linux/arch/arm64/kvm/sys_regs.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2012,2013 - ARM Ltd
   3 * Author: Marc Zyngier <marc.zyngier@arm.com>
   4 *
   5 * Derived from arch/arm/kvm/coproc.c:
   6 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
   7 * Authors: Rusty Russell <rusty@rustcorp.com.au>
   8 *          Christoffer Dall <c.dall@virtualopensystems.com>
   9 *
  10 * This program is free software; you can redistribute it and/or modify
  11 * it under the terms of the GNU General Public License, version 2, as
  12 * published by the Free Software Foundation.
  13 *
  14 * This program is distributed in the hope that it will be useful,
  15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  17 * GNU General Public License for more details.
  18 *
  19 * You should have received a copy of the GNU General Public License
  20 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
  21 */
  22
  23#include <linux/bsearch.h>
  24#include <linux/kvm_host.h>
  25#include <linux/mm.h>
  26#include <linux/printk.h>
  27#include <linux/uaccess.h>
  28
  29#include <asm/cacheflush.h>
  30#include <asm/cputype.h>
  31#include <asm/debug-monitors.h>
  32#include <asm/esr.h>
  33#include <asm/kvm_arm.h>
  34#include <asm/kvm_coproc.h>
  35#include <asm/kvm_emulate.h>
  36#include <asm/kvm_host.h>
  37#include <asm/kvm_hyp.h>
  38#include <asm/kvm_mmu.h>
  39#include <asm/perf_event.h>
  40#include <asm/sysreg.h>
  41
  42#include <trace/events/kvm.h>
  43
  44#include "sys_regs.h"
  45
  46#include "trace.h"
  47
  48/*
  49 * All of this file is extremly similar to the ARM coproc.c, but the
  50 * types are different. My gut feeling is that it should be pretty
  51 * easy to merge, but that would be an ABI breakage -- again. VFP
  52 * would also need to be abstracted.
  53 *
  54 * For AArch32, we only take care of what is being trapped. Anything
  55 * that has to do with init and userspace access has to go via the
  56 * 64bit interface.
  57 */
  58
  59static bool read_from_write_only(struct kvm_vcpu *vcpu,
  60                                 struct sys_reg_params *params,
  61                                 const struct sys_reg_desc *r)
  62{
  63        WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n");
  64        print_sys_reg_instr(params);
  65        kvm_inject_undefined(vcpu);
  66        return false;
  67}
  68
  69static bool write_to_read_only(struct kvm_vcpu *vcpu,
  70                               struct sys_reg_params *params,
  71                               const struct sys_reg_desc *r)
  72{
  73        WARN_ONCE(1, "Unexpected sys_reg write to read-only register\n");
  74        print_sys_reg_instr(params);
  75        kvm_inject_undefined(vcpu);
  76        return false;
  77}
  78
  79u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
  80{
  81        if (!vcpu->arch.sysregs_loaded_on_cpu)
  82                goto immediate_read;
  83
  84        /*
  85         * System registers listed in the switch are not saved on every
  86         * exit from the guest but are only saved on vcpu_put.
  87         *
  88         * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
  89         * should never be listed below, because the guest cannot modify its
  90         * own MPIDR_EL1 and MPIDR_EL1 is accessed for VCPU A from VCPU B's
  91         * thread when emulating cross-VCPU communication.
  92         */
  93        switch (reg) {
  94        case CSSELR_EL1:        return read_sysreg_s(SYS_CSSELR_EL1);
  95        case SCTLR_EL1:         return read_sysreg_s(sctlr_EL12);
  96        case ACTLR_EL1:         return read_sysreg_s(SYS_ACTLR_EL1);
  97        case CPACR_EL1:         return read_sysreg_s(cpacr_EL12);
  98        case TTBR0_EL1:         return read_sysreg_s(ttbr0_EL12);
  99        case TTBR1_EL1:         return read_sysreg_s(ttbr1_EL12);
 100        case TCR_EL1:           return read_sysreg_s(tcr_EL12);
 101        case ESR_EL1:           return read_sysreg_s(esr_EL12);
 102        case AFSR0_EL1:         return read_sysreg_s(afsr0_EL12);
 103        case AFSR1_EL1:         return read_sysreg_s(afsr1_EL12);
 104        case FAR_EL1:           return read_sysreg_s(far_EL12);
 105        case MAIR_EL1:          return read_sysreg_s(mair_EL12);
 106        case VBAR_EL1:          return read_sysreg_s(vbar_EL12);
 107        case CONTEXTIDR_EL1:    return read_sysreg_s(contextidr_EL12);
 108        case TPIDR_EL0:         return read_sysreg_s(SYS_TPIDR_EL0);
 109        case TPIDRRO_EL0:       return read_sysreg_s(SYS_TPIDRRO_EL0);
 110        case TPIDR_EL1:         return read_sysreg_s(SYS_TPIDR_EL1);
 111        case AMAIR_EL1:         return read_sysreg_s(amair_EL12);
 112        case CNTKCTL_EL1:       return read_sysreg_s(cntkctl_EL12);
 113        case PAR_EL1:           return read_sysreg_s(SYS_PAR_EL1);
 114        case DACR32_EL2:        return read_sysreg_s(SYS_DACR32_EL2);
 115        case IFSR32_EL2:        return read_sysreg_s(SYS_IFSR32_EL2);
 116        case DBGVCR32_EL2:      return read_sysreg_s(SYS_DBGVCR32_EL2);
 117        }
 118
 119immediate_read:
 120        return __vcpu_sys_reg(vcpu, reg);
 121}
 122
 123void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
 124{
 125        if (!vcpu->arch.sysregs_loaded_on_cpu)
 126                goto immediate_write;
 127
 128        /*
 129         * System registers listed in the switch are not restored on every
 130         * entry to the guest but are only restored on vcpu_load.
 131         *
 132         * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
 133         * should never be listed below, because the the MPIDR should only be
 134         * set once, before running the VCPU, and never changed later.
 135         */
 136        switch (reg) {
 137        case CSSELR_EL1:        write_sysreg_s(val, SYS_CSSELR_EL1);    return;
 138        case SCTLR_EL1:         write_sysreg_s(val, sctlr_EL12);        return;
 139        case ACTLR_EL1:         write_sysreg_s(val, SYS_ACTLR_EL1);     return;
 140        case CPACR_EL1:         write_sysreg_s(val, cpacr_EL12);        return;
 141        case TTBR0_EL1:         write_sysreg_s(val, ttbr0_EL12);        return;
 142        case TTBR1_EL1:         write_sysreg_s(val, ttbr1_EL12);        return;
 143        case TCR_EL1:           write_sysreg_s(val, tcr_EL12);          return;
 144        case ESR_EL1:           write_sysreg_s(val, esr_EL12);          return;
 145        case AFSR0_EL1:         write_sysreg_s(val, afsr0_EL12);        return;
 146        case AFSR1_EL1:         write_sysreg_s(val, afsr1_EL12);        return;
 147        case FAR_EL1:           write_sysreg_s(val, far_EL12);          return;
 148        case MAIR_EL1:          write_sysreg_s(val, mair_EL12);         return;
 149        case VBAR_EL1:          write_sysreg_s(val, vbar_EL12);         return;
 150        case CONTEXTIDR_EL1:    write_sysreg_s(val, contextidr_EL12);   return;
 151        case TPIDR_EL0:         write_sysreg_s(val, SYS_TPIDR_EL0);     return;
 152        case TPIDRRO_EL0:       write_sysreg_s(val, SYS_TPIDRRO_EL0);   return;
 153        case TPIDR_EL1:         write_sysreg_s(val, SYS_TPIDR_EL1);     return;
 154        case AMAIR_EL1:         write_sysreg_s(val, amair_EL12);        return;
 155        case CNTKCTL_EL1:       write_sysreg_s(val, cntkctl_EL12);      return;
 156        case PAR_EL1:           write_sysreg_s(val, SYS_PAR_EL1);       return;
 157        case DACR32_EL2:        write_sysreg_s(val, SYS_DACR32_EL2);    return;
 158        case IFSR32_EL2:        write_sysreg_s(val, SYS_IFSR32_EL2);    return;
 159        case DBGVCR32_EL2:      write_sysreg_s(val, SYS_DBGVCR32_EL2);  return;
 160        }
 161
 162immediate_write:
 163         __vcpu_sys_reg(vcpu, reg) = val;
 164}
 165
 166/* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
 167static u32 cache_levels;
 168
 169/* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
 170#define CSSELR_MAX 12
 171
 172/* Which cache CCSIDR represents depends on CSSELR value. */
 173static u32 get_ccsidr(u32 csselr)
 174{
 175        u32 ccsidr;
 176
 177        /* Make sure noone else changes CSSELR during this! */
 178        local_irq_disable();
 179        write_sysreg(csselr, csselr_el1);
 180        isb();
 181        ccsidr = read_sysreg(ccsidr_el1);
 182        local_irq_enable();
 183
 184        return ccsidr;
 185}
 186
 187/*
 188 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
 189 */
 190static bool access_dcsw(struct kvm_vcpu *vcpu,
 191                        struct sys_reg_params *p,
 192                        const struct sys_reg_desc *r)
 193{
 194        if (!p->is_write)
 195                return read_from_write_only(vcpu, p, r);
 196
 197        /*
 198         * Only track S/W ops if we don't have FWB. It still indicates
 199         * that the guest is a bit broken (S/W operations should only
 200         * be done by firmware, knowing that there is only a single
 201         * CPU left in the system, and certainly not from non-secure
 202         * software).
 203         */
 204        if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
 205                kvm_set_way_flush(vcpu);
 206
 207        return true;
 208}
 209
 210/*
 211 * Generic accessor for VM registers. Only called as long as HCR_TVM
 212 * is set. If the guest enables the MMU, we stop trapping the VM
 213 * sys_regs and leave it in complete control of the caches.
