linux/mm/oom_kill.c
<<
>>
Prefs
   1/*
   2 *  linux/mm/oom_kill.c
   3 * 
   4 *  Copyright (C)  1998,2000  Rik van Riel
   5 *      Thanks go out to Claus Fischer for some serious inspiration and
   6 *      for goading me into coding this file...
   7 *  Copyright (C)  2010  Google, Inc.
   8 *      Rewritten by David Rientjes
   9 *
  10 *  The routines in this file are used to kill a process when
  11 *  we're seriously out of memory. This gets called from __alloc_pages()
  12 *  in mm/page_alloc.c when we really run out of memory.
  13 *
  14 *  Since we won't call these routines often (on a well-configured
  15 *  machine) this file will double as a 'coding guide' and a signpost
  16 *  for newbie kernel hackers. It features several pointers to major
  17 *  kernel subsystems and hints as to where to find out what things do.
  18 */
  19
  20#include <linux/oom.h>
  21#include <linux/mm.h>
  22#include <linux/err.h>
  23#include <linux/gfp.h>
  24#include <linux/sched.h>
  25#include <linux/swap.h>
  26#include <linux/timex.h>
  27#include <linux/jiffies.h>
  28#include <linux/cpuset.h>
  29#include <linux/export.h>
  30#include <linux/notifier.h>
  31#include <linux/memcontrol.h>
  32#include <linux/mempolicy.h>
  33#include <linux/security.h>
  34#include <linux/ptrace.h>
  35#include <linux/freezer.h>
  36#include <linux/ftrace.h>
  37#include <linux/ratelimit.h>
  38#include <linux/kthread.h>
  39#include <linux/init.h>
  40
  41#include <asm/tlb.h>
  42#include "internal.h"
  43
  44#define CREATE_TRACE_POINTS
  45#include <trace/events/oom.h>
  46
  47int sysctl_panic_on_oom;
  48int sysctl_oom_kill_allocating_task;
  49int sysctl_oom_dump_tasks = 1;
  50
  51DEFINE_MUTEX(oom_lock);
  52
  53#ifdef CONFIG_NUMA
  54/**
  55 * has_intersects_mems_allowed() - check task eligiblity for kill
  56 * @start: task struct of which task to consider
  57 * @mask: nodemask passed to page allocator for mempolicy ooms
  58 *
  59 * Task eligibility is determined by whether or not a candidate task, @tsk,
  60 * shares the same mempolicy nodes as current if it is bound by such a policy
  61 * and whether or not it has the same set of allowed cpuset nodes.
  62 */
  63static bool has_intersects_mems_allowed(struct task_struct *start,
  64                                        const nodemask_t *mask)
  65{
  66        struct task_struct *tsk;
  67        bool ret = false;
  68
  69        rcu_read_lock();
  70        for_each_thread(start, tsk) {
  71                if (mask) {
  72                        /*
  73                         * If this is a mempolicy constrained oom, tsk's
  74                         * cpuset is irrelevant.  Only return true if its
  75                         * mempolicy intersects current, otherwise it may be
  76                         * needlessly killed.
  77                         */
  78                        ret = mempolicy_nodemask_intersects(tsk, mask);
  79                } else {
  80                        /*
  81                         * This is not a mempolicy constrained oom, so only
  82                         * check the mems of tsk's cpuset.
  83                         */
  84                        ret = cpuset_mems_allowed_intersects(current, tsk);
  85                }
  86                if (ret)
  87                        break;
  88        }
  89        rcu_read_unlock();
  90
  91        return ret;
  92}
  93#else
  94static bool has_intersects_mems_allowed(struct task_struct *tsk,
  95                                        const nodemask_t *mask)
  96{
  97        return true;
  98}
  99#endif /* CONFIG_NUMA */
 100
 101/*
 102 * The process p may have detached its own ->mm while exiting or through
 103 * use_mm(), but one or more of its subthreads may still have a valid
 104 * pointer.  Return p, or any of its subthreads with a valid ->mm, with
 105 * task_lock() held.
 106 */
 107struct task_struct *find_lock_task_mm(struct task_struct *p)
 108{
 109        struct task_struct *t;
 110
 111        rcu_read_lock();
 112
 113        for_each_thread(p, t) {
 114                task_lock(t);
 115                if (likely(t->mm))
 116                        goto found;
 117                task_unlock(t);
 118        }
 119        t = NULL;
 120found:
 121        rcu_read_unlock();
 122
 123        return t;
 124}
 125
 126/*
 127 * order == -1 means the oom kill is required by sysrq, otherwise only
 128 * for display purposes.
