linux/mm/util.c
<<
>>
Prefs
   1#include <linux/mm.h>
   2#include <linux/slab.h>
   3#include <linux/string.h>
   4#include <linux/compiler.h>
   5#include <linux/export.h>
   6#include <linux/err.h>
   7#include <linux/sched.h>
   8#include <linux/security.h>
   9#include <linux/swap.h>
  10#include <linux/swapops.h>
  11#include <linux/mman.h>
  12#include <linux/hugetlb.h>
  13#include <linux/vmalloc.h>
  14
  15#include <asm/sections.h>
  16#include <asm/uaccess.h>
  17
  18#include "internal.h"
  19
  20static inline int is_kernel_rodata(unsigned long addr)
  21{
  22        return addr >= (unsigned long)__start_rodata &&
  23                addr < (unsigned long)__end_rodata;
  24}
  25
  26/**
  27 * kfree_const - conditionally free memory
  28 * @x: pointer to the memory
  29 *
  30 * Function calls kfree only if @x is not in .rodata section.
  31 */
  32void kfree_const(const void *x)
  33{
  34        if (!is_kernel_rodata((unsigned long)x))
  35                kfree(x);
  36}
  37EXPORT_SYMBOL(kfree_const);
  38
  39/**
  40 * kstrdup - allocate space for and copy an existing string
  41 * @s: the string to duplicate
  42 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
  43 */
  44char *kstrdup(const char *s, gfp_t gfp)
  45{
  46        size_t len;
  47        char *buf;
  48
  49        if (!s)
  50                return NULL;
  51
  52        len = strlen(s) + 1;
  53        buf = kmalloc_track_caller(len, gfp);
  54        if (buf)
  55                memcpy(buf, s, len);
  56        return buf;
  57}
  58EXPORT_SYMBOL(kstrdup);
  59
  60/**
  61 * kstrdup_const - conditionally duplicate an existing const string
  62 * @s: the string to duplicate
  63 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
  64 *
  65 * Function returns source string if it is in .rodata section otherwise it
  66 * fallbacks to kstrdup.
  67 * Strings allocated by kstrdup_const should be freed by kfree_const.
  68 */
  69const char *kstrdup_const(const char *s, gfp_t gfp)
  70{
  71        if (is_kernel_rodata((unsigned long)s))
  72                return s;
  73
  74        return kstrdup(s, gfp);
  75}
  76EXPORT_SYMBOL(kstrdup_const);
  77
  78/**
  79 * kstrndup - allocate space for and copy an existing string
  80 * @s: the string to duplicate
  81 * @max: read at most @max chars from @s
  82 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
  83 */
  84char *kstrndup(const char *s, size_t max, gfp_t gfp)
  85{
  86        size_t len;
  87        char *buf;
  88
  89        if (!s)
  90                return NULL;
  91
  92        len = strnlen(s, max);
  93        buf = kmalloc_track_caller(len+1, gfp);
  94        if (buf) {
  95                memcpy(buf, s, len);
  96                buf[len] = '\0';
  97        }
  98        return buf;
  99}
 100EXPORT_SYMBOL(kstrndup);
 101
 102/**
 103 * kmemdup - duplicate region of memory
 104 *
 105 * @src: memory region to duplicate
 106 * @len: memory region length
 107 * @gfp: GFP mask to use
 108 */
 109void *kmemdup(const void *src, size_t len, gfp_t gfp)
 110{
 111        void *p;
 112
 113        p = kmalloc_track_caller(len, gfp);
 114        if (p)
 115                memcpy(p, src, len);
 116        return p;
 117}
 118EXPORT_SYMBOL(kmemdup);
 119
 120/**
 121 * memdup_user - duplicate memory region from user space
 122 *
 123 * @src: source address in user space
 124 * @len: number of bytes to copy
 125 *
 126 * Returns an ERR_PTR() on failure.
 127 */
 128void *memdup_user(const void __user *src, size_t len)
 129{
 130        void *p;
 131
 132        /*
 133         * Always use GFP_KERNEL, since copy_from_user() can sleep and
 134         * cause pagefault, which makes it pointless to use GFP_NOFS
 135         * or GFP_ATOMIC.
