linux/arch/alpha/kernel/process.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/arch/alpha/kernel/process.c
   4 *
   5 *  Copyright (C) 1995  Linus Torvalds
   6 */
   7
   8/*
   9 * This file handles the architecture-dependent parts of process handling.
  10 */
  11
  12#include <linux/errno.h>
  13#include <linux/module.h>
  14#include <linux/sched.h>
  15#include <linux/sched/debug.h>
  16#include <linux/sched/task.h>
  17#include <linux/sched/task_stack.h>
  18#include <linux/kernel.h>
  19#include <linux/mm.h>
  20#include <linux/smp.h>
  21#include <linux/stddef.h>
  22#include <linux/unistd.h>
  23#include <linux/ptrace.h>
  24#include <linux/user.h>
  25#include <linux/time.h>
  26#include <linux/major.h>
  27#include <linux/stat.h>
  28#include <linux/vt.h>
  29#include <linux/mman.h>
  30#include <linux/elfcore.h>
  31#include <linux/reboot.h>
  32#include <linux/tty.h>
  33#include <linux/console.h>
  34#include <linux/slab.h>
  35#include <linux/rcupdate.h>
  36
  37#include <asm/reg.h>
  38#include <linux/uaccess.h>
  39#include <asm/io.h>
  40#include <asm/pgtable.h>
  41#include <asm/hwrpb.h>
  42#include <asm/fpu.h>
  43
  44#include "proto.h"
  45#include "pci_impl.h"
  46
  47/*
  48 * Power off function, if any
  49 */
  50void (*pm_power_off)(void) = machine_power_off;
  51EXPORT_SYMBOL(pm_power_off);
  52
  53#ifdef CONFIG_ALPHA_WTINT
  54/*
  55 * Sleep the CPU.
  56 * EV6, LCA45 and QEMU know how to power down, skipping N timer interrupts.
  57 */
  58void arch_cpu_idle(void)
  59{
  60        wtint(0);
  61        local_irq_enable();
  62}
  63
  64void arch_cpu_idle_dead(void)
  65{
  66        wtint(INT_MAX);
  67}
  68#endif /* ALPHA_WTINT */
  69
  70struct halt_info {
  71        int mode;
  72        char *restart_cmd;
  73};
  74
  75static void
  76common_shutdown_1(void *generic_ptr)
  77{
  78        struct halt_info *how = (struct halt_info *)generic_ptr;
  79        struct percpu_struct *cpup;
  80        unsigned long *pflags, flags;
  81        int cpuid = smp_processor_id();
  82
  83        /* No point in taking interrupts anymore. */
  84        local_irq_disable();
  85
  86        cpup = (struct percpu_struct *)
  87                        ((unsigned long)hwrpb + hwrpb->processor_offset
  88                         + hwrpb->processor_size * cpuid);
  89        pflags = &cpup->flags;
  90        flags = *pflags;
  91
  92        /* Clear reason to "default"; clear "bootstrap in progress". */
  93        flags &= ~0x00ff0001UL;
  94
  95#ifdef CONFIG_SMP
  96        /* Secondaries halt here. */
  97        if (cpuid != boot_cpuid) {
  98                flags |= 0x00040000UL; /* "remain halted" */
  99                *pflags = flags;
 100                set_cpu_present(cpuid, false);
 101                set_cpu_possible(cpuid, false);
 102                halt();
 103        }
 104#endif
 105
 106        if (how->mode == LINUX_REBOOT_CMD_RESTART) {
 107                if (!how->restart_cmd) {
 108                        flags |= 0x00020000UL; /* "cold bootstrap" */
 109                } else {
 110                        /* For SRM, we could probably set environment
 111                           variables to get this to work.  We'd have to
 112                           delay this until after srm_paging_stop unless
 113                           we ever got srm_fixup working.