 129 */
 130static inline bool is_sysrq_oom(struct oom_control *oc)
 131{
 132        return oc->order == -1;
 133}
 134
 135static inline bool is_memcg_oom(struct oom_control *oc)
 136{
 137        return oc->memcg != NULL;
 138}
 139
 140/* return true if the task is not adequate as candidate victim task. */
 141static bool oom_unkillable_task(struct task_struct *p,
 142                struct mem_cgroup *memcg, const nodemask_t *nodemask)
 143{
 144        if (is_global_init(p))
 145                return true;
 146        if (p->flags & PF_KTHREAD)
 147                return true;
 148
 149        /* When mem_cgroup_out_of_memory() and p is not member of the group */
 150        if (memcg && !task_in_mem_cgroup(p, memcg))
 151                return true;
 152
 153        /* p may not have freeable memory in nodemask */
 154        if (!has_intersects_mems_allowed(p, nodemask))
 155                return true;
 156
 157        return false;
 158}
 159
 160/**
 161 * oom_badness - heuristic function to determine which candidate task to kill
 162 * @p: task struct of which task we should calculate
 163 * @totalpages: total present RAM allowed for page allocation
 164 *
 165 * The heuristic for determining which task to kill is made to be as simple and
 166 * predictable as possible.  The goal is to return the highest value for the
 167 * task consuming the most memory to avoid subsequent oom failures.
 168 */
 169unsigned long oom_badness(struct task_struct *p, struct mem_cgroup *memcg,
 170                          const nodemask_t *nodemask, unsigned long totalpages)
 171{
 172        long points;
 173        long adj;
 174
 175        if (oom_unkillable_task(p, memcg, nodemask))
 176                return 0;
 177
 178        p = find_lock_task_mm(p);
 179        if (!p)
 180                return 0;
 181
 182        /*
 183         * Do not even consider tasks which are explicitly marked oom
 184         * unkillable or have been already oom reaped or the are in
 185         * the middle of vfork
 186         */
 187        adj = (long)p->signal->oom_score_adj;
 188        if (adj == OOM_SCORE_ADJ_MIN ||
 189                        test_bit(MMF_OOM_SKIP, &p->mm->flags) ||
 190                        in_vfork(p)) {
 191                task_unlock(p);
 192                return 0;
 193        }
 194
 195        /*
 196         * The baseline for the badness score is the proportion of RAM that each
 197         * task's rss, pagetable and swap space use.
 198         */
 199        points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
 200                atomic_long_read(&p->mm->nr_ptes) + mm_nr_pmds(p->mm);
 201        task_unlock(p);
 202
 203        /*
 204         * Root processes get 3% bonus, just like the __vm_enough_memory()
 205         * implementation used by LSMs.
 206         */
 207        if (has_capability_noaudit(p, CAP_SYS_ADMIN))
 208                points -= (points * 3) / 100;
 209
 210        /* Normalize to oom_score_adj units */
 211        adj *= totalpages / 1000;
 212        points += adj;
 213
 214        /*
 215         * Never return 0 for an eligible task regardless of the root bonus and
 216         * oom_score_adj (oom_score_adj can't be OOM_SCORE_ADJ_MIN here).
 217         */
 218        return points > 0 ? points : 1;
 219}
 220
 221enum oom_constraint {
 222        CONSTRAINT_NONE,
 223        CONSTRAINT_CPUSET,
 224        CONSTRAINT_MEMORY_POLICY,
 225        CONSTRAINT_MEMCG,
 226};
 227
 228/*
 229 * Determine the type of allocation constraint.
 230 */
 231static enum oom_constraint constrained_alloc(struct oom_control *oc)
 232{
 233        struct zone *zone;
 234        struct zoneref *z;
 235        enum zone_type high_zoneidx = gfp_zone(oc->gfp_mask);
 236        bool cpuset_limited = false;
 237        int nid;
 238
 239        if (is_memcg_oom(oc)) {
 240                oc->totalpages = mem_cgroup_get_limit(oc->memcg) ?: 1;
 241                return CONSTRAINT_MEMCG;
 242        }
 243
 244        /* Default to all available memory */
 245        oc->totalpages = totalram_pages + total_swap_pages;
 246
 247        if (!IS_ENABLED(CONFIG_NUMA))
 248                return CONSTRAINT_NONE;
 249
 250        if (!oc->zonelist)
 251                return CONSTRAINT_NONE;
 252        /*
 253         * Reach here only when __GFP_NOFAIL is used. So, we should avoid
 254         * to kill current.We have to random task kill in this case.
 255         * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
 256         */
 257        if (oc->gfp_mask & __GFP_THISNODE)
 258                return CONSTRAINT_NONE;
 259
 260        /*
 261         * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
 262         * the page allocator means a mempolicy is in effect.  Cpuset policy
 263         * is enforced in get_page_from_freelist().