 136         */
 137        p = kmalloc_track_caller(len, GFP_KERNEL);
 138        if (!p)
 139                return ERR_PTR(-ENOMEM);
 140
 141        if (copy_from_user(p, src, len)) {
 142                kfree(p);
 143                return ERR_PTR(-EFAULT);
 144        }
 145
 146        return p;
 147}
 148EXPORT_SYMBOL(memdup_user);
 149
 150/*
 151 * strndup_user - duplicate an existing string from user space
 152 * @s: The string to duplicate
 153 * @n: Maximum number of bytes to copy, including the trailing NUL.
 154 */
 155char *strndup_user(const char __user *s, long n)
 156{
 157        char *p;
 158        long length;
 159
 160        length = strnlen_user(s, n);
 161
 162        if (!length)
 163                return ERR_PTR(-EFAULT);
 164
 165        if (length > n)
 166                return ERR_PTR(-EINVAL);
 167
 168        p = memdup_user(s, length);
 169
 170        if (IS_ERR(p))
 171                return p;
 172
 173        p[length - 1] = '\0';
 174
 175        return p;
 176}
 177EXPORT_SYMBOL(strndup_user);
 178
 179/**
 180 * memdup_user_nul - duplicate memory region from user space and NUL-terminate
 181 *
 182 * @src: source address in user space
 183 * @len: number of bytes to copy
 184 *
 185 * Returns an ERR_PTR() on failure.
 186 */
 187void *memdup_user_nul(const void __user *src, size_t len)
 188{
 189        char *p;
 190
 191        /*
 192         * Always use GFP_KERNEL, since copy_from_user() can sleep and
 193         * cause pagefault, which makes it pointless to use GFP_NOFS
 194         * or GFP_ATOMIC.
 195         */
 196        p = kmalloc_track_caller(len + 1, GFP_KERNEL);
 197        if (!p)
 198                return ERR_PTR(-ENOMEM);
 199
 200        if (copy_from_user(p, src, len)) {
 201                kfree(p);
 202                return ERR_PTR(-EFAULT);
 203        }
 204        p[len] = '\0';
 205
 206        return p;
 207}
 208EXPORT_SYMBOL(memdup_user_nul);
 209
 210void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
 211                struct vm_area_struct *prev, struct rb_node *rb_parent)
 212{
 213        struct vm_area_struct *next;
 214
 215        vma->vm_prev = prev;
 216        if (prev) {
 217                next = prev->vm_next;
 218                prev->vm_next = vma;
 219        } else {
 220                mm->mmap = vma;
 221                if (rb_parent)
 222                        next = rb_entry(rb_parent,
 223                                        struct vm_area_struct, vm_rb);
 224                else
 225                        next = NULL;
 226        }
 227        vma->vm_next = next;
 228        if (next)
 229                next->vm_prev = vma;
 230}
 231
 232/* Check if the vma is being used as a stack by this task */
 233int vma_is_stack_for_current(struct vm_area_struct *vma)
 234{
 235        struct task_struct * __maybe_unused t = current;
 236
 237        return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
 238}
 239
 240#if defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
 241void arch_pick_mmap_layout(struct mm_struct *mm)
 242{
 243        mm->mmap_base = TASK_UNMAPPED_BASE;
 244        mm->get_unmapped_area = arch_get_unmapped_area;
 245}
 246#endif
 247
 248/*
 249 * Like get_user_pages_fast() except its IRQ-safe in that it won't fall
 250 * back to the regular GUP.
 251 * If the architecture not support this function, simply return with no
 252 * page pinned
 253 */
 254int __weak __get_user_pages_fast(unsigned long start,
 255                                 int nr_pages, int write, struct page **pages)
 256{
 257        return 0;
 258}
 259EXPORT_SYMBOL_GPL(__get_user_pages_fast);
 260
 261/**
 262 * get_user_pages_fast() - pin user pages in memory
 263 * @start:      starting user address
 264 * @nr_pages:   number of pages from start to pin
 265 * @write:      whether pages will be written to
 266 * @pages:      array that receives pointers to the pages pinned.
 267 *              Should be at least nr_pages long.
