                ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1396
1397        } while (read_seqcount_retry(&tk_core.seq, seq));
1398
1399        return ret;
1400}
1401
1402/**
1403 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1404 */
1405u64 timekeeping_max_deferment(void)
1406{
1407        struct timekeeper *tk = &tk_core.timekeeper;
1408        unsigned long seq;
1409        u64 ret;
1410
1411        do {
1412                seq = read_seqcount_begin(&tk_core.seq);
1413
1414                ret = tk->tkr_mono.clock->max_idle_ns;
1415
1416        } while (read_seqcount_retry(&tk_core.seq, seq));
1417
1418        return ret;
1419}
1420
1421/**
1422 * read_persistent_clock -  Return time from the persistent clock.
1423 *
1424 * Weak dummy function for arches that do not yet support it.
1425 * Reads the time from the battery backed persistent clock.
1426 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1427 *
1428 *  XXX - Do be sure to remove it once all arches implement it.
1429 */
1430void __weak read_persistent_clock(struct timespec *ts)
1431{
1432        ts->tv_sec = 0;
1433        ts->tv_nsec = 0;
1434}
1435
1436void __weak read_persistent_clock64(struct timespec64 *ts64)
1437{
1438        struct timespec ts;
1439
1440        read_persistent_clock(&ts);
1441        *ts64 = timespec_to_timespec64(ts);
1442}
1443
1444/**
1445 * read_boot_clock64 -  Return time of the system start.
1446 *
1447 * Weak dummy function for arches that do not yet support it.
1448 * Function to read the exact time the system has been started.
1449 * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
1450 *
1451 *  XXX - Do be sure to remove it once all arches implement it.
1452 */
1453void __weak read_boot_clock64(struct timespec64 *ts)
1454{
1455        ts->tv_sec = 0;
1456        ts->tv_nsec = 0;
1457}
1458
1459/* Flag for if timekeeping_resume() has injected sleeptime */
1460static bool sleeptime_injected;
1461
1462/* Flag for if there is a persistent clock on this platform */
1463static bool persistent_clock_exists;
1464
1465/*
1466 * timekeeping_init - Initializes the clocksource and common timekeeping values
1467 */
1468void __init timekeeping_init(void)
1469{
1470        struct timekeeper *tk = &tk_core.timekeeper;
1471        struct clocksource *clock;
1472        unsigned long flags;
1473        struct timespec64 now, boot, tmp;
1474
1475        read_persistent_clock64(&now);
1476        if (!timespec64_valid_strict(&now)) {
1477                pr_warn("WARNING: Persistent clock returned invalid value!\n"
1478                        "         Check your CMOS/BIOS settings.\n");
1479                now.tv_sec = 0;
1480                now.tv_nsec = 0;
1481        } else if (now.tv_sec || now.tv_nsec)
1482                persistent_clock_exists = true;
1483
1484        read_boot_clock64(&boot);
1485        if (!timespec64_valid_strict(&boot)) {
1486                pr_warn("WARNING: Boot clock returned invalid value!\n"
1487                        "         Check your CMOS/BIOS settings.\n");
1488                boot.tv_sec = 0;
1489                boot.tv_nsec = 0;
1490        }
1491
1492        raw_spin_lock_irqsave(&timekeeper_lock, flags);
1493        write_seqcount_begin(&tk_core.seq);
1494        ntp_init();
1495
1496        clock = clocksource_default_clock();
1497        if (clock->enable)
1498                clock->enable(clock);
1499        tk_setup_internals(tk, clock);
1500
1501        tk_set_xtime(tk, &now);
1502        tk->raw_time.tv_sec = 0;
1503        tk->raw_time.tv_nsec = 0;
1504        if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1505                boot = tk_xtime(tk);
1506
1507        set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1508        tk_set_wall_to_mono(tk, tmp);
1509
1510        timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1511
1512        write_seqcount_end(&tk_core.seq);
1513        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1514}
1515
1516/* time in seconds when suspend began for persistent clock */
1517static struct timespec64 timekeeping_suspend_time;
1518
1519/**
1520 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1521 * @delta: pointer to a timespec delta value
1522 *
1523 * Takes a timespec offset measuring a suspend interval and properly
1524 * adds the sleep offset to the timekeeping variables.