 264         */
 265        if (oc->nodemask &&
 266            !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
 267                oc->totalpages = total_swap_pages;
 268                for_each_node_mask(nid, *oc->nodemask)
 269                        oc->totalpages += node_spanned_pages(nid);
 270                return CONSTRAINT_MEMORY_POLICY;
 271        }
 272
 273        /* Check this allocation failure is caused by cpuset's wall function */
 274        for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
 275                        high_zoneidx, oc->nodemask)
 276                if (!cpuset_zone_allowed(zone, oc->gfp_mask))
 277                        cpuset_limited = true;
 278
 279        if (cpuset_limited) {
 280                oc->totalpages = total_swap_pages;
 281                for_each_node_mask(nid, cpuset_current_mems_allowed)
 282                        oc->totalpages += node_spanned_pages(nid);
 283                return CONSTRAINT_CPUSET;
 284        }
 285        return CONSTRAINT_NONE;
 286}
 287
 288static int oom_evaluate_task(struct task_struct *task, void *arg)
 289{
 290        struct oom_control *oc = arg;
 291        unsigned long points;
 292
 293        if (oom_unkillable_task(task, NULL, oc->nodemask))
 294                goto next;
 295
 296        /*
 297         * This task already has access to memory reserves and is being killed.
 298         * Don't allow any other task to have access to the reserves unless
 299         * the task has MMF_OOM_SKIP because chances that it would release
 300         * any memory is quite low.
 301         */
 302        if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) {
 303                if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags))
 304                        goto next;
 305                goto abort;
 306        }
 307
 308        /*
 309         * If task is allocating a lot of memory and has been marked to be
 310         * killed first if it triggers an oom, then select it.
 311         */
 312        if (oom_task_origin(task)) {
 313                points = ULONG_MAX;
 314                goto select;
 315        }
 316
 317        points = oom_badness(task, NULL, oc->nodemask, oc->totalpages);
 318        if (!points || points < oc->chosen_points)
 319                goto next;
 320
 321        /* Prefer thread group leaders for display purposes */
 322        if (points == oc->chosen_points && thread_group_leader(oc->chosen))
 323                goto next;
 324select:
 325        if (oc->chosen)
 326                put_task_struct(oc->chosen);
 327        get_task_struct(task);
 328        oc->chosen = task;
 329        oc->chosen_points = points;
 330next:
 331        return 0;
 332abort:
 333        if (oc->chosen)
 334                put_task_struct(oc->chosen);
 335        oc->chosen = (void *)-1UL;
 336        return 1;
 337}
 338
 339/*
 340 * Simple selection loop. We choose the process with the highest number of
 341 * 'points'. In case scan was aborted, oc->chosen is set to -1.
 342 */
 343static void select_bad_process(struct oom_control *oc)
 344{
 345        if (is_memcg_oom(oc))
 346                mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc);
 347        else {
 348                struct task_struct *p;
 349
 350                rcu_read_lock();
 351                for_each_process(p)
 352                        if (oom_evaluate_task(p, oc))
 353                                break;
 354                rcu_read_unlock();
 355        }
 356
 357        oc->chosen_points = oc->chosen_points * 1000 / oc->totalpages;
 358}
 359
 360/**
 361 * dump_tasks - dump current memory state of all system tasks
 362 * @memcg: current's memory controller, if constrained
 363 * @nodemask: nodemask passed to page allocator for mempolicy ooms
 364 *
 365 * Dumps the current memory state of all eligible tasks.  Tasks not in the same
 366 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
 367 * are not shown.
 368 * State information includes task's pid, uid, tgid, vm size, rss, nr_ptes,
 369 * swapents, oom_score_adj value, and name.
 370 */
 371static void dump_tasks(struct mem_cgroup *memcg, const nodemask_t *nodemask)
 372{
 373        struct task_struct *p;
 374        struct task_struct *task;
 375
 376        pr_info("[ pid ]   uid  tgid total_vm      rss nr_ptes nr_pmds swapents oom_score_adj name\n");
 377        rcu_read_lock();
 378        for_each_process(p) {
 379                if (oom_unkillable_task(p, memcg, nodemask))
 380                        continue;
 381
 382                task = find_lock_task_mm(p);
 383                if (!task) {
 384                        /*
 385                         * This is a kthread or all of p's threads have already
 386                         * detached their mm's.  There's no need to report
 387                         * them; they can't be oom killed anyway.
