linux/mm/memory.c
<<
>>
Prefs
   1/*
   2 *  linux/mm/memory.c
   3 *
   4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   5 */
   6
   7/*
   8 * demand-loading started 01.12.91 - seems it is high on the list of
   9 * things wanted, and it should be easy to implement. - Linus
  10 */
  11
  12/*
  13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  14 * pages started 02.12.91, seems to work. - Linus.
  15 *
  16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  17 * would have taken more than the 6M I have free, but it worked well as
  18 * far as I could see.
  19 *
  20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  21 */
  22
  23/*
  24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
  25 * thought has to go into this. Oh, well..
  26 * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
  27 *              Found it. Everything seems to work now.
  28 * 20.12.91  -  Ok, making the swap-device changeable like the root.
  29 */
  30
  31/*
  32 * 05.04.94  -  Multi-page memory management added for v1.1.
  33 *              Idea by Alex Bligh (alex@cconcepts.co.uk)
  34 *
  35 * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
  36 *              (Gerhard.Wichert@pdb.siemens.de)
  37 *
  38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  39 */
  40
  41#include <linux/kernel_stat.h>
  42#include <linux/mm.h>
  43#include <linux/hugetlb.h>
  44#include <linux/mman.h>
  45#include <linux/swap.h>
  46#include <linux/highmem.h>
  47#include <linux/pagemap.h>
  48#include <linux/ksm.h>
  49#include <linux/rmap.h>
  50#include <linux/export.h>
  51#include <linux/delayacct.h>
  52#include <linux/init.h>
  53#include <linux/pfn_t.h>
  54#include <linux/writeback.h>
  55#include <linux/memcontrol.h>
  56#include <linux/mmu_notifier.h>
  57#include <linux/kallsyms.h>
  58#include <linux/swapops.h>
  59#include <linux/elf.h>
  60#include <linux/gfp.h>
  61#include <linux/migrate.h>
  62#include <linux/string.h>
  63#include <linux/dma-debug.h>
  64#include <linux/debugfs.h>
  65#include <linux/userfaultfd_k.h>
  66#include <linux/dax.h>
  67
  68#include <asm/io.h>
  69#include <asm/mmu_context.h>
  70#include <asm/pgalloc.h>
  71#include <asm/uaccess.h>
  72#include <asm/tlb.h>
  73#include <asm/tlbflush.h>
  74#include <asm/pgtable.h>
  75
  76#include "internal.h"
  77
  78#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
  79#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
  80#endif
  81
  82#ifndef CONFIG_NEED_MULTIPLE_NODES
  83/* use the per-pgdat data instead for discontigmem - mbligh */
  84unsigned long max_mapnr;
  85struct page *mem_map;
  86
  87EXPORT_SYMBOL(max_mapnr);
  88EXPORT_SYMBOL(mem_map);
  89#endif
  90
  91/*
  92 * A number of key systems in x86 including ioremap() rely on the assumption
  93 * that high_memory defines the upper bound on direct map memory, then end
  94 * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
  95 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
  96 * and ZONE_HIGHMEM.
  97 */
  98void * high_memory;
  99
 100EXPORT_SYMBOL(high_memory);
 101
 102/*
 103 * Randomize the address space (stacks, mmaps, brk, etc.).
 104 *
 105 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
 106 *   as ancient (libc5 based) binaries can segfault. )
 107 */
 108int randomize_va_space __read_mostly =
 109#ifdef CONFIG_COMPAT_BRK
 110                                        1;
 111#else
 112                                        2;
 113#endif
 114
 115static int __init disable_randmaps(char *s)
 116{
 117        randomize_va_space = 0;
 118        return 1;
 119}
 120__setup("norandmaps", disable_randmaps);
 121
 122unsigned long zero_pfn __read_mostly;
 123unsigned long highest_memmap_pfn __read_mostly;
 124
 125EXPORT_SYMBOL(zero_pfn);
 126
 127/*
 128 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
 129 */
 130static int __init init_zero_pfn(void)
 131{
 132        zero_pfn = page_to_pfn(ZERO_PAGE(0));
 133        return 0;
 134}
 135core_initcall(init_zero_pfn);
 136
 137
 138#if defined(SPLIT_RSS_COUNTING)
 139
 140void sync_mm_rss(struct mm_struct *mm)
 141{
 142        int i;
 143
 144        for (i = 0; i < NR_MM_COUNTERS; i++) {
 145                if (current->rss_stat.count[i]) {
 146                        add_mm_counter(mm, i, current->rss_stat.count[i]);
 147                        current->rss_stat.count[i] = 0;
 148                }
 149        }
 150        current->rss_stat.events = 0;
 151}
 152
 153static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
 154{
 155        struct task_struct *task = current;
 156
 157        if (likely(task->mm == mm))
 158                task->rss_stat.count[member] += val;
 159        else
 160                add_mm_counter(mm, member, val);
 161}
 162#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
 163#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
 164
 165/* sync counter once per 64 page faults */
 166#define TASK_RSS_EVENTS_THRESH  (64)
 167static void check_sync_rss_stat(struct task_struct *task)
 168{
 169        if (unlikely(task != current))
 170                return;
 171        if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
 172                sync_mm_rss(task->mm);
 173}
 174#else /* SPLIT_RSS_COUNTING */
 175
 176#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
 177#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
 178
 179static void check_sync_rss_stat(struct task_struct *task)
 180{
 181}
 182
 183#endif /* SPLIT_RSS_COUNTING */
 184
 185#ifdef HAVE_GENERIC_MMU_GATHER
 186
 187static bool tlb_next_batch(struct mmu_gather *tlb)
 188{
 189        struct mmu_gather_batch *batch;
 190
 191        batch = tlb->active;
 192        if (batch->next) {
 193                tlb->active = batch->next;
 194                return true;
 195        }
 196
 197        if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
 198                return false;
 199
 200        batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
 201        if (!batch)
 202                return false;
 203
 204        tlb->batch_count++;
 205        batch->next = NULL;
 206        batch->nr   = 0;
 207        batch->max  = MAX_GATHER_BATCH;
 208
 209        tlb->active->next = batch;
 210        tlb->active = batch;
 211
 212        return true;
 213}
 214
 215/* tlb_gather_mmu
 216 *      Called to initialize an (on-stack) mmu_gather structure for page-table
 217 *      tear-down from @mm. The @fullmm argument is used when @mm is without
 218 *      users and we're going to destroy the full address space (exit/execve).
 219 */
 220void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
 221{
 222        tlb->mm = mm;
 223
 224        /* Is it from 0 to ~0? */
 225        tlb->fullmm     = !(start | (end+1));
 226        tlb->need_flush_all = 0;
 227        tlb->local.next = NULL;
 228        tlb->local.nr   = 0;
 229        tlb->local.max  = ARRAY_SIZE(tlb->__pages);
 230        tlb->active     = &tlb->local;
 231        tlb->batch_count = 0;
 232
 233#ifdef CONFIG_HAVE_RCU_TABLE_FREE
 234        tlb->batch = NULL;
 235#endif
 236        tlb->page_size = 0;
 237
 238        __tlb_reset_range(tlb);
 239}
 240
 241static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
 242{
 243        if (!tlb->end)
 244                return;
 245
 246        tlb_flush(tlb);
 247        mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
 248#ifdef CONFIG_HAVE_RCU_TABLE_FREE
 249        tlb_table_flush(tlb);
 250#endif
 251        __tlb_reset_range(tlb);
 252}
 253
 254static void tlb_flush_mmu_free(struct mmu_gather *tlb)
 255{
 256        struct mmu_gather_batch *batch;
 257
 258        for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
 259                free_pages_and_swap_cache(batch->pages, batch->nr);
 260                batch->nr = 0;
 261        }
 262        tlb->active = &tlb->local;
 263}
 264
 265void tlb_flush_mmu(struct mmu_gather *tlb)
 266{
 267        tlb_flush_mmu_tlbonly(tlb);
 268        tlb_flush_mmu_free(tlb);
 269}
 270
 271/* tlb_finish_mmu
 272 *      Called at the end of the shootdown operation to free up any resources
 273 *      that were required.
 274 */
 275void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
 276{
 277        struct mmu_gather_batch *batch, *next;
 278
 279        tlb_flush_mmu(tlb);
 280
 281        /* keep the page table cache within bounds */
 282        check_pgt_cache();
 283
 284        for (batch = tlb->local.next; batch; batch = next) {
 285                next = batch->next;
 286                free_pages((unsigned long)batch, 0);
 287        }
 288        tlb->local.next = NULL;
 289}
 290
 291/* __tlb_remove_page
 292 *      Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
 293 *      handling the additional races in SMP caused by other CPUs caching valid
 294 *      mappings in their TLBs. Returns the number of free page slots left.
 295 *      When out of page slots we must call tlb_flush_mmu().
 296 *returns true if the caller should flush.
 297 */
 298bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size)
 299{
 300        struct mmu_gather_batch *batch;
 301
 302        VM_BUG_ON(!tlb->end);
 303
 304        if (!tlb->page_size)
 305                tlb->page_size = page_size;
 306        else {
 307                if (page_size != tlb->page_size)
 308                        return true;
 309        }
 310
 311        batch = tlb->active;
 312        if (batch->nr == batch->max) {
 313                if (!tlb_next_batch(tlb))
 314                        return true;
 315                batch = tlb->active;
 316        }
 317        VM_BUG_ON_PAGE(batch->nr > batch->max, page);
 318
 319        batch->pages[batch->nr++] = page;
 320        return false;
 321}
 322
 323#endif /* HAVE_GENERIC_MMU_GATHER */
 324
 325#ifdef CONFIG_HAVE_RCU_TABLE_FREE
 326
 327/*
 328 * See the comment near struct mmu_table_batch.
 329 */
 330
 331static void tlb_remove_table_smp_sync(void *arg)
 332{
 333        /* Simply deliver the interrupt */
 334}
 335
 336static void tlb_remove_table_one(void *table)
 337{
 338        /*
 339         * This isn't an RCU grace period and hence the page-tables cannot be
 340         * assumed to be actually RCU-freed.
 341         *
 342         * It is however sufficient for software page-table walkers that rely on
 343         * IRQ disabling. See the comment near struct mmu_table_batch.
 344         */
 345        smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
 346        __tlb_remove_table(table);
 347}
 348
 349static void tlb_remove_table_rcu(struct rcu_head *head)
 350{
 351        struct mmu_table_batch *batch;
 352        int i;
 353
 354        batch = container_of(head, struct mmu_table_batch, rcu);
 355
 356        for (i = 0; i < batch->nr; i++)
 357                __tlb_remove_table(batch->tables[i]);
 358
 359        free_page((unsigned long)batch);
 360}
 361
 362void tlb_table_flush(struct mmu_gather *tlb)
 363{
 364        struct mmu_table_batch **batch = &tlb->batch;
 365
 366        if (*batch) {
 367                call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
 368                *batch = NULL;
 369        }
 370}
 371
 372void tlb_remove_table(struct mmu_gather *tlb, void *table)
 373{
 374        struct mmu_table_batch **batch = &tlb->batch;
 375
 376        /*
 377         * When there's less then two users of this mm there cannot be a
 378         * concurrent page-table walk.
 379         */
 380        if (atomic_read(&tlb->mm->mm_users) < 2) {
 381                __tlb_remove_table(table);
 382                return;
 383        }
 384
 385        if (*batch == NULL) {
 386                *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
 387                if (*batch == NULL) {
 388                        tlb_remove_table_one(table);
 389                        return;
 390                }
 391                (*batch)->nr = 0;
 392        }
 393        (*batch)->tables[(*batch)->nr++] = table;
 394        if ((*batch)->nr == MAX_TABLE_BATCH)
 395                tlb_table_flush(tlb);
 396}
 397
 398#endif /* CONFIG_HAVE_RCU_TABLE_FREE */
 399
 400/*
 401 * Note: this doesn't free the actual pages themselves. That
 402 * has been handled earlier when unmapping all the memory regions.
 403 */
 404static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
 405                           unsigned long addr)
 406{
 407        pgtable_t token = pmd_pgtable(*pmd);
 408        pmd_clear(pmd);
 409        pte_free_tlb(tlb, token, addr);
 410        atomic_long_dec(&tlb->mm->nr_ptes);
 411}
 412
 413static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
 414                                unsigned long addr, unsigned long end,
 415                                unsigned long floor, unsigned long ceiling)
 416{
 417        pmd_t *pmd;
 418        unsigned long next;
 419        unsigned long start;
 420
 421        start = addr;
 422        pmd = pmd_offset(pud, addr);
 423        do {
 424                next = pmd_addr_end(addr, end);
 425                if (pmd_none_or_clear_bad(pmd))
 426                        continue;
 427                free_pte_range(tlb, pmd, addr);
 428        } while (pmd++, addr = next, addr != end);
 429
 430        start &= PUD_MASK;
 431        if (start < floor)
 432                return;
 433        if (ceiling) {
 434                ceiling &= PUD_MASK;
 435                if (!ceiling)
 436                        return;
 437        }
 438        if (end - 1 > ceiling - 1)
 439                return;
 440
 441        pmd = pmd_offset(pud, start);
 442        pud_clear(pud);
 443        pmd_free_tlb(tlb, pmd, start);
 444        mm_dec_nr_pmds(tlb->mm);
 445}
 446
 447static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
 448                                unsigned long addr, unsigned long end,
 449                                unsigned long floor, unsigned long ceiling)
 450{
 451        pud_t *pud;
 452        unsigned long next;
 453        unsigned long start;
 454
 455        start = addr;
 456        pud = pud_offset(pgd, addr);
 457        do {
 458                next = pud_addr_end(addr, end);
 459                if (pud_none_or_clear_bad(pud))
 460                        continue;
 461                free_pmd_range(tlb, pud, addr, next, floor, ceiling);
 462        } while (pud++, addr = next, addr != end);
 463
 464        start &= PGDIR_MASK;
 465        if (start < floor)
 466                return;
 467        if (ceiling) {
 468                ceiling &= PGDIR_MASK;
 469                if (!ceiling)
 470                        return;
 471        }
 472        if (end - 1 > ceiling - 1)
 473                return;
 474
 475        pud = pud_offset(pgd, start);
 476        pgd_clear(pgd);
 477        pud_free_tlb(tlb, pud, start);
 478}
 479
 480/*
 481 * This function frees user-level page tables of a process.
 482 */
 483void free_pgd_range(struct mmu_gather *tlb,
 484                        unsigned long addr, unsigned long end,
 485                        unsigned long floor, unsigned long ceiling)
 486{
 487        pgd_t *pgd;
 488        unsigned long next;
 489
 490        /*
 491         * The next few lines have given us lots of grief...
 492         *
 493         * Why are we testing PMD* at this top level?  Because often
 494         * there will be no work to do at all, and we'd prefer not to
 495         * go all the way down to the bottom just to discover that.
 496         *
 497         * Why all these "- 1"s?  Because 0 represents both the bottom
 498         * of the address space and the top of it (using -1 for the
 499         * top wouldn't help much: the masks would do the wrong thing).
 500         * The rule is that addr 0 and floor 0 refer to the bottom of
 501         * the address space, but end 0 and ceiling 0 refer to the top
 502         * Comparisons need to use "end - 1" and "ceiling - 1" (though
 503         * that end 0 case should be mythical).
 504         *
 505         * Wherever addr is brought up or ceiling brought down, we must
 506         * be careful to reject "the opposite 0" before it confuses the
 507         * subsequent tests.  But what about where end is brought down
 508         * by PMD_SIZE below? no, end can't go down to 0 there.
 509         *
 510         * Whereas we round start (addr) and ceiling down, by different
 511         * masks at different levels, in order to test whether a table
 512         * now has no other vmas using it, so can be freed, we don't
 513         * bother to round floor or end up - the tests don't need that.
 514         */
 515
 516        addr &= PMD_MASK;
 517        if (addr < floor) {
 518                addr += PMD_SIZE;
 519                if (!addr)
 520                        return;
 521        }
 522        if (ceiling) {
 523                ceiling &= PMD_MASK;
 524                if (!ceiling)
 525                        return;
 526        }
 527        if (end - 1 > ceiling - 1)
 528                end -= PMD_SIZE;
 529        if (addr > end - 1)
 530                return;
 531
 532        pgd = pgd_offset(tlb->mm, addr);
 533        do {
 534                next = pgd_addr_end(addr, end);
 535                if (pgd_none_or_clear_bad(pgd))
 536                        continue;
 537                free_pud_range(tlb, pgd, addr, next, floor, ceiling);
 538        } while (pgd++, addr = next, addr != end);
 539}
 540
 541void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
 542                unsigned long floor, unsigned long ceiling)
 543{
 544        while (vma) {
 545                struct vm_area_struct *next = vma->vm_next;
 546                unsigned long addr = vma->vm_start;
 547
 548                /*
 549                 * Hide vma from rmap and truncate_pagecache before freeing
 550                 * pgtables
 551                 */
 552                unlink_anon_vmas(vma);
 553                unlink_file_vma(vma);
 554
 555                if (is_vm_hugetlb_page(vma)) {
 556                        hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
 557                                floor, next? next->vm_start: ceiling);
 558                } else {
 559                        /*
 560                         * Optimization: gather nearby vmas into one call down
 561                         */
 562                        while (next && next->vm_start <= vma->vm_end + PMD_SIZE
 563                               && !is_vm_hugetlb_page(next)) {
 564                                vma = next;
 565                                next = vma->vm_next;
 566                                unlink_anon_vmas(vma);
 567                                unlink_file_vma(vma);
 568                        }
 569                        free_pgd_range(tlb, addr, vma->vm_end,
 570                                floor, next? next->vm_start: ceiling);
 571                }
 572                vma = next;
 573        }
 574}
 575
 576int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
 577{
 578        spinlock_t *ptl;
 579        pgtable_t new = pte_alloc_one(mm, address);
 580        if (!new)
 581                return -ENOMEM;
 582
 583        /*
 584         * Ensure all pte setup (eg. pte page lock and page clearing) are
 585         * visible before the pte is made visible to other CPUs by being
 586         * put into page tables.