1525 */
1526static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1527                                           struct timespec64 *delta)
1528{
1529        if (!timespec64_valid_strict(delta)) {
1530                printk_deferred(KERN_WARNING
1531                                "__timekeeping_inject_sleeptime: Invalid "
1532                                "sleep delta value!\n");
1533                return;
1534        }
1535        tk_xtime_add(tk, delta);
1536        tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1537        tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1538        tk_debug_account_sleep_time(delta);
1539}
1540
1541#if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1542/**
1543 * We have three kinds of time sources to use for sleep time
1544 * injection, the preference order is:
1545 * 1) non-stop clocksource
1546 * 2) persistent clock (ie: RTC accessible when irqs are off)
1547 * 3) RTC
1548 *
1549 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1550 * If system has neither 1) nor 2), 3) will be used finally.
1551 *
1552 *
1553 * If timekeeping has injected sleeptime via either 1) or 2),
1554 * 3) becomes needless, so in this case we don't need to call
1555 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1556 * means.
1557 */
1558bool timekeeping_rtc_skipresume(void)
1559{
1560        return sleeptime_injected;
1561}
1562
1563/**
1564 * 1) can be determined whether to use or not only when doing
1565 * timekeeping_resume() which is invoked after rtc_suspend(),
1566 * so we can't skip rtc_suspend() surely if system has 1).
1567 *
1568 * But if system has 2), 2) will definitely be used, so in this
1569 * case we don't need to call rtc_suspend(), and this is what
1570 * timekeeping_rtc_skipsuspend() means.
1571 */
1572bool timekeeping_rtc_skipsuspend(void)
1573{
1574        return persistent_clock_exists;
1575}
1576
1577/**
1578 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1579 * @delta: pointer to a timespec64 delta value
1580 *
1581 * This hook is for architectures that cannot support read_persistent_clock64
1582 * because their RTC/persistent clock is only accessible when irqs are enabled.
1583 * and also don't have an effective nonstop clocksource.
1584 *
1585 * This function should only be called by rtc_resume(), and allows
1586 * a suspend offset to be injected into the timekeeping values.
1587 */
1588void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1589{
1590        struct timekeeper *tk = &tk_core.timekeeper;
1591        unsigned long flags;
1592
1593        raw_spin_lock_irqsave(&timekeeper_lock, flags);
1594        write_seqcount_begin(&tk_core.seq);
1595
1596        timekeeping_forward_now(tk);
1597
1598        __timekeeping_inject_sleeptime(tk, delta);
1599
1600        timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1601
1602        write_seqcount_end(&tk_core.seq);
1603        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1604
1605        /* signal hrtimers about time change */
1606        clock_was_set();
1607}
1608#endif
1609
1610/**
1611 * timekeeping_resume - Resumes the generic timekeeping subsystem.
1612 */
1613void timekeeping_resume(void)
1614{
1615        struct timekeeper *tk = &tk_core.timekeeper;
1616        struct clocksource *clock = tk->tkr_mono.clock;
1617        unsigned long flags;
1618        struct timespec64 ts_new, ts_delta;
1619        cycle_t cycle_now, cycle_delta;
1620
1621        sleeptime_injected = false;
1622        read_persistent_clock64(&ts_new);
1623
1624        clockevents_resume();
1625        clocksource_resume();
1626
1627        raw_spin_lock_irqsave(&timekeeper_lock, flags);
1628        write_seqcount_begin(&tk_core.seq);
1629
1630        /*
1631         * After system resumes, we need to calculate the suspended time and
1632         * compensate it for the OS time. There are 3 sources that could be
1633         * used: Nonstop clocksource during suspend, persistent clock and rtc
1634         * device.
1635         *
1636         * One specific platform may have 1 or 2 or all of them, and the
1637         * preference will be:
1638         *      suspend-nonstop clocksource -> persistent clock -> rtc
1639         * The less preferred source will only be tried if there is no better
1640         * usable source. The rtc part is handled separately in rtc core code.