 388                         */
 389                        continue;
 390                }
 391
 392                pr_info("[%5d] %5d %5d %8lu %8lu %7ld %7ld %8lu         %5hd %s\n",
 393                        task->pid, from_kuid(&init_user_ns, task_uid(task)),
 394                        task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
 395                        atomic_long_read(&task->mm->nr_ptes),
 396                        mm_nr_pmds(task->mm),
 397                        get_mm_counter(task->mm, MM_SWAPENTS),
 398                        task->signal->oom_score_adj, task->comm);
 399                task_unlock(task);
 400        }
 401        rcu_read_unlock();
 402}
 403
 404static void dump_header(struct oom_control *oc, struct task_struct *p)
 405{
 406        nodemask_t *nm = (oc->nodemask) ? oc->nodemask : &cpuset_current_mems_allowed;
 407
 408        pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), nodemask=%*pbl, order=%d, oom_score_adj=%hd\n",
 409                current->comm, oc->gfp_mask, &oc->gfp_mask,
 410                nodemask_pr_args(nm), oc->order,
 411                current->signal->oom_score_adj);
 412        if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order)
 413                pr_warn("COMPACTION is disabled!!!\n");
 414
 415        cpuset_print_current_mems_allowed();
 416        dump_stack();
 417        if (oc->memcg)
 418                mem_cgroup_print_oom_info(oc->memcg, p);
 419        else
 420                show_mem(SHOW_MEM_FILTER_NODES);
 421        if (sysctl_oom_dump_tasks)
 422                dump_tasks(oc->memcg, oc->nodemask);
 423}
 424
 425/*
 426 * Number of OOM victims in flight
 427 */
 428static atomic_t oom_victims = ATOMIC_INIT(0);
 429static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
 430
 431static bool oom_killer_disabled __read_mostly;
 432
 433#define K(x) ((x) << (PAGE_SHIFT-10))
 434
 435/*
 436 * task->mm can be NULL if the task is the exited group leader.  So to
 437 * determine whether the task is using a particular mm, we examine all the
 438 * task's threads: if one of those is using this mm then this task was also
 439 * using it.
 440 */
 441bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
 442{
 443        struct task_struct *t;
 444
 445        for_each_thread(p, t) {
 446                struct mm_struct *t_mm = READ_ONCE(t->mm);
 447                if (t_mm)
 448                        return t_mm == mm;
 449        }
 450        return false;
 451}
 452
 453
 454#ifdef CONFIG_MMU
 455/*
 456 * OOM Reaper kernel thread which tries to reap the memory used by the OOM
 457 * victim (if that is possible) to help the OOM killer to move on.
 458 */
 459static struct task_struct *oom_reaper_th;
 460static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
 461static struct task_struct *oom_reaper_list;
 462static DEFINE_SPINLOCK(oom_reaper_lock);
 463
 464static bool __oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm)
 465{
 466        struct mmu_gather tlb;
 467        struct vm_area_struct *vma;
 468        struct zap_details details = {.check_swap_entries = true,
 469                                      .ignore_dirty = true};
 470        bool ret = true;
 471
 472        /*
 473         * We have to make sure to not race with the victim exit path
 474         * and cause premature new oom victim selection:
 475         * __oom_reap_task_mm           exit_mm
 476         *   mmget_not_zero
 477         *                                mmput
 478         *                                  atomic_dec_and_test
 479         *                                exit_oom_victim
 480         *                              [...]
 481         *                              out_of_memory
 482         *                                select_bad_process
 483         *                                  # no TIF_MEMDIE task selects new victim
 484         *  unmap_page_range # frees some memory
 485         */
 486        mutex_lock(&oom_lock);
 487
 488        if (!down_read_trylock(&mm->mmap_sem)) {
 489                ret = false;
 490                goto unlock_oom;
 491        }
 492
 493        /*
 494         * increase mm_users only after we know we will reap something so
 495         * that the mmput_async is called only when we have reaped something
 496         * and delayed __mmput doesn't matter that much
 497         */
 498        if (!mmget_not_zero(mm)) {
 499                up_read(&mm->mmap_sem);
 500                goto unlock_oom;
 501        }
 502
 503        /*
 504         * Tell all users of get_user/copy_from_user etc... that the content
 505         * is no longer stable. No barriers really needed because unmapping
 506         * should imply barriers already and the reader would hit a page fault
 507         * if it stumbled over a reaped memory.
 508         */
 509        set_bit(MMF_UNSTABLE, &mm->flags);
 510
 511        tlb_gather_mmu(&tlb, mm, 0, -1);
 512        for (vma = mm->mmap ; vma; vma = vma->vm_next) {
 513                if (is_vm_hugetlb_page(vma))
 514                        continue;
 515
 516                /*
 517                 * mlocked VMAs require explicit munlocking before unmap.
 518                 * Let's keep it simple here and skip such VMAs.
 519                 */
 520                if (vma->vm_flags & VM_LOCKED)
 521                        continue;
 522
 523                /*
 524                 * Only anonymous pages have a good chance to be dropped
 525                 * without additional steps which we cannot afford as we
 526                 * are OOM already.
 527                 *
 528                 * We do not even care about fs backed pages because all
 529                 * which are reclaimable have already been reclaimed and
 530                 * we do not want to block exit_mmap by keeping mm ref
 531                 * count elevated without a good reason.