 587         *
 588         * The other side of the story is the pointer chasing in the page
 589         * table walking code (when walking the page table without locking;
 590         * ie. most of the time). Fortunately, these data accesses consist
 591         * of a chain of data-dependent loads, meaning most CPUs (alpha
 592         * being the notable exception) will already guarantee loads are
 593         * seen in-order. See the alpha page table accessors for the
 594         * smp_read_barrier_depends() barriers in page table walking code.
 595         */
 596        smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
 597
 598        ptl = pmd_lock(mm, pmd);
 599        if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
 600                atomic_long_inc(&mm->nr_ptes);
 601                pmd_populate(mm, pmd, new);
 602                new = NULL;
 603        }
 604        spin_unlock(ptl);
 605        if (new)
 606                pte_free(mm, new);
 607        return 0;
 608}
 609
 610int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
 611{
 612        pte_t *new = pte_alloc_one_kernel(&init_mm, address);
 613        if (!new)
 614                return -ENOMEM;
 615
 616        smp_wmb(); /* See comment in __pte_alloc */
 617
 618        spin_lock(&init_mm.page_table_lock);
 619        if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
 620                pmd_populate_kernel(&init_mm, pmd, new);
 621                new = NULL;
 622        }
 623        spin_unlock(&init_mm.page_table_lock);
 624        if (new)
 625                pte_free_kernel(&init_mm, new);
 626        return 0;
 627}
 628
 629static inline void init_rss_vec(int *rss)
 630{
 631        memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
 632}
 633
 634static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
 635{
 636        int i;
 637
 638        if (current->mm == mm)
 639                sync_mm_rss(mm);
 640        for (i = 0; i < NR_MM_COUNTERS; i++)
 641                if (rss[i])
 642                        add_mm_counter(mm, i, rss[i]);
 643}
 644
 645/*
 646 * This function is called to print an error when a bad pte
 647 * is found. For example, we might have a PFN-mapped pte in
 648 * a region that doesn't allow it.
 649 *
 650 * The calling function must still handle the error.
 651 */
 652static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
 653                          pte_t pte, struct page *page)
 654{
 655        pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
 656        pud_t *pud = pud_offset(pgd, addr);
 657        pmd_t *pmd = pmd_offset(pud, addr);
 658        struct address_space *mapping;
 659        pgoff_t index;
 660        static unsigned long resume;
 661        static unsigned long nr_shown;
 662        static unsigned long nr_unshown;
 663
 664        /*
 665         * Allow a burst of 60 reports, then keep quiet for that minute;
 666         * or allow a steady drip of one report per second.
 667         */
 668        if (nr_shown == 60) {
 669                if (time_before(jiffies, resume)) {
 670                        nr_unshown++;
 671                        return;
 672                }
 673                if (nr_unshown) {
 674                        pr_alert("BUG: Bad page map: %lu messages suppressed\n",
 675                                 nr_unshown);
 676                        nr_unshown = 0;
 677                }
 678                nr_shown = 0;
 679        }
 680        if (nr_shown++ == 0)
 681                resume = jiffies + 60 * HZ;
 682
 683        mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
 684        index = linear_page_index(vma, addr);
 685
 686        pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
 687                 current->comm,
 688                 (long long)pte_val(pte), (long long)pmd_val(*pmd));
 689        if (page)
 690                dump_page(page, "bad pte");
 691        pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
 692                 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
 693        /*
 694         * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
 695         */
 696        pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
 697                 vma->vm_file,
 698                 vma->vm_ops ? vma->vm_ops->fault : NULL,
 699                 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
 700                 mapping ? mapping->a_ops->readpage : NULL);
 701        dump_stack();
 702        add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 703}
 704
 705/*
 706 * vm_normal_page -- This function gets the "struct page" associated with a pte.
 707 *
 708 * "Special" mappings do not wish to be associated with a "struct page" (either
 709 * it doesn't exist, or it exists but they don't want to touch it). In this
 710 * case, NULL is returned here. "Normal" mappings do have a struct page.
 711 *
 712 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
 713 * pte bit, in which case this function is trivial. Secondly, an architecture
 714 * may not have a spare pte bit, which requires a more complicated scheme,
 715 * described below.
 716 *
 717 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
 718 * special mapping (even if there are underlying and valid "struct pages").
 719 * COWed pages of a VM_PFNMAP are always normal.
 720 *
 721 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
 722 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
 723 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
 724 * mapping will always honor the rule
 725 *
 726 *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
 727 *
 728 * And for normal mappings this is false.
 729 *
 730 * This restricts such mappings to be a linear translation from virtual address
 731 * to pfn. To get around this restriction, we allow arbitrary mappings so long
 732 * as the vma is not a COW mapping; in that case, we know that all ptes are
 733 * special (because none can have been COWed).
 734 *
 735 *
 736 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
 737 *
 738 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
 739 * page" backing, however the difference is that _all_ pages with a struct
 740 * page (that is, those where pfn_valid is true) are refcounted and considered
 741 * normal pages by the VM. The disadvantage is that pages are refcounted
 742 * (which can be slower and simply not an option for some PFNMAP users). The
 743 * advantage is that we don't have to follow the strict linearity rule of
 744 * PFNMAP mappings in order to support COWable mappings.
 745 *
 746 */
 747#ifdef __HAVE_ARCH_PTE_SPECIAL
 748# define HAVE_PTE_SPECIAL 1
 749#else
 750# define HAVE_PTE_SPECIAL 0
 751#endif
 752struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
 753                                pte_t pte)
 754{
 755        unsigned long pfn = pte_pfn(pte);
 756
 757        if (HAVE_PTE_SPECIAL) {
 758                if (likely(!pte_special(pte)))
 759                        goto check_pfn;
 760                if (vma->vm_ops && vma->vm_ops->find_special_page)
 761                        return vma->vm_ops->find_special_page(vma, addr);
 762                if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
 763                        return NULL;
 764                if (!is_zero_pfn(pfn))
 765                        print_bad_pte(vma, addr, pte, NULL);
 766                return NULL;
 767        }
 768
 769        /* !HAVE_PTE_SPECIAL case follows: */
 770
 771        if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
 772                if (vma->vm_flags & VM_MIXEDMAP) {
 773                        if (!pfn_valid(pfn))
 774                                return NULL;
 775                        goto out;
 776                } else {
 777                        unsigned long off;
 778                        off = (addr - vma->vm_start) >> PAGE_SHIFT;
 779                        if (pfn == vma->vm_pgoff + off)
 780                                return NULL;
 781                        if (!is_cow_mapping(vma->vm_flags))
 782                                return NULL;
 783                }
 784        }
 785
 786        if (is_zero_pfn(pfn))
 787                return NULL;
 788check_pfn:
 789        if (unlikely(pfn > highest_memmap_pfn)) {
 790                print_bad_pte(vma, addr, pte, NULL);
 791                return NULL;
 792        }
 793
 794        /*
 795         * NOTE! We still have PageReserved() pages in the page tables.
 796         * eg. VDSO mappings can cause them to exist.
 797         */
 798out:
 799        return pfn_to_page(pfn);
 800}
 801
 802#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 803struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
 804                                pmd_t pmd)
 805{
 806        unsigned long pfn = pmd_pfn(pmd);
 807
 808        /*
 809         * There is no pmd_special() but there may be special pmds, e.g.
 810         * in a direct-access (dax) mapping, so let's just replicate the
 811         * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
 812         */
 813        if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
 814                if (vma->vm_flags & VM_MIXEDMAP) {
 815                        if (!pfn_valid(pfn))
 816                                return NULL;
 817                        goto out;
 818                } else {
 819                        unsigned long off;
 820                        off = (addr - vma->vm_start) >> PAGE_SHIFT;
 821                        if (pfn == vma->vm_pgoff + off)
 822                                return NULL;
 823                        if (!is_cow_mapping(vma->vm_flags))
 824                                return NULL;
 825                }
 826        }
 827
 828        if (is_zero_pfn(pfn))
 829                return NULL;
 830        if (unlikely(pfn > highest_memmap_pfn))
 831                return NULL;
 832
 833        /*
 834         * NOTE! We still have PageReserved() pages in the page tables.
 835         * eg. VDSO mappings can cause them to exist.
 836         */
 837out:
 838        return pfn_to_page(pfn);
 839}
 840#endif
 841
 842/*
 843 * copy one vm_area from one task to the other. Assumes the page tables
 844 * already present in the new task to be cleared in the whole range
 845 * covered by this vma.
 846 */
 847
 848static inline unsigned long
 849copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 850                pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
 851                unsigned long addr, int *rss)
 852{
 853        unsigned long vm_flags = vma->vm_flags;
 854        pte_t pte = *src_pte;
 855        struct page *page;
 856
 857        /* pte contains position in swap or file, so copy. */
 858        if (unlikely(!pte_present(pte))) {
 859                swp_entry_t entry = pte_to_swp_entry(pte);
 860
 861                if (likely(!non_swap_entry(entry))) {
 862                        if (swap_duplicate(entry) < 0)
 863                                return entry.val;
 864
 865                        /* make sure dst_mm is on swapoff's mmlist. */
 866                        if (unlikely(list_empty(&dst_mm->mmlist))) {
 867                                spin_lock(&mmlist_lock);
 868                                if (list_empty(&dst_mm->mmlist))
 869                                        list_add(&dst_mm->mmlist,
 870                                                        &src_mm->mmlist);
 871                                spin_unlock(&mmlist_lock);
 872                        }
 873                        rss[MM_SWAPENTS]++;
 874                } else if (is_migration_entry(entry)) {
 875                        page = migration_entry_to_page(entry);
 876
 877                        rss[mm_counter(page)]++;
 878
 879                        if (is_write_migration_entry(entry) &&
 880                                        is_cow_mapping(vm_flags)) {
 881                                /*
 882                                 * COW mappings require pages in both
 883                                 * parent and child to be set to read.
 884                                 */
 885                                make_migration_entry_read(&entry);
 886                                pte = swp_entry_to_pte(entry);
 887                                if (pte_swp_soft_dirty(*src_pte))
 888                                        pte = pte_swp_mksoft_dirty(pte);
 889                                set_pte_at(src_mm, addr, src_pte, pte);
 890                        }
 891                }
 892                goto out_set_pte;
 893        }
 894
 895        /*
 896         * If it's a COW mapping, write protect it both
 897         * in the parent and the child
 898         */
 899        if (is_cow_mapping(vm_flags)) {
 900                ptep_set_wrprotect(src_mm, addr, src_pte);
 901                pte = pte_wrprotect(pte);
 902        }
 903
 904        /*
 905         * If it's a shared mapping, mark it clean in
 906         * the child
 907         */
 908        if (vm_flags & VM_SHARED)
 909                pte = pte_mkclean(pte);
 910        pte = pte_mkold(pte);
 911
 912        page = vm_normal_page(vma, addr, pte);
 913        if (page) {
 914                get_page(page);
 915                page_dup_rmap(page, false);
 916                rss[mm_counter(page)]++;
 917        }
 918
 919out_set_pte:
 920        set_pte_at(dst_mm, addr, dst_pte, pte);
 921        return 0;
 922}
 923
 924static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 925                   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
 926                   unsigned long addr, unsigned long end)
 927{
 928        pte_t *orig_src_pte, *orig_dst_pte;
 929        pte_t *src_pte, *dst_pte;
 930        spinlock_t *src_ptl, *dst_ptl;
 931        int progress = 0;
 932        int rss[NR_MM_COUNTERS];
 933        swp_entry_t entry = (swp_entry_t){0};
 934
 935again:
 936        init_rss_vec(rss);
 937
 938        dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
 939        if (!dst_pte)
 940                return -ENOMEM;
 941        src_pte = pte_offset_map(src_pmd, addr);
 942        src_ptl = pte_lockptr(src_mm, src_pmd);
 943        spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
 944        orig_src_pte = src_pte;
 945        orig_dst_pte = dst_pte;
 946        arch_enter_lazy_mmu_mode();
 947
 948        do {
 949                /*
 950                 * We are holding two locks at this point - either of them
 951                 * could generate latencies in another task on another CPU.
 952                 */
 953                if (progress >= 32) {
 954                        progress = 0;
 955                        if (need_resched() ||
 956                            spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
 957                                break;
 958                }
 959                if (pte_none(*src_pte)) {
 960                        progress++;
 961                        continue;
 962                }
 963                entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
 964                                                        vma, addr, rss);
 965                if (entry.val)
 966                        break;
 967                progress += 8;
 968        } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
 969
 970        arch_leave_lazy_mmu_mode();
 971        spin_unlock(src_ptl);
 972        pte_unmap(orig_src_pte);
 973        add_mm_rss_vec(dst_mm, rss);
 974        pte_unmap_unlock(orig_dst_pte, dst_ptl);
 975        cond_resched();
 976
 977        if (entry.val) {
 978                if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
 979                        return -ENOMEM;
 980                progress = 0;
 981        }
 982        if (addr != end)
 983                goto again;
 984        return 0;
 985}
 986
 987static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 988                pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
 989                unsigned long addr, unsigned long end)
 990{
 991        pmd_t *src_pmd, *dst_pmd;
 992        unsigned long next;
 993
 994        dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
 995        if (!dst_pmd)
 996                return -ENOMEM;
 997        src_pmd = pmd_offset(src_pud, addr);
 998        do {
 999                next = pmd_addr_end(addr, end);
1000                if (pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) {
1001                        int err;
1002                        VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
1003                        err = copy_huge_pmd(dst_mm, src_mm,
1004                                            dst_pmd, src_pmd, addr, vma);
1005                        if (err == -ENOMEM)
1006                                return -ENOMEM;
1007                        if (!err)
1008                                continue;
1009                        /* fall through */
1010                }
1011                if (pmd_none_or_clear_bad(src_pmd))
1012                        continue;
1013                if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1014                                                vma, addr, next))
1015                        return -ENOMEM;
1016        } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1017        return 0;
1018}
1019
1020static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1021                pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1022                unsigned long addr, unsigned long end)
1023{
1024        pud_t *src_pud, *dst_pud;
1025        unsigned long next;
1026
1027        dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1028        if (!dst_pud)
1029                return -ENOMEM;
1030        src_pud = pud_offset(src_pgd, addr);
1031        do {
1032                next = pud_addr_end(addr, end);
1033                if (pud_none_or_clear_bad(src_pud))
1034                        continue;
1035                if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1036                                                vma, addr, next))
1037                        return -ENOMEM;
1038        } while (dst_pud++, src_pud++, addr = next, addr != end);
1039        return 0;
1040}
1041
1042int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1043                struct vm_area_struct *vma)
1044{
1045        pgd_t *src_pgd, *dst_pgd;
1046        unsigned long next;
1047        unsigned long addr = vma->vm_start;
1048        unsigned long end = vma->vm_end;
1049        unsigned long mmun_start;       /* For mmu_notifiers */
1050        unsigned long mmun_end;         /* For mmu_notifiers */
1051        bool is_cow;
1052        int ret;
1053
1054        /*
1055         * Don't copy ptes where a page fault will fill them correctly.
1056         * Fork becomes much lighter when there are big shared or private
1057         * readonly mappings. The tradeoff is that copy_page_range is more
1058         * efficient than faulting.
1059         */
1060        if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1061                        !vma->anon_vma)
1062                return 0;
1063
1064        if (is_vm_hugetlb_page(vma))
1065                return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1066
1067        if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1068                /*
1069                 * We do not free on error cases below as remove_vma
1070                 * gets called on error from higher level routine
1071                 */
1072                ret = track_pfn_copy(vma);
1073                if (ret)
1074                        return ret;
1075        }
1076
1077        /*
1078         * We need to invalidate the secondary MMU mappings only when
1079         * there could be a permission downgrade on the ptes of the
1080         * parent mm. And a permission downgrade will only happen if
1081         * is_cow_mapping() returns true.