 268 *
 269 * Returns number of pages pinned. This may be fewer than the number
 270 * requested. If nr_pages is 0 or negative, returns 0. If no pages
 271 * were pinned, returns -errno.
 272 *
 273 * get_user_pages_fast provides equivalent functionality to get_user_pages,
 274 * operating on current and current->mm, with force=0 and vma=NULL. However
 275 * unlike get_user_pages, it must be called without mmap_sem held.
 276 *
 277 * get_user_pages_fast may take mmap_sem and page table locks, so no
 278 * assumptions can be made about lack of locking. get_user_pages_fast is to be
 279 * implemented in a way that is advantageous (vs get_user_pages()) when the
 280 * user memory area is already faulted in and present in ptes. However if the
 281 * pages have to be faulted in, it may turn out to be slightly slower so
 282 * callers need to carefully consider what to use. On many architectures,
 283 * get_user_pages_fast simply falls back to get_user_pages.
 284 */
 285int __weak get_user_pages_fast(unsigned long start,
 286                                int nr_pages, int write, struct page **pages)
 287{
 288        return get_user_pages_unlocked(start, nr_pages, pages,
 289                                       write ? FOLL_WRITE : 0);
 290}
 291EXPORT_SYMBOL_GPL(get_user_pages_fast);
 292
 293unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
 294        unsigned long len, unsigned long prot,
 295        unsigned long flag, unsigned long pgoff)
 296{
 297        unsigned long ret;
 298        struct mm_struct *mm = current->mm;
 299        unsigned long populate;
 300
 301        ret = security_mmap_file(file, prot, flag);
 302        if (!ret) {
 303                if (down_write_killable(&mm->mmap_sem))
 304                        return -EINTR;
 305                ret = do_mmap_pgoff(file, addr, len, prot, flag, pgoff,
 306                                    &populate);
 307                up_write(&mm->mmap_sem);
 308                if (populate)
 309                        mm_populate(ret, populate);
 310        }
 311        return ret;
 312}
 313
 314unsigned long vm_mmap(struct file *file, unsigned long addr,
 315        unsigned long len, unsigned long prot,
 316        unsigned long flag, unsigned long offset)
 317{
 318        if (unlikely(offset + PAGE_ALIGN(len) < offset))
 319                return -EINVAL;
 320        if (unlikely(offset_in_page(offset)))
 321                return -EINVAL;
 322
 323        return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
 324}
 325EXPORT_SYMBOL(vm_mmap);
 326
 327void kvfree(const void *addr)
 328{
 329        if (is_vmalloc_addr(addr))
 330                vfree(addr);
 331        else
 332                kfree(addr);
 333}
 334EXPORT_SYMBOL(kvfree);
 335
 336static inline void *__page_rmapping(struct page *page)
 337{
 338        unsigned long mapping;
 339
 340        mapping = (unsigned long)page->mapping;
 341        mapping &= ~PAGE_MAPPING_FLAGS;
 342
 343        return (void *)mapping;
 344}
 345
 346/* Neutral page->mapping pointer to address_space or anon_vma or other */
 347void *page_rmapping(struct page *page)
 348{
 349        page = compound_head(page);
 350        return __page_rmapping(page);
 351}
 352
 353/*
 354 * Return true if this page is mapped into pagetables.
 355 * For compound page it returns true if any subpage of compound page is mapped.