 532                 */
 533                if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED))
 534                        unmap_page_range(&tlb, vma, vma->vm_start, vma->vm_end,
 535                                         &details);
 536        }
 537        tlb_finish_mmu(&tlb, 0, -1);
 538        pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
 539                        task_pid_nr(tsk), tsk->comm,
 540                        K(get_mm_counter(mm, MM_ANONPAGES)),
 541                        K(get_mm_counter(mm, MM_FILEPAGES)),
 542                        K(get_mm_counter(mm, MM_SHMEMPAGES)));
 543        up_read(&mm->mmap_sem);
 544
 545        /*
 546         * Drop our reference but make sure the mmput slow path is called from a
 547         * different context because we shouldn't risk we get stuck there and
 548         * put the oom_reaper out of the way.
 549         */
 550        mmput_async(mm);
 551unlock_oom:
 552        mutex_unlock(&oom_lock);
 553        return ret;
 554}
 555
 556#define MAX_OOM_REAP_RETRIES 10
 557static void oom_reap_task(struct task_struct *tsk)
 558{
 559        int attempts = 0;
 560        struct mm_struct *mm = tsk->signal->oom_mm;
 561
 562        /* Retry the down_read_trylock(mmap_sem) a few times */
 563        while (attempts++ < MAX_OOM_REAP_RETRIES && !__oom_reap_task_mm(tsk, mm))
 564                schedule_timeout_idle(HZ/10);
 565
 566        if (attempts <= MAX_OOM_REAP_RETRIES)
 567                goto done;
 568
 569
 570        pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
 571                task_pid_nr(tsk), tsk->comm);
 572        debug_show_all_locks();
 573
 574done:
 575        tsk->oom_reaper_list = NULL;
 576
 577        /*
 578         * Hide this mm from OOM killer because it has been either reaped or
 579         * somebody can't call up_write(mmap_sem).
 580         */
 581        set_bit(MMF_OOM_SKIP, &mm->flags);
 582
 583        /* Drop a reference taken by wake_oom_reaper */
 584        put_task_struct(tsk);
 585}
 586
 587static int oom_reaper(void *unused)
 588{
 589        while (true) {
 590                struct task_struct *tsk = NULL;
 591
 592                wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL);
 593                spin_lock(&oom_reaper_lock);
 594                if (oom_reaper_list != NULL) {
 595                        tsk = oom_reaper_list;
 596                        oom_reaper_list = tsk->oom_reaper_list;
 597                }
 598                spin_unlock(&oom_reaper_lock);
 599
 600                if (tsk)
 601                        oom_reap_task(tsk);
 602        }
 603
 604        return 0;
 605}
 606
 607static void wake_oom_reaper(struct task_struct *tsk)
 608{
 609        if (!oom_reaper_th)
 610                return;
 611
 612        /* tsk is already queued? */
 613        if (tsk == oom_reaper_list || tsk->oom_reaper_list)
 614                return;
 615
 616        get_task_struct(tsk);
 617
 618        spin_lock(&oom_reaper_lock);
 619        tsk->oom_reaper_list = oom_reaper_list;
 620        oom_reaper_list = tsk;
 621        spin_unlock(&oom_reaper_lock);
 622        wake_up(&oom_reaper_wait);
 623}
 624
 625static int __init oom_init(void)
 626{
 627        oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper");
 628        if (IS_ERR(oom_reaper_th)) {
 629                pr_err("Unable to start OOM reaper %ld. Continuing regardless\n",
 630                                PTR_ERR(oom_reaper_th));
 631                oom_reaper_th = NULL;
 632        }
 633        return 0;
 634}
 635subsys_initcall(oom_init)
 636#else
 637static inline void wake_oom_reaper(struct task_struct *tsk)
 638{
 639}
 640#endif /* CONFIG_MMU */
 641
 642/**
 643 * mark_oom_victim - mark the given task as OOM victim
 644 * @tsk: task to mark
 645 *
 646 * Has to be called with oom_lock held and never after
 647 * oom has been disabled already.
 648 *
 649 * tsk->mm has to be non NULL and caller has to guarantee it is stable (either
 650 * under task_lock or operate on the current).
 651 */
 652static void mark_oom_victim(struct task_struct *tsk)
 653{
 654        struct mm_struct *mm = tsk->mm;
 655
 656        WARN_ON(oom_killer_disabled);
 657        /* OOM killer might race with memcg OOM */
 658        if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
 659                return;
 660
 661        /* oom_mm is bound to the signal struct life time. */
 662        if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm))
 663                atomic_inc(&tsk->signal->oom_mm->mm_count);
 664
 665        /*
 666         * Make sure that the task is woken up from uninterruptible sleep
 667         * if it is frozen because OOM killer wouldn't be able to free
 668         * any memory and livelock. freezing_slow_path will tell the freezer
 669         * that TIF_MEMDIE tasks should be ignored.