1082         */
1083        is_cow = is_cow_mapping(vma->vm_flags);
1084        mmun_start = addr;
1085        mmun_end   = end;
1086        if (is_cow)
1087                mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1088                                                    mmun_end);
1089
1090        ret = 0;
1091        dst_pgd = pgd_offset(dst_mm, addr);
1092        src_pgd = pgd_offset(src_mm, addr);
1093        do {
1094                next = pgd_addr_end(addr, end);
1095                if (pgd_none_or_clear_bad(src_pgd))
1096                        continue;
1097                if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1098                                            vma, addr, next))) {
1099                        ret = -ENOMEM;
1100                        break;
1101                }
1102        } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1103
1104        if (is_cow)
1105                mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1106        return ret;
1107}
1108
1109static unsigned long zap_pte_range(struct mmu_gather *tlb,
1110                                struct vm_area_struct *vma, pmd_t *pmd,
1111                                unsigned long addr, unsigned long end,
1112                                struct zap_details *details)
1113{
1114        struct mm_struct *mm = tlb->mm;
1115        int force_flush = 0;
1116        int rss[NR_MM_COUNTERS];
1117        spinlock_t *ptl;
1118        pte_t *start_pte;
1119        pte_t *pte;
1120        swp_entry_t entry;
1121        struct page *pending_page = NULL;
1122
1123again:
1124        init_rss_vec(rss);
1125        start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1126        pte = start_pte;
1127        arch_enter_lazy_mmu_mode();
1128        do {
1129                pte_t ptent = *pte;
1130                if (pte_none(ptent)) {
1131                        continue;
1132                }
1133
1134                if (pte_present(ptent)) {
1135                        struct page *page;
1136
1137                        page = vm_normal_page(vma, addr, ptent);
1138                        if (unlikely(details) && page) {
1139                                /*
1140                                 * unmap_shared_mapping_pages() wants to
1141                                 * invalidate cache without truncating:
1142                                 * unmap shared but keep private pages.
1143                                 */
1144                                if (details->check_mapping &&
1145                                    details->check_mapping != page_rmapping(page))
1146                                        continue;
1147                        }
1148                        ptent = ptep_get_and_clear_full(mm, addr, pte,
1149                                                        tlb->fullmm);
1150                        tlb_remove_tlb_entry(tlb, pte, addr);
1151                        if (unlikely(!page))
1152                                continue;
1153
1154                        if (!PageAnon(page)) {
1155                                if (pte_dirty(ptent)) {
1156                                        /*
1157                                         * oom_reaper cannot tear down dirty
1158                                         * pages
1159                                         */
1160                                        if (unlikely(details && details->ignore_dirty))
1161                                                continue;
1162                                        force_flush = 1;
1163                                        set_page_dirty(page);
1164                                }
1165                                if (pte_young(ptent) &&
1166                                    likely(!(vma->vm_flags & VM_SEQ_READ)))
1167                                        mark_page_accessed(page);
1168                        }
1169                        rss[mm_counter(page)]--;
1170                        page_remove_rmap(page, false);
1171                        if (unlikely(page_mapcount(page) < 0))
1172                                print_bad_pte(vma, addr, ptent, page);
1173                        if (unlikely(__tlb_remove_page(tlb, page))) {
1174                                force_flush = 1;
1175                                pending_page = page;
1176                                addr += PAGE_SIZE;
1177                                break;
1178                        }
1179                        continue;
1180                }
1181                /* only check swap_entries if explicitly asked for in details */
1182                if (unlikely(details && !details->check_swap_entries))
1183                        continue;
1184
1185                entry = pte_to_swp_entry(ptent);
1186                if (!non_swap_entry(entry))
1187                        rss[MM_SWAPENTS]--;
1188                else if (is_migration_entry(entry)) {
1189                        struct page *page;
1190
1191                        page = migration_entry_to_page(entry);
1192                        rss[mm_counter(page)]--;
1193                }
1194                if (unlikely(!free_swap_and_cache(entry)))
1195                        print_bad_pte(vma, addr, ptent, NULL);
1196                pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1197        } while (pte++, addr += PAGE_SIZE, addr != end);
1198
1199        add_mm_rss_vec(mm, rss);
1200        arch_leave_lazy_mmu_mode();
1201
1202        /* Do the actual TLB flush before dropping ptl */
1203        if (force_flush)
1204                tlb_flush_mmu_tlbonly(tlb);
1205        pte_unmap_unlock(start_pte, ptl);
1206
1207        /*
1208         * If we forced a TLB flush (either due to running out of
1209         * batch buffers or because we needed to flush dirty TLB
1210         * entries before releasing the ptl), free the batched
1211         * memory too. Restart if we didn't do everything.
1212         */
1213        if (force_flush) {
1214                force_flush = 0;
1215                tlb_flush_mmu_free(tlb);
1216                if (pending_page) {
1217                        /* remove the page with new size */
1218                        __tlb_remove_pte_page(tlb, pending_page);
1219                        pending_page = NULL;
1220                }
1221                if (addr != end)
1222                        goto again;
1223        }
1224
1225        return addr;
1226}
1227
1228static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1229                                struct vm_area_struct *vma, pud_t *pud,
1230                                unsigned long addr, unsigned long end,
1231                                struct zap_details *details)
1232{
1233        pmd_t *pmd;
1234        unsigned long next;
1235
1236        pmd = pmd_offset(pud, addr);
1237        do {
1238                next = pmd_addr_end(addr, end);
1239                if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1240                        if (next - addr != HPAGE_PMD_SIZE) {
1241                                VM_BUG_ON_VMA(vma_is_anonymous(vma) &&
1242                                    !rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1243                                split_huge_pmd(vma, pmd, addr);
1244                        } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1245                                goto next;
1246                        /* fall through */
1247                }
1248                /*
1249                 * Here there can be other concurrent MADV_DONTNEED or
1250                 * trans huge page faults running, and if the pmd is
1251                 * none or trans huge it can change under us. This is
1252                 * because MADV_DONTNEED holds the mmap_sem in read
1253                 * mode.
1254                 */
1255                if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1256                        goto next;
1257                next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1258next:
1259                cond_resched();
1260        } while (pmd++, addr = next, addr != end);
1261
1262        return addr;
1263}
1264
1265static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1266                                struct vm_area_struct *vma, pgd_t *pgd,
1267                                unsigned long addr, unsigned long end,
1268                                struct zap_details *details)
1269{
1270        pud_t *pud;
1271        unsigned long next;
1272
1273        pud = pud_offset(pgd, addr);
1274        do {
1275                next = pud_addr_end(addr, end);
1276                if (pud_none_or_clear_bad(pud))
1277                        continue;
1278                next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1279        } while (pud++, addr = next, addr != end);
1280
1281        return addr;
1282}
1283
1284void unmap_page_range(struct mmu_gather *tlb,
1285                             struct vm_area_struct *vma,
1286                             unsigned long addr, unsigned long end,
1287                             struct zap_details *details)
1288{
1289        pgd_t *pgd;
1290        unsigned long next;
1291
1292        BUG_ON(addr >= end);
1293        tlb_start_vma(tlb, vma);
1294        pgd = pgd_offset(vma->vm_mm, addr);
1295        do {
1296                next = pgd_addr_end(addr, end);
1297                if (pgd_none_or_clear_bad(pgd))
1298                        continue;
1299                next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1300        } while (pgd++, addr = next, addr != end);
1301        tlb_end_vma(tlb, vma);
1302}
1303
1304
1305static void unmap_single_vma(struct mmu_gather *tlb,
1306                struct vm_area_struct *vma, unsigned long start_addr,
1307                unsigned long end_addr,
1308                struct zap_details *details)
1309{
1310        unsigned long start = max(vma->vm_start, start_addr);
1311        unsigned long end;
1312
1313        if (start >= vma->vm_end)
1314                return;
1315        end = min(vma->vm_end, end_addr);
1316        if (end <= vma->vm_start)
1317                return;
1318
1319        if (vma->vm_file)
1320                uprobe_munmap(vma, start, end);
1321
1322        if (unlikely(vma->vm_flags & VM_PFNMAP))
1323                untrack_pfn(vma, 0, 0);
1324
1325        if (start != end) {
1326                if (unlikely(is_vm_hugetlb_page(vma))) {
1327                        /*
1328                         * It is undesirable to test vma->vm_file as it
1329                         * should be non-null for valid hugetlb area.
1330                         * However, vm_file will be NULL in the error
1331                         * cleanup path of mmap_region. When
1332                         * hugetlbfs ->mmap method fails,
1333                         * mmap_region() nullifies vma->vm_file
1334                         * before calling this function to clean up.
1335                         * Since no pte has actually been setup, it is
1336                         * safe to do nothing in this case.
1337                         */
1338                        if (vma->vm_file) {
1339                                i_mmap_lock_write(vma->vm_file->f_mapping);
1340                                __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1341                                i_mmap_unlock_write(vma->vm_file->f_mapping);
1342                        }
1343                } else
1344                        unmap_page_range(tlb, vma, start, end, details);
1345        }
1346}
1347
1348/**
1349 * unmap_vmas - unmap a range of memory covered by a list of vma's
1350 * @tlb: address of the caller's struct mmu_gather
1351 * @vma: the starting vma
1352 * @start_addr: virtual address at which to start unmapping
1353 * @end_addr: virtual address at which to end unmapping
1354 *
1355 * Unmap all pages in the vma list.
1356 *
1357 * Only addresses between `start' and `end' will be unmapped.
1358 *
1359 * The VMA list must be sorted in ascending virtual address order.
1360 *
1361 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1362 * range after unmap_vmas() returns.  So the only responsibility here is to
1363 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1364 * drops the lock and schedules.
1365 */
1366void unmap_vmas(struct mmu_gather *tlb,
1367                struct vm_area_struct *vma, unsigned long start_addr,
1368                unsigned long end_addr)
1369{
1370        struct mm_struct *mm = vma->vm_mm;
1371
1372        mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1373        for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1374                unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1375        mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1376}
1377
1378/**
1379 * zap_page_range - remove user pages in a given range
1380 * @vma: vm_area_struct holding the applicable pages
1381 * @start: starting address of pages to zap
1382 * @size: number of bytes to zap
1383 * @details: details of shared cache invalidation
1384 *
1385 * Caller must protect the VMA list
1386 */
1387void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1388                unsigned long size, struct zap_details *details)
1389{
1390        struct mm_struct *mm = vma->vm_mm;
1391        struct mmu_gather tlb;
1392        unsigned long end = start + size;
1393
1394        lru_add_drain();
1395        tlb_gather_mmu(&tlb, mm, start, end);
1396        update_hiwater_rss(mm);
1397        mmu_notifier_invalidate_range_start(mm, start, end);
1398        for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1399                unmap_single_vma(&tlb, vma, start, end, details);
1400        mmu_notifier_invalidate_range_end(mm, start, end);
1401        tlb_finish_mmu(&tlb, start, end);
1402}
1403
1404/**
1405 * zap_page_range_single - remove user pages in a given range
1406 * @vma: vm_area_struct holding the applicable pages
1407 * @address: starting address of pages to zap
1408 * @size: number of bytes to zap
1409 * @details: details of shared cache invalidation
1410 *
1411 * The range must fit into one VMA.
1412 */
1413static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1414                unsigned long size, struct zap_details *details)
1415{
1416        struct mm_struct *mm = vma->vm_mm;
1417        struct mmu_gather tlb;
1418        unsigned long end = address + size;
1419
1420        lru_add_drain();
1421        tlb_gather_mmu(&tlb, mm, address, end);
1422        update_hiwater_rss(mm);
1423        mmu_notifier_invalidate_range_start(mm, address, end);
1424        unmap_single_vma(&tlb, vma, address, end, details);
1425        mmu_notifier_invalidate_range_end(mm, address, end);
1426        tlb_finish_mmu(&tlb, address, end);
1427}
1428
1429/**
1430 * zap_vma_ptes - remove ptes mapping the vma
1431 * @vma: vm_area_struct holding ptes to be zapped
1432 * @address: starting address of pages to zap
1433 * @size: number of bytes to zap
1434 *
1435 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1436 *
1437 * The entire address range must be fully contained within the vma.
1438 *
1439 * Returns 0 if successful.
1440 */
1441int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1442                unsigned long size)
1443{
1444        if (address < vma->vm_start || address + size > vma->vm_end ||
1445                        !(vma->vm_flags & VM_PFNMAP))
1446                return -1;
1447        zap_page_range_single(vma, address, size, NULL);
1448        return 0;
1449}
1450EXPORT_SYMBOL_GPL(zap_vma_ptes);
1451
1452pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1453                        spinlock_t **ptl)
1454{
1455        pgd_t * pgd = pgd_offset(mm, addr);
1456        pud_t * pud = pud_alloc(mm, pgd, addr);
1457        if (pud) {
1458                pmd_t * pmd = pmd_alloc(mm, pud, addr);
1459                if (pmd) {
1460                        VM_BUG_ON(pmd_trans_huge(*pmd));
1461                        return pte_alloc_map_lock(mm, pmd, addr, ptl);
1462                }
1463        }
1464        return NULL;
1465}
1466
1467/*
1468 * This is the old fallback for page remapping.
1469 *
1470 * For historical reasons, it only allows reserved pages. Only
1471 * old drivers should use this, and they needed to mark their
1472 * pages reserved for the old functions anyway.
1473 */
1474static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1475                        struct page *page, pgprot_t prot)
1476{
1477        struct mm_struct *mm = vma->vm_mm;
1478        int retval;
1479        pte_t *pte;
1480        spinlock_t *ptl;
1481
1482        retval = -EINVAL;
1483        if (PageAnon(page))
1484                goto out;
1485        retval = -ENOMEM;
1486        flush_dcache_page(page);
1487        pte = get_locked_pte(mm, addr, &ptl);
1488        if (!pte)
1489                goto out;
1490        retval = -EBUSY;
1491        if (!pte_none(*pte))
1492                goto out_unlock;
1493
1494        /* Ok, finally just insert the thing.. */
1495        get_page(page);
1496        inc_mm_counter_fast(mm, mm_counter_file(page));
1497        page_add_file_rmap(page, false);
1498        set_pte_at(mm, addr, pte, mk_pte(page, prot));
1499
1500        retval = 0;
1501        pte_unmap_unlock(pte, ptl);
1502        return retval;
1503out_unlock:
1504        pte_unmap_unlock(pte, ptl);
1505out:
1506        return retval;
1507}
1508
1509/**
1510 * vm_insert_page - insert single page into user vma
1511 * @vma: user vma to map to
1512 * @addr: target user address of this page
1513 * @page: source kernel page
1514 *
1515 * This allows drivers to insert individual pages they've allocated
1516 * into a user vma.
1517 *
1518 * The page has to be a nice clean _individual_ kernel allocation.
1519 * If you allocate a compound page, you need to have marked it as
1520 * such (__GFP_COMP), or manually just split the page up yourself
1521 * (see split_page()).
1522 *
1523 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1524 * took an arbitrary page protection parameter. This doesn't allow
1525 * that. Your vma protection will have to be set up correctly, which
1526 * means that if you want a shared writable mapping, you'd better
1527 * ask for a shared writable mapping!
1528 *
1529 * The page does not need to be reserved.
1530 *
1531 * Usually this function is called from f_op->mmap() handler
1532 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1533 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1534 * function from other places, for example from page-fault handler.
1535 */
1536int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1537                        struct page *page)
1538{
1539        if (addr < vma->vm_start || addr >= vma->vm_end)
1540                return -EFAULT;
1541        if (!page_count(page))
1542                return -EINVAL;
1543        if (!(vma->vm_flags & VM_MIXEDMAP)) {
1544                BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1545                BUG_ON(vma->vm_flags & VM_PFNMAP);
1546                vma->vm_flags |= VM_MIXEDMAP;
1547        }
1548        return insert_page(vma, addr, page, vma->vm_page_prot);
1549}
1550EXPORT_SYMBOL(vm_insert_page);
1551
1552static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1553                        pfn_t pfn, pgprot_t prot)
1554{
1555        struct mm_struct *mm = vma->vm_mm;
1556        int retval;
1557        pte_t *pte, entry;
1558        spinlock_t *ptl;
1559
1560        retval = -ENOMEM;
1561        pte = get_locked_pte(mm, addr, &ptl);
1562        if (!pte)
1563                goto out;
1564        retval = -EBUSY;
1565        if (!pte_none(*pte))
1566                goto out_unlock;
1567
1568        /* Ok, finally just insert the thing.. */
1569        if (pfn_t_devmap(pfn))
1570                entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1571        else
1572                entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1573        set_pte_at(mm, addr, pte, entry);
1574        update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1575
1576        retval = 0;
1577out_unlock:
1578        pte_unmap_unlock(pte, ptl);
1579out:
1580        return retval;
1581}
1582
1583/**
1584 * vm_insert_pfn - insert single pfn into user vma
1585 * @vma: user vma to map to
1586 * @addr: target user address of this page
1587 * @pfn: source kernel pfn
1588 *
1589 * Similar to vm_insert_page, this allows drivers to insert individual pages
1590 * they've allocated into a user vma. Same comments apply.
1591 *
1592 * This function should only be called from a vm_ops->fault handler, and
1593 * in that case the handler should return NULL.
1594 *
1595 * vma cannot be a COW mapping.
1596 *
1597 * As this is called only for pages that do not currently exist, we
1598 * do not need to flush old virtual caches or the TLB.