 214 */
 215static bool access_vm_reg(struct kvm_vcpu *vcpu,
 216                          struct sys_reg_params *p,
 217                          const struct sys_reg_desc *r)
 218{
 219        bool was_enabled = vcpu_has_cache_enabled(vcpu);
 220        u64 val;
 221        int reg = r->reg;
 222
 223        BUG_ON(!p->is_write);
 224
 225        /* See the 32bit mapping in kvm_host.h */
 226        if (p->is_aarch32)
 227                reg = r->reg / 2;
 228
 229        if (!p->is_aarch32 || !p->is_32bit) {
 230                val = p->regval;
 231        } else {
 232                val = vcpu_read_sys_reg(vcpu, reg);
 233                if (r->reg % 2)
 234                        val = (p->regval << 32) | (u64)lower_32_bits(val);
 235                else
 236                        val = ((u64)upper_32_bits(val) << 32) |
 237                                lower_32_bits(p->regval);
 238        }
 239        vcpu_write_sys_reg(vcpu, val, reg);
 240
 241        kvm_toggle_cache(vcpu, was_enabled);
 242        return true;
 243}
 244
 245/*
 246 * Trap handler for the GICv3 SGI generation system register.
 247 * Forward the request to the VGIC emulation.
 248 * The cp15_64 code makes sure this automatically works
 249 * for both AArch64 and AArch32 accesses.
 250 */
 251static bool access_gic_sgi(struct kvm_vcpu *vcpu,
 252                           struct sys_reg_params *p,
 253                           const struct sys_reg_desc *r)
 254{
 255        bool g1;
 256
 257        if (!p->is_write)
 258                return read_from_write_only(vcpu, p, r);
 259
 260        /*
 261         * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates
 262         * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group,
 263         * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively
 264         * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
 265         * group.
 266         */
 267        if (p->is_aarch32) {
 268                switch (p->Op1) {
 269                default:                /* Keep GCC quiet */
 270                case 0:                 /* ICC_SGI1R */
 271                        g1 = true;
 272                        break;
 273                case 1:                 /* ICC_ASGI1R */
 274                case 2:                 /* ICC_SGI0R */
 275                        g1 = false;
 276                        break;
 277                }
 278        } else {
 279                switch (p->Op2) {
 280                default:                /* Keep GCC quiet */
 281                case 5:                 /* ICC_SGI1R_EL1 */
 282                        g1 = true;
 283                        break;
 284                case 6:                 /* ICC_ASGI1R_EL1 */
 285                case 7:                 /* ICC_SGI0R_EL1 */
 286                        g1 = false;
 287                        break;
 288                }
 289        }
 290
 291        vgic_v3_dispatch_sgi(vcpu, p->regval, g1);
 292
 293        return true;
 294}
 295
 296static bool access_gic_sre(struct kvm_vcpu *vcpu,
 297                           struct sys_reg_params *p,
 298                           const struct sys_reg_desc *r)
 299{
 300        if (p->is_write)
 301                return ignore_write(vcpu, p);
 302
 303        p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
 304        return true;
 305}
 306
 307static bool trap_raz_wi(struct kvm_vcpu *vcpu,
 308                        struct sys_reg_params *p,
 309                        const struct sys_reg_desc *r)
 310{
 311        if (p->is_write)
 312                return ignore_write(vcpu, p);
 313        else
 314                return read_zero(vcpu, p);
 315}
 316
 317/*
 318 * ARMv8.1 mandates at least a trivial LORegion implementation, where all the
 319 * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0
 320 * system, these registers should UNDEF. LORID_EL1 being a RO register, we
 321 * treat it separately.
 322 */
 323static bool trap_loregion(struct kvm_vcpu *vcpu,
 324                          struct sys_reg_params *p,
 325                          const struct sys_reg_desc *r)
 326{
 327        u64 val = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
 328        u32 sr = sys_reg((u32)r->Op0, (u32)r->Op1,
 329                         (u32)r->CRn, (u32)r->CRm, (u32)r->Op2);
 330
 331        if (!(val & (0xfUL << ID_AA64MMFR1_LOR_SHIFT))) {
 332                kvm_inject_undefined(vcpu);
 333                return false;
 334        }
 335
 336        if (p->is_write && sr == SYS_LORID_EL1)
 337                return write_to_read_only(vcpu, p, r);
 338
 339        return trap_raz_wi(vcpu, p, r);
 340}
 341
 342static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
 343                           struct sys_reg_params *p,
 344                           const struct sys_reg_desc *r)
 345{
 346        if (p->is_write) {
 347                return ignore_write(vcpu, p);
 348        } else {
 349                p->regval = (1 << 3);
 350                return true;
 351        }
 352}
 353
 354static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
 355                                   struct sys_reg_params *p,
 356                                   const struct sys_reg_desc *r)
 357{
 358        if (p->is_write) {
 359                return ignore_write(vcpu, p);
 360        } else {
 361                p->regval = read_sysreg(dbgauthstatus_el1);
 362                return true;
 363        }
 364}
 365
 366/*
 367 * We want to avoid world-switching all the DBG registers all the
 368 * time:
 369 * 
 370 * - If we've touched any debug register, it is likely that we're
 371 *   going to touch more of them. It then makes sense to disable the
 372 *   traps and start doing the save/restore dance
 373 * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
 374 *   then mandatory to save/restore the registers, as the guest
 375 *   depends on them.
 376 * 
 377 * For this, we use a DIRTY bit, indicating the guest has modified the
 378 * debug registers, used as follow:
 379 *
 380 * On guest entry:
 381 * - If the dirty bit is set (because we're coming back from trapping),
 382 *   disable the traps, save host registers, restore guest registers.
 383 * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
 384 *   set the dirty bit, disable the traps, save host registers,
 385 *   restore guest registers.
 386 * - Otherwise, enable the traps
 387 *
 388 * On guest exit:
 389 * - If the dirty bit is set, save guest registers, restore host
 390 *   registers and clear the dirty bit. This ensure that the host can
 391 *   now use the debug registers.
 392 */
 393static bool trap_debug_regs(struct kvm_vcpu *vcpu,
 394                            struct sys_reg_params *p,
 395                            const struct sys_reg_desc *r)
 396{
 397        if (p->is_write) {
 398                vcpu_write_sys_reg(vcpu, p->regval, r->reg);
 399                vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
 400        } else {
 401                p->regval = vcpu_read_sys_reg(vcpu, r->reg);
 402        }
 403
 404        trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
 405
 406        return true;
 407}
 408
 409/*
 410 * reg_to_dbg/dbg_to_reg
 411 *
 412 * A 32 bit write to a debug register leave top bits alone
 413 * A 32 bit read from a debug register only returns the bottom bits
 414 *
 415 * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
 416 * hyp.S code switches between host and guest values in future.
 417 */
 418static void reg_to_dbg(struct kvm_vcpu *vcpu,
 419                       struct sys_reg_params *p,
 420                       u64 *dbg_reg)
 421{
 422        u64 val = p->regval;
 423
 424        if (p->is_32bit) {
 425                val &= 0xffffffffUL;
 426                val |= ((*dbg_reg >> 32) << 32);
 427        }
 428
 429        *dbg_reg = val;
 430        vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
 431}
 432
 433static void dbg_to_reg(struct kvm_vcpu *vcpu,
 434                       struct sys_reg_params *p,
 435                       u64 *dbg_reg)
 436{
 437        p->regval = *dbg_reg;
 438        if (p->is_32bit)
 439                p->regval &= 0xffffffffUL;
 440}
 441
 442static bool trap_bvr(struct kvm_vcpu *vcpu,
 443                     struct sys_reg_params *p,
 444                     const struct sys_reg_desc *rd)
 445{
 446        u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
 447
 448        if (p->is_write)
 449                reg_to_dbg(vcpu, p, dbg_reg);
 450        else
 451                dbg_to_reg(vcpu, p, dbg_reg);
 452
 453        trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
 454
 455        return true;
 456}
 457
 458static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
 459                const struct kvm_one_reg *reg, void __user *uaddr)
 460{
 461        __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
 462
 463        if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
 464                return -EFAULT;
 465        return 0;
 466}
 467
 468static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
 469        const struct kvm_one_reg *reg, void __user *uaddr)
 470{
 471        __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
 472
 473        if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
 474                return -EFAULT;
 475        return 0;
 476}
 477
 478static void reset_bvr(struct kvm_vcpu *vcpu,
 479                      const struct sys_reg_desc *rd)
 480{
 481        vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg] = rd->val;
 482}
 483
 484static bool trap_bcr(struct kvm_vcpu *vcpu,
 485                     struct sys_reg_params *p,
 486                     const struct sys_reg_desc *rd)
 487{
 488        u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
 489
 490        if (p->is_write)
 491                reg_to_dbg(vcpu, p, dbg_reg);
 492        else
 493                dbg_to_reg(vcpu, p, dbg_reg);
 494
 495        trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
 496
 497        return true;
 498}
 499
 500static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
 501                const struct kvm_one_reg *reg, void __user *uaddr)
 502{
 503        __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
 504
 505        if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
 506                return -EFAULT;
 507
 508        return 0;
 509}
 510
 511static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
 512        const struct kvm_one_reg *reg, void __user *uaddr)
 513{
 514        __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
 515
 516        if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
 517                return -EFAULT;
 518        return 0;
 519}
 520
 521static void reset_bcr(struct kvm_vcpu *vcpu,
 522                      const struct sys_reg_desc *rd)
 523{
 524        vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg] = rd->val;
 525}
 526
 527static bool trap_wvr(struct kvm_vcpu *vcpu,
 528                     struct sys_reg_params *p,
 529                     const struct sys_reg_desc *rd)
 530{
 531        u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
 532
 533        if (p->is_write)
 534                reg_to_dbg(vcpu, p, dbg_reg);
 535        else
 536                dbg_to_reg(vcpu, p, dbg_reg);
 537
 538        trace_trap_reg(__func__, rd->reg, p->is_write,
 539                vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg]);
 540
 541        return true;
 542}
 543
 544static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
 545                const struct kvm_one_reg *reg, void __user *uaddr)
 546{
 547        __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
 548
 549        if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
 550                return -EFAULT;
 551        return 0;
 552}
 553
 554static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
 555        const struct kvm_one_reg *reg, void __user *uaddr)
 556{
 557        __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
 558
 559        if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
 560                return -EFAULT;
 561        return 0;
 562}
 563
 564static void reset_wvr(struct kvm_vcpu *vcpu,
 565                      const struct sys_reg_desc *rd)
 566{
 567        vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg] = rd->val;
 568}
 569
 570static bool trap_wcr(struct kvm_vcpu *vcpu,
 571                     struct sys_reg_params *p,
 572                     const struct sys_reg_desc *rd)
 573{
 574        u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
 575
 576        if (p->is_write)
 577                reg_to_dbg(vcpu, p, dbg_reg);
 578        else
 579                dbg_to_reg(vcpu, p, dbg_reg);
 580
 581        trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
 582
 583        return true;
 584}
 585
 586static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
 587                const struct kvm_one_reg *reg, void __user *uaddr)
 588{
 589        __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
 590
 591        if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
 592                return -EFAULT;
 593        return 0;
 594}
 595
 596static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
 597        const struct kvm_one_reg *reg, void __user *uaddr)
 598{
 599        __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
 600
 601        if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
 602                return -EFAULT;
 603        return 0;
 604}
 605
 606static void reset_wcr(struct kvm_vcpu *vcpu,
 607                      const struct sys_reg_desc *rd)
 608{
 609        vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg] = rd->val;
 610}
 611
 612static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
 613{
 614        u64 amair = read_sysreg(amair_el1);
 615        vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
 616}
 617
 618static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
 619{
 620        u64 mpidr;
 621
 622        /*
 623         * Map the vcpu_id into the first three affinity level fields of
 624         * the MPIDR. We limit the number of VCPUs in level 0 due to a
 625         * limitation to 16 CPUs in that level in the ICC_SGIxR registers
 626         * of the GICv3 to be able to address each CPU directly when
 627         * sending IPIs.