 670         */
 671        __thaw_task(tsk);
 672        atomic_inc(&oom_victims);
 673}
 674
 675/**
 676 * exit_oom_victim - note the exit of an OOM victim
 677 */
 678void exit_oom_victim(void)
 679{
 680        clear_thread_flag(TIF_MEMDIE);
 681
 682        if (!atomic_dec_return(&oom_victims))
 683                wake_up_all(&oom_victims_wait);
 684}
 685
 686/**
 687 * oom_killer_enable - enable OOM killer
 688 */
 689void oom_killer_enable(void)
 690{
 691        oom_killer_disabled = false;
 692}
 693
 694/**
 695 * oom_killer_disable - disable OOM killer
 696 * @timeout: maximum timeout to wait for oom victims in jiffies
 697 *
 698 * Forces all page allocations to fail rather than trigger OOM killer.
 699 * Will block and wait until all OOM victims are killed or the given
 700 * timeout expires.
 701 *
 702 * The function cannot be called when there are runnable user tasks because
 703 * the userspace would see unexpected allocation failures as a result. Any
 704 * new usage of this function should be consulted with MM people.
 705 *
 706 * Returns true if successful and false if the OOM killer cannot be
 707 * disabled.
 708 */
 709bool oom_killer_disable(signed long timeout)
 710{
 711        signed long ret;
 712
 713        /*
 714         * Make sure to not race with an ongoing OOM killer. Check that the
 715         * current is not killed (possibly due to sharing the victim's memory).
 716         */
 717        if (mutex_lock_killable(&oom_lock))
 718                return false;
 719        oom_killer_disabled = true;
 720        mutex_unlock(&oom_lock);
 721
 722        ret = wait_event_interruptible_timeout(oom_victims_wait,
 723                        !atomic_read(&oom_victims), timeout);
 724        if (ret <= 0) {
 725                oom_killer_enable();
 726                return false;
 727        }
 728
 729        return true;
 730}
 731
 732static inline bool __task_will_free_mem(struct task_struct *task)
 733{
 734        struct signal_struct *sig = task->signal;
 735
 736        /*
 737         * A coredumping process may sleep for an extended period in exit_mm(),
 738         * so the oom killer cannot assume that the process will promptly exit
 739         * and release memory.
 740         */
 741        if (sig->flags & SIGNAL_GROUP_COREDUMP)
 742                return false;
 743
 744        if (sig->flags & SIGNAL_GROUP_EXIT)
 745                return true;
 746
 747        if (thread_group_empty(task) && (task->flags & PF_EXITING))
 748                return true;
 749
 750        return false;
 751}
 752
 753/*
 754 * Checks whether the given task is dying or exiting and likely to
 755 * release its address space. This means that all threads and processes
 756 * sharing the same mm have to be killed or exiting.
 757 * Caller has to make sure that task->mm is stable (hold task_lock or
 758 * it operates on the current).
 759 */
 760static bool task_will_free_mem(struct task_struct *task)
 761{
 762        struct mm_struct *mm = task->mm;
 763        struct task_struct *p;
 764        bool ret = true;
 765
 766        /*
 767         * Skip tasks without mm because it might have passed its exit_mm and
 768         * exit_oom_victim. oom_reaper could have rescued that but do not rely
 769         * on that for now. We can consider find_lock_task_mm in future.
 770         */
 771        if (!mm)
 772                return false;
 773
 774        if (!__task_will_free_mem(task))
 775                return false;
 776
 777        /*
 778         * This task has already been drained by the oom reaper so there are
 779         * only small chances it will free some more
 780         */
 781        if (test_bit(MMF_OOM_SKIP, &mm->flags))
 782                return false;
 783
 784        if (atomic_read(&mm->mm_users) <= 1)
 785                return true;
 786
 787        /*
 788         * Make sure that all tasks which share the mm with the given tasks
 789         * are dying as well to make sure that a) nobody pins its mm and
 790         * b) the task is also reapable by the oom reaper.