1599 */
1600int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1601                        unsigned long pfn)
1602{
1603        return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1604}
1605EXPORT_SYMBOL(vm_insert_pfn);
1606
1607/**
1608 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1609 * @vma: user vma to map to
1610 * @addr: target user address of this page
1611 * @pfn: source kernel pfn
1612 * @pgprot: pgprot flags for the inserted page
1613 *
1614 * This is exactly like vm_insert_pfn, except that it allows drivers to
1615 * to override pgprot on a per-page basis.
1616 *
1617 * This only makes sense for IO mappings, and it makes no sense for
1618 * cow mappings.  In general, using multiple vmas is preferable;
1619 * vm_insert_pfn_prot should only be used if using multiple VMAs is
1620 * impractical.
1621 */
1622int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1623                        unsigned long pfn, pgprot_t pgprot)
1624{
1625        int ret;
1626        /*
1627         * Technically, architectures with pte_special can avoid all these
1628         * restrictions (same for remap_pfn_range).  However we would like
1629         * consistency in testing and feature parity among all, so we should
1630         * try to keep these invariants in place for everybody.
1631         */
1632        BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1633        BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1634                                                (VM_PFNMAP|VM_MIXEDMAP));
1635        BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1636        BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1637
1638        if (addr < vma->vm_start || addr >= vma->vm_end)
1639                return -EFAULT;
1640        if (track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)))
1641                return -EINVAL;
1642
1643        ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot);
1644
1645        return ret;
1646}
1647EXPORT_SYMBOL(vm_insert_pfn_prot);
1648
1649int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1650                        pfn_t pfn)
1651{
1652        pgprot_t pgprot = vma->vm_page_prot;
1653
1654        BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1655
1656        if (addr < vma->vm_start || addr >= vma->vm_end)
1657                return -EFAULT;
1658        if (track_pfn_insert(vma, &pgprot, pfn))
1659                return -EINVAL;
1660
1661        /*
1662         * If we don't have pte special, then we have to use the pfn_valid()
1663         * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1664         * refcount the page if pfn_valid is true (hence insert_page rather
1665         * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1666         * without pte special, it would there be refcounted as a normal page.
1667         */
1668        if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1669                struct page *page;
1670
1671                /*
1672                 * At this point we are committed to insert_page()
1673                 * regardless of whether the caller specified flags that
1674                 * result in pfn_t_has_page() == false.
1675                 */
1676                page = pfn_to_page(pfn_t_to_pfn(pfn));
1677                return insert_page(vma, addr, page, pgprot);
1678        }
1679        return insert_pfn(vma, addr, pfn, pgprot);
1680}
1681EXPORT_SYMBOL(vm_insert_mixed);
1682
1683/*
1684 * maps a range of physical memory into the requested pages. the old
1685 * mappings are removed. any references to nonexistent pages results
1686 * in null mappings (currently treated as "copy-on-access")
1687 */
1688static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1689                        unsigned long addr, unsigned long end,
1690                        unsigned long pfn, pgprot_t prot)
1691{
1692        pte_t *pte;
1693        spinlock_t *ptl;
1694
1695        pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1696        if (!pte)
1697                return -ENOMEM;
1698        arch_enter_lazy_mmu_mode();
1699        do {
1700                BUG_ON(!pte_none(*pte));
1701                set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1702                pfn++;
1703        } while (pte++, addr += PAGE_SIZE, addr != end);
1704        arch_leave_lazy_mmu_mode();
1705        pte_unmap_unlock(pte - 1, ptl);
1706        return 0;
1707}
1708
1709static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1710                        unsigned long addr, unsigned long end,
1711                        unsigned long pfn, pgprot_t prot)
1712{
1713        pmd_t *pmd;
1714        unsigned long next;
1715
1716        pfn -= addr >> PAGE_SHIFT;
1717        pmd = pmd_alloc(mm, pud, addr);
1718        if (!pmd)
1719                return -ENOMEM;
1720        VM_BUG_ON(pmd_trans_huge(*pmd));
1721        do {
1722                next = pmd_addr_end(addr, end);
1723                if (remap_pte_range(mm, pmd, addr, next,
1724                                pfn + (addr >> PAGE_SHIFT), prot))
1725                        return -ENOMEM;
1726        } while (pmd++, addr = next, addr != end);
1727        return 0;
1728}
1729
1730static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1731                        unsigned long addr, unsigned long end,
1732                        unsigned long pfn, pgprot_t prot)
1733{
1734        pud_t *pud;
1735        unsigned long next;
1736
1737        pfn -= addr >> PAGE_SHIFT;
1738        pud = pud_alloc(mm, pgd, addr);
1739        if (!pud)
1740                return -ENOMEM;
1741        do {
1742                next = pud_addr_end(addr, end);
1743                if (remap_pmd_range(mm, pud, addr, next,
1744                                pfn + (addr >> PAGE_SHIFT), prot))
1745                        return -ENOMEM;
1746        } while (pud++, addr = next, addr != end);
1747        return 0;
1748}
1749
1750/**
1751 * remap_pfn_range - remap kernel memory to userspace
1752 * @vma: user vma to map to
1753 * @addr: target user address to start at
1754 * @pfn: physical address of kernel memory
1755 * @size: size of map area
1756 * @prot: page protection flags for this mapping
1757 *
1758 *  Note: this is only safe if the mm semaphore is held when called.
1759 */
1760int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1761                    unsigned long pfn, unsigned long size, pgprot_t prot)
1762{
1763        pgd_t *pgd;
1764        unsigned long next;
1765        unsigned long end = addr + PAGE_ALIGN(size);
1766        struct mm_struct *mm = vma->vm_mm;
1767        unsigned long remap_pfn = pfn;
1768        int err;
1769
1770        /*
1771         * Physically remapped pages are special. Tell the
1772         * rest of the world about it:
1773         *   VM_IO tells people not to look at these pages
1774         *      (accesses can have side effects).
1775         *   VM_PFNMAP tells the core MM that the base pages are just
1776         *      raw PFN mappings, and do not have a "struct page" associated
1777         *      with them.
1778         *   VM_DONTEXPAND
1779         *      Disable vma merging and expanding with mremap().
1780         *   VM_DONTDUMP
1781         *      Omit vma from core dump, even when VM_IO turned off.
1782         *
1783         * There's a horrible special case to handle copy-on-write
1784         * behaviour that some programs depend on. We mark the "original"
1785         * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1786         * See vm_normal_page() for details.
1787         */
1788        if (is_cow_mapping(vma->vm_flags)) {
1789                if (addr != vma->vm_start || end != vma->vm_end)
1790                        return -EINVAL;
1791                vma->vm_pgoff = pfn;
1792        }
1793
1794        err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
1795        if (err)
1796                return -EINVAL;
1797
1798        vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1799
1800        BUG_ON(addr >= end);
1801        pfn -= addr >> PAGE_SHIFT;
1802        pgd = pgd_offset(mm, addr);
1803        flush_cache_range(vma, addr, end);
1804        do {
1805                next = pgd_addr_end(addr, end);
1806                err = remap_pud_range(mm, pgd, addr, next,
1807                                pfn + (addr >> PAGE_SHIFT), prot);
1808                if (err)
1809                        break;
1810        } while (pgd++, addr = next, addr != end);
1811
1812        if (err)
1813                untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
1814
1815        return err;
1816}
1817EXPORT_SYMBOL(remap_pfn_range);
1818
1819/**
1820 * vm_iomap_memory - remap memory to userspace
1821 * @vma: user vma to map to
1822 * @start: start of area
1823 * @len: size of area
1824 *
1825 * This is a simplified io_remap_pfn_range() for common driver use. The
1826 * driver just needs to give us the physical memory range to be mapped,
1827 * we'll figure out the rest from the vma information.
1828 *
1829 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1830 * whatever write-combining details or similar.
1831 */
1832int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1833{
1834        unsigned long vm_len, pfn, pages;
1835
1836        /* Check that the physical memory area passed in looks valid */
1837        if (start + len < start)
1838                return -EINVAL;
1839        /*
1840         * You *really* shouldn't map things that aren't page-aligned,
1841         * but we've historically allowed it because IO memory might
1842         * just have smaller alignment.
1843         */
1844        len += start & ~PAGE_MASK;
1845        pfn = start >> PAGE_SHIFT;
1846        pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1847        if (pfn + pages < pfn)
1848                return -EINVAL;
1849
1850        /* We start the mapping 'vm_pgoff' pages into the area */
1851        if (vma->vm_pgoff > pages)
1852                return -EINVAL;
1853        pfn += vma->vm_pgoff;
1854        pages -= vma->vm_pgoff;
1855
1856        /* Can we fit all of the mapping? */
1857        vm_len = vma->vm_end - vma->vm_start;
1858        if (vm_len >> PAGE_SHIFT > pages)
1859                return -EINVAL;
1860
1861        /* Ok, let it rip */
1862        return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1863}
1864EXPORT_SYMBOL(vm_iomap_memory);
1865
1866static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1867                                     unsigned long addr, unsigned long end,
1868                                     pte_fn_t fn, void *data)
1869{
1870        pte_t *pte;
1871        int err;
1872        pgtable_t token;
1873        spinlock_t *uninitialized_var(ptl);
1874
1875        pte = (mm == &init_mm) ?
1876                pte_alloc_kernel(pmd, addr) :
1877                pte_alloc_map_lock(mm, pmd, addr, &ptl);
1878        if (!pte)
1879                return -ENOMEM;
1880
1881        BUG_ON(pmd_huge(*pmd));
1882
1883        arch_enter_lazy_mmu_mode();
1884
1885        token = pmd_pgtable(*pmd);
1886
1887        do {
1888                err = fn(pte++, token, addr, data);
1889                if (err)
1890                        break;
1891        } while (addr += PAGE_SIZE, addr != end);
1892
1893        arch_leave_lazy_mmu_mode();
1894
1895        if (mm != &init_mm)
1896                pte_unmap_unlock(pte-1, ptl);
1897        return err;
1898}
1899
1900static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1901                                     unsigned long addr, unsigned long end,
1902                                     pte_fn_t fn, void *data)
1903{
1904        pmd_t *pmd;
1905        unsigned long next;
1906        int err;
1907
1908        BUG_ON(pud_huge(*pud));
1909
1910        pmd = pmd_alloc(mm, pud, addr);
1911        if (!pmd)
1912                return -ENOMEM;
1913        do {
1914                next = pmd_addr_end(addr, end);
1915                err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1916                if (err)
1917                        break;
1918        } while (pmd++, addr = next, addr != end);
1919        return err;
1920}
1921
1922static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1923                                     unsigned long addr, unsigned long end,
1924                                     pte_fn_t fn, void *data)
1925{
1926        pud_t *pud;
1927        unsigned long next;
1928        int err;
1929
1930        pud = pud_alloc(mm, pgd, addr);
1931        if (!pud)
1932                return -ENOMEM;
1933        do {
1934                next = pud_addr_end(addr, end);
1935                err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1936                if (err)
1937                        break;
1938        } while (pud++, addr = next, addr != end);
1939        return err;
1940}
1941
1942/*
1943 * Scan a region of virtual memory, filling in page tables as necessary
1944 * and calling a provided function on each leaf page table.
1945 */
1946int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1947                        unsigned long size, pte_fn_t fn, void *data)
1948{
1949        pgd_t *pgd;
1950        unsigned long next;
1951        unsigned long end = addr + size;
1952        int err;
1953
1954        if (WARN_ON(addr >= end))
1955                return -EINVAL;
1956
1957        pgd = pgd_offset(mm, addr);
1958        do {
1959                next = pgd_addr_end(addr, end);
1960                err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1961                if (err)
1962                        break;
1963        } while (pgd++, addr = next, addr != end);
1964
1965        return err;
1966}
1967EXPORT_SYMBOL_GPL(apply_to_page_range);
1968
1969/*
1970 * handle_pte_fault chooses page fault handler according to an entry which was
1971 * read non-atomically.  Before making any commitment, on those architectures
1972 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
1973 * parts, do_swap_page must check under lock before unmapping the pte and
1974 * proceeding (but do_wp_page is only called after already making such a check;
1975 * and do_anonymous_page can safely check later on).
1976 */
1977static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1978                                pte_t *page_table, pte_t orig_pte)
1979{
1980        int same = 1;
1981#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1982        if (sizeof(pte_t) > sizeof(unsigned long)) {
1983                spinlock_t *ptl = pte_lockptr(mm, pmd);
1984                spin_lock(ptl);
1985                same = pte_same(*page_table, orig_pte);
1986                spin_unlock(ptl);
1987        }
1988#endif
1989        pte_unmap(page_table);
1990        return same;
1991}
1992
1993static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1994{
1995        debug_dma_assert_idle(src);
1996
1997        /*
1998         * If the source page was a PFN mapping, we don't have
1999         * a "struct page" for it. We do a best-effort copy by
2000         * just copying from the original user address. If that
2001         * fails, we just zero-fill it. Live with it.
2002         */
2003        if (unlikely(!src)) {
2004                void *kaddr = kmap_atomic(dst);
2005                void __user *uaddr = (void __user *)(va & PAGE_MASK);
2006
2007                /*
2008                 * This really shouldn't fail, because the page is there
2009                 * in the page tables. But it might just be unreadable,
2010                 * in which case we just give up and fill the result with
2011                 * zeroes.
2012                 */
2013                if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2014                        clear_page(kaddr);
2015                kunmap_atomic(kaddr);
2016                flush_dcache_page(dst);
2017        } else
2018                copy_user_highpage(dst, src, va, vma);
2019}
2020
2021static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2022{
2023        struct file *vm_file = vma->vm_file;
2024
2025        if (vm_file)
2026                return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2027
2028        /*
2029         * Special mappings (e.g. VDSO) do not have any file so fake
2030         * a default GFP_KERNEL for them.
2031         */
2032        return GFP_KERNEL;
2033}
2034
2035/*
2036 * Notify the address space that the page is about to become writable so that
2037 * it can prohibit this or wait for the page to get into an appropriate state.
2038 *
2039 * We do this without the lock held, so that it can sleep if it needs to.
2040 */
2041static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
2042               unsigned long address)
2043{
2044        struct vm_fault vmf;
2045        int ret;
2046
2047        vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2048        vmf.pgoff = page->index;
2049        vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2050        vmf.gfp_mask = __get_fault_gfp_mask(vma);
2051        vmf.page = page;
2052        vmf.cow_page = NULL;
2053
2054        ret = vma->vm_ops->page_mkwrite(vma, &vmf);
2055        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2056                return ret;
2057        if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2058                lock_page(page);
2059                if (!page->mapping) {
2060                        unlock_page(page);
2061                        return 0; /* retry */
2062                }
2063                ret |= VM_FAULT_LOCKED;
2064        } else
2065                VM_BUG_ON_PAGE(!PageLocked(page), page);
2066        return ret;
2067}
2068
2069/*
2070 * Handle write page faults for pages that can be reused in the current vma
2071 *
2072 * This can happen either due to the mapping being with the VM_SHARED flag,
2073 * or due to us being the last reference standing to the page. In either
2074 * case, all we need to do here is to mark the page as writable and update
2075 * any related book-keeping.
2076 */
2077static inline int wp_page_reuse(struct fault_env *fe, pte_t orig_pte,
2078                        struct page *page, int page_mkwrite, int dirty_shared)
2079        __releases(fe->ptl)
2080{
2081        struct vm_area_struct *vma = fe->vma;
2082        pte_t entry;
2083        /*
2084         * Clear the pages cpupid information as the existing
2085         * information potentially belongs to a now completely
2086         * unrelated process.
2087         */
2088        if (page)
2089                page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2090
2091        flush_cache_page(vma, fe->address, pte_pfn(orig_pte));
2092        entry = pte_mkyoung(orig_pte);
2093        entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2094        if (ptep_set_access_flags(vma, fe->address, fe->pte, entry, 1))
2095                update_mmu_cache(vma, fe->address, fe->pte);
2096        pte_unmap_unlock(fe->pte, fe->ptl);
2097
2098        if (dirty_shared) {
2099                struct address_space *mapping;
2100                int dirtied;
2101
2102                if (!page_mkwrite)
2103                        lock_page(page);
2104
2105                dirtied = set_page_dirty(page);
2106                VM_BUG_ON_PAGE(PageAnon(page), page);
2107                mapping = page->mapping;
2108                unlock_page(page);
2109                put_page(page);
2110
2111                if ((dirtied || page_mkwrite) && mapping) {
2112                        /*
2113                         * Some device drivers do not set page.mapping
2114                         * but still dirty their pages
2115                         */
2116                        balance_dirty_pages_ratelimited(mapping);
2117                }
2118
2119                if (!page_mkwrite)
2120                        file_update_time(vma->vm_file);
2121        }
2122
2123        return VM_FAULT_WRITE;
2124}
2125
2126/*
2127 * Handle the case of a page which we actually need to copy to a new page.
2128 *
2129 * Called with mmap_sem locked and the old page referenced, but
2130 * without the ptl held.
2131 *
2132 * High level logic flow:
2133 *
2134 * - Allocate a page, copy the content of the old page to the new one.
2135 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2136 * - Take the PTL. If the pte changed, bail out and release the allocated page
2137 * - If the pte is still the way we remember it, update the page table and all
2138 *   relevant references. This includes dropping the reference the page-table
2139 *   held to the old page, as well as updating the rmap.
2140 * - In any case, unlock the PTL and drop the reference we took to the old page.