 114
 115                           At the moment, SRM will use the last boot device,
 116                           but the file and flags will be the defaults, when
 117                           doing a "warm" bootstrap.  */
 118                        flags |= 0x00030000UL; /* "warm bootstrap" */
 119                }
 120        } else {
 121                flags |= 0x00040000UL; /* "remain halted" */
 122        }
 123        *pflags = flags;
 124
 125#ifdef CONFIG_SMP
 126        /* Wait for the secondaries to halt. */
 127        set_cpu_present(boot_cpuid, false);
 128        set_cpu_possible(boot_cpuid, false);
 129        while (cpumask_weight(cpu_present_mask))
 130                barrier();
 131#endif
 132
 133        /* If booted from SRM, reset some of the original environment. */
 134        if (alpha_using_srm) {
 135#ifdef CONFIG_DUMMY_CONSOLE
 136                /* If we've gotten here after SysRq-b, leave interrupt
 137                   context before taking over the console. */
 138                if (in_interrupt())
 139                        irq_exit();
 140                /* This has the effect of resetting the VGA video origin.  */
 141                console_lock();
 142                do_take_over_console(&dummy_con, 0, MAX_NR_CONSOLES-1, 1);
 143                console_unlock();
 144#endif
 145                pci_restore_srm_config();
 146                set_hae(srm_hae);
 147        }
 148
 149        if (alpha_mv.kill_arch)
 150                alpha_mv.kill_arch(how->mode);
 151
 152        if (! alpha_using_srm && how->mode != LINUX_REBOOT_CMD_RESTART) {
 153                /* Unfortunately, since MILO doesn't currently understand
 154                   the hwrpb bits above, we can't reliably halt the 
 155                   processor and keep it halted.  So just loop.  */
 156                return;
 157        }
 158
 159        if (alpha_using_srm)
 160                srm_paging_stop();
 161
 162        halt();
 163}
 164
 165static void
 166common_shutdown(int mode, char *restart_cmd)
 167{
 168        struct halt_info args;
 169        args.mode = mode;
 170        args.restart_cmd = restart_cmd;
 171        on_each_cpu(common_shutdown_1, &args, 0);
 172}
 173
 174void
 175machine_restart(char *restart_cmd)
 176{
 177        common_shutdown(LINUX_REBOOT_CMD_RESTART, restart_cmd);
 178}
 179
 180
 181void
 182machine_halt(void)
 183{
 184        common_shutdown(LINUX_REBOOT_CMD_HALT, NULL);
 185}
 186
 187
 188void
 189machine_power_off(void)
 190{
 191        common_shutdown(LINUX_REBOOT_CMD_POWER_OFF, NULL);
 192}
 193
 194
 195/* Used by sysrq-p, among others.  I don't believe r9-r15 are ever
 196   saved in the context it's used.  */
 197
 198void
 199show_regs(struct pt_regs *regs)
 200{
 201        show_regs_print_info(KERN_DEFAULT);
 202        dik_show_regs(regs, NULL);
 203}
 204
 205/*
 206 * Re-start a thread when doing execve()
 207 */
 208void
 209start_thread(struct pt_regs * regs, unsigned long pc, unsigned long sp)
 210{
 211        regs->pc = pc;
 212        regs->ps = 8;
 213        wrusp(sp);
 214}
 215EXPORT_SYMBOL(start_thread);
 216
 217void
 218flush_thread(void)
 219{
 220        /* Arrange for each exec'ed process to start off with a clean slate
 221           with respect to the FPU.  This is all exceptions disabled.  */
 222        current_thread_info()->ieee_state = 0;
 223        wrfpcr(FPCR_DYN_NORMAL | ieee_swcr_to_fpcr(0));
 224
 225        /* Clean slate for TLS.  */
 226        current_thread_info()->pcb.unique = 0;
 227}
 228
 229void
 230release_thread(struct task_struct *dead_task)
 231{
 232}
 233
 234/*
 235 * Copy architecture-specific thread state
 236 */
 237int
 238copy_thread(unsigned long clone_flags, unsigned long usp,
 239            unsigned long kthread_arg,
 240            struct task_struct *p)
 241{
 242        extern void ret_from_fork(void);
 243        extern void ret_from_kernel_thread(void);
 244
 245        struct thread_info *childti = task_thread_info(p);
 246        struct pt_regs *childregs = task_pt_regs(p);
 247        struct pt_regs *regs = current_pt_regs();
 248        struct switch_stack *childstack, *stack;
 249
 250        childstack = ((struct switch_stack *) childregs) - 1;
 251        childti->pcb.ksp = (unsigned long) childstack;
 252        childti->pcb.flags = 1; /* set FEN, clear everything else */
 253
 254        if (unlikely(p->flags & PF_KTHREAD)) {
 255                /* kernel thread */
 256                memset(childstack, 0,
 257                        sizeof(struct switch_stack) + sizeof(struct pt_regs));
 258                childstack->r26 = (unsigned long) ret_from_kernel_thread;
 259                childstack->r9 = usp;   /* function */
 260                childstack->r10 = kthread_arg;
 261                childregs->hae = alpha_mv.hae_cache,
 262                childti->pcb.usp = 0;
 263                return 0;
 264        }
 265        /* Note: if CLONE_SETTLS is not set, then we must inherit the
 266           value from the parent, which will have been set by the block
 267           copy in dup_task_struct.  This is non-intuitive, but is
 268           required for proper operation in the case of a threaded
 269           application calling fork.  */
 270        if (clone_flags & CLONE_SETTLS)
 271                childti->pcb.unique = regs->r20;
 272        else
 273                regs->r20 = 0;  /* OSF/1 has some strange fork() semantics.  */
 274        childti->pcb.usp = usp ?: rdusp();
 275        *childregs = *regs;
 276        childregs->r0 = 0;
 277        childregs->r19 = 0;
 278        childregs->r20 = 1;     /* OSF/1 has some strange fork() semantics.  */
 279        stack = ((struct switch_stack *) regs) - 1;
 280        *childstack = *stack;
 281        childstack->r26 = (unsigned long) ret_from_fork;
 282        return 0;
 283}
 284
 285/*
 286 * Fill in the user structure for a ELF core dump.