 356 */
 357bool page_mapped(struct page *page)
 358{
 359        int i;
 360
 361        if (likely(!PageCompound(page)))
 362                return atomic_read(&page->_mapcount) >= 0;
 363        page = compound_head(page);
 364        if (atomic_read(compound_mapcount_ptr(page)) >= 0)
 365                return true;
 366        if (PageHuge(page))
 367                return false;
 368        for (i = 0; i < hpage_nr_pages(page); i++) {
 369                if (atomic_read(&page[i]._mapcount) >= 0)
 370                        return true;
 371        }
 372        return false;
 373}
 374EXPORT_SYMBOL(page_mapped);
 375
 376struct anon_vma *page_anon_vma(struct page *page)
 377{
 378        unsigned long mapping;
 379
 380        page = compound_head(page);
 381        mapping = (unsigned long)page->mapping;
 382        if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
 383                return NULL;
 384        return __page_rmapping(page);
 385}
 386
 387struct address_space *page_mapping(struct page *page)
 388{
 389        struct address_space *mapping;
 390
 391        page = compound_head(page);
 392
 393        /* This happens if someone calls flush_dcache_page on slab page */
 394        if (unlikely(PageSlab(page)))
 395                return NULL;
 396
 397        if (unlikely(PageSwapCache(page))) {
 398                swp_entry_t entry;
 399
 400                entry.val = page_private(page);
 401                return swap_address_space(entry);
 402        }
 403
 404        mapping = page->mapping;
 405        if ((unsigned long)mapping & PAGE_MAPPING_ANON)
 406                return NULL;
 407
 408        return (void *)((unsigned long)mapping & ~PAGE_MAPPING_FLAGS);
 409}
 410EXPORT_SYMBOL(page_mapping);
 411
 412/* Slow path of page_mapcount() for compound pages */
 413int __page_mapcount(struct page *page)
 414{
 415        int ret;
 416
 417        ret = atomic_read(&page->_mapcount) + 1;
 418        /*
 419         * For file THP page->_mapcount contains total number of mapping
 420         * of the page: no need to look into compound_mapcount.
 421         */
 422        if (!PageAnon(page) && !PageHuge(page))
 423                return ret;
 424        page = compound_head(page);
 425        ret += atomic_read(compound_mapcount_ptr(page)) + 1;
 426        if (PageDoubleMap(page))
 427                ret--;
 428        return ret;
 429}
 430EXPORT_SYMBOL_GPL(__page_mapcount);
 431
 432int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;
 433int sysctl_overcommit_ratio __read_mostly = 50;
 434unsigned long sysctl_overcommit_kbytes __read_mostly;
 435int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
 436unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
 437unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
 438
 439int overcommit_ratio_handler(struct ctl_table *table, int write,
 440                             void __user *buffer, size_t *lenp,
 441                             loff_t *ppos)
 442{
 443        int ret;
 444
 445        ret = proc_dointvec(table, write, buffer, lenp, ppos);
 446        if (ret == 0 && write)
 447                sysctl_overcommit_kbytes = 0;
 448        return ret;
 449}
 450
 451int overcommit_kbytes_handler(struct ctl_table *table, int write,
 452                             void __user *buffer, size_t *lenp,
 453                             loff_t *ppos)
 454{
 455        int ret;
 456
 457        ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 458        if (ret == 0 && write)
 459                sysctl_overcommit_ratio = 0;
 460        return ret;
 461}
 462
 463/*
 464 * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
 465 */
 466unsigned long vm_commit_limit(void)
 467{
 468        unsigned long allowed;
 469
 470        if (sysctl_overcommit_kbytes)
 471                allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10);
 472        else
 473                allowed = ((totalram_pages - hugetlb_total_pages())
 474                           * sysctl_overcommit_ratio / 100);
 475        allowed += total_swap_pages;
 476
 477        return allowed;
 478}
 479
 480/*
 481 * Make sure vm_committed_as in one cacheline and not cacheline shared with
 482 * other variables. It can be updated by several CPUs frequently.
 483 */
 484struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
 485
 486/*
 487 * The global memory commitment made in the system can be a metric
 488 * that can be used to drive ballooning decisions when Linux is hosted
 489 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
 490 * balancing memory across competing virtual machines that are hosted.
 491 * Several metrics drive this policy engine including the guest reported
 492 * memory commitment.
 493 */
 494unsigned long vm_memory_committed(void)
 495{
 496        return percpu_counter_read_positive(&vm_committed_as);
 497}
 498EXPORT_SYMBOL_GPL(vm_memory_committed);
 499
 500/*
 501 * Check that a process has enough memory to allocate a new virtual
 502 * mapping. 0 means there is enough memory for the allocation to
 503 * succeed and -ENOMEM implies there is not.
 504 *
 505 * We currently support three overcommit policies, which are set via the
 506 * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
 507 *
 508 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
 509 * Additional code 2002 Jul 20 by Robert Love.
 510 *
 511 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
 512 *
 513 * Note this is a helper function intended to be used by LSMs which
 514 * wish to use this logic.