1641         */
1642        cycle_now = tk->tkr_mono.read(clock);
1643        if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1644                cycle_now > tk->tkr_mono.cycle_last) {
1645                u64 num, max = ULLONG_MAX;
1646                u32 mult = clock->mult;
1647                u32 shift = clock->shift;
1648                s64 nsec = 0;
1649
1650                cycle_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
1651                                                tk->tkr_mono.mask);
1652
1653                /*
1654                 * "cycle_delta * mutl" may cause 64 bits overflow, if the
1655                 * suspended time is too long. In that case we need do the
1656                 * 64 bits math carefully
1657                 */
1658                do_div(max, mult);
1659                if (cycle_delta > max) {
1660                        num = div64_u64(cycle_delta, max);
1661                        nsec = (((u64) max * mult) >> shift) * num;
1662                        cycle_delta -= num * max;
1663                }
1664                nsec += ((u64) cycle_delta * mult) >> shift;
1665
1666                ts_delta = ns_to_timespec64(nsec);
1667                sleeptime_injected = true;
1668        } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1669                ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1670                sleeptime_injected = true;
1671        }
1672
1673        if (sleeptime_injected)
1674                __timekeeping_inject_sleeptime(tk, &ts_delta);
1675
1676        /* Re-base the last cycle value */
1677        tk->tkr_mono.cycle_last = cycle_now;
1678        tk->tkr_raw.cycle_last  = cycle_now;
1679
1680        tk->ntp_error = 0;
1681        timekeeping_suspended = 0;
1682        timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1683        write_seqcount_end(&tk_core.seq);
1684        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1685
1686        touch_softlockup_watchdog();
1687
1688        tick_resume();
1689        hrtimers_resume();
1690}
1691
1692int timekeeping_suspend(void)
1693{
1694        struct timekeeper *tk = &tk_core.timekeeper;
1695        unsigned long flags;
1696        struct timespec64               delta, delta_delta;
1697        static struct timespec64        old_delta;
1698
1699        read_persistent_clock64(&timekeeping_suspend_time);
1700
1701        /*
1702         * On some systems the persistent_clock can not be detected at
1703         * timekeeping_init by its return value, so if we see a valid
1704         * value returned, update the persistent_clock_exists flag.
1705         */
1706        if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1707                persistent_clock_exists = true;
1708
1709        raw_spin_lock_irqsave(&timekeeper_lock, flags);
1710        write_seqcount_begin(&tk_core.seq);
1711        timekeeping_forward_now(tk);
1712        timekeeping_suspended = 1;
1713
1714        if (persistent_clock_exists) {
1715                /*
1716                 * To avoid drift caused by repeated suspend/resumes,
1717                 * which each can add ~1 second drift error,
1718                 * try to compensate so the difference in system time
1719                 * and persistent_clock time stays close to constant.
1720                 */
1721                delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1722                delta_delta = timespec64_sub(delta, old_delta);
1723                if (abs(delta_delta.tv_sec) >= 2) {
1724                        /*
1725                         * if delta_delta is too large, assume time correction
1726                         * has occurred and set old_delta to the current delta.
1727                         */
1728                        old_delta = delta;
1729                } else {
1730                        /* Otherwise try to adjust old_system to compensate */
1731                        timekeeping_suspend_time =
1732                                timespec64_add(timekeeping_suspend_time, delta_delta);
1733                }
1734        }
1735
1736        timekeeping_update(tk, TK_MIRROR);
1737        halt_fast_timekeeper(tk);
1738        write_seqcount_end(&tk_core.seq);
1739        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1740
1741        tick_suspend();
1742        clocksource_suspend();
1743        clockevents_suspend();
1744
1745        return 0;
1746}
1747
1748/* sysfs resume/suspend bits for timekeeping */
1749static struct syscore_ops timekeeping_syscore_ops = {
1750        .resume         = timekeeping_resume,
1751        .suspend        = timekeeping_suspend,
1752};
1753
1754static int __init timekeeping_init_ops(void)
1755{
1756        register_syscore_ops(&timekeeping_syscore_ops);
1757        return 0;
1758}
1759device_initcall(timekeeping_init_ops);
1760
1761/*
1762 * Apply a multiplier adjustment to the timekeeper
1763 */
1764static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1765                                                         s64 offset,
1766                                                         bool negative,
1767                                                         int adj_scale)
1768{
1769        s64 interval = tk->cycle_interval;
1770        s32 mult_adj = 1;
1771
1772        if (negative) {
1773                mult_adj = -mult_adj;
1774                interval = -interval;
1775                offset  = -offset;
1776        }
1777        mult_adj <<= adj_scale;
1778        interval <<= adj_scale;
1779        offset <<= adj_scale;
1780
1781        /*
1782         * So the following can be confusing.