2141 */
2142static int wp_page_copy(struct fault_env *fe, pte_t orig_pte,
2143                struct page *old_page)
2144{
2145        struct vm_area_struct *vma = fe->vma;
2146        struct mm_struct *mm = vma->vm_mm;
2147        struct page *new_page = NULL;
2148        pte_t entry;
2149        int page_copied = 0;
2150        const unsigned long mmun_start = fe->address & PAGE_MASK;
2151        const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2152        struct mem_cgroup *memcg;
2153
2154        if (unlikely(anon_vma_prepare(vma)))
2155                goto oom;
2156
2157        if (is_zero_pfn(pte_pfn(orig_pte))) {
2158                new_page = alloc_zeroed_user_highpage_movable(vma, fe->address);
2159                if (!new_page)
2160                        goto oom;
2161        } else {
2162                new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2163                                fe->address);
2164                if (!new_page)
2165                        goto oom;
2166                cow_user_page(new_page, old_page, fe->address, vma);
2167        }
2168
2169        if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2170                goto oom_free_new;
2171
2172        __SetPageUptodate(new_page);
2173
2174        mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2175
2176        /*
2177         * Re-check the pte - we dropped the lock
2178         */
2179        fe->pte = pte_offset_map_lock(mm, fe->pmd, fe->address, &fe->ptl);
2180        if (likely(pte_same(*fe->pte, orig_pte))) {
2181                if (old_page) {
2182                        if (!PageAnon(old_page)) {
2183                                dec_mm_counter_fast(mm,
2184                                                mm_counter_file(old_page));
2185                                inc_mm_counter_fast(mm, MM_ANONPAGES);
2186                        }
2187                } else {
2188                        inc_mm_counter_fast(mm, MM_ANONPAGES);
2189                }
2190                flush_cache_page(vma, fe->address, pte_pfn(orig_pte));
2191                entry = mk_pte(new_page, vma->vm_page_prot);
2192                entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2193                /*
2194                 * Clear the pte entry and flush it first, before updating the
2195                 * pte with the new entry. This will avoid a race condition
2196                 * seen in the presence of one thread doing SMC and another
2197                 * thread doing COW.
2198                 */
2199                ptep_clear_flush_notify(vma, fe->address, fe->pte);
2200                page_add_new_anon_rmap(new_page, vma, fe->address, false);
2201                mem_cgroup_commit_charge(new_page, memcg, false, false);
2202                lru_cache_add_active_or_unevictable(new_page, vma);
2203                /*
2204                 * We call the notify macro here because, when using secondary
2205                 * mmu page tables (such as kvm shadow page tables), we want the
2206                 * new page to be mapped directly into the secondary page table.
2207                 */
2208                set_pte_at_notify(mm, fe->address, fe->pte, entry);
2209                update_mmu_cache(vma, fe->address, fe->pte);
2210                if (old_page) {
2211                        /*
2212                         * Only after switching the pte to the new page may
2213                         * we remove the mapcount here. Otherwise another
2214                         * process may come and find the rmap count decremented
2215                         * before the pte is switched to the new page, and
2216                         * "reuse" the old page writing into it while our pte
2217                         * here still points into it and can be read by other
2218                         * threads.
2219                         *
2220                         * The critical issue is to order this
2221                         * page_remove_rmap with the ptp_clear_flush above.
2222                         * Those stores are ordered by (if nothing else,)
2223                         * the barrier present in the atomic_add_negative
2224                         * in page_remove_rmap.
2225                         *
2226                         * Then the TLB flush in ptep_clear_flush ensures that
2227                         * no process can access the old page before the
2228                         * decremented mapcount is visible. And the old page
2229                         * cannot be reused until after the decremented
2230                         * mapcount is visible. So transitively, TLBs to
2231                         * old page will be flushed before it can be reused.
2232                         */
2233                        page_remove_rmap(old_page, false);
2234                }
2235
2236                /* Free the old page.. */
2237                new_page = old_page;
2238                page_copied = 1;
2239        } else {
2240                mem_cgroup_cancel_charge(new_page, memcg, false);
2241        }
2242
2243        if (new_page)
2244                put_page(new_page);
2245
2246        pte_unmap_unlock(fe->pte, fe->ptl);
2247        mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2248        if (old_page) {
2249                /*
2250                 * Don't let another task, with possibly unlocked vma,
2251                 * keep the mlocked page.
2252                 */
2253                if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2254                        lock_page(old_page);    /* LRU manipulation */
2255                        if (PageMlocked(old_page))
2256                                munlock_vma_page(old_page);
2257                        unlock_page(old_page);
2258                }
2259                put_page(old_page);
2260        }
2261        return page_copied ? VM_FAULT_WRITE : 0;
2262oom_free_new:
2263        put_page(new_page);
2264oom:
2265        if (old_page)
2266                put_page(old_page);
2267        return VM_FAULT_OOM;
2268}
2269
2270/*
2271 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2272 * mapping
2273 */
2274static int wp_pfn_shared(struct fault_env *fe,  pte_t orig_pte)
2275{
2276        struct vm_area_struct *vma = fe->vma;
2277
2278        if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2279                struct vm_fault vmf = {
2280                        .page = NULL,
2281                        .pgoff = linear_page_index(vma, fe->address),
2282                        .virtual_address =
2283                                (void __user *)(fe->address & PAGE_MASK),
2284                        .flags = FAULT_FLAG_WRITE | FAULT_FLAG_MKWRITE,
2285                };
2286                int ret;
2287
2288                pte_unmap_unlock(fe->pte, fe->ptl);
2289                ret = vma->vm_ops->pfn_mkwrite(vma, &vmf);
2290                if (ret & VM_FAULT_ERROR)
2291                        return ret;
2292                fe->pte = pte_offset_map_lock(vma->vm_mm, fe->pmd, fe->address,
2293                                &fe->ptl);
2294                /*
2295                 * We might have raced with another page fault while we
2296                 * released the pte_offset_map_lock.
2297                 */
2298                if (!pte_same(*fe->pte, orig_pte)) {
2299                        pte_unmap_unlock(fe->pte, fe->ptl);
2300                        return 0;
2301                }
2302        }
2303        return wp_page_reuse(fe, orig_pte, NULL, 0, 0);
2304}
2305
2306static int wp_page_shared(struct fault_env *fe, pte_t orig_pte,
2307                struct page *old_page)
2308        __releases(fe->ptl)
2309{
2310        struct vm_area_struct *vma = fe->vma;
2311        int page_mkwrite = 0;
2312
2313        get_page(old_page);
2314
2315        if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2316                int tmp;
2317
2318                pte_unmap_unlock(fe->pte, fe->ptl);
2319                tmp = do_page_mkwrite(vma, old_page, fe->address);
2320                if (unlikely(!tmp || (tmp &
2321                                      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2322                        put_page(old_page);
2323                        return tmp;
2324                }
2325                /*
2326                 * Since we dropped the lock we need to revalidate
2327                 * the PTE as someone else may have changed it.  If
2328                 * they did, we just return, as we can count on the
2329                 * MMU to tell us if they didn't also make it writable.
2330                 */
2331                fe->pte = pte_offset_map_lock(vma->vm_mm, fe->pmd, fe->address,
2332                                                 &fe->ptl);
2333                if (!pte_same(*fe->pte, orig_pte)) {
2334                        unlock_page(old_page);
2335                        pte_unmap_unlock(fe->pte, fe->ptl);
2336                        put_page(old_page);
2337                        return 0;
2338                }
2339                page_mkwrite = 1;
2340        }
2341
2342        return wp_page_reuse(fe, orig_pte, old_page, page_mkwrite, 1);
2343}
2344
2345/*
2346 * This routine handles present pages, when users try to write
2347 * to a shared page. It is done by copying the page to a new address
2348 * and decrementing the shared-page counter for the old page.
2349 *
2350 * Note that this routine assumes that the protection checks have been
2351 * done by the caller (the low-level page fault routine in most cases).
2352 * Thus we can safely just mark it writable once we've done any necessary
2353 * COW.
2354 *
2355 * We also mark the page dirty at this point even though the page will
2356 * change only once the write actually happens. This avoids a few races,
2357 * and potentially makes it more efficient.
2358 *
2359 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2360 * but allow concurrent faults), with pte both mapped and locked.
2361 * We return with mmap_sem still held, but pte unmapped and unlocked.
2362 */
2363static int do_wp_page(struct fault_env *fe, pte_t orig_pte)
2364        __releases(fe->ptl)
2365{
2366        struct vm_area_struct *vma = fe->vma;
2367        struct page *old_page;
2368
2369        old_page = vm_normal_page(vma, fe->address, orig_pte);
2370        if (!old_page) {
2371                /*
2372                 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2373                 * VM_PFNMAP VMA.
2374                 *
2375                 * We should not cow pages in a shared writeable mapping.
2376                 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2377                 */
2378                if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2379                                     (VM_WRITE|VM_SHARED))
2380                        return wp_pfn_shared(fe, orig_pte);
2381
2382                pte_unmap_unlock(fe->pte, fe->ptl);
2383                return wp_page_copy(fe, orig_pte, old_page);
2384        }
2385
2386        /*
2387         * Take out anonymous pages first, anonymous shared vmas are
2388         * not dirty accountable.
2389         */
2390        if (PageAnon(old_page) && !PageKsm(old_page)) {
2391                int total_mapcount;
2392                if (!trylock_page(old_page)) {
2393                        get_page(old_page);
2394                        pte_unmap_unlock(fe->pte, fe->ptl);
2395                        lock_page(old_page);
2396                        fe->pte = pte_offset_map_lock(vma->vm_mm, fe->pmd,
2397                                        fe->address, &fe->ptl);
2398                        if (!pte_same(*fe->pte, orig_pte)) {
2399                                unlock_page(old_page);
2400                                pte_unmap_unlock(fe->pte, fe->ptl);
2401                                put_page(old_page);
2402                                return 0;
2403                        }
2404                        put_page(old_page);
2405                }
2406                if (reuse_swap_page(old_page, &total_mapcount)) {
2407                        if (total_mapcount == 1) {
2408                                /*
2409                                 * The page is all ours. Move it to
2410                                 * our anon_vma so the rmap code will
2411                                 * not search our parent or siblings.
2412                                 * Protected against the rmap code by
2413                                 * the page lock.
2414                                 */
2415                                page_move_anon_rmap(old_page, vma);
2416                        }
2417                        unlock_page(old_page);
2418                        return wp_page_reuse(fe, orig_pte, old_page, 0, 0);
2419                }
2420                unlock_page(old_page);
2421        } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2422                                        (VM_WRITE|VM_SHARED))) {
2423                return wp_page_shared(fe, orig_pte, old_page);
2424        }
2425
2426        /*
2427         * Ok, we need to copy. Oh, well..
2428         */
2429        get_page(old_page);
2430
2431        pte_unmap_unlock(fe->pte, fe->ptl);
2432        return wp_page_copy(fe, orig_pte, old_page);
2433}
2434
2435static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2436                unsigned long start_addr, unsigned long end_addr,
2437                struct zap_details *details)
2438{
2439        zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2440}
2441
2442static inline void unmap_mapping_range_tree(struct rb_root *root,
2443                                            struct zap_details *details)
2444{
2445        struct vm_area_struct *vma;
2446        pgoff_t vba, vea, zba, zea;
2447
2448        vma_interval_tree_foreach(vma, root,
2449                        details->first_index, details->last_index) {
2450
2451                vba = vma->vm_pgoff;
2452                vea = vba + vma_pages(vma) - 1;
2453                zba = details->first_index;
2454                if (zba < vba)
2455                        zba = vba;
2456                zea = details->last_index;
2457                if (zea > vea)
2458                        zea = vea;
2459
2460                unmap_mapping_range_vma(vma,
2461                        ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2462                        ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2463                                details);
2464        }
2465}
2466
2467/**
2468 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2469 * address_space corresponding to the specified page range in the underlying
2470 * file.
2471 *
2472 * @mapping: the address space containing mmaps to be unmapped.
2473 * @holebegin: byte in first page to unmap, relative to the start of
2474 * the underlying file.  This will be rounded down to a PAGE_SIZE
2475 * boundary.  Note that this is different from truncate_pagecache(), which
2476 * must keep the partial page.  In contrast, we must get rid of
2477 * partial pages.
2478 * @holelen: size of prospective hole in bytes.  This will be rounded
2479 * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2480 * end of the file.
2481 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2482 * but 0 when invalidating pagecache, don't throw away private data.
2483 */
2484void unmap_mapping_range(struct address_space *mapping,
2485                loff_t const holebegin, loff_t const holelen, int even_cows)
2486{
2487        struct zap_details details = { };
2488        pgoff_t hba = holebegin >> PAGE_SHIFT;
2489        pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2490
2491        /* Check for overflow. */
2492        if (sizeof(holelen) > sizeof(hlen)) {
2493                long long holeend =
2494                        (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2495                if (holeend & ~(long long)ULONG_MAX)
2496                        hlen = ULONG_MAX - hba + 1;
2497        }
2498
2499        details.check_mapping = even_cows? NULL: mapping;
2500        details.first_index = hba;
2501        details.last_index = hba + hlen - 1;
2502        if (details.last_index < details.first_index)
2503                details.last_index = ULONG_MAX;
2504
2505        i_mmap_lock_write(mapping);
2506        if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2507                unmap_mapping_range_tree(&mapping->i_mmap, &details);
2508        i_mmap_unlock_write(mapping);
2509}
2510EXPORT_SYMBOL(unmap_mapping_range);
2511
2512/*
2513 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2514 * but allow concurrent faults), and pte mapped but not yet locked.
2515 * We return with pte unmapped and unlocked.
2516 *
2517 * We return with the mmap_sem locked or unlocked in the same cases
2518 * as does filemap_fault().
2519 */
2520int do_swap_page(struct fault_env *fe, pte_t orig_pte)
2521{
2522        struct vm_area_struct *vma = fe->vma;
2523        struct page *page, *swapcache;
2524        struct mem_cgroup *memcg;
2525        swp_entry_t entry;
2526        pte_t pte;
2527        int locked;
2528        int exclusive = 0;
2529        int ret = 0;
2530
2531        if (!pte_unmap_same(vma->vm_mm, fe->pmd, fe->pte, orig_pte))
2532                goto out;
2533
2534        entry = pte_to_swp_entry(orig_pte);
2535        if (unlikely(non_swap_entry(entry))) {
2536                if (is_migration_entry(entry)) {
2537                        migration_entry_wait(vma->vm_mm, fe->pmd, fe->address);
2538                } else if (is_hwpoison_entry(entry)) {
2539                        ret = VM_FAULT_HWPOISON;
2540                } else {
2541                        print_bad_pte(vma, fe->address, orig_pte, NULL);
2542                        ret = VM_FAULT_SIGBUS;
2543                }
2544                goto out;
2545        }
2546        delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2547        page = lookup_swap_cache(entry);
2548        if (!page) {
2549                page = swapin_readahead(entry,
2550                                        GFP_HIGHUSER_MOVABLE, vma, fe->address);
2551                if (!page) {
2552                        /*
2553                         * Back out if somebody else faulted in this pte
2554                         * while we released the pte lock.
2555                         */
2556                        fe->pte = pte_offset_map_lock(vma->vm_mm, fe->pmd,
2557                                        fe->address, &fe->ptl);
2558                        if (likely(pte_same(*fe->pte, orig_pte)))
2559                                ret = VM_FAULT_OOM;
2560                        delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2561                        goto unlock;
2562                }
2563
2564                /* Had to read the page from swap area: Major fault */
2565                ret = VM_FAULT_MAJOR;
2566                count_vm_event(PGMAJFAULT);
2567                mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
2568        } else if (PageHWPoison(page)) {
2569                /*
2570                 * hwpoisoned dirty swapcache pages are kept for killing
2571                 * owner processes (which may be unknown at hwpoison time)
2572                 */
2573                ret = VM_FAULT_HWPOISON;
2574                delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2575                swapcache = page;
2576                goto out_release;
2577        }
2578
2579        swapcache = page;
2580        locked = lock_page_or_retry(page, vma->vm_mm, fe->flags);
2581
2582        delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2583        if (!locked) {
2584                ret |= VM_FAULT_RETRY;
2585                goto out_release;
2586        }
2587
2588        /*
2589         * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2590         * release the swapcache from under us.  The page pin, and pte_same
2591         * test below, are not enough to exclude that.  Even if it is still
2592         * swapcache, we need to check that the page's swap has not changed.
2593         */
2594        if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2595                goto out_page;
2596
2597        page = ksm_might_need_to_copy(page, vma, fe->address);
2598        if (unlikely(!page)) {
2599                ret = VM_FAULT_OOM;
2600                page = swapcache;
2601                goto out_page;
2602        }
2603
2604        if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
2605                                &memcg, false)) {
2606                ret = VM_FAULT_OOM;
2607                goto out_page;
2608        }
2609
2610        /*
2611         * Back out if somebody else already faulted in this pte.
2612         */
2613        fe->pte = pte_offset_map_lock(vma->vm_mm, fe->pmd, fe->address,
2614                        &fe->ptl);
2615        if (unlikely(!pte_same(*fe->pte, orig_pte)))
2616                goto out_nomap;
2617
2618        if (unlikely(!PageUptodate(page))) {
2619                ret = VM_FAULT_SIGBUS;
2620                goto out_nomap;
2621        }
2622
2623        /*
2624         * The page isn't present yet, go ahead with the fault.