 515 */
 516int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
 517{
 518        long free, allowed, reserve;
 519
 520        VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) <
 521                        -(s64)vm_committed_as_batch * num_online_cpus(),
 522                        "memory commitment underflow");
 523
 524        vm_acct_memory(pages);
 525
 526        /*
 527         * Sometimes we want to use more memory than we have
 528         */
 529        if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
 530                return 0;
 531
 532        if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
 533                free = global_page_state(NR_FREE_PAGES);
 534                free += global_node_page_state(NR_FILE_PAGES);
 535
 536                /*
 537                 * shmem pages shouldn't be counted as free in this
 538                 * case, they can't be purged, only swapped out, and
 539                 * that won't affect the overall amount of available
 540                 * memory in the system.
 541                 */
 542                free -= global_node_page_state(NR_SHMEM);
 543
 544                free += get_nr_swap_pages();
 545
 546                /*
 547                 * Any slabs which are created with the
 548                 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
 549                 * which are reclaimable, under pressure.  The dentry
 550                 * cache and most inode caches should fall into this
 551                 */
 552                free += global_page_state(NR_SLAB_RECLAIMABLE);
 553
 554                /*
 555                 * Leave reserved pages. The pages are not for anonymous pages.
 556                 */
 557                if (free <= totalreserve_pages)
 558                        goto error;
 559                else
 560                        free -= totalreserve_pages;
 561
 562                /*
 563                 * Reserve some for root
 564                 */
 565                if (!cap_sys_admin)
 566                        free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
 567
 568                if (free > pages)
 569                        return 0;
 570
 571                goto error;
 572        }
 573
 574        allowed = vm_commit_limit();
 575        /*
 576         * Reserve some for root
 577         */
 578        if (!cap_sys_admin)
 579                allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
 580
 581        /*
 582         * Don't let a single process grow so big a user can't recover
 583         */
 584        if (mm) {
 585                reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
 586                allowed -= min_t(long, mm->total_vm / 32, reserve);
 587        }
 588
 589        if (percpu_counter_read_positive(&vm_committed_as) < allowed)
 590                return 0;
 591error:
 592        vm_unacct_memory(pages);
 593
 594        return -ENOMEM;
 595}
 596
 597/**
 598 * get_cmdline() - copy the cmdline value to a buffer.
 599 * @task:     the task whose cmdline value to copy.
 600 * @buffer:   the buffer to copy to.
 601 * @buflen:   the length of the buffer. Larger cmdline values are truncated
 602 *            to this length.
 603 * Returns the size of the cmdline field copied. Note that the copy does
 604 * not guarantee an ending NULL byte.
 605 */
 606int get_cmdline(struct task_struct *task, char *buffer, int buflen)
 607{
 608        int res = 0;
 609        unsigned int len;
 610        struct mm_struct *mm = get_task_mm(task);
 611        unsigned long arg_start, arg_end, env_start, env_end;
 612        if (!mm)
 613                goto out;
 614        if (!mm->arg_end)
 615                goto out_mm;    /* Shh! No looking before we're done */
 616
 617        down_read(&mm->mmap_sem);
 618        arg_start = mm->arg_start;
 619        arg_end = mm->arg_end;
 620        env_start = mm->env_start;
 621        env_end = mm->env_end;
 622        up_read(&mm->mmap_sem);
 623
 624        len = arg_end - arg_start;
 625
 626        if (len > buflen)
 627                len = buflen;
 628
 629        res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE);
 630
 631        /*
 632         * If the nul at the end of args has been overwritten, then
 633         * assume application is using setproctitle(3).
 634         */
 635        if (res > 0 && buffer[res-1] != '\0' && len < buflen) {
 636                len = strnlen(buffer, res);
 637                if (len < res) {
 638                        res = len;
 639                } else {
 640                        len = env_end - env_start;
 641                        if (len > buflen - res)
 642                                len = buflen - res;
 643                        res += access_process_vm(task, env_start,
 644                                                 buffer+res, len,
 645                                                 FOLL_FORCE);
 646                        res = strnlen(buffer, res);
 647                }
 648        }
 649out_mm:
 650        mmput(mm);
 651out:
 652        return res;
 653}
 654