1783         *
1784         * To keep things simple, lets assume mult_adj == 1 for now.
1785         *
1786         * When mult_adj != 1, remember that the interval and offset values
1787         * have been appropriately scaled so the math is the same.
1788         *
1789         * The basic idea here is that we're increasing the multiplier
1790         * by one, this causes the xtime_interval to be incremented by
1791         * one cycle_interval. This is because:
1792         *      xtime_interval = cycle_interval * mult
1793         * So if mult is being incremented by one:
1794         *      xtime_interval = cycle_interval * (mult + 1)
1795         * Its the same as:
1796         *      xtime_interval = (cycle_interval * mult) + cycle_interval
1797         * Which can be shortened to:
1798         *      xtime_interval += cycle_interval
1799         *
1800         * So offset stores the non-accumulated cycles. Thus the current
1801         * time (in shifted nanoseconds) is:
1802         *      now = (offset * adj) + xtime_nsec
1803         * Now, even though we're adjusting the clock frequency, we have
1804         * to keep time consistent. In other words, we can't jump back
1805         * in time, and we also want to avoid jumping forward in time.
1806         *
1807         * So given the same offset value, we need the time to be the same
1808         * both before and after the freq adjustment.
1809         *      now = (offset * adj_1) + xtime_nsec_1
1810         *      now = (offset * adj_2) + xtime_nsec_2
1811         * So:
1812         *      (offset * adj_1) + xtime_nsec_1 =
1813         *              (offset * adj_2) + xtime_nsec_2
1814         * And we know:
1815         *      adj_2 = adj_1 + 1
1816         * So:
1817         *      (offset * adj_1) + xtime_nsec_1 =
1818         *              (offset * (adj_1+1)) + xtime_nsec_2
1819         *      (offset * adj_1) + xtime_nsec_1 =
1820         *              (offset * adj_1) + offset + xtime_nsec_2
1821         * Canceling the sides:
1822         *      xtime_nsec_1 = offset + xtime_nsec_2
1823         * Which gives us:
1824         *      xtime_nsec_2 = xtime_nsec_1 - offset
1825         * Which simplfies to:
1826         *      xtime_nsec -= offset
1827         *
1828         * XXX - TODO: Doc ntp_error calculation.
1829         */
1830        if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1831                /* NTP adjustment caused clocksource mult overflow */
1832                WARN_ON_ONCE(1);
1833                return;
1834        }
1835
1836        tk->tkr_mono.mult += mult_adj;
1837        tk->xtime_interval += interval;
1838        tk->tkr_mono.xtime_nsec -= offset;
1839        tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1840}
1841
1842/*
1843 * Calculate the multiplier adjustment needed to match the frequency
1844 * specified by NTP
1845 */
1846static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
1847                                                        s64 offset)
1848{
1849        s64 interval = tk->cycle_interval;
1850        s64 xinterval = tk->xtime_interval;
1851        u32 base = tk->tkr_mono.clock->mult;
1852        u32 max = tk->tkr_mono.clock->maxadj;
1853        u32 cur_adj = tk->tkr_mono.mult;
1854        s64 tick_error;
1855        bool negative;
1856        u32 adj_scale;
1857
1858        /* Remove any current error adj from freq calculation */
1859        if (tk->ntp_err_mult)
1860                xinterval -= tk->cycle_interval;
1861
1862        tk->ntp_tick = ntp_tick_length();
1863
1864        /* Calculate current error per tick */
1865        tick_error = ntp_tick_length() >> tk->ntp_error_shift;
1866        tick_error -= (xinterval + tk->xtime_remainder);
1867
1868        /* Don't worry about correcting it if its small */
1869        if (likely((tick_error >= 0) && (tick_error <= interval)))
1870                return;
1871
1872        /* preserve the direction of correction */
1873        negative = (tick_error < 0);
1874
1875        /* If any adjustment would pass the max, just return */
1876        if (negative && (cur_adj - 1) <= (base - max))
1877                return;
1878        if (!negative && (cur_adj + 1) >= (base + max))
1879                return;
1880        /*
1881         * Sort out the magnitude of the correction, but
1882         * avoid making so large a correction that we go
1883         * over the max adjustment.