 628         */
 629        mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
 630        mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
 631        mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
 632        vcpu_write_sys_reg(vcpu, (1ULL << 31) | mpidr, MPIDR_EL1);
 633}
 634
 635static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
 636{
 637        u64 pmcr, val;
 638
 639        pmcr = read_sysreg(pmcr_el0);
 640        /*
 641         * Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) are reset to UNKNOWN
 642         * except PMCR.E resetting to zero.
 643         */
 644        val = ((pmcr & ~ARMV8_PMU_PMCR_MASK)
 645               | (ARMV8_PMU_PMCR_MASK & 0xdecafbad)) & (~ARMV8_PMU_PMCR_E);
 646        __vcpu_sys_reg(vcpu, PMCR_EL0) = val;
 647}
 648
 649static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
 650{
 651        u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
 652        bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
 653
 654        if (!enabled)
 655                kvm_inject_undefined(vcpu);
 656
 657        return !enabled;
 658}
 659
 660static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
 661{
 662        return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
 663}
 664
 665static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
 666{
 667        return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
 668}
 669
 670static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
 671{
 672        return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
 673}
 674
 675static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
 676{
 677        return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
 678}
 679
 680static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
 681                        const struct sys_reg_desc *r)
 682{
 683        u64 val;
 684
 685        if (!kvm_arm_pmu_v3_ready(vcpu))
 686                return trap_raz_wi(vcpu, p, r);
 687
 688        if (pmu_access_el0_disabled(vcpu))
 689                return false;
 690
 691        if (p->is_write) {
 692                /* Only update writeable bits of PMCR */
 693                val = __vcpu_sys_reg(vcpu, PMCR_EL0);
 694                val &= ~ARMV8_PMU_PMCR_MASK;
 695                val |= p->regval & ARMV8_PMU_PMCR_MASK;
 696                __vcpu_sys_reg(vcpu, PMCR_EL0) = val;
 697                kvm_pmu_handle_pmcr(vcpu, val);
 698        } else {
 699                /* PMCR.P & PMCR.C are RAZ */
 700                val = __vcpu_sys_reg(vcpu, PMCR_EL0)
 701                      & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
 702                p->regval = val;
 703        }
 704
 705        return true;
 706}
 707
 708static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
 709                          const struct sys_reg_desc *r)
 710{
 711        if (!kvm_arm_pmu_v3_ready(vcpu))
 712                return trap_raz_wi(vcpu, p, r);
 713
 714        if (pmu_access_event_counter_el0_disabled(vcpu))
 715                return false;
 716
 717        if (p->is_write)
 718                __vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
 719        else
 720                /* return PMSELR.SEL field */
 721                p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
 722                            & ARMV8_PMU_COUNTER_MASK;
 723
 724        return true;
 725}
 726
 727static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
 728                          const struct sys_reg_desc *r)
 729{
 730        u64 pmceid;
 731
 732        if (!kvm_arm_pmu_v3_ready(vcpu))
 733                return trap_raz_wi(vcpu, p, r);
 734
 735        BUG_ON(p->is_write);
 736
 737        if (pmu_access_el0_disabled(vcpu))
 738                return false;
 739
 740        if (!(p->Op2 & 1))
 741                pmceid = read_sysreg(pmceid0_el0);
 742        else
 743                pmceid = read_sysreg(pmceid1_el0);
 744
 745        p->regval = pmceid;
 746
 747        return true;
 748}
 749
 750static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
 751{
 752        u64 pmcr, val;
 753
 754        pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0);
 755        val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
 756        if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
 757                kvm_inject_undefined(vcpu);
 758                return false;
 759        }
 760
 761        return true;
 762}
 763
 764static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
 765                              struct sys_reg_params *p,
 766                              const struct sys_reg_desc *r)
 767{
 768        u64 idx;
 769
 770        if (!kvm_arm_pmu_v3_ready(vcpu))
 771                return trap_raz_wi(vcpu, p, r);
 772
 773        if (r->CRn == 9 && r->CRm == 13) {
 774                if (r->Op2 == 2) {
 775                        /* PMXEVCNTR_EL0 */
 776                        if (pmu_access_event_counter_el0_disabled(vcpu))
 777                                return false;
 778
 779                        idx = __vcpu_sys_reg(vcpu, PMSELR_EL0)
 780                              & ARMV8_PMU_COUNTER_MASK;
 781                } else if (r->Op2 == 0) {
 782                        /* PMCCNTR_EL0 */
 783                        if (pmu_access_cycle_counter_el0_disabled(vcpu))
 784                                return false;
 785
 786                        idx = ARMV8_PMU_CYCLE_IDX;
 787                } else {
 788                        return false;
 789                }
 790        } else if (r->CRn == 0 && r->CRm == 9) {
 791                /* PMCCNTR */
 792                if (pmu_access_event_counter_el0_disabled(vcpu))
 793                        return false;
 794
 795                idx = ARMV8_PMU_CYCLE_IDX;
 796        } else if (r->CRn == 14 && (r->CRm & 12) == 8) {
 797                /* PMEVCNTRn_EL0 */
 798                if (pmu_access_event_counter_el0_disabled(vcpu))
 799                        return false;
 800
 801                idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
 802        } else {
 803                return false;
 804        }
 805
 806        if (!pmu_counter_idx_valid(vcpu, idx))
 807                return false;
 808
 809        if (p->is_write) {
 810                if (pmu_access_el0_disabled(vcpu))
 811                        return false;
 812
 813                kvm_pmu_set_counter_value(vcpu, idx, p->regval);
 814        } else {
 815                p->regval = kvm_pmu_get_counter_value(vcpu, idx);
 816        }
 817
 818        return true;
 819}
 820
 821static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
 822                               const struct sys_reg_desc *r)
 823{
 824        u64 idx, reg;
 825
 826        if (!kvm_arm_pmu_v3_ready(vcpu))
 827                return trap_raz_wi(vcpu, p, r);
 828
 829        if (pmu_access_el0_disabled(vcpu))
 830                return false;
 831
 832        if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
 833                /* PMXEVTYPER_EL0 */
 834                idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
 835                reg = PMEVTYPER0_EL0 + idx;
 836        } else if (r->CRn == 14 && (r->CRm & 12) == 12) {
 837                idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
 838                if (idx == ARMV8_PMU_CYCLE_IDX)
 839                        reg = PMCCFILTR_EL0;
 840                else
 841                        /* PMEVTYPERn_EL0 */
 842                        reg = PMEVTYPER0_EL0 + idx;
 843        } else {
 844                BUG();
 845        }
 846
 847        if (!pmu_counter_idx_valid(vcpu, idx))
 848                return false;
 849
 850        if (p->is_write) {
 851                kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
 852                __vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK;
 853        } else {
 854                p->regval = __vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
 855        }
 856
 857        return true;
 858}
 859
 860static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
 861                           const struct sys_reg_desc *r)
 862{
 863        u64 val, mask;
 864
 865        if (!kvm_arm_pmu_v3_ready(vcpu))
 866                return trap_raz_wi(vcpu, p, r);
 867
 868        if (pmu_access_el0_disabled(vcpu))
 869                return false;
 870
 871        mask = kvm_pmu_valid_counter_mask(vcpu);
 872        if (p->is_write) {
 873                val = p->regval & mask;
 874                if (r->Op2 & 0x1) {
 875                        /* accessing PMCNTENSET_EL0 */
 876                        __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
 877                        kvm_pmu_enable_counter(vcpu, val);
 878                } else {
 879                        /* accessing PMCNTENCLR_EL0 */
 880                        __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
 881                        kvm_pmu_disable_counter(vcpu, val);
 882                }
 883        } else {
 884                p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & mask;
 885        }
 886
 887        return true;
 888}
 889
 890static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
 891                           const struct sys_reg_desc *r)
 892{
 893        u64 mask = kvm_pmu_valid_counter_mask(vcpu);
 894
 895        if (!kvm_arm_pmu_v3_ready(vcpu))
 896                return trap_raz_wi(vcpu, p, r);
 897
 898        if (!vcpu_mode_priv(vcpu)) {
 899                kvm_inject_undefined(vcpu);
 900                return false;
 901        }
 902
 903        if (p->is_write) {
 904                u64 val = p->regval & mask;
 905
 906                if (r->Op2 & 0x1)
 907                        /* accessing PMINTENSET_EL1 */
 908                        __vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
 909                else
 910                        /* accessing PMINTENCLR_EL1 */
 911                        __vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