2625         *
2626         * Be careful about the sequence of operations here.
2627         * To get its accounting right, reuse_swap_page() must be called
2628         * while the page is counted on swap but not yet in mapcount i.e.
2629         * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2630         * must be called after the swap_free(), or it will never succeed.
2631         */
2632
2633        inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2634        dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
2635        pte = mk_pte(page, vma->vm_page_prot);
2636        if ((fe->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
2637                pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2638                fe->flags &= ~FAULT_FLAG_WRITE;
2639                ret |= VM_FAULT_WRITE;
2640                exclusive = RMAP_EXCLUSIVE;
2641        }
2642        flush_icache_page(vma, page);
2643        if (pte_swp_soft_dirty(orig_pte))
2644                pte = pte_mksoft_dirty(pte);
2645        set_pte_at(vma->vm_mm, fe->address, fe->pte, pte);
2646        if (page == swapcache) {
2647                do_page_add_anon_rmap(page, vma, fe->address, exclusive);
2648                mem_cgroup_commit_charge(page, memcg, true, false);
2649                activate_page(page);
2650        } else { /* ksm created a completely new copy */
2651                page_add_new_anon_rmap(page, vma, fe->address, false);
2652                mem_cgroup_commit_charge(page, memcg, false, false);
2653                lru_cache_add_active_or_unevictable(page, vma);
2654        }
2655
2656        swap_free(entry);
2657        if (mem_cgroup_swap_full(page) ||
2658            (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2659                try_to_free_swap(page);
2660        unlock_page(page);
2661        if (page != swapcache) {
2662                /*
2663                 * Hold the lock to avoid the swap entry to be reused
2664                 * until we take the PT lock for the pte_same() check
2665                 * (to avoid false positives from pte_same). For
2666                 * further safety release the lock after the swap_free
2667                 * so that the swap count won't change under a
2668                 * parallel locked swapcache.
2669                 */
2670                unlock_page(swapcache);
2671                put_page(swapcache);
2672        }
2673
2674        if (fe->flags & FAULT_FLAG_WRITE) {
2675                ret |= do_wp_page(fe, pte);
2676                if (ret & VM_FAULT_ERROR)
2677                        ret &= VM_FAULT_ERROR;
2678                goto out;
2679        }
2680
2681        /* No need to invalidate - it was non-present before */
2682        update_mmu_cache(vma, fe->address, fe->pte);
2683unlock:
2684        pte_unmap_unlock(fe->pte, fe->ptl);
2685out:
2686        return ret;
2687out_nomap:
2688        mem_cgroup_cancel_charge(page, memcg, false);
2689        pte_unmap_unlock(fe->pte, fe->ptl);
2690out_page:
2691        unlock_page(page);
2692out_release:
2693        put_page(page);
2694        if (page != swapcache) {
2695                unlock_page(swapcache);
2696                put_page(swapcache);
2697        }
2698        return ret;
2699}
2700
2701/*
2702 * This is like a special single-page "expand_{down|up}wards()",
2703 * except we must first make sure that 'address{-|+}PAGE_SIZE'
2704 * doesn't hit another vma.
2705 */
2706static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2707{
2708        address &= PAGE_MASK;
2709        if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2710                struct vm_area_struct *prev = vma->vm_prev;
2711
2712                /*
2713                 * Is there a mapping abutting this one below?
2714                 *
2715                 * That's only ok if it's the same stack mapping
2716                 * that has gotten split..
2717                 */
2718                if (prev && prev->vm_end == address)
2719                        return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
2720
2721                return expand_downwards(vma, address - PAGE_SIZE);
2722        }
2723        if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2724                struct vm_area_struct *next = vma->vm_next;
2725
2726                /* As VM_GROWSDOWN but s/below/above/ */
2727                if (next && next->vm_start == address + PAGE_SIZE)
2728                        return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2729
2730                return expand_upwards(vma, address + PAGE_SIZE);
2731        }
2732        return 0;
2733}
2734
2735/*
2736 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2737 * but allow concurrent faults), and pte mapped but not yet locked.
2738 * We return with mmap_sem still held, but pte unmapped and unlocked.
2739 */
2740static int do_anonymous_page(struct fault_env *fe)
2741{
2742        struct vm_area_struct *vma = fe->vma;
2743        struct mem_cgroup *memcg;
2744        struct page *page;
2745        pte_t entry;
2746
2747        /* File mapping without ->vm_ops ? */
2748        if (vma->vm_flags & VM_SHARED)
2749                return VM_FAULT_SIGBUS;
2750
2751        /* Check if we need to add a guard page to the stack */
2752        if (check_stack_guard_page(vma, fe->address) < 0)
2753                return VM_FAULT_SIGSEGV;
2754
2755        /*
2756         * Use pte_alloc() instead of pte_alloc_map().  We can't run
2757         * pte_offset_map() on pmds where a huge pmd might be created
2758         * from a different thread.
2759         *
2760         * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2761         * parallel threads are excluded by other means.
2762         *
2763         * Here we only have down_read(mmap_sem).
2764         */
2765        if (pte_alloc(vma->vm_mm, fe->pmd, fe->address))
2766                return VM_FAULT_OOM;
2767
2768        /* See the comment in pte_alloc_one_map() */
2769        if (unlikely(pmd_trans_unstable(fe->pmd)))
2770                return 0;
2771
2772        /* Use the zero-page for reads */
2773        if (!(fe->flags & FAULT_FLAG_WRITE) &&
2774                        !mm_forbids_zeropage(vma->vm_mm)) {
2775                entry = pte_mkspecial(pfn_pte(my_zero_pfn(fe->address),
2776                                                vma->vm_page_prot));
2777                fe->pte = pte_offset_map_lock(vma->vm_mm, fe->pmd, fe->address,
2778                                &fe->ptl);
2779                if (!pte_none(*fe->pte))
2780                        goto unlock;
2781                /* Deliver the page fault to userland, check inside PT lock */
2782                if (userfaultfd_missing(vma)) {
2783                        pte_unmap_unlock(fe->pte, fe->ptl);
2784                        return handle_userfault(fe, VM_UFFD_MISSING);
2785                }
2786                goto setpte;
2787        }
2788
2789        /* Allocate our own private page. */
2790        if (unlikely(anon_vma_prepare(vma)))
2791                goto oom;
2792        page = alloc_zeroed_user_highpage_movable(vma, fe->address);
2793        if (!page)
2794                goto oom;
2795
2796        if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2797                goto oom_free_page;
2798
2799        /*
2800         * The memory barrier inside __SetPageUptodate makes sure that
2801         * preceeding stores to the page contents become visible before
2802         * the set_pte_at() write.
2803         */
2804        __SetPageUptodate(page);
2805
2806        entry = mk_pte(page, vma->vm_page_prot);
2807        if (vma->vm_flags & VM_WRITE)
2808                entry = pte_mkwrite(pte_mkdirty(entry));
2809
2810        fe->pte = pte_offset_map_lock(vma->vm_mm, fe->pmd, fe->address,
2811                        &fe->ptl);
2812        if (!pte_none(*fe->pte))
2813                goto release;
2814
2815        /* Deliver the page fault to userland, check inside PT lock */
2816        if (userfaultfd_missing(vma)) {
2817                pte_unmap_unlock(fe->pte, fe->ptl);
2818                mem_cgroup_cancel_charge(page, memcg, false);
2819                put_page(page);
2820                return handle_userfault(fe, VM_UFFD_MISSING);
2821        }
2822
2823        inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2824        page_add_new_anon_rmap(page, vma, fe->address, false);
2825        mem_cgroup_commit_charge(page, memcg, false, false);
2826        lru_cache_add_active_or_unevictable(page, vma);
2827setpte:
2828        set_pte_at(vma->vm_mm, fe->address, fe->pte, entry);
2829
2830        /* No need to invalidate - it was non-present before */
2831        update_mmu_cache(vma, fe->address, fe->pte);
2832unlock:
2833        pte_unmap_unlock(fe->pte, fe->ptl);
2834        return 0;
2835release:
2836        mem_cgroup_cancel_charge(page, memcg, false);
2837        put_page(page);
2838        goto unlock;
2839oom_free_page:
2840        put_page(page);
2841oom:
2842        return VM_FAULT_OOM;
2843}
2844
2845/*
2846 * The mmap_sem must have been held on entry, and may have been
2847 * released depending on flags and vma->vm_ops->fault() return value.
2848 * See filemap_fault() and __lock_page_retry().
2849 */
2850static int __do_fault(struct fault_env *fe, pgoff_t pgoff,
2851                struct page *cow_page, struct page **page, void **entry)
2852{
2853        struct vm_area_struct *vma = fe->vma;
2854        struct vm_fault vmf;
2855        int ret;
2856
2857        vmf.virtual_address = (void __user *)(fe->address & PAGE_MASK);
2858        vmf.pgoff = pgoff;
2859        vmf.flags = fe->flags;
2860        vmf.page = NULL;
2861        vmf.gfp_mask = __get_fault_gfp_mask(vma);
2862        vmf.cow_page = cow_page;
2863
2864        ret = vma->vm_ops->fault(vma, &vmf);
2865        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2866                return ret;
2867        if (ret & VM_FAULT_DAX_LOCKED) {
2868                *entry = vmf.entry;
2869                return ret;
2870        }
2871
2872        if (unlikely(PageHWPoison(vmf.page))) {
2873                if (ret & VM_FAULT_LOCKED)
2874                        unlock_page(vmf.page);
2875                put_page(vmf.page);
2876                return VM_FAULT_HWPOISON;
2877        }
2878
2879        if (unlikely(!(ret & VM_FAULT_LOCKED)))
2880                lock_page(vmf.page);
2881        else
2882                VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
2883
2884        *page = vmf.page;
2885        return ret;
2886}
2887
2888static int pte_alloc_one_map(struct fault_env *fe)
2889{
2890        struct vm_area_struct *vma = fe->vma;
2891
2892        if (!pmd_none(*fe->pmd))
2893                goto map_pte;
2894        if (fe->prealloc_pte) {
2895                fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
2896                if (unlikely(!pmd_none(*fe->pmd))) {
2897                        spin_unlock(fe->ptl);
2898                        goto map_pte;
2899                }
2900
2901                atomic_long_inc(&vma->vm_mm->nr_ptes);
2902                pmd_populate(vma->vm_mm, fe->pmd, fe->prealloc_pte);
2903                spin_unlock(fe->ptl);
2904                fe->prealloc_pte = 0;
2905        } else if (unlikely(pte_alloc(vma->vm_mm, fe->pmd, fe->address))) {
2906                return VM_FAULT_OOM;
2907        }
2908map_pte:
2909        /*
2910         * If a huge pmd materialized under us just retry later.  Use
2911         * pmd_trans_unstable() instead of pmd_trans_huge() to ensure the pmd
2912         * didn't become pmd_trans_huge under us and then back to pmd_none, as
2913         * a result of MADV_DONTNEED running immediately after a huge pmd fault
2914         * in a different thread of this mm, in turn leading to a misleading
2915         * pmd_trans_huge() retval.  All we have to ensure is that it is a
2916         * regular pmd that we can walk with pte_offset_map() and we can do that
2917         * through an atomic read in C, which is what pmd_trans_unstable()
2918         * provides.
2919         */
2920        if (pmd_trans_unstable(fe->pmd) || pmd_devmap(*fe->pmd))
2921                return VM_FAULT_NOPAGE;
2922
2923        fe->pte = pte_offset_map_lock(vma->vm_mm, fe->pmd, fe->address,
2924                        &fe->ptl);
2925        return 0;
2926}
2927
2928#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
2929
2930#define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
2931static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
2932                unsigned long haddr)
2933{
2934        if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
2935                        (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
2936                return false;
2937        if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
2938                return false;
2939        return true;
2940}
2941
2942static int do_set_pmd(struct fault_env *fe, struct page *page)
2943{
2944        struct vm_area_struct *vma = fe->vma;
2945        bool write = fe->flags & FAULT_FLAG_WRITE;
2946        unsigned long haddr = fe->address & HPAGE_PMD_MASK;
2947        pmd_t entry;
2948        int i, ret;
2949
2950        if (!transhuge_vma_suitable(vma, haddr))
2951                return VM_FAULT_FALLBACK;
2952
2953        ret = VM_FAULT_FALLBACK;
2954        page = compound_head(page);
2955
2956        fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
2957        if (unlikely(!pmd_none(*fe->pmd)))
2958                goto out;
2959
2960        for (i = 0; i < HPAGE_PMD_NR; i++)
2961                flush_icache_page(vma, page + i);
2962
2963        entry = mk_huge_pmd(page, vma->vm_page_prot);
2964        if (write)
2965                entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2966
2967        add_mm_counter(vma->vm_mm, MM_FILEPAGES, HPAGE_PMD_NR);
2968        page_add_file_rmap(page, true);
2969
2970        set_pmd_at(vma->vm_mm, haddr, fe->pmd, entry);
2971
2972        update_mmu_cache_pmd(vma, haddr, fe->pmd);
2973
2974        /* fault is handled */
2975        ret = 0;
2976        count_vm_event(THP_FILE_MAPPED);
2977out:
2978        spin_unlock(fe->ptl);
2979        return ret;
2980}
2981#else
2982static int do_set_pmd(struct fault_env *fe, struct page *page)
2983{
2984        BUILD_BUG();
2985        return 0;
2986}
2987#endif
2988
2989/**
2990 * alloc_set_pte - setup new PTE entry for given page and add reverse page
2991 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
2992 *
2993 * @fe: fault environment
2994 * @memcg: memcg to charge page (only for private mappings)
2995 * @page: page to map
2996 *
2997 * Caller must take care of unlocking fe->ptl, if fe->pte is non-NULL on return.
2998 *
2999 * Target users are page handler itself and implementations of
3000 * vm_ops->map_pages.
3001 */
3002int alloc_set_pte(struct fault_env *fe, struct mem_cgroup *memcg,
3003                struct page *page)
3004{
3005        struct vm_area_struct *vma = fe->vma;
3006        bool write = fe->flags & FAULT_FLAG_WRITE;
3007        pte_t entry;
3008        int ret;
3009
3010        if (pmd_none(*fe->pmd) && PageTransCompound(page) &&
3011                        IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3012                /* THP on COW? */
3013                VM_BUG_ON_PAGE(memcg, page);
3014
3015                ret = do_set_pmd(fe, page);
3016                if (ret != VM_FAULT_FALLBACK)
3017                        return ret;
3018        }
3019
3020        if (!fe->pte) {
3021                ret = pte_alloc_one_map(fe);
3022                if (ret)
3023                        return ret;
3024        }
3025
3026        /* Re-check under ptl */
3027        if (unlikely(!pte_none(*fe->pte)))
3028                return VM_FAULT_NOPAGE;
3029
3030        flush_icache_page(vma, page);
3031        entry = mk_pte(page, vma->vm_page_prot);
3032        if (write)
3033                entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3034        /* copy-on-write page */
3035        if (write && !(vma->vm_flags & VM_SHARED)) {
3036                inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3037                page_add_new_anon_rmap(page, vma, fe->address, false);
3038                mem_cgroup_commit_charge(page, memcg, false, false);
3039                lru_cache_add_active_or_unevictable(page, vma);
3040        } else {
3041                inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3042                page_add_file_rmap(page, false);
3043        }
3044        set_pte_at(vma->vm_mm, fe->address, fe->pte, entry);
3045
3046        /* no need to invalidate: a not-present page won't be cached */
3047        update_mmu_cache(vma, fe->address, fe->pte);
3048
3049        return 0;
3050}
3051
3052static unsigned long fault_around_bytes __read_mostly =
3053        rounddown_pow_of_two(65536);
3054
3055#ifdef CONFIG_DEBUG_FS
3056static int fault_around_bytes_get(void *data, u64 *val)
3057{
3058        *val = fault_around_bytes;
3059        return 0;
3060}
3061
3062/*
3063 * fault_around_pages() and fault_around_mask() expects fault_around_bytes
3064 * rounded down to nearest page order. It's what do_fault_around() expects to
3065 * see.
3066 */
3067static int fault_around_bytes_set(void *data, u64 val)
3068{
3069        if (val / PAGE_SIZE > PTRS_PER_PTE)
3070                return -EINVAL;
3071        if (val > PAGE_SIZE)
3072                fault_around_bytes = rounddown_pow_of_two(val);
3073        else
3074                fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3075        return 0;
3076}
3077DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
3078                fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3079
3080static int __init fault_around_debugfs(void)
3081{
3082        void *ret;
3083
3084        ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
3085                        &fault_around_bytes_fops);
3086        if (!ret)
3087                pr_warn("Failed to create fault_around_bytes in debugfs");
3088        return 0;
3089}
3090late_initcall(fault_around_debugfs);
3091#endif
3092
3093/*
3094 * do_fault_around() tries to map few pages around the fault address. The hope
3095 * is that the pages will be needed soon and this will lower the number of
3096 * faults to handle.