 791         */
 792        rcu_read_lock();
 793        for_each_process(p) {
 794                if (!process_shares_mm(p, mm))
 795                        continue;
 796                if (same_thread_group(task, p))
 797                        continue;
 798                ret = __task_will_free_mem(p);
 799                if (!ret)
 800                        break;
 801        }
 802        rcu_read_unlock();
 803
 804        return ret;
 805}
 806
 807static void oom_kill_process(struct oom_control *oc, const char *message)
 808{
 809        struct task_struct *p = oc->chosen;
 810        unsigned int points = oc->chosen_points;
 811        struct task_struct *victim = p;
 812        struct task_struct *child;
 813        struct task_struct *t;
 814        struct mm_struct *mm;
 815        unsigned int victim_points = 0;
 816        static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
 817                                              DEFAULT_RATELIMIT_BURST);
 818        bool can_oom_reap = true;
 819
 820        /*
 821         * If the task is already exiting, don't alarm the sysadmin or kill
 822         * its children or threads, just set TIF_MEMDIE so it can die quickly
 823         */
 824        task_lock(p);
 825        if (task_will_free_mem(p)) {
 826                mark_oom_victim(p);
 827                wake_oom_reaper(p);
 828                task_unlock(p);
 829                put_task_struct(p);
 830                return;
 831        }
 832        task_unlock(p);
 833
 834        if (__ratelimit(&oom_rs))
 835                dump_header(oc, p);
 836
 837        pr_err("%s: Kill process %d (%s) score %u or sacrifice child\n",
 838                message, task_pid_nr(p), p->comm, points);
 839
 840        /*
 841         * If any of p's children has a different mm and is eligible for kill,
 842         * the one with the highest oom_badness() score is sacrificed for its
 843         * parent.  This attempts to lose the minimal amount of work done while
 844         * still freeing memory.
 845         */
 846        read_lock(&tasklist_lock);
 847        for_each_thread(p, t) {
 848                list_for_each_entry(child, &t->children, sibling) {
 849                        unsigned int child_points;
 850
 851                        if (process_shares_mm(child, p->mm))
 852                                continue;
 853                        /*
 854                         * oom_badness() returns 0 if the thread is unkillable
 855                         */
 856                        child_points = oom_badness(child,
 857                                oc->memcg, oc->nodemask, oc->totalpages);
 858                        if (child_points > victim_points) {
 859                                put_task_struct(victim);
 860                                victim = child;
 861                                victim_points = child_points;
 862                                get_task_struct(victim);
 863                        }
 864                }
 865        }
 866        read_unlock(&tasklist_lock);
 867
 868        p = find_lock_task_mm(victim);
 869        if (!p) {
 870                put_task_struct(victim);
 871                return;
 872        } else if (victim != p) {
 873                get_task_struct(p);
 874                put_task_struct(victim);
 875                victim = p;
 876        }
 877
 878        /* Get a reference to safely compare mm after task_unlock(victim) */
 879        mm = victim->mm;
 880        atomic_inc(&mm->mm_count);
 881        /*
 882         * We should send SIGKILL before setting TIF_MEMDIE in order to prevent
 883         * the OOM victim from depleting the memory reserves from the user
 884         * space under its control.
 885         */
 886        do_send_sig_info(SIGKILL, SEND_SIG_FORCED, victim, true);
 887        mark_oom_victim(victim);
 888        pr_err("Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
 889                task_pid_nr(victim), victim->comm, K(victim->mm->total_vm),
 890                K(get_mm_counter(victim->mm, MM_ANONPAGES)),
 891                K(get_mm_counter(victim->mm, MM_FILEPAGES)),
 892                K(get_mm_counter(victim->mm, MM_SHMEMPAGES)));
 893        task_unlock(victim);
 894
 895        /*
 896         * Kill all user processes sharing victim->mm in other thread groups, if
 897         * any.  They don't get access to memory reserves, though, to avoid
 898         * depletion of all memory.  This prevents mm->mmap_sem livelock when an
 899         * oom killed thread cannot exit because it requires the semaphore and
 900         * its contended by another thread trying to allocate memory itself.
 901         * That thread will now get access to memory reserves since it has a
 902         * pending fatal signal.
 903         */
 904        rcu_read_lock();
 905        for_each_process(p) {
 906                if (!process_shares_mm(p, mm))
 907                        continue;
 908                if (same_thread_group(p, victim))
 909                        continue;
 910                if (is_global_init(p)) {
 911                        can_oom_reap = false;
 912                        set_bit(MMF_OOM_SKIP, &mm->flags);
 913                        pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n",
 914                                        task_pid_nr(victim), victim->comm,
 915                                        task_pid_nr(p), p->comm);
 916                        continue;
 917                }
 918                /*
 919                 * No use_mm() user needs to read from the userspace so we are
 920                 * ok to reap it.
 921                 */
 922                if (unlikely(p->flags & PF_KTHREAD))
 923                        continue;
 924                do_send_sig_info(SIGKILL, SEND_SIG_FORCED, p, true);
 925        }
 926        rcu_read_unlock();
 927
 928        if (can_oom_reap)
 929                wake_oom_reaper(victim);
 930
 931        mmdrop(mm);
 932        put_task_struct(victim);
 933}
 934#undef K
 935
 936/*
 937 * Determines whether the kernel must panic because of the panic_on_oom sysctl.