1884         */
1885        adj_scale = 0;
1886        tick_error = abs(tick_error);
1887        while (tick_error > interval) {
1888                u32 adj = 1 << (adj_scale + 1);
1889
1890                /* Check if adjustment gets us within 1 unit from the max */
1891                if (negative && (cur_adj - adj) <= (base - max))
1892                        break;
1893                if (!negative && (cur_adj + adj) >= (base + max))
1894                        break;
1895
1896                adj_scale++;
1897                tick_error >>= 1;
1898        }
1899
1900        /* scale the corrections */
1901        timekeeping_apply_adjustment(tk, offset, negative, adj_scale);
1902}
1903
1904/*
1905 * Adjust the timekeeper's multiplier to the correct frequency
1906 * and also to reduce the accumulated error value.
1907 */
1908static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1909{
1910        /* Correct for the current frequency error */
1911        timekeeping_freqadjust(tk, offset);
1912
1913        /* Next make a small adjustment to fix any cumulative error */
1914        if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
1915                tk->ntp_err_mult = 1;
1916                timekeeping_apply_adjustment(tk, offset, 0, 0);
1917        } else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
1918                /* Undo any existing error adjustment */
1919                timekeeping_apply_adjustment(tk, offset, 1, 0);
1920                tk->ntp_err_mult = 0;
1921        }
1922
1923        if (unlikely(tk->tkr_mono.clock->maxadj &&
1924                (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1925                        > tk->tkr_mono.clock->maxadj))) {
1926                printk_once(KERN_WARNING
1927                        "Adjusting %s more than 11%% (%ld vs %ld)\n",
1928                        tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1929                        (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1930        }
1931
1932        /*
1933         * It may be possible that when we entered this function, xtime_nsec
1934         * was very small.  Further, if we're slightly speeding the clocksource
1935         * in the code above, its possible the required corrective factor to
1936         * xtime_nsec could cause it to underflow.
1937         *
1938         * Now, since we already accumulated the second, cannot simply roll
1939         * the accumulated second back, since the NTP subsystem has been
1940         * notified via second_overflow. So instead we push xtime_nsec forward
1941         * by the amount we underflowed, and add that amount into the error.
1942         *
1943         * We'll correct this error next time through this function, when
1944         * xtime_nsec is not as small.
1945         */
1946        if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1947                s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
1948                tk->tkr_mono.xtime_nsec = 0;
1949                tk->ntp_error += neg << tk->ntp_error_shift;
1950        }
1951}
1952
1953/**
1954 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1955 *
1956 * Helper function that accumulates the nsecs greater than a second
1957 * from the xtime_nsec field to the xtime_secs field.
1958 * It also calls into the NTP code to handle leapsecond processing.