3097 *
3098 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3099 * not ready to be mapped: not up-to-date, locked, etc.
3100 *
3101 * This function is called with the page table lock taken. In the split ptlock
3102 * case the page table lock only protects only those entries which belong to
3103 * the page table corresponding to the fault address.
3104 *
3105 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3106 * only once.
3107 *
3108 * fault_around_pages() defines how many pages we'll try to map.
3109 * do_fault_around() expects it to return a power of two less than or equal to
3110 * PTRS_PER_PTE.
3111 *
3112 * The virtual address of the area that we map is naturally aligned to the
3113 * fault_around_pages() value (and therefore to page order).  This way it's
3114 * easier to guarantee that we don't cross page table boundaries.
3115 */
3116static int do_fault_around(struct fault_env *fe, pgoff_t start_pgoff)
3117{
3118        unsigned long address = fe->address, nr_pages, mask;
3119        pgoff_t end_pgoff;
3120        int off, ret = 0;
3121
3122        nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3123        mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3124
3125        fe->address = max(address & mask, fe->vma->vm_start);
3126        off = ((address - fe->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3127        start_pgoff -= off;
3128
3129        /*
3130         *  end_pgoff is either end of page table or end of vma
3131         *  or fault_around_pages() from start_pgoff, depending what is nearest.
3132         */
3133        end_pgoff = start_pgoff -
3134                ((fe->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3135                PTRS_PER_PTE - 1;
3136        end_pgoff = min3(end_pgoff, vma_pages(fe->vma) + fe->vma->vm_pgoff - 1,
3137                        start_pgoff + nr_pages - 1);
3138
3139        if (pmd_none(*fe->pmd)) {
3140                fe->prealloc_pte = pte_alloc_one(fe->vma->vm_mm, fe->address);
3141                if (!fe->prealloc_pte)
3142                        goto out;
3143                smp_wmb(); /* See comment in __pte_alloc() */
3144        }
3145
3146        fe->vma->vm_ops->map_pages(fe, start_pgoff, end_pgoff);
3147
3148        /* preallocated pagetable is unused: free it */
3149        if (fe->prealloc_pte) {
3150                pte_free(fe->vma->vm_mm, fe->prealloc_pte);
3151                fe->prealloc_pte = 0;
3152        }
3153        /* Huge page is mapped? Page fault is solved */
3154        if (pmd_trans_huge(*fe->pmd)) {
3155                ret = VM_FAULT_NOPAGE;
3156                goto out;
3157        }
3158
3159        /* ->map_pages() haven't done anything useful. Cold page cache? */
3160        if (!fe->pte)
3161                goto out;
3162
3163        /* check if the page fault is solved */
3164        fe->pte -= (fe->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3165        if (!pte_none(*fe->pte))
3166                ret = VM_FAULT_NOPAGE;
3167        pte_unmap_unlock(fe->pte, fe->ptl);
3168out:
3169        fe->address = address;
3170        fe->pte = NULL;
3171        return ret;
3172}
3173
3174static int do_read_fault(struct fault_env *fe, pgoff_t pgoff)
3175{
3176        struct vm_area_struct *vma = fe->vma;
3177        struct page *fault_page;
3178        int ret = 0;
3179
3180        /*
3181         * Let's call ->map_pages() first and use ->fault() as fallback
3182         * if page by the offset is not ready to be mapped (cold cache or
3183         * something).
3184         */
3185        if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3186                ret = do_fault_around(fe, pgoff);
3187                if (ret)
3188                        return ret;
3189        }
3190
3191        ret = __do_fault(fe, pgoff, NULL, &fault_page, NULL);
3192        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3193                return ret;
3194
3195        ret |= alloc_set_pte(fe, NULL, fault_page);
3196        if (fe->pte)
3197                pte_unmap_unlock(fe->pte, fe->ptl);
3198        unlock_page(fault_page);
3199        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3200                put_page(fault_page);
3201        return ret;
3202}
3203
3204static int do_cow_fault(struct fault_env *fe, pgoff_t pgoff)
3205{
3206        struct vm_area_struct *vma = fe->vma;
3207        struct page *fault_page, *new_page;
3208        void *fault_entry;
3209        struct mem_cgroup *memcg;
3210        int ret;
3211
3212        if (unlikely(anon_vma_prepare(vma)))
3213                return VM_FAULT_OOM;
3214
3215        new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, fe->address);
3216        if (!new_page)
3217                return VM_FAULT_OOM;
3218
3219        if (mem_cgroup_try_charge(new_page, vma->vm_mm, GFP_KERNEL,
3220                                &memcg, false)) {
3221                put_page(new_page);
3222                return VM_FAULT_OOM;
3223        }
3224
3225        ret = __do_fault(fe, pgoff, new_page, &fault_page, &fault_entry);
3226        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3227                goto uncharge_out;
3228
3229        if (!(ret & VM_FAULT_DAX_LOCKED))
3230                copy_user_highpage(new_page, fault_page, fe->address, vma);
3231        __SetPageUptodate(new_page);
3232
3233        ret |= alloc_set_pte(fe, memcg, new_page);
3234        if (fe->pte)
3235                pte_unmap_unlock(fe->pte, fe->ptl);
3236        if (!(ret & VM_FAULT_DAX_LOCKED)) {
3237                unlock_page(fault_page);
3238                put_page(fault_page);
3239        } else {
3240                dax_unlock_mapping_entry(vma->vm_file->f_mapping, pgoff);
3241        }
3242        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3243                goto uncharge_out;
3244        return ret;
3245uncharge_out:
3246        mem_cgroup_cancel_charge(new_page, memcg, false);
3247        put_page(new_page);
3248        return ret;
3249}
3250
3251static int do_shared_fault(struct fault_env *fe, pgoff_t pgoff)
3252{
3253        struct vm_area_struct *vma = fe->vma;
3254        struct page *fault_page;
3255        struct address_space *mapping;
3256        int dirtied = 0;
3257        int ret, tmp;
3258
3259        ret = __do_fault(fe, pgoff, NULL, &fault_page, NULL);
3260        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3261                return ret;
3262
3263        /*
3264         * Check if the backing address space wants to know that the page is
3265         * about to become writable
3266         */
3267        if (vma->vm_ops->page_mkwrite) {
3268                unlock_page(fault_page);
3269                tmp = do_page_mkwrite(vma, fault_page, fe->address);
3270                if (unlikely(!tmp ||
3271                                (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3272                        put_page(fault_page);
3273                        return tmp;
3274                }
3275        }
3276
3277        ret |= alloc_set_pte(fe, NULL, fault_page);
3278        if (fe->pte)
3279                pte_unmap_unlock(fe->pte, fe->ptl);
3280        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3281                                        VM_FAULT_RETRY))) {
3282                unlock_page(fault_page);
3283                put_page(fault_page);
3284                return ret;
3285        }
3286
3287        if (set_page_dirty(fault_page))
3288                dirtied = 1;
3289        /*
3290         * Take a local copy of the address_space - page.mapping may be zeroed
3291         * by truncate after unlock_page().   The address_space itself remains
3292         * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
3293         * release semantics to prevent the compiler from undoing this copying.
3294         */
3295        mapping = page_rmapping(fault_page);
3296        unlock_page(fault_page);
3297        if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
3298                /*
3299                 * Some device drivers do not set page.mapping but still
3300                 * dirty their pages
3301                 */
3302                balance_dirty_pages_ratelimited(mapping);
3303        }
3304
3305        if (!vma->vm_ops->page_mkwrite)
3306                file_update_time(vma->vm_file);
3307
3308        return ret;
3309}
3310
3311/*
3312 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3313 * but allow concurrent faults).
3314 * The mmap_sem may have been released depending on flags and our
3315 * return value.  See filemap_fault() and __lock_page_or_retry().
3316 */
3317static int do_fault(struct fault_env *fe)
3318{
3319        struct vm_area_struct *vma = fe->vma;
3320        pgoff_t pgoff = linear_page_index(vma, fe->address);
3321
3322        /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3323        if (!vma->vm_ops->fault)
3324                return VM_FAULT_SIGBUS;
3325        if (!(fe->flags & FAULT_FLAG_WRITE))
3326                return do_read_fault(fe, pgoff);
3327        if (!(vma->vm_flags & VM_SHARED))
3328                return do_cow_fault(fe, pgoff);
3329        return do_shared_fault(fe, pgoff);
3330}
3331
3332static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3333                                unsigned long addr, int page_nid,
3334                                int *flags)
3335{
3336        get_page(page);
3337
3338        count_vm_numa_event(NUMA_HINT_FAULTS);
3339        if (page_nid == numa_node_id()) {
3340                count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3341                *flags |= TNF_FAULT_LOCAL;
3342        }
3343
3344        return mpol_misplaced(page, vma, addr);
3345}
3346
3347static int do_numa_page(struct fault_env *fe, pte_t pte)
3348{
3349        struct vm_area_struct *vma = fe->vma;
3350        struct page *page = NULL;
3351        int page_nid = -1;
3352        int last_cpupid;
3353        int target_nid;
3354        bool migrated = false;
3355        bool was_writable = pte_write(pte);
3356        int flags = 0;
3357
3358        /*
3359        * The "pte" at this point cannot be used safely without
3360        * validation through pte_unmap_same(). It's of NUMA type but
3361        * the pfn may be screwed if the read is non atomic.
3362        *
3363        * We can safely just do a "set_pte_at()", because the old
3364        * page table entry is not accessible, so there would be no
3365        * concurrent hardware modifications to the PTE.
3366        */
3367        fe->ptl = pte_lockptr(vma->vm_mm, fe->pmd);
3368        spin_lock(fe->ptl);
3369        if (unlikely(!pte_same(*fe->pte, pte))) {
3370                pte_unmap_unlock(fe->pte, fe->ptl);
3371                goto out;
3372        }
3373
3374        /* Make it present again */
3375        pte = pte_modify(pte, vma->vm_page_prot);
3376        pte = pte_mkyoung(pte);
3377        if (was_writable)
3378                pte = pte_mkwrite(pte);
3379        set_pte_at(vma->vm_mm, fe->address, fe->pte, pte);
3380        update_mmu_cache(vma, fe->address, fe->pte);
3381
3382        page = vm_normal_page(vma, fe->address, pte);
3383        if (!page) {
3384                pte_unmap_unlock(fe->pte, fe->ptl);
3385                return 0;
3386        }
3387
3388        /* TODO: handle PTE-mapped THP */
3389        if (PageCompound(page)) {
3390                pte_unmap_unlock(fe->pte, fe->ptl);
3391                return 0;
3392        }
3393
3394        /*
3395         * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3396         * much anyway since they can be in shared cache state. This misses
3397         * the case where a mapping is writable but the process never writes
3398         * to it but pte_write gets cleared during protection updates and
3399         * pte_dirty has unpredictable behaviour between PTE scan updates,
3400         * background writeback, dirty balancing and application behaviour.
3401         */
3402        if (!pte_write(pte))
3403                flags |= TNF_NO_GROUP;
3404
3405        /*
3406         * Flag if the page is shared between multiple address spaces. This
3407         * is later used when determining whether to group tasks together
3408         */
3409        if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3410                flags |= TNF_SHARED;
3411
3412        last_cpupid = page_cpupid_last(page);
3413        page_nid = page_to_nid(page);
3414        target_nid = numa_migrate_prep(page, vma, fe->address, page_nid,
3415                        &flags);
3416        pte_unmap_unlock(fe->pte, fe->ptl);
3417        if (target_nid == -1) {
3418                put_page(page);
3419                goto out;
3420        }
3421
3422        /* Migrate to the requested node */
3423        migrated = migrate_misplaced_page(page, vma, target_nid);
3424        if (migrated) {
3425                page_nid = target_nid;
3426                flags |= TNF_MIGRATED;
3427        } else
3428                flags |= TNF_MIGRATE_FAIL;
3429
3430out:
3431        if (page_nid != -1)
3432                task_numa_fault(last_cpupid, page_nid, 1, flags);
3433        return 0;
3434}
3435
3436static int create_huge_pmd(struct fault_env *fe)
3437{
3438        struct vm_area_struct *vma = fe->vma;
3439        if (vma_is_anonymous(vma))
3440                return do_huge_pmd_anonymous_page(fe);
3441        if (vma->vm_ops->pmd_fault)
3442                return vma->vm_ops->pmd_fault(vma, fe->address, fe->pmd,
3443                                fe->flags);
3444        return VM_FAULT_FALLBACK;
3445}
3446
3447static int wp_huge_pmd(struct fault_env *fe, pmd_t orig_pmd)
3448{
3449        if (vma_is_anonymous(fe->vma))
3450                return do_huge_pmd_wp_page(fe, orig_pmd);
3451        if (fe->vma->vm_ops->pmd_fault)
3452                return fe->vma->vm_ops->pmd_fault(fe->vma, fe->address, fe->pmd,
3453                                fe->flags);
3454
3455        /* COW handled on pte level: split pmd */
3456        VM_BUG_ON_VMA(fe->vma->vm_flags & VM_SHARED, fe->vma);
3457        split_huge_pmd(fe->vma, fe->pmd, fe->address);
3458
3459        return VM_FAULT_FALLBACK;
3460}
3461
3462static inline bool vma_is_accessible(struct vm_area_struct *vma)
3463{
3464        return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3465}
3466
3467/*
3468 * These routines also need to handle stuff like marking pages dirty
3469 * and/or accessed for architectures that don't do it in hardware (most
3470 * RISC architectures).  The early dirtying is also good on the i386.
3471 *
3472 * There is also a hook called "update_mmu_cache()" that architectures
3473 * with external mmu caches can use to update those (ie the Sparc or
3474 * PowerPC hashed page tables that act as extended TLBs).
3475 *
3476 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3477 * concurrent faults).
3478 *
3479 * The mmap_sem may have been released depending on flags and our return value.
3480 * See filemap_fault() and __lock_page_or_retry().
3481 */
3482static int handle_pte_fault(struct fault_env *fe)
3483{
3484        pte_t entry;
3485
3486        if (unlikely(pmd_none(*fe->pmd))) {
3487                /*
3488                 * Leave __pte_alloc() until later: because vm_ops->fault may
3489                 * want to allocate huge page, and if we expose page table
3490                 * for an instant, it will be difficult to retract from
3491                 * concurrent faults and from rmap lookups.
3492                 */
3493                fe->pte = NULL;
3494        } else {
3495                /* See comment in pte_alloc_one_map() */
3496                if (pmd_trans_unstable(fe->pmd) || pmd_devmap(*fe->pmd))
3497                        return 0;
3498                /*
3499                 * A regular pmd is established and it can't morph into a huge
3500                 * pmd from under us anymore at this point because we hold the
3501                 * mmap_sem read mode and khugepaged takes it in write mode.
3502                 * So now it's safe to run pte_offset_map().
3503                 */
3504                fe->pte = pte_offset_map(fe->pmd, fe->address);
3505
3506                entry = *fe->pte;
3507
3508                /*
3509                 * some architectures can have larger ptes than wordsize,
3510                 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3511                 * CONFIG_32BIT=y, so READ_ONCE or ACCESS_ONCE cannot guarantee
3512                 * atomic accesses.  The code below just needs a consistent
3513                 * view for the ifs and we later double check anyway with the
3514                 * ptl lock held. So here a barrier will do.
3515                 */
3516                barrier();
3517                if (pte_none(entry)) {
3518                        pte_unmap(fe->pte);
3519                        fe->pte = NULL;
3520                }
3521        }
3522
3523        if (!fe->pte) {
3524                if (vma_is_anonymous(fe->vma))
3525                        return do_anonymous_page(fe);
3526                else
3527                        return do_fault(fe);
3528        }
3529
3530        if (!pte_present(entry))
3531                return do_swap_page(fe, entry);
3532
3533        if (pte_protnone(entry) && vma_is_accessible(fe->vma))
3534                return do_numa_page(fe, entry);
3535
3536        fe->ptl = pte_lockptr(fe->vma->vm_mm, fe->pmd);
3537        spin_lock(fe->ptl);
3538        if (unlikely(!pte_same(*fe->pte, entry)))
3539                goto unlock;
3540        if (fe->flags & FAULT_FLAG_WRITE) {
3541                if (!pte_write(entry))
3542                        return do_wp_page(fe, entry);
3543                entry = pte_mkdirty(entry);
3544        }
3545        entry = pte_mkyoung(entry);
3546        if (ptep_set_access_flags(fe->vma, fe->address, fe->pte, entry,
3547                                fe->flags & FAULT_FLAG_WRITE)) {
3548                update_mmu_cache(fe->vma, fe->address, fe->pte);
3549        } else {
3550                /*
3551                 * This is needed only for protection faults but the arch code
3552                 * is not yet telling us if this is a protection fault or not.
3553                 * This still avoids useless tlb flushes for .text page faults
3554                 * with threads.
3555                 */
3556                if (fe->flags & FAULT_FLAG_WRITE)
3557                        flush_tlb_fix_spurious_fault(fe->vma, fe->address);
3558        }
3559unlock:
3560        pte_unmap_unlock(fe->pte, fe->ptl);
3561        return 0;
3562}
3563
3564/*
3565 * By the time we get here, we already hold the mm semaphore
3566 *
3567 * The mmap_sem may have been released depending on flags and our
3568 * return value.  See filemap_fault() and __lock_page_or_retry().