 912        } else {
 913                p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1) & mask;
 914        }
 915
 916        return true;
 917}
 918
 919static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
 920                         const struct sys_reg_desc *r)
 921{
 922        u64 mask = kvm_pmu_valid_counter_mask(vcpu);
 923
 924        if (!kvm_arm_pmu_v3_ready(vcpu))
 925                return trap_raz_wi(vcpu, p, r);
 926
 927        if (pmu_access_el0_disabled(vcpu))
 928                return false;
 929
 930        if (p->is_write) {
 931                if (r->CRm & 0x2)
 932                        /* accessing PMOVSSET_EL0 */
 933                        __vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
 934                else
 935                        /* accessing PMOVSCLR_EL0 */
 936                        __vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
 937        } else {
 938                p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0) & mask;
 939        }
 940
 941        return true;
 942}
 943
 944static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
 945                           const struct sys_reg_desc *r)
 946{
 947        u64 mask;
 948
 949        if (!kvm_arm_pmu_v3_ready(vcpu))
 950                return trap_raz_wi(vcpu, p, r);
 951
 952        if (!p->is_write)
 953                return read_from_write_only(vcpu, p, r);
 954
 955        if (pmu_write_swinc_el0_disabled(vcpu))
 956                return false;
 957
 958        mask = kvm_pmu_valid_counter_mask(vcpu);
 959        kvm_pmu_software_increment(vcpu, p->regval & mask);
 960        return true;
 961}
 962
 963static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
 964                             const struct sys_reg_desc *r)
 965{
 966        if (!kvm_arm_pmu_v3_ready(vcpu))
 967                return trap_raz_wi(vcpu, p, r);
 968
 969        if (p->is_write) {
 970                if (!vcpu_mode_priv(vcpu)) {
 971                        kvm_inject_undefined(vcpu);
 972                        return false;
 973                }
 974
 975                __vcpu_sys_reg(vcpu, PMUSERENR_EL0) =
 976                               p->regval & ARMV8_PMU_USERENR_MASK;
 977        } else {
 978                p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
 979                            & ARMV8_PMU_USERENR_MASK;
 980        }
 981
 982        return true;
 983}
 984
 985/* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
 986#define DBG_BCR_BVR_WCR_WVR_EL1(n)                                      \
 987        { SYS_DESC(SYS_DBGBVRn_EL1(n)),                                 \
 988          trap_bvr, reset_bvr, n, 0, get_bvr, set_bvr },                \
 989        { SYS_DESC(SYS_DBGBCRn_EL1(n)),                                 \
 990          trap_bcr, reset_bcr, n, 0, get_bcr, set_bcr },                \
 991        { SYS_DESC(SYS_DBGWVRn_EL1(n)),                                 \
 992          trap_wvr, reset_wvr, n, 0,  get_wvr, set_wvr },               \
 993        { SYS_DESC(SYS_DBGWCRn_EL1(n)),                                 \
 994          trap_wcr, reset_wcr, n, 0,  get_wcr, set_wcr }
 995
 996/* Macro to expand the PMEVCNTRn_EL0 register */
 997#define PMU_PMEVCNTR_EL0(n)                                             \
 998        { SYS_DESC(SYS_PMEVCNTRn_EL0(n)),                                       \
 999          access_pmu_evcntr, reset_unknown, (PMEVCNTR0_EL0 + n), }
1000
1001/* Macro to expand the PMEVTYPERn_EL0 register */
1002#define PMU_PMEVTYPER_EL0(n)                                            \
1003        { SYS_DESC(SYS_PMEVTYPERn_EL0(n)),                                      \
1004          access_pmu_evtyper, reset_unknown, (PMEVTYPER0_EL0 + n), }
1005
1006static bool access_cntp_tval(struct kvm_vcpu *vcpu,
1007                struct sys_reg_params *p,
1008                const struct sys_reg_desc *r)
1009{
1010        u64 now = kvm_phys_timer_read();
1011        u64 cval;
1012
1013        if (p->is_write) {
1014                kvm_arm_timer_set_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL,
1015                                      p->regval + now);
1016        } else {
1017                cval = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL);
1018                p->regval = cval - now;
1019        }
1020
1021        return true;
1022}
1023
1024static bool access_cntp_ctl(struct kvm_vcpu *vcpu,
1025                struct sys_reg_params *p,
1026                const struct sys_reg_desc *r)
1027{
1028        if (p->is_write)
1029                kvm_arm_timer_set_reg(vcpu, KVM_REG_ARM_PTIMER_CTL, p->regval);
1030        else
1031                p->regval = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_PTIMER_CTL);
1032
1033        return true;
1034}
1035
1036static bool access_cntp_cval(struct kvm_vcpu *vcpu,
1037                struct sys_reg_params *p,
1038                const struct sys_reg_desc *r)
1039{
1040        if (p->is_write)
1041                kvm_arm_timer_set_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL, p->regval);
1042        else
1043                p->regval = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL);
1044
1045        return true;
1046}
1047
1048/* Read a sanitised cpufeature ID register by sys_reg_desc */
1049static u64 read_id_reg(struct sys_reg_desc const *r, bool raz)
1050{
1051        u32 id = sys_reg((u32)r->Op0, (u32)r->Op1,
1052                         (u32)r->CRn, (u32)r->CRm, (u32)r->Op2);
1053        u64 val = raz ? 0 : read_sanitised_ftr_reg(id);
1054
1055        if (id == SYS_ID_AA64PFR0_EL1) {
1056                if (val & (0xfUL << ID_AA64PFR0_SVE_SHIFT))
1057                        kvm_debug("SVE unsupported for guests, suppressing\n");
1058
1059                val &= ~(0xfUL << ID_AA64PFR0_SVE_SHIFT);
1060        } else if (id == SYS_ID_AA64ISAR1_EL1) {
1061                const u64 ptrauth_mask = (0xfUL << ID_AA64ISAR1_APA_SHIFT) |
1062                                         (0xfUL << ID_AA64ISAR1_API_SHIFT) |
1063                                         (0xfUL << ID_AA64ISAR1_GPA_SHIFT) |
1064                                         (0xfUL << ID_AA64ISAR1_GPI_SHIFT);
1065                if (val & ptrauth_mask)
1066                        kvm_debug("ptrauth unsupported for guests, suppressing\n");
1067                val &= ~ptrauth_mask;
1068        }
1069
1070        return val;
1071}
1072
1073/* cpufeature ID register access trap handlers */
1074
1075static bool __access_id_reg(struct kvm_vcpu *vcpu,
1076                            struct sys_reg_params *p,
1077                            const struct sys_reg_desc *r,
1078                            bool raz)
1079{
1080        if (p->is_write)
1081                return write_to_read_only(vcpu, p, r);
1082
1083        p->regval = read_id_reg(r, raz);
1084        return true;
1085}
1086
1087static bool access_id_reg(struct kvm_vcpu *vcpu,
1088                          struct sys_reg_params *p,
1089                          const struct sys_reg_desc *r)
1090{
1091        return __access_id_reg(vcpu, p, r, false);
1092}
1093
1094static bool access_raz_id_reg(struct kvm_vcpu *vcpu,
1095                              struct sys_reg_params *p,
1096                              const struct sys_reg_desc *r)
1097{
1098        return __access_id_reg(vcpu, p, r, true);
1099}
1100
1101static int reg_from_user(u64 *val, const void __user *uaddr, u64 id);
1102static int reg_to_user(void __user *uaddr, const u64 *val, u64 id);
1103static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
1104
1105/*
1106 * cpufeature ID register user accessors
1107 *
1108 * For now, these registers are immutable for userspace, so no values
1109 * are stored, and for set_id_reg() we don't allow the effective value
1110 * to be changed.
1111 */
1112static int __get_id_reg(const struct sys_reg_desc *rd, void __user *uaddr,
1113                        bool raz)
1114{
1115        const u64 id = sys_reg_to_index(rd);
1116        const u64 val = read_id_reg(rd, raz);
1117
1118        return reg_to_user(uaddr, &val, id);
1119}
1120
1121static int __set_id_reg(const struct sys_reg_desc *rd, void __user *uaddr,
1122                        bool raz)
1123{
1124        const u64 id = sys_reg_to_index(rd);
1125        int err;
1126        u64 val;
1127
1128        err = reg_from_user(&val, uaddr, id);
1129        if (err)
1130                return err;
1131
1132        /* This is what we mean by invariant: you can't change it. */
1133        if (val != read_id_reg(rd, raz))
1134                return -EINVAL;
1135
1136        return 0;
1137}
1138
1139static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1140                      const struct kvm_one_reg *reg, void __user *uaddr)
1141{
1142        return __get_id_reg(rd, uaddr, false);
1143}
1144
1145static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1146                      const struct kvm_one_reg *reg, void __user *uaddr)
1147{
1148        return __set_id_reg(rd, uaddr, false);
1149}
1150
1151static int get_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1152                          const struct kvm_one_reg *reg, void __user *uaddr)
1153{
1154        return __get_id_reg(rd, uaddr, true);
1155}
1156
1157static int set_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1158                          const struct kvm_one_reg *reg, void __user *uaddr)
1159{
1160        return __set_id_reg(rd, uaddr, true);
1161}
1162
1163/* sys_reg_desc initialiser for known cpufeature ID registers */
1164#define ID_SANITISED(name) {                    \
1165        SYS_DESC(SYS_##name),                   \
1166        .access = access_id_reg,                \
1167        .get_user = get_id_reg,                 \
1168        .set_user = set_id_reg,                 \
1169}
1170
1171/*
1172 * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
1173 * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
1174 * (1 <= crm < 8, 0 <= Op2 < 8).