1959 *
1960 */
1961static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1962{
1963        u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1964        unsigned int clock_set = 0;
1965
1966        while (tk->tkr_mono.xtime_nsec >= nsecps) {
1967                int leap;
1968
1969                tk->tkr_mono.xtime_nsec -= nsecps;
1970                tk->xtime_sec++;
1971
1972                /* Figure out if its a leap sec and apply if needed */
1973                leap = second_overflow(tk->xtime_sec);
1974                if (unlikely(leap)) {
1975                        struct timespec64 ts;
1976
1977                        tk->xtime_sec += leap;
1978
1979                        ts.tv_sec = leap;
1980                        ts.tv_nsec = 0;
1981                        tk_set_wall_to_mono(tk,
1982                                timespec64_sub(tk->wall_to_monotonic, ts));
1983
1984                        __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1985
1986                        clock_set = TK_CLOCK_WAS_SET;
1987                }
1988        }
1989        return clock_set;
1990}
1991
1992/**
1993 * logarithmic_accumulation - shifted accumulation of cycles
1994 *
1995 * This functions accumulates a shifted interval of cycles into
1996 * into a shifted interval nanoseconds. Allows for O(log) accumulation
1997 * loop.
1998 *
1999 * Returns the unconsumed cycles.
2000 */
2001static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
2002                                                u32 shift,
2003                                                unsigned int *clock_set)
2004{
2005        cycle_t interval = tk->cycle_interval << shift;
2006        u64 raw_nsecs;
2007
2008        /* If the offset is smaller than a shifted interval, do nothing */
2009        if (offset < interval)
2010                return offset;
2011
2012        /* Accumulate one shifted interval */
2013        offset -= interval;
2014        tk->tkr_mono.cycle_last += interval;
2015        tk->tkr_raw.cycle_last  += interval;
2016
2017        tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2018        *clock_set |= accumulate_nsecs_to_secs(tk);
2019
2020        /* Accumulate raw time */
2021        raw_nsecs = (u64)tk->raw_interval << shift;
2022        raw_nsecs += tk->raw_time.tv_nsec;
2023        if (raw_nsecs >= NSEC_PER_SEC) {
2024                u64 raw_secs = raw_nsecs;
2025                raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
2026                tk->raw_time.tv_sec += raw_secs;
2027        }
2028        tk->raw_time.tv_nsec = raw_nsecs;
2029
2030        /* Accumulate error between NTP and clock interval */
2031        tk->ntp_error += tk->ntp_tick << shift;
2032        tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2033                                                (tk->ntp_error_shift + shift);
2034
2035        return offset;
2036}
2037
2038/**
2039 * update_wall_time - Uses the current clocksource to increment the wall time
2040 *
2041 */
2042void update_wall_time(void)
2043{
2044        struct timekeeper *real_tk = &tk_core.timekeeper;
2045        struct timekeeper *tk = &shadow_timekeeper;
2046        cycle_t offset;
2047        int shift = 0, maxshift;
2048        unsigned int clock_set = 0;
2049        unsigned long flags;
2050
2051        raw_spin_lock_irqsave(&timekeeper_lock, flags);
2052
2053        /* Make sure we're fully resumed: */
2054        if (unlikely(timekeeping_suspended))
2055                goto out;
2056
2057#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
2058        offset = real_tk->cycle_interval;
2059#else
2060        offset = clocksource_delta(tk->tkr_mono.read(tk->tkr_mono.clock),
2061                                   tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2062#endif
2063
2064        /* Check if there's really nothing to do */
2065        if (offset < real_tk->cycle_interval)
2066                goto out;
2067
2068        /* Do some additional sanity checking */
2069        timekeeping_check_update(real_tk, offset);
2070
2071        /*
2072         * With NO_HZ we may have to accumulate many cycle_intervals
2073         * (think "ticks") worth of time at once. To do this efficiently,
2074         * we calculate the largest doubling multiple of cycle_intervals
2075         * that is smaller than the offset.  We then accumulate that
2076         * chunk in one go, and then try to consume the next smaller
2077         * doubled multiple.
2078         */
2079        shift = ilog2(offset) - ilog2(tk->cycle_interval);
2080        shift = max(0, shift);
2081        /* Bound shift to one less than what overflows tick_length */
2082        maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2083        shift = min(shift, maxshift);
2084        while (offset >= tk->cycle_interval) {
2085                offset = logarithmic_accumulation(tk, offset, shift,
2086                                                        &clock_set);
2087                if (offset < tk->cycle_interval<<shift)
2088                        shift--;
2089        }
2090
2091        /* correct the clock when NTP error is too big */
2092        timekeeping_adjust(tk, offset);
2093
2094        /*
2095         * XXX This can be killed once everyone converts
2096         * to the new update_vsyscall.