3569 */
3570static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3571                unsigned int flags)
3572{
3573        struct fault_env fe = {
3574                .vma = vma,
3575                .address = address,
3576                .flags = flags,
3577        };
3578        struct mm_struct *mm = vma->vm_mm;
3579        pgd_t *pgd;
3580        pud_t *pud;
3581
3582        pgd = pgd_offset(mm, address);
3583        pud = pud_alloc(mm, pgd, address);
3584        if (!pud)
3585                return VM_FAULT_OOM;
3586        fe.pmd = pmd_alloc(mm, pud, address);
3587        if (!fe.pmd)
3588                return VM_FAULT_OOM;
3589        if (pmd_none(*fe.pmd) && transparent_hugepage_enabled(vma)) {
3590                int ret = create_huge_pmd(&fe);
3591                if (!(ret & VM_FAULT_FALLBACK))
3592                        return ret;
3593        } else {
3594                pmd_t orig_pmd = *fe.pmd;
3595                int ret;
3596
3597                barrier();
3598                if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
3599                        if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
3600                                return do_huge_pmd_numa_page(&fe, orig_pmd);
3601
3602                        if ((fe.flags & FAULT_FLAG_WRITE) &&
3603                                        !pmd_write(orig_pmd)) {
3604                                ret = wp_huge_pmd(&fe, orig_pmd);
3605                                if (!(ret & VM_FAULT_FALLBACK))
3606                                        return ret;
3607                        } else {
3608                                huge_pmd_set_accessed(&fe, orig_pmd);
3609                                return 0;
3610                        }
3611                }
3612        }
3613
3614        return handle_pte_fault(&fe);
3615}
3616
3617/*
3618 * By the time we get here, we already hold the mm semaphore
3619 *
3620 * The mmap_sem may have been released depending on flags and our
3621 * return value.  See filemap_fault() and __lock_page_or_retry().
3622 */
3623int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3624                unsigned int flags)
3625{
3626        int ret;
3627
3628        __set_current_state(TASK_RUNNING);
3629
3630        count_vm_event(PGFAULT);
3631        mem_cgroup_count_vm_event(vma->vm_mm, PGFAULT);
3632
3633        /* do counter updates before entering really critical section. */
3634        check_sync_rss_stat(current);
3635
3636        /*
3637         * Enable the memcg OOM handling for faults triggered in user
3638         * space.  Kernel faults are handled more gracefully.
3639         */
3640        if (flags & FAULT_FLAG_USER)
3641                mem_cgroup_oom_enable();
3642
3643        if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
3644                                            flags & FAULT_FLAG_INSTRUCTION,
3645                                            flags & FAULT_FLAG_REMOTE))
3646                return VM_FAULT_SIGSEGV;
3647
3648        if (unlikely(is_vm_hugetlb_page(vma)))
3649                ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
3650        else
3651                ret = __handle_mm_fault(vma, address, flags);
3652
3653        if (flags & FAULT_FLAG_USER) {
3654                mem_cgroup_oom_disable();
3655                /*
3656                 * The task may have entered a memcg OOM situation but
3657                 * if the allocation error was handled gracefully (no
3658                 * VM_FAULT_OOM), there is no need to kill anything.
3659                 * Just clean up the OOM state peacefully.
3660                 */
3661                if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3662                        mem_cgroup_oom_synchronize(false);
3663        }
3664
3665        /*
3666         * This mm has been already reaped by the oom reaper and so the
3667         * refault cannot be trusted in general. Anonymous refaults would
3668         * lose data and give a zero page instead e.g. This is especially
3669         * problem for use_mm() because regular tasks will just die and
3670         * the corrupted data will not be visible anywhere while kthread
3671         * will outlive the oom victim and potentially propagate the date
3672         * further.
3673         */
3674        if (unlikely((current->flags & PF_KTHREAD) && !(ret & VM_FAULT_ERROR)
3675                                && test_bit(MMF_UNSTABLE, &vma->vm_mm->flags)))
3676                ret = VM_FAULT_SIGBUS;
3677
3678        return ret;
3679}
3680EXPORT_SYMBOL_GPL(handle_mm_fault);
3681
3682#ifndef __PAGETABLE_PUD_FOLDED
3683/*
3684 * Allocate page upper directory.
3685 * We've already handled the fast-path in-line.
3686 */
3687int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3688{
3689        pud_t *new = pud_alloc_one(mm, address);
3690        if (!new)
3691                return -ENOMEM;
3692
3693        smp_wmb(); /* See comment in __pte_alloc */
3694
3695        spin_lock(&mm->page_table_lock);
3696        if (pgd_present(*pgd))          /* Another has populated it */
3697                pud_free(mm, new);
3698        else
3699                pgd_populate(mm, pgd, new);
3700        spin_unlock(&mm->page_table_lock);
3701        return 0;
3702}
3703#endif /* __PAGETABLE_PUD_FOLDED */
3704
3705#ifndef __PAGETABLE_PMD_FOLDED
3706/*
3707 * Allocate page middle directory.
3708 * We've already handled the fast-path in-line.
3709 */
3710int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3711{
3712        pmd_t *new = pmd_alloc_one(mm, address);
3713        if (!new)
3714                return -ENOMEM;
3715
3716        smp_wmb(); /* See comment in __pte_alloc */
3717
3718        spin_lock(&mm->page_table_lock);
3719#ifndef __ARCH_HAS_4LEVEL_HACK
3720        if (!pud_present(*pud)) {
3721                mm_inc_nr_pmds(mm);
3722                pud_populate(mm, pud, new);
3723        } else  /* Another has populated it */
3724                pmd_free(mm, new);
3725#else
3726        if (!pgd_present(*pud)) {
3727                mm_inc_nr_pmds(mm);
3728                pgd_populate(mm, pud, new);
3729        } else /* Another has populated it */
3730                pmd_free(mm, new);
3731#endif /* __ARCH_HAS_4LEVEL_HACK */
3732        spin_unlock(&mm->page_table_lock);
3733        return 0;
3734}
3735#endif /* __PAGETABLE_PMD_FOLDED */
3736
3737static int __follow_pte(struct mm_struct *mm, unsigned long address,
3738                pte_t **ptepp, spinlock_t **ptlp)
3739{
3740        pgd_t *pgd;
3741        pud_t *pud;
3742        pmd_t *pmd;
3743        pte_t *ptep;
3744
3745        pgd = pgd_offset(mm, address);
3746        if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3747                goto out;
3748
3749        pud = pud_offset(pgd, address);
3750        if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3751                goto out;
3752
3753        pmd = pmd_offset(pud, address);
3754        VM_BUG_ON(pmd_trans_huge(*pmd));
3755        if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3756                goto out;
3757
3758        /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3759        if (pmd_huge(*pmd))
3760                goto out;
3761
3762        ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3763        if (!ptep)
3764                goto out;
3765        if (!pte_present(*ptep))
3766                goto unlock;
3767        *ptepp = ptep;
3768        return 0;
3769unlock:
3770        pte_unmap_unlock(ptep, *ptlp);
3771out:
3772        return -EINVAL;
3773}
3774
3775static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3776                             pte_t **ptepp, spinlock_t **ptlp)
3777{
3778        int res;
3779
3780        /* (void) is needed to make gcc happy */
3781        (void) __cond_lock(*ptlp,
3782                           !(res = __follow_pte(mm, address, ptepp, ptlp)));
3783        return res;
3784}
3785
3786/**
3787 * follow_pfn - look up PFN at a user virtual address
3788 * @vma: memory mapping
3789 * @address: user virtual address
3790 * @pfn: location to store found PFN
3791 *
3792 * Only IO mappings and raw PFN mappings are allowed.
3793 *
3794 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3795 */
3796int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3797        unsigned long *pfn)
3798{
3799        int ret = -EINVAL;
3800        spinlock_t *ptl;
3801        pte_t *ptep;
3802
3803        if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3804                return ret;
3805
3806        ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3807        if (ret)
3808                return ret;
3809        *pfn = pte_pfn(*ptep);
3810        pte_unmap_unlock(ptep, ptl);
3811        return 0;
3812}
3813EXPORT_SYMBOL(follow_pfn);
3814
3815#ifdef CONFIG_HAVE_IOREMAP_PROT
3816int follow_phys(struct vm_area_struct *vma,
3817                unsigned long address, unsigned int flags,
3818                unsigned long *prot, resource_size_t *phys)
3819{
3820        int ret = -EINVAL;
3821        pte_t *ptep, pte;
3822        spinlock_t *ptl;
3823
3824        if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3825                goto out;
3826
3827        if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3828                goto out;
3829        pte = *ptep;
3830
3831        if ((flags & FOLL_WRITE) && !pte_write(pte))
3832                goto unlock;
3833
3834        *prot = pgprot_val(pte_pgprot(pte));
3835        *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3836
3837        ret = 0;
3838unlock:
3839        pte_unmap_unlock(ptep, ptl);
3840out:
3841        return ret;
3842}
3843
3844int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3845                        void *buf, int len, int write)
3846{
3847        resource_size_t phys_addr;
3848        unsigned long prot = 0;
3849        void __iomem *maddr;
3850        int offset = addr & (PAGE_SIZE-1);
3851
3852        if (follow_phys(vma, addr, write, &prot, &phys_addr))
3853                return -EINVAL;
3854
3855        maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
3856        if (write)
3857                memcpy_toio(maddr + offset, buf, len);
3858        else
3859                memcpy_fromio(buf, maddr + offset, len);
3860        iounmap(maddr);
3861
3862        return len;
3863}
3864EXPORT_SYMBOL_GPL(generic_access_phys);
3865#endif
3866
3867/*
3868 * Access another process' address space as given in mm.  If non-NULL, use the
3869 * given task for page fault accounting.
3870 */
3871static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3872                unsigned long addr, void *buf, int len, unsigned int gup_flags)
3873{
3874        struct vm_area_struct *vma;
3875        void *old_buf = buf;
3876        int write = gup_flags & FOLL_WRITE;
3877
3878        down_read(&mm->mmap_sem);
3879        /* ignore errors, just check how much was successfully transferred */
3880        while (len) {
3881                int bytes, ret, offset;
3882                void *maddr;
3883                struct page *page = NULL;
3884
3885                ret = get_user_pages_remote(tsk, mm, addr, 1,
3886                                gup_flags, &page, &vma);
3887                if (ret <= 0) {
3888#ifndef CONFIG_HAVE_IOREMAP_PROT
3889                        break;
3890#else
3891                        /*
3892                         * Check if this is a VM_IO | VM_PFNMAP VMA, which
3893                         * we can access using slightly different code.
3894                         */
3895                        vma = find_vma(mm, addr);
3896                        if (!vma || vma->vm_start > addr)
3897                                break;
3898                        if (vma->vm_ops && vma->vm_ops->access)
3899                                ret = vma->vm_ops->access(vma, addr, buf,
3900                                                          len, write);
3901                        if (ret <= 0)
3902                                break;
3903                        bytes = ret;
3904#endif
3905                } else {
3906                        bytes = len;
3907                        offset = addr & (PAGE_SIZE-1);
3908                        if (bytes > PAGE_SIZE-offset)
3909                                bytes = PAGE_SIZE-offset;
3910
3911                        maddr = kmap(page);
3912                        if (write) {
3913                                copy_to_user_page(vma, page, addr,
3914                                                  maddr + offset, buf, bytes);
3915                                set_page_dirty_lock(page);
3916                        } else {
3917                                copy_from_user_page(vma, page, addr,
3918                                                    buf, maddr + offset, bytes);
3919                        }
3920                        kunmap(page);
3921                        put_page(page);
3922                }
3923                len -= bytes;
3924                buf += bytes;
3925                addr += bytes;
3926        }
3927        up_read(&mm->mmap_sem);
3928
3929        return buf - old_buf;
3930}
3931
3932/**
3933 * access_remote_vm - access another process' address space
3934 * @mm:         the mm_struct of the target address space
3935 * @addr:       start address to access
3936 * @buf:        source or destination buffer
3937 * @len:        number of bytes to transfer
3938 * @gup_flags:  flags modifying lookup behaviour
3939 *
3940 * The caller must hold a reference on @mm.
3941 */
3942int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3943                void *buf, int len, unsigned int gup_flags)
3944{
3945        return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
3946}
3947
3948/*
3949 * Access another process' address space.
3950 * Source/target buffer must be kernel space,
3951 * Do not walk the page table directly, use get_user_pages
3952 */
3953int access_process_vm(struct task_struct *tsk, unsigned long addr,
3954                void *buf, int len, unsigned int gup_flags)
3955{
3956        struct mm_struct *mm;
3957        int ret;
3958
3959        mm = get_task_mm(tsk);
3960        if (!mm)
3961                return 0;
3962
3963        ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
3964
3965        mmput(mm);
3966
3967        return ret;
3968}
3969
3970/*
3971 * Print the name of a VMA.
3972 */
3973void print_vma_addr(char *prefix, unsigned long ip)
3974{
3975        struct mm_struct *mm = current->mm;
3976        struct vm_area_struct *vma;
3977
3978        /*
3979         * Do not print if we are in atomic
3980         * contexts (in exception stacks, etc.):
3981         */
3982        if (preempt_count())
3983                return;
3984
3985        down_read(&mm->mmap_sem);
3986        vma = find_vma(mm, ip);
3987        if (vma && vma->vm_file) {
3988                struct file *f = vma->vm_file;
3989                char *buf = (char *)__get_free_page(GFP_KERNEL);
3990                if (buf) {
3991                        char *p;
3992
3993                        p = file_path(f, buf, PAGE_SIZE);
3994                        if (IS_ERR(p))
3995                                p = "?";
3996                        printk("%s%s[%lx+%lx]", prefix, kbasename(p),
3997                                        vma->vm_start,
3998                                        vma->vm_end - vma->vm_start);
3999                        free_page((unsigned long)buf);
4000                }
4001        }
4002        up_read(&mm->mmap_sem);
4003}
4004
4005#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4006void __might_fault(const char *file, int line)
4007{
4008        /*
4009         * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4010         * holding the mmap_sem, this is safe because kernel memory doesn't
4011         * get paged out, therefore we'll never actually fault, and the
4012         * below annotations will generate false positives.
4013         */
4014        if (segment_eq(get_fs(), KERNEL_DS))
4015                return;
4016        if (pagefault_disabled())
4017                return;
4018        __might_sleep(file, line, 0);
4019#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4020        if (current->mm)
4021                might_lock_read(&current->mm->mmap_sem);
4022#endif
4023}
4024EXPORT_SYMBOL(__might_fault);
4025#endif
4026
4027#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4028static void clear_gigantic_page(struct page *page,
4029                                unsigned long addr,
4030                                unsigned int pages_per_huge_page)
4031{
4032        int i;
4033        struct page *p = page;
4034
4035        might_sleep();
4036        for (i = 0; i < pages_per_huge_page;
4037             i++, p = mem_map_next(p, page, i)) {
4038                cond_resched();
4039                clear_user_highpage(p, addr + i * PAGE_SIZE);
4040        }
4041}
4042void clear_huge_page(struct page *page,
4043                     unsigned long addr, unsigned int pages_per_huge_page)
4044{
4045        int i;
4046
4047        if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4048                clear_gigantic_page(page, addr, pages_per_huge_page);
4049                return;
4050        }
4051
4052        might_sleep();
4053        for (i = 0; i < pages_per_huge_page; i++) {
4054                cond_resched();
4055                clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4056        }
4057}
4058
4059static void copy_user_gigantic_page(struct page *dst, struct page *src,
4060                                    unsigned long addr,
4061                                    struct vm_area_struct *vma,
4062                                    unsigned int pages_per_huge_page)
4063{
4064        int i;
4065        struct page *dst_base = dst;
4066        struct page *src_base = src;
4067
4068        for (i = 0; i < pages_per_huge_page; ) {
4069                cond_resched();
4070                copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4071
4072                i++;
4073                dst = mem_map_next(dst, dst_base, i);
4074                src = mem_map_next(src, src_base, i);
4075        }
4076}
4077
4078void copy_user_huge_page(struct page *dst, struct page *src,
4079                         unsigned long addr, struct vm_area_struct *vma,
4080                         unsigned int pages_per_huge_page)
4081{
4082        int i;
4083
4084        if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4085                copy_user_gigantic_page(dst, src, addr, vma,
4086                                        pages_per_huge_page);
4087                return;
4088        }
4089
4090        might_sleep();
4091        for (i = 0; i < pages_per_huge_page; i++) {
4092                cond_resched();
4093                copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4094        }
4095}
4096#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4097
4098#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4099
4100static struct kmem_cache *page_ptl_cachep;
4101
4102void __init ptlock_cache_init(void)
4103{
4104        page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4105                        SLAB_PANIC, NULL);
4106}
4107
4108bool ptlock_alloc(struct page *page)
4109{
4110        spinlock_t *ptl;
4111
4112        ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4113        if (!ptl)
4114                return false;
4115        page->ptl = ptl;
4116        return true;
4117}
4118
4119void ptlock_free(struct page *page)
4120{
4121        kmem_cache_free(page_ptl_cachep, page->ptl);
4122}
4123#endif
4124