1175 */
1176#define ID_UNALLOCATED(crm, op2) {                      \
1177        Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2),     \
1178        .access = access_raz_id_reg,                    \
1179        .get_user = get_raz_id_reg,                     \
1180        .set_user = set_raz_id_reg,                     \
1181}
1182
1183/*
1184 * sys_reg_desc initialiser for known ID registers that we hide from guests.
1185 * For now, these are exposed just like unallocated ID regs: they appear
1186 * RAZ for the guest.
1187 */
1188#define ID_HIDDEN(name) {                       \
1189        SYS_DESC(SYS_##name),                   \
1190        .access = access_raz_id_reg,            \
1191        .get_user = get_raz_id_reg,             \
1192        .set_user = set_raz_id_reg,             \
1193}
1194
1195/*
1196 * Architected system registers.
1197 * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
1198 *
1199 * Debug handling: We do trap most, if not all debug related system
1200 * registers. The implementation is good enough to ensure that a guest
1201 * can use these with minimal performance degradation. The drawback is
1202 * that we don't implement any of the external debug, none of the
1203 * OSlock protocol. This should be revisited if we ever encounter a
1204 * more demanding guest...
1205 */
1206static const struct sys_reg_desc sys_reg_descs[] = {
1207        { SYS_DESC(SYS_DC_ISW), access_dcsw },
1208        { SYS_DESC(SYS_DC_CSW), access_dcsw },
1209        { SYS_DESC(SYS_DC_CISW), access_dcsw },
1210
1211        DBG_BCR_BVR_WCR_WVR_EL1(0),
1212        DBG_BCR_BVR_WCR_WVR_EL1(1),
1213        { SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
1214        { SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
1215        DBG_BCR_BVR_WCR_WVR_EL1(2),
1216        DBG_BCR_BVR_WCR_WVR_EL1(3),
1217        DBG_BCR_BVR_WCR_WVR_EL1(4),
1218        DBG_BCR_BVR_WCR_WVR_EL1(5),
1219        DBG_BCR_BVR_WCR_WVR_EL1(6),
1220        DBG_BCR_BVR_WCR_WVR_EL1(7),
1221        DBG_BCR_BVR_WCR_WVR_EL1(8),
1222        DBG_BCR_BVR_WCR_WVR_EL1(9),
1223        DBG_BCR_BVR_WCR_WVR_EL1(10),
1224        DBG_BCR_BVR_WCR_WVR_EL1(11),
1225        DBG_BCR_BVR_WCR_WVR_EL1(12),
1226        DBG_BCR_BVR_WCR_WVR_EL1(13),
1227        DBG_BCR_BVR_WCR_WVR_EL1(14),
1228        DBG_BCR_BVR_WCR_WVR_EL1(15),
1229
1230        { SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
1231        { SYS_DESC(SYS_OSLAR_EL1), trap_raz_wi },
1232        { SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1 },
1233        { SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
1234        { SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
1235        { SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
1236        { SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
1237        { SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
1238
1239        { SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
1240        { SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
1241        // DBGDTR[TR]X_EL0 share the same encoding
1242        { SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
1243
1244        { SYS_DESC(SYS_DBGVCR32_EL2), NULL, reset_val, DBGVCR32_EL2, 0 },
1245
1246        { SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
1247
1248        /*
1249         * ID regs: all ID_SANITISED() entries here must have corresponding
1250         * entries in arm64_ftr_regs[].
1251         */
1252
1253        /* AArch64 mappings of the AArch32 ID registers */
1254        /* CRm=1 */
1255        ID_SANITISED(ID_PFR0_EL1),
1256        ID_SANITISED(ID_PFR1_EL1),
1257        ID_SANITISED(ID_DFR0_EL1),
1258        ID_HIDDEN(ID_AFR0_EL1),
1259        ID_SANITISED(ID_MMFR0_EL1),
1260        ID_SANITISED(ID_MMFR1_EL1),
1261        ID_SANITISED(ID_MMFR2_EL1),
1262        ID_SANITISED(ID_MMFR3_EL1),
1263
1264        /* CRm=2 */
1265        ID_SANITISED(ID_ISAR0_EL1),
1266        ID_SANITISED(ID_ISAR1_EL1),
1267        ID_SANITISED(ID_ISAR2_EL1),
1268        ID_SANITISED(ID_ISAR3_EL1),
1269        ID_SANITISED(ID_ISAR4_EL1),
1270        ID_SANITISED(ID_ISAR5_EL1),
1271        ID_SANITISED(ID_MMFR4_EL1),
1272        ID_UNALLOCATED(2,7),
1273
1274        /* CRm=3 */
1275        ID_SANITISED(MVFR0_EL1),
1276        ID_SANITISED(MVFR1_EL1),
1277        ID_SANITISED(MVFR2_EL1),
1278        ID_UNALLOCATED(3,3),
1279        ID_UNALLOCATED(3,4),
1280        ID_UNALLOCATED(3,5),
1281        ID_UNALLOCATED(3,6),
1282        ID_UNALLOCATED(3,7),
1283
1284        /* AArch64 ID registers */
1285        /* CRm=4 */
1286        ID_SANITISED(ID_AA64PFR0_EL1),
1287        ID_SANITISED(ID_AA64PFR1_EL1),
1288        ID_UNALLOCATED(4,2),
1289        ID_UNALLOCATED(4,3),
1290        ID_UNALLOCATED(4,4),
1291        ID_UNALLOCATED(4,5),
1292        ID_UNALLOCATED(4,6),
1293        ID_UNALLOCATED(4,7),
1294
1295        /* CRm=5 */
1296        ID_SANITISED(ID_AA64DFR0_EL1),
1297        ID_SANITISED(ID_AA64DFR1_EL1),
1298        ID_UNALLOCATED(5,2),
1299        ID_UNALLOCATED(5,3),
1300        ID_HIDDEN(ID_AA64AFR0_EL1),
1301        ID_HIDDEN(ID_AA64AFR1_EL1),
1302        ID_UNALLOCATED(5,6),
1303        ID_UNALLOCATED(5,7),
1304
1305        /* CRm=6 */
1306        ID_SANITISED(ID_AA64ISAR0_EL1),
1307        ID_SANITISED(ID_AA64ISAR1_EL1),
1308        ID_UNALLOCATED(6,2),
1309        ID_UNALLOCATED(6,3),
1310        ID_UNALLOCATED(6,4),
1311        ID_UNALLOCATED(6,5),
1312        ID_UNALLOCATED(6,6),
1313        ID_UNALLOCATED(6,7),
1314
1315        /* CRm=7 */
1316        ID_SANITISED(ID_AA64MMFR0_EL1),
1317        ID_SANITISED(ID_AA64MMFR1_EL1),
1318        ID_SANITISED(ID_AA64MMFR2_EL1),
1319        ID_UNALLOCATED(7,3),
1320        ID_UNALLOCATED(7,4),
1321        ID_UNALLOCATED(7,5),
1322        ID_UNALLOCATED(7,6),
1323        ID_UNALLOCATED(7,7),
1324
1325        { SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
1326        { SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
1327        { SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
1328        { SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
1329        { SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
1330
1331        { SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
1332        { SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
1333        { SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
1334
1335        { SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
1336        { SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
1337        { SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
1338        { SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
1339        { SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
1340        { SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
1341        { SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
1342        { SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },
1343
1344        { SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
1345        { SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
1346
1347        { SYS_DESC(SYS_PMINTENSET_EL1), access_pminten, reset_unknown, PMINTENSET_EL1 },
1348        { SYS_DESC(SYS_PMINTENCLR_EL1), access_pminten, NULL, PMINTENSET_EL1 },
1349
1350        { SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
1351        { SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
1352
1353        { SYS_DESC(SYS_LORSA_EL1), trap_loregion },
1354        { SYS_DESC(SYS_LOREA_EL1), trap_loregion },
1355        { SYS_DESC(SYS_LORN_EL1), trap_loregion },
1356        { SYS_DESC(SYS_LORC_EL1), trap_loregion },
1357        { SYS_DESC(SYS_LORID_EL1), trap_loregion },
1358
1359        { SYS_DESC(SYS_VBAR_EL1), NULL, reset_val, VBAR_EL1, 0 },
1360        { SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
1361
1362        { SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only },
1363        { SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only },
1364        { SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only },
1365        { SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only },
1366        { SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only },
1367        { SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
1368        { SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi },
1369        { SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi },
1370        { SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only },
1371        { SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only },
1372        { SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only },
1373        { SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
1374
1375        { SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
1376        { SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
1377
1378        { SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
1379
1380        { SYS_DESC(SYS_CSSELR_EL1), NULL, reset_unknown, CSSELR_EL1 },
1381
1382        { SYS_DESC(SYS_PMCR_EL0), access_pmcr, reset_pmcr, },
1383        { SYS_DESC(SYS_PMCNTENSET_EL0), access_pmcnten, reset_unknown, PMCNTENSET_EL0 },
1384        { SYS_DESC(SYS_PMCNTENCLR_EL0), access_pmcnten, NULL, PMCNTENSET_EL0 },
1385        { SYS_DESC(SYS_PMOVSCLR_EL0), access_pmovs, NULL, PMOVSSET_EL0 },
1386        { SYS_DESC(SYS_PMSWINC_EL0), access_pmswinc, reset_unknown, PMSWINC_EL0 },
1387        { SYS_DESC(SYS_PMSELR_EL0), access_pmselr, reset_unknown, PMSELR_EL0 },
1388        { SYS_DESC(SYS_PMCEID0_EL0), access_pmceid },
1389        { SYS_DESC(SYS_PMCEID1_EL0), access_pmceid },
1390        { SYS_DESC(SYS_PMCCNTR_EL0), access_pmu_evcntr, reset_unknown, PMCCNTR_EL0 },
1391        { SYS_DESC(SYS_PMXEVTYPER_EL0), access_pmu_evtyper },
1392        { SYS_DESC(SYS_PMXEVCNTR_EL0), access_pmu_evcntr },
1393        /*
1394         * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
1395         * in 32bit mode. Here we choose to reset it as zero for consistency.