 938 */
 939static void check_panic_on_oom(struct oom_control *oc,
 940                               enum oom_constraint constraint)
 941{
 942        if (likely(!sysctl_panic_on_oom))
 943                return;
 944        if (sysctl_panic_on_oom != 2) {
 945                /*
 946                 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
 947                 * does not panic for cpuset, mempolicy, or memcg allocation
 948                 * failures.
 949                 */
 950                if (constraint != CONSTRAINT_NONE)
 951                        return;
 952        }
 953        /* Do not panic for oom kills triggered by sysrq */
 954        if (is_sysrq_oom(oc))
 955                return;
 956        dump_header(oc, NULL);
 957        panic("Out of memory: %s panic_on_oom is enabled\n",
 958                sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
 959}
 960
 961static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
 962
 963int register_oom_notifier(struct notifier_block *nb)
 964{
 965        return blocking_notifier_chain_register(&oom_notify_list, nb);
 966}
 967EXPORT_SYMBOL_GPL(register_oom_notifier);
 968
 969int unregister_oom_notifier(struct notifier_block *nb)
 970{
 971        return blocking_notifier_chain_unregister(&oom_notify_list, nb);
 972}
 973EXPORT_SYMBOL_GPL(unregister_oom_notifier);
 974
 975/**
 976 * out_of_memory - kill the "best" process when we run out of memory
 977 * @oc: pointer to struct oom_control
 978 *
 979 * If we run out of memory, we have the choice between either
 980 * killing a random task (bad), letting the system crash (worse)
 981 * OR try to be smart about which process to kill. Note that we
 982 * don't have to be perfect here, we just have to be good.
 983 */
 984bool out_of_memory(struct oom_control *oc)
 985{
 986        unsigned long freed = 0;
 987        enum oom_constraint constraint = CONSTRAINT_NONE;
 988
 989        if (oom_killer_disabled)
 990                return false;
 991
 992        if (!is_memcg_oom(oc)) {
 993                blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
 994                if (freed > 0)
 995                        /* Got some memory back in the last second. */
 996                        return true;
 997        }
 998
 999        /*
1000         * If current has a pending SIGKILL or is exiting, then automatically
1001         * select it.  The goal is to allow it to allocate so that it may
1002         * quickly exit and free its memory.
1003         */
1004        if (task_will_free_mem(current)) {
1005                mark_oom_victim(current);
1006                wake_oom_reaper(current);
1007                return true;
1008        }
1009
1010        /*
1011         * The OOM killer does not compensate for IO-less reclaim.
1012         * pagefault_out_of_memory lost its gfp context so we have to
1013         * make sure exclude 0 mask - all other users should have at least
1014         * ___GFP_DIRECT_RECLAIM to get here.
1015         */
1016        if (oc->gfp_mask && !(oc->gfp_mask & (__GFP_FS|__GFP_NOFAIL)))
1017                return true;
1018
1019        /*
1020         * Check if there were limitations on the allocation (only relevant for
1021         * NUMA and memcg) that may require different handling.
1022         */
1023        constraint = constrained_alloc(oc);
1024        if (constraint != CONSTRAINT_MEMORY_POLICY)
1025                oc->nodemask = NULL;
1026        check_panic_on_oom(oc, constraint);
1027
1028        if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task &&
1029            current->mm && !oom_unkillable_task(current, NULL, oc->nodemask) &&
1030            current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
1031                get_task_struct(current);
1032                oc->chosen = current;
1033                oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)");
1034                return true;
1035        }
1036
1037        select_bad_process(oc);
1038        /* Found nothing?!?! Either we hang forever, or we panic. */
1039        if (!oc->chosen && !is_sysrq_oom(oc) && !is_memcg_oom(oc)) {
1040                dump_header(oc, NULL);
1041                panic("Out of memory and no killable processes...\n");
1042        }
1043        if (oc->chosen && oc->chosen != (void *)-1UL) {
1044                oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" :
1045                                 "Memory cgroup out of memory");
1046                /*
1047                 * Give the killed process a good chance to exit before trying
1048                 * to allocate memory again.
1049                 */
1050                schedule_timeout_killable(1);
1051        }
1052        return !!oc->chosen;
1053}
1054
1055/*
1056 * The pagefault handler calls here because it is out of memory, so kill a
1057 * memory-hogging task. If oom_lock is held by somebody else, a parallel oom
1058 * killing is already in progress so do nothing.
1059 */
1060void pagefault_out_of_memory(void)
1061{
1062        struct oom_control oc = {
1063                .zonelist = NULL,
1064                .nodemask = NULL,
1065                .memcg = NULL,
1066                .gfp_mask = 0,
1067                .order = 0,
1068        };
1069
1070        if (mem_cgroup_oom_synchronize(true))
1071                return;
1072
1073        if (!mutex_trylock(&oom_lock))
1074                return;
1075        out_of_memory(&oc);
1076        mutex_unlock(&oom_lock);
1077}
1078