2097         */
2098        old_vsyscall_fixup(tk);
2099
2100        /*
2101         * Finally, make sure that after the rounding
2102         * xtime_nsec isn't larger than NSEC_PER_SEC
2103         */
2104        clock_set |= accumulate_nsecs_to_secs(tk);
2105
2106        write_seqcount_begin(&tk_core.seq);
2107        /*
2108         * Update the real timekeeper.
2109         *
2110         * We could avoid this memcpy by switching pointers, but that
2111         * requires changes to all other timekeeper usage sites as
2112         * well, i.e. move the timekeeper pointer getter into the
2113         * spinlocked/seqcount protected sections. And we trade this
2114         * memcpy under the tk_core.seq against one before we start
2115         * updating.
2116         */
2117        timekeeping_update(tk, clock_set);
2118        memcpy(real_tk, tk, sizeof(*tk));
2119        /* The memcpy must come last. Do not put anything here! */
2120        write_seqcount_end(&tk_core.seq);
2121out:
2122        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2123        if (clock_set)
2124                /* Have to call _delayed version, since in irq context*/
2125                clock_was_set_delayed();
2126}
2127
2128/**
2129 * getboottime64 - Return the real time of system boot.
2130 * @ts:         pointer to the timespec64 to be set
2131 *
2132 * Returns the wall-time of boot in a timespec64.
2133 *
2134 * This is based on the wall_to_monotonic offset and the total suspend
2135 * time. Calls to settimeofday will affect the value returned (which
2136 * basically means that however wrong your real time clock is at boot time,
2137 * you get the right time here).
2138 */
2139void getboottime64(struct timespec64 *ts)
2140{
2141        struct timekeeper *tk = &tk_core.timekeeper;
2142        ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2143
2144        *ts = ktime_to_timespec64(t);
2145}
2146EXPORT_SYMBOL_GPL(getboottime64);
2147
2148unsigned long get_seconds(void)
2149{
2150        struct timekeeper *tk = &tk_core.timekeeper;
2151
2152        return tk->xtime_sec;
2153}
2154EXPORT_SYMBOL(get_seconds);
2155
2156struct timespec __current_kernel_time(void)
2157{
2158        struct timekeeper *tk = &tk_core.timekeeper;
2159
2160        return timespec64_to_timespec(tk_xtime(tk));
2161}
2162
2163struct timespec64 current_kernel_time64(void)
2164{
2165        struct timekeeper *tk = &tk_core.timekeeper;
2166        struct timespec64 now;
2167        unsigned long seq;
2168
2169        do {
2170                seq = read_seqcount_begin(&tk_core.seq);
2171
2172                now = tk_xtime(tk);
2173        } while (read_seqcount_retry(&tk_core.seq, seq));
2174
2175        return now;
2176}
2177EXPORT_SYMBOL(current_kernel_time64);
2178
2179struct timespec64 get_monotonic_coarse64(void)
2180{
2181        struct timekeeper *tk = &tk_core.timekeeper;
2182        struct timespec64 now, mono;
2183        unsigned long seq;
2184
2185        do {
2186                seq = read_seqcount_begin(&tk_core.seq);
2187
2188                now = tk_xtime(tk);
2189                mono = tk->wall_to_monotonic;
2190        } while (read_seqcount_retry(&tk_core.seq, seq));
2191
2192        set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
2193                                now.tv_nsec + mono.tv_nsec);
2194
2195        return now;
2196}
2197EXPORT_SYMBOL(get_monotonic_coarse64);
2198
2199/*
2200 * Must hold jiffies_lock
2201 */
2202void do_timer(unsigned long ticks)
2203{
2204        jiffies_64 += ticks;
2205        calc_global_load(ticks);
2206}
2207
2208/**
2209 * ktime_get_update_offsets_now - hrtimer helper
2210 * @cwsseq:     pointer to check and store the clock was set sequence number
2211 * @offs_real:  pointer to storage for monotonic -> realtime offset
2212 * @offs_boot:  pointer to storage for monotonic -> boottime offset
2213 * @offs_tai:   pointer to storage for monotonic -> clock tai offset
2214 *
2215 * Returns current monotonic time and updates the offsets if the
2216 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2217 * different.