1396         */
1397        { SYS_DESC(SYS_PMUSERENR_EL0), access_pmuserenr, reset_val, PMUSERENR_EL0, 0 },
1398        { SYS_DESC(SYS_PMOVSSET_EL0), access_pmovs, reset_unknown, PMOVSSET_EL0 },
1399
1400        { SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
1401        { SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
1402
1403        { SYS_DESC(SYS_CNTP_TVAL_EL0), access_cntp_tval },
1404        { SYS_DESC(SYS_CNTP_CTL_EL0), access_cntp_ctl },
1405        { SYS_DESC(SYS_CNTP_CVAL_EL0), access_cntp_cval },
1406
1407        /* PMEVCNTRn_EL0 */
1408        PMU_PMEVCNTR_EL0(0),
1409        PMU_PMEVCNTR_EL0(1),
1410        PMU_PMEVCNTR_EL0(2),
1411        PMU_PMEVCNTR_EL0(3),
1412        PMU_PMEVCNTR_EL0(4),
1413        PMU_PMEVCNTR_EL0(5),
1414        PMU_PMEVCNTR_EL0(6),
1415        PMU_PMEVCNTR_EL0(7),
1416        PMU_PMEVCNTR_EL0(8),
1417        PMU_PMEVCNTR_EL0(9),
1418        PMU_PMEVCNTR_EL0(10),
1419        PMU_PMEVCNTR_EL0(11),
1420        PMU_PMEVCNTR_EL0(12),
1421        PMU_PMEVCNTR_EL0(13),
1422        PMU_PMEVCNTR_EL0(14),
1423        PMU_PMEVCNTR_EL0(15),
1424        PMU_PMEVCNTR_EL0(16),
1425        PMU_PMEVCNTR_EL0(17),
1426        PMU_PMEVCNTR_EL0(18),
1427        PMU_PMEVCNTR_EL0(19),
1428        PMU_PMEVCNTR_EL0(20),
1429        PMU_PMEVCNTR_EL0(21),
1430        PMU_PMEVCNTR_EL0(22),
1431        PMU_PMEVCNTR_EL0(23),
1432        PMU_PMEVCNTR_EL0(24),
1433        PMU_PMEVCNTR_EL0(25),
1434        PMU_PMEVCNTR_EL0(26),
1435        PMU_PMEVCNTR_EL0(27),
1436        PMU_PMEVCNTR_EL0(28),
1437        PMU_PMEVCNTR_EL0(29),
1438        PMU_PMEVCNTR_EL0(30),
1439        /* PMEVTYPERn_EL0 */
1440        PMU_PMEVTYPER_EL0(0),
1441        PMU_PMEVTYPER_EL0(1),
1442        PMU_PMEVTYPER_EL0(2),
1443        PMU_PMEVTYPER_EL0(3),
1444        PMU_PMEVTYPER_EL0(4),
1445        PMU_PMEVTYPER_EL0(5),
1446        PMU_PMEVTYPER_EL0(6),
1447        PMU_PMEVTYPER_EL0(7),
1448        PMU_PMEVTYPER_EL0(8),
1449        PMU_PMEVTYPER_EL0(9),
1450        PMU_PMEVTYPER_EL0(10),
1451        PMU_PMEVTYPER_EL0(11),
1452        PMU_PMEVTYPER_EL0(12),
1453        PMU_PMEVTYPER_EL0(13),
1454        PMU_PMEVTYPER_EL0(14),
1455        PMU_PMEVTYPER_EL0(15),
1456        PMU_PMEVTYPER_EL0(16),
1457        PMU_PMEVTYPER_EL0(17),
1458        PMU_PMEVTYPER_EL0(18),
1459        PMU_PMEVTYPER_EL0(19),
1460        PMU_PMEVTYPER_EL0(20),
1461        PMU_PMEVTYPER_EL0(21),
1462        PMU_PMEVTYPER_EL0(22),
1463        PMU_PMEVTYPER_EL0(23),
1464        PMU_PMEVTYPER_EL0(24),
1465        PMU_PMEVTYPER_EL0(25),
1466        PMU_PMEVTYPER_EL0(26),
1467        PMU_PMEVTYPER_EL0(27),
1468        PMU_PMEVTYPER_EL0(28),
1469        PMU_PMEVTYPER_EL0(29),
1470        PMU_PMEVTYPER_EL0(30),
1471        /*
1472         * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
1473         * in 32bit mode. Here we choose to reset it as zero for consistency.
1474         */
1475        { SYS_DESC(SYS_PMCCFILTR_EL0), access_pmu_evtyper, reset_val, PMCCFILTR_EL0, 0 },
1476
1477        { SYS_DESC(SYS_DACR32_EL2), NULL, reset_unknown, DACR32_EL2 },
1478        { SYS_DESC(SYS_IFSR32_EL2), NULL, reset_unknown, IFSR32_EL2 },
1479        { SYS_DESC(SYS_FPEXC32_EL2), NULL, reset_val, FPEXC32_EL2, 0x70 },
1480};
1481
1482static bool trap_dbgidr(struct kvm_vcpu *vcpu,
1483                        struct sys_reg_params *p,
1484                        const struct sys_reg_desc *r)
1485{
1486        if (p->is_write) {
1487                return ignore_write(vcpu, p);
1488        } else {
1489                u64 dfr = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
1490                u64 pfr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1491                u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL3_SHIFT);
1492
1493                p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) |
1494                             (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) |
1495                             (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20)
1496                             | (6 << 16) | (el3 << 14) | (el3 << 12));
1497                return true;
1498        }
1499}
1500
1501static bool trap_debug32(struct kvm_vcpu *vcpu,
1502                         struct sys_reg_params *p,
1503                         const struct sys_reg_desc *r)
1504{
1505        if (p->is_write) {
1506                vcpu_cp14(vcpu, r->reg) = p->regval;
1507                vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
1508        } else {
1509                p->regval = vcpu_cp14(vcpu, r->reg);
1510        }
1511
1512        return true;
1513}
1514
1515/* AArch32 debug register mappings
1516 *
1517 * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
1518 * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
1519 *
1520 * All control registers and watchpoint value registers are mapped to
1521 * the lower 32 bits of their AArch64 equivalents. We share the trap
1522 * handlers with the above AArch64 code which checks what mode the
1523 * system is in.
1524 */
1525
1526static bool trap_xvr(struct kvm_vcpu *vcpu,
1527                     struct sys_reg_params *p,
1528                     const struct sys_reg_desc *rd)
1529{
1530        u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
1531
1532        if (p->is_write) {
1533                u64 val = *dbg_reg;
1534
1535                val &= 0xffffffffUL;
1536                val |= p->regval << 32;
1537                *dbg_reg = val;
1538
1539                vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
1540        } else {
1541                p->regval = *dbg_reg >> 32;
1542        }
1543
1544        trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
1545
1546        return true;
1547}
1548
1549#define DBG_BCR_BVR_WCR_WVR(n)                                          \
1550        /* DBGBVRn */                                                   \
1551        { Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n },     \
1552        /* DBGBCRn */                                                   \
1553        { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n },     \
1554        /* DBGWVRn */                                                   \
1555        { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n },     \
1556        /* DBGWCRn */                                                   \
1557        { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
1558
1559#define DBGBXVR(n)                                                      \
1560        { Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_xvr, NULL, n }
1561
1562/*
1563 * Trapped cp14 registers. We generally ignore most of the external
1564 * debug, on the principle that they don't really make sense to a
1565 * guest. Revisit this one day, would this principle change.
1566 */
1567static const struct sys_reg_desc cp14_regs[] = {
1568        /* DBGIDR */
1569        { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr },
1570        /* DBGDTRRXext */
1571        { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
1572
1573        DBG_BCR_BVR_WCR_WVR(0),
1574        /* DBGDSCRint */
1575        { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
1576        DBG_BCR_BVR_WCR_WVR(1),
1577        /* DBGDCCINT */
1578        { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32 },
1579        /* DBGDSCRext */
1580        { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32 },
1581        DBG_BCR_BVR_WCR_WVR(2),
1582        /* DBGDTR[RT]Xint */
1583        { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
1584        /* DBGDTR[RT]Xext */
1585        { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
1586        DBG_BCR_BVR_WCR_WVR(3),
1587        DBG_BCR_BVR_WCR_WVR(4),
1588        DBG_BCR_BVR_WCR_WVR(5),
1589        /* DBGWFAR */
1590        { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
1591        /* DBGOSECCR */
1592        { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
1593        DBG_BCR_BVR_WCR_WVR(6),
1594        /* DBGVCR */
1595        { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32 },
1596        DBG_BCR_BVR_WCR_WVR(7),
1597        DBG_BCR_BVR_WCR_WVR(8),
1598        DBG_BCR_BVR_WCR_WVR(9),
1599        DBG_BCR_BVR_WCR_WVR(10),
1600        DBG_BCR_BVR_WCR_WVR(11),
1601        DBG_BCR_BVR_WCR_WVR(12),
1602        DBG_BCR_BVR_WCR_WVR(13),
1603        DBG_BCR_BVR_WCR_WVR(14),
1604        DBG_BCR_BVR_WCR_WVR(15),
1605
1606        /* DBGDRAR (32bit) */
1607        { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
1608
1609        DBGBXVR(0),
1610        /* DBGOSLAR */
1611        { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
1612        DBGBXVR(1),
1613        /* DBGOSLSR */
1614        { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
1615        DBGBXVR(2),
1616        DBGBXVR(3),
1617        /* DBGOSDLR */
1618        { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
1619        DBGBXVR(4),
1620        /* DBGPRCR */
1621        { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
1622        DBGBXVR(5),
1623        DBGBXVR(6),
1624        DBGBXVR(7),
1625        DBGBXVR(8),
1626        DBGBXVR(9),
1627        DBGBXVR(10),
1628        DBGBXVR(11),
1629        DBGBXVR(12),
1630        DBGBXVR(13),
1631        DBGBXVR(14),
1632        DBGBXVR(15),
1633
1634        /* DBGDSAR (32bit) */
1635        { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
1636
1637        /* DBGDEVID2 */
1638        { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
1639        /* DBGDEVID1 */
1640        { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
1641        /* DBGDEVID */
1642        { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
1643        /* DBGCLAIMSET */
1644        { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
1645        /* DBGCLAIMCLR */
1646        { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
1647        /* DBGAUTHSTATUS */
1648        { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
1649};
1650
1651/* Trapped cp14 64bit registers */
1652static const struct sys_reg_desc cp14_64_regs[] = {
1653        /* DBGDRAR (64bit) */
1654        { Op1( 0), CRm( 1), .access = trap_raz_wi },
1655
1656        /* DBGDSAR (64bit) */
1657        { Op1( 0), CRm( 2), .access = trap_raz_wi },
1658};
1659
1660/* Macro to expand the PMEVCNTRn register */
1661#define PMU_PMEVCNTR(n)                                                 \
1662        /* PMEVCNTRn */                                                 \
1663        { Op1(0), CRn(0b1110),                                          \
1664          CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),         \
1665          access_pmu_evcntr }
1666
1667/* Macro to expand the PMEVTYPERn register */
1668#define PMU_PMEVTYPER(n)                                                \
1669        /* PMEVTYPERn */                                                \
1670        { Op1(0), CRn(0b1110),                                          \
1671          CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),         \
1672          access_pmu_evtyper }
1673
1674/*
1675 * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
1676 * depending on the way they are accessed (as a 32bit or a 64bit
1677 * register).