 287 */
 288void
 289dump_elf_thread(elf_greg_t *dest, struct pt_regs *pt, struct thread_info *ti)
 290{
 291        /* switch stack follows right below pt_regs: */
 292        struct switch_stack * sw = ((struct switch_stack *) pt) - 1;
 293
 294        dest[ 0] = pt->r0;
 295        dest[ 1] = pt->r1;
 296        dest[ 2] = pt->r2;
 297        dest[ 3] = pt->r3;
 298        dest[ 4] = pt->r4;
 299        dest[ 5] = pt->r5;
 300        dest[ 6] = pt->r6;
 301        dest[ 7] = pt->r7;
 302        dest[ 8] = pt->r8;
 303        dest[ 9] = sw->r9;
 304        dest[10] = sw->r10;
 305        dest[11] = sw->r11;
 306        dest[12] = sw->r12;
 307        dest[13] = sw->r13;
 308        dest[14] = sw->r14;
 309        dest[15] = sw->r15;
 310        dest[16] = pt->r16;
 311        dest[17] = pt->r17;
 312        dest[18] = pt->r18;
 313        dest[19] = pt->r19;
 314        dest[20] = pt->r20;
 315        dest[21] = pt->r21;
 316        dest[22] = pt->r22;
 317        dest[23] = pt->r23;
 318        dest[24] = pt->r24;
 319        dest[25] = pt->r25;
 320        dest[26] = pt->r26;
 321        dest[27] = pt->r27;
 322        dest[28] = pt->r28;
 323        dest[29] = pt->gp;
 324        dest[30] = ti == current_thread_info() ? rdusp() : ti->pcb.usp;
 325        dest[31] = pt->pc;
 326
 327        /* Once upon a time this was the PS value.  Which is stupid
 328           since that is always 8 for usermode.  Usurped for the more
 329           useful value of the thread's UNIQUE field.  */
 330        dest[32] = ti->pcb.unique;
 331}
 332EXPORT_SYMBOL(dump_elf_thread);
 333
 334int
 335dump_elf_task(elf_greg_t *dest, struct task_struct *task)
 336{
 337        dump_elf_thread(dest, task_pt_regs(task), task_thread_info(task));
 338        return 1;
 339}
 340EXPORT_SYMBOL(dump_elf_task);
 341
 342int
 343dump_elf_task_fp(elf_fpreg_t *dest, struct task_struct *task)
 344{
 345        struct switch_stack *sw = (struct switch_stack *)task_pt_regs(task) - 1;
 346        memcpy(dest, sw->fp, 32 * 8);
 347        return 1;
 348}
 349EXPORT_SYMBOL(dump_elf_task_fp);
 350
 351/*
 352 * Return saved PC of a blocked thread.  This assumes the frame
 353 * pointer is the 6th saved long on the kernel stack and that the
 354 * saved return address is the first long in the frame.  This all
 355 * holds provided the thread blocked through a call to schedule() ($15
 356 * is the frame pointer in schedule() and $15 is saved at offset 48 by
 357 * entry.S:do_switch_stack).
 358 *
 359 * Under heavy swap load I've seen this lose in an ugly way.  So do
 360 * some extra sanity checking on the ranges we expect these pointers
 361 * to be in so that we can fail gracefully.  This is just for ps after
 362 * all.  -- r~
 363 */
 364
 365static unsigned long
 366thread_saved_pc(struct task_struct *t)
 367{
 368        unsigned long base = (unsigned long)task_stack_page(t);
 369        unsigned long fp, sp = task_thread_info(t)->pcb.ksp;
 370
 371        if (sp > base && sp+6*8 < base + 16*1024) {
 372                fp = ((unsigned long*)sp)[6];
 373                if (fp > sp && fp < base + 16*1024)
 374                        return *(unsigned long *)fp;
 375        }
 376
 377        return 0;
 378}
 379
 380unsigned long
 381get_wchan(struct task_struct *p)
 382{
 383        unsigned long schedule_frame;
 384        unsigned long pc;
 385        if (!p || p == current || p->state == TASK_RUNNING)
 386                return 0;
 387        /*
 388         * This one depends on the frame size of schedule().  Do a
 389         * "disass schedule" in gdb to find the frame size.  Also, the
 390         * code assumes that sleep_on() follows immediately after
 391         * interruptible_sleep_on() and that add_timer() follows
 392         * immediately after interruptible_sleep().  Ugly, isn't it?
 393         * Maybe adding a wchan field to task_struct would be better,
 394         * after all...
 395         */
 396
 397        pc = thread_saved_pc(p);
 398        if (in_sched_functions(pc)) {
 399                schedule_frame = ((unsigned long *)task_thread_info(p)->pcb.ksp)[6];
 400                return ((unsigned long *)schedule_frame)[12];
 401        }
 402        return pc;
 403}
 404