2218 *
2219 * Called from hrtimer_interrupt() or retrigger_next_event()
2220 */
2221ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2222                                     ktime_t *offs_boot, ktime_t *offs_tai)
2223{
2224        struct timekeeper *tk = &tk_core.timekeeper;
2225        unsigned int seq;
2226        ktime_t base;
2227        u64 nsecs;
2228
2229        do {
2230                seq = read_seqcount_begin(&tk_core.seq);
2231
2232                base = tk->tkr_mono.base;
2233                nsecs = timekeeping_get_ns(&tk->tkr_mono);
2234                base = ktime_add_ns(base, nsecs);
2235
2236                if (*cwsseq != tk->clock_was_set_seq) {
2237                        *cwsseq = tk->clock_was_set_seq;
2238                        *offs_real = tk->offs_real;
2239                        *offs_boot = tk->offs_boot;
2240                        *offs_tai = tk->offs_tai;
2241                }
2242
2243                /* Handle leapsecond insertion adjustments */
2244                if (unlikely(base.tv64 >= tk->next_leap_ktime.tv64))
2245                        *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2246
2247        } while (read_seqcount_retry(&tk_core.seq, seq));
2248
2249        return base;
2250}
2251
2252/**
2253 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2254 */
2255int do_adjtimex(struct timex *txc)
2256{
2257        struct timekeeper *tk = &tk_core.timekeeper;
2258        unsigned long flags;
2259        struct timespec64 ts;
2260        s32 orig_tai, tai;
2261        int ret;
2262
2263        /* Validate the data before disabling interrupts */
2264        ret = ntp_validate_timex(txc);
2265        if (ret)
2266                return ret;
2267
2268        if (txc->modes & ADJ_SETOFFSET) {
2269                struct timespec delta;
2270                delta.tv_sec  = txc->time.tv_sec;
2271                delta.tv_nsec = txc->time.tv_usec;
2272                if (!(txc->modes & ADJ_NANO))
2273                        delta.tv_nsec *= 1000;
2274                ret = timekeeping_inject_offset(&delta);
2275                if (ret)
2276                        return ret;
2277        }
2278
2279        getnstimeofday64(&ts);
2280
2281        raw_spin_lock_irqsave(&timekeeper_lock, flags);
2282        write_seqcount_begin(&tk_core.seq);
2283
2284        orig_tai = tai = tk->tai_offset;
2285        ret = __do_adjtimex(txc, &ts, &tai);
2286
2287        if (tai != orig_tai) {
2288                __timekeeping_set_tai_offset(tk, tai);
2289                timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2290        }
2291        tk_update_leap_state(tk);
2292
2293        write_seqcount_end(&tk_core.seq);
2294        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2295
2296        if (tai != orig_tai)
2297                clock_was_set();
2298
2299        ntp_notify_cmos_timer();
2300
2301        return ret;
2302}
2303
2304#ifdef CONFIG_NTP_PPS
2305/**
2306 * hardpps() - Accessor function to NTP __hardpps function
2307 */
2308void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2309{
2310        unsigned long flags;
2311
2312        raw_spin_lock_irqsave(&timekeeper_lock, flags);
2313        write_seqcount_begin(&tk_core.seq);
2314
2315        __hardpps(phase_ts, raw_ts);
2316
2317        write_seqcount_end(&tk_core.seq);
2318        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2319}
2320EXPORT_SYMBOL(hardpps);
2321#endif
2322
2323/**
2324 * xtime_update() - advances the timekeeping infrastructure
2325 * @ticks:      number of ticks, that have elapsed since the last call.
2326 *
2327 * Must be called with interrupts disabled.
2328 */
2329void xtime_update(unsigned long ticks)
2330{
2331        write_seqlock(&jiffies_lock);
2332        do_timer(ticks);
2333        write_sequnlock(&jiffies_lock);
2334        update_wall_time();
2335}
2336