1678 */
1679static const struct sys_reg_desc cp15_regs[] = {
1680        { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, c1_SCTLR },
1681        { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
1682        { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
1683        { Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
1684        { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
1685        { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
1686        { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
1687        { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
1688        { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
1689        { Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
1690        { Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },
1691
1692        /*
1693         * DC{C,I,CI}SW operations:
1694         */
1695        { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
1696        { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
1697        { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
1698
1699        /* PMU */
1700        { Op1( 0), CRn( 9), CRm(12), Op2( 0), access_pmcr },
1701        { Op1( 0), CRn( 9), CRm(12), Op2( 1), access_pmcnten },
1702        { Op1( 0), CRn( 9), CRm(12), Op2( 2), access_pmcnten },
1703        { Op1( 0), CRn( 9), CRm(12), Op2( 3), access_pmovs },
1704        { Op1( 0), CRn( 9), CRm(12), Op2( 4), access_pmswinc },
1705        { Op1( 0), CRn( 9), CRm(12), Op2( 5), access_pmselr },
1706        { Op1( 0), CRn( 9), CRm(12), Op2( 6), access_pmceid },
1707        { Op1( 0), CRn( 9), CRm(12), Op2( 7), access_pmceid },
1708        { Op1( 0), CRn( 9), CRm(13), Op2( 0), access_pmu_evcntr },
1709        { Op1( 0), CRn( 9), CRm(13), Op2( 1), access_pmu_evtyper },
1710        { Op1( 0), CRn( 9), CRm(13), Op2( 2), access_pmu_evcntr },
1711        { Op1( 0), CRn( 9), CRm(14), Op2( 0), access_pmuserenr },
1712        { Op1( 0), CRn( 9), CRm(14), Op2( 1), access_pminten },
1713        { Op1( 0), CRn( 9), CRm(14), Op2( 2), access_pminten },
1714        { Op1( 0), CRn( 9), CRm(14), Op2( 3), access_pmovs },
1715
1716        { Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
1717        { Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
1718        { Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
1719        { Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },
1720
1721        /* ICC_SRE */
1722        { Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
1723
1724        { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },
1725
1726        /* CNTP_TVAL */
1727        { Op1( 0), CRn(14), CRm( 2), Op2( 0), access_cntp_tval },
1728        /* CNTP_CTL */
1729        { Op1( 0), CRn(14), CRm( 2), Op2( 1), access_cntp_ctl },
1730
1731        /* PMEVCNTRn */
1732        PMU_PMEVCNTR(0),
1733        PMU_PMEVCNTR(1),
1734        PMU_PMEVCNTR(2),
1735        PMU_PMEVCNTR(3),
1736        PMU_PMEVCNTR(4),
1737        PMU_PMEVCNTR(5),
1738        PMU_PMEVCNTR(6),
1739        PMU_PMEVCNTR(7),
1740        PMU_PMEVCNTR(8),
1741        PMU_PMEVCNTR(9),
1742        PMU_PMEVCNTR(10),
1743        PMU_PMEVCNTR(11),
1744        PMU_PMEVCNTR(12),
1745        PMU_PMEVCNTR(13),
1746        PMU_PMEVCNTR(14),
1747        PMU_PMEVCNTR(15),
1748        PMU_PMEVCNTR(16),
1749        PMU_PMEVCNTR(17),
1750        PMU_PMEVCNTR(18),
1751        PMU_PMEVCNTR(19),
1752        PMU_PMEVCNTR(20),
1753        PMU_PMEVCNTR(21),
1754        PMU_PMEVCNTR(22),
1755        PMU_PMEVCNTR(23),
1756        PMU_PMEVCNTR(24),
1757        PMU_PMEVCNTR(25),
1758        PMU_PMEVCNTR(26),
1759        PMU_PMEVCNTR(27),
1760        PMU_PMEVCNTR(28),
1761        PMU_PMEVCNTR(29),
1762        PMU_PMEVCNTR(30),
1763        /* PMEVTYPERn */
1764        PMU_PMEVTYPER(0),
1765        PMU_PMEVTYPER(1),
1766        PMU_PMEVTYPER(2),
1767        PMU_PMEVTYPER(3),
1768        PMU_PMEVTYPER(4),
1769        PMU_PMEVTYPER(5),
1770        PMU_PMEVTYPER(6),
1771        PMU_PMEVTYPER(7),
1772        PMU_PMEVTYPER(8),
1773        PMU_PMEVTYPER(9),
1774        PMU_PMEVTYPER(10),
1775        PMU_PMEVTYPER(11),
1776        PMU_PMEVTYPER(12),
1777        PMU_PMEVTYPER(13),
1778        PMU_PMEVTYPER(14),
1779        PMU_PMEVTYPER(15),
1780        PMU_PMEVTYPER(16),
1781        PMU_PMEVTYPER(17),
1782        PMU_PMEVTYPER(18),
1783        PMU_PMEVTYPER(19),
1784        PMU_PMEVTYPER(20),
1785        PMU_PMEVTYPER(21),
1786        PMU_PMEVTYPER(22),
1787        PMU_PMEVTYPER(23),
1788        PMU_PMEVTYPER(24),
1789        PMU_PMEVTYPER(25),
1790        PMU_PMEVTYPER(26),
1791        PMU_PMEVTYPER(27),
1792        PMU_PMEVTYPER(28),
1793        PMU_PMEVTYPER(29),
1794        PMU_PMEVTYPER(30),
1795        /* PMCCFILTR */
1796        { Op1(0), CRn(14), CRm(15), Op2(7), access_pmu_evtyper },
1797};
1798
1799static const struct sys_reg_desc cp15_64_regs[] = {
1800        { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
1801        { Op1( 0), CRn( 0), CRm( 9), Op2( 0), access_pmu_evcntr },
1802        { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */
1803        { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
1804        { Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */
1805        { Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */
1806        { Op1( 2), CRn( 0), CRm(14), Op2( 0), access_cntp_cval },
1807};
1808
1809/* Target specific emulation tables */
1810static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS];
1811
1812void kvm_register_target_sys_reg_table(unsigned int target,
1813                                       struct kvm_sys_reg_target_table *table)
1814{
1815        target_tables[target] = table;
1816}
1817
1818/* Get specific register table for this target. */
1819static const struct sys_reg_desc *get_target_table(unsigned target,
1820                                                   bool mode_is_64,
1821                                                   size_t *num)
1822{
1823        struct kvm_sys_reg_target_table *table;
1824
1825        table = target_tables[target];
1826        if (mode_is_64) {
1827                *num = table->table64.num;
1828                return table->table64.table;
1829        } else {
1830                *num = table->table32.num;
1831                return table->table32.table;
1832        }
1833}
1834
1835#define reg_to_match_value(x)                                           \
1836        ({                                                              \
1837                unsigned long val;                                      \
1838                val  = (x)->Op0 << 14;                                  \
1839                val |= (x)->Op1 << 11;                                  \
1840                val |= (x)->CRn << 7;                                   \
1841                val |= (x)->CRm << 3;                                   \
1842                val |= (x)->Op2;                                        \
1843                val;                                                    \
1844         })
1845
1846static int match_sys_reg(const void *key, const void *elt)
1847{
1848        const unsigned long pval = (unsigned long)key;
1849        const struct sys_reg_desc *r = elt;
1850
1851        return pval - reg_to_match_value(r);
1852}
1853
1854static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
1855                                         const struct sys_reg_desc table[],
1856                                         unsigned int num)
1857{
1858        unsigned long pval = reg_to_match_value(params);
1859
1860        return bsearch((void *)pval, table, num, sizeof(table[0]), match_sys_reg);
1861}
1862
1863int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
1864{
1865        kvm_inject_undefined(vcpu);
1866        return 1;
1867}
1868
1869static void perform_access(struct kvm_vcpu *vcpu,
1870                           struct sys_reg_params *params,
1871                           const struct sys_reg_desc *r)
1872{
1873        trace_kvm_sys_access(*vcpu_pc(vcpu), params, r);
1874
1875        /*
1876         * Not having an accessor means that we have configured a trap
1877         * that we don't know how to handle. This certainly qualifies
1878         * as a gross bug that should be fixed right away.
1879         */
1880        BUG_ON(!r->access);
1881
1882        /* Skip instruction if instructed so */
1883        if (likely(r->access(vcpu, params, r)))
1884                kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1885}
1886
1887/*
1888 * emulate_cp --  tries to match a sys_reg access in a handling table, and
1889 *                call the corresponding trap handler.
1890 *
1891 * @params: pointer to the descriptor of the access
1892 * @table: array of trap descriptors
1893 * @num: size of the trap descriptor array
1894 *
1895 * Return 0 if the access has been handled, and -1 if not.
1896 */
1897static int emulate_cp(struct kvm_vcpu *vcpu,
1898                      struct sys_reg_params *params,
1899                      const struct sys_reg_desc *table,
1900                      size_t num)
1901{
1902        const struct sys_reg_desc *r;
1903
1904        if (!table)
1905                return -1;      /* Not handled */
1906
1907        r = find_reg(params, table, num);
1908
1909        if (r) {
1910                perform_access(vcpu, params, r);
1911                return 0;
1912        }
1913
1914        /* Not handled */
1915        return -1;
1916}
1917
1918static void unhandled_cp_access(struct kvm_vcpu *vcpu,
1919                                struct sys_reg_params *params)
1920{
1921        u8 hsr_ec = kvm_vcpu_trap_get_class(vcpu);
1922        int cp = -1;
1923
1924        switch(hsr_ec) {
1925        case ESR_ELx_EC_CP15_32:
1926        case ESR_ELx_EC_CP15_64:
1927                cp = 15;
1928                break;
1929        case ESR_ELx_EC_CP14_MR:
1930        case ESR_ELx_EC_CP14_64:
1931                cp = 14;
1932                break;
1933        default:
1934                WARN_ON(1);
1935        }
1936
1937        kvm_err("Unsupported guest CP%d access at: %08lx [%08lx]\n",
1938                cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
1939        print_sys_reg_instr(params);
1940        kvm_inject_undefined(vcpu);
1941}
1942
1943/**
1944 * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
1945 * @vcpu: The VCPU pointer
1946 * @run:  The kvm_run struct
1947 */
1948static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
1949                            const struct sys_reg_desc *global,
1950                            size_t nr_global,
1951                            const struct sys_reg_desc *target_specific,
1952                            size_t nr_specific)
1953{
1954        struct sys_reg_params params;
1955        u32 hsr = kvm_vcpu_get_hsr(vcpu);
1956        int Rt = kvm_vcpu_sys_get_rt(vcpu);
1957        int Rt2 = (hsr >> 10) & 0x1f;
1958
1959        params.is_aarch32 = true;
1960        params.is_32bit = false;
1961        params.CRm = (hsr >> 1) & 0xf;
1962        params.is_write = ((hsr & 1) == 0);
1963
1964        params.Op0 = 0;
1965        params.Op1 = (hsr >> 16) & 0xf;
1966        params.Op2 = 0;
1967        params.CRn = 0;
1968
1969        /*
1970         * Make a 64-bit value out of Rt and Rt2. As we use the same trap
1971         * backends between AArch32 and AArch64, we get away with it.
1972         */
1973        if (params.is_write) {
1974                params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
1975                params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
1976        }
1977
1978        /*
1979         * Try to emulate the coprocessor access using the target
1980         * specific table first, and using the global table afterwards.
1981         * If either of the tables contains a handler, handle the
1982         * potential register operation in the case of a read and return
1983         * with success.
1984         */
1985        if (!emulate_cp(vcpu, &params, target_specific, nr_specific) ||
1986            !emulate_cp(vcpu, &params, global, nr_global)) {
1987                /* Split up the value between registers for the read side */
1988                if (!params.is_write) {
1989                        vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
1990                        vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
1991                }
1992
1993                return 1;
1994        }
1995
1996        unhandled_cp_access(vcpu, &params);
1997        return 1;
1998}
1999
2000/**
2001 * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
2002 * @vcpu: The VCPU pointer
2003 * @run:  The kvm_run struct
2004 */
2005static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
2006                            const struct sys_reg_desc *global,
2007                            size_t nr_global,
2008                            const struct sys_reg_desc *target_specific,
2009                            size_t nr_specific)
2010{
2011        struct sys_reg_params params;
2012        u32 hsr = kvm_vcpu_get_hsr(vcpu);
2013        int Rt  = kvm_vcpu_sys_get_rt(vcpu);
2014
2015        params.is_aarch32 = true;
2016        params.is_32bit = true;
2017        params.CRm = (hsr >> 1) & 0xf;
2018        params.regval = vcpu_get_reg(vcpu, Rt);
2019        params.is_write = ((hsr & 1) == 0);
2020        params.CRn = (hsr >> 10) & 0xf;
2021        params.Op0 = 0;
2022        params.Op1 = (hsr >> 14) & 0x7;
2023        params.Op2 = (hsr >> 17) & 0x7;
2024
2025        if (!emulate_cp(vcpu, &params, target_specific, nr_specific) ||
2026            !emulate_cp(vcpu, &params, global, nr_global)) {
2027                if (!params.is_write)
2028                        vcpu_set_reg(vcpu, Rt, params.regval);
2029                return 1;
2030        }
2031
2032        unhandled_cp_access(vcpu, &params);
2033        return 1;
2034}
2035
2036int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
2037{
2038        const struct sys_reg_desc *target_specific;
2039        size_t num;
2040
2041        target_specific = get_target_table(vcpu->arch.target, false, &num);
2042        return kvm_handle_cp_64(vcpu,
2043                                cp15_64_regs, ARRAY_SIZE(cp15_64_regs),
2044                                target_specific, num);
2045}
2046
2047int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
2048{
2049        const struct sys_reg_desc *target_specific;
2050        size_t num;
2051
2052        target_specific = get_target_table(vcpu->arch.target, false, &num);
2053        return kvm_handle_cp_32(vcpu,
2054                                cp15_regs, ARRAY_SIZE(cp15_regs),
2055                                target_specific, num);
2056}
2057
2058int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
2059{
2060        return kvm_handle_cp_64(vcpu,
2061                                cp14_64_regs, ARRAY_SIZE(cp14_64_regs),
2062                                NULL, 0);
2063}
2064
2065int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
2066{
2067        return kvm_handle_cp_32(vcpu,
2068                                cp14_regs, ARRAY_SIZE(cp14_regs),
2069                                NULL, 0);
2070}
2071
2072static int emulate_sys_reg(struct kvm_vcpu *vcpu,
2073                           struct sys_reg_params *params)
2074{
2075        size_t num;
2076        const struct sys_reg_desc *table, *r;
2077
2078        table = get_target_table(vcpu->arch.target, true, &num);
2079
2080        /* Search target-specific then generic table. */
2081        r = find_reg(params, table, num);
2082        if (!r)
2083                r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2084
2085        if (likely(r)) {
2086                perform_access(vcpu, params, r);
2087        } else {
2088                kvm_err("Unsupported guest sys_reg access at: %lx [%08lx]\n",
2089                        *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2090                print_sys_reg_instr(params);
2091                kvm_inject_undefined(vcpu);
2092        }
2093        return 1;
2094}
2095
2096static void reset_sys_reg_descs(struct kvm_vcpu *vcpu,
2097                              const struct sys_reg_desc *table, size_t num)
2098{
2099        unsigned long i;
2100
2101        for (i = 0; i < num; i++)
2102                if (table[i].reset)
2103                        table[i].reset(vcpu, &table[i]);
2104}
2105
2106/**
2107 * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
2108 * @vcpu: The VCPU pointer
2109 * @run:  The kvm_run struct
2110 */
2111int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run)
2112{
2113        struct sys_reg_params params;
2114        unsigned long esr = kvm_vcpu_get_hsr(vcpu);
2115        int Rt = kvm_vcpu_sys_get_rt(vcpu);
2116        int ret;
2117
2118        trace_kvm_handle_sys_reg(esr);
2119
2120        params.is_aarch32 = false;
2121        params.is_32bit = false;
2122        params.Op0 = (esr >> 20) & 3;
2123        params.Op1 = (esr >> 14) & 0x7;
2124        params.CRn = (esr >> 10) & 0xf;
2125        params.CRm = (esr >> 1) & 0xf;
2126        params.Op2 = (esr >> 17) & 0x7;
2127        params.regval = vcpu_get_reg(vcpu, Rt);
2128        params.is_write = !(esr & 1);
2129
2130        ret = emulate_sys_reg(vcpu, &params);
2131
2132        if (!params.is_write)
2133                vcpu_set_reg(vcpu, Rt, params.regval);
2134        return ret;
2135}
2136
2137/******************************************************************************
2138 * Userspace API
2139 *****************************************************************************/
2140
2141static bool index_to_params(u64 id, struct sys_reg_params *params)
2142{
2143        switch (id & KVM_REG_SIZE_MASK) {
2144        case KVM_REG_SIZE_U64:
2145                /* Any unused index bits means it's not valid. */
2146                if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
2147                              | KVM_REG_ARM_COPROC_MASK
2148                              | KVM_REG_ARM64_SYSREG_OP0_MASK
2149                              | KVM_REG_ARM64_SYSREG_OP1_MASK
2150                              | KVM_REG_ARM64_SYSREG_CRN_MASK
2151                              | KVM_REG_ARM64_SYSREG_CRM_MASK
2152                              | KVM_REG_ARM64_SYSREG_OP2_MASK))
2153                        return false;
2154                params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
2155                               >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
2156                params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
2157                               >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
2158                params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
2159                               >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
2160                params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
2161                               >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
2162                params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
2163                               >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
2164                return true;
2165        default:
2166                return false;
2167        }
2168}
2169
2170const struct sys_reg_desc *find_reg_by_id(u64 id,
2171                                          struct sys_reg_params *params,
2172                                          const struct sys_reg_desc table[],
2173                                          unsigned int num)
2174{
2175        if (!index_to_params(id, params))
2176                return NULL;
2177
2178        return find_reg(params, table, num);
2179}
2180
2181/* Decode an index value, and find the sys_reg_desc entry. */
2182static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
2183                                                    u64 id)
2184{
2185        size_t num;
2186        const struct sys_reg_desc *table, *r;
2187        struct sys_reg_params params;
2188
2189        /* We only do sys_reg for now. */
2190        if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
2191                return NULL;
2192
2193        table = get_target_table(vcpu->arch.target, true, &num);
2194        r = find_reg_by_id(id, &params, table, num);
2195        if (!r)
2196                r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2197
2198        /* Not saved in the sys_reg array and not otherwise accessible? */
2199        if (r && !(r->reg || r->get_user))
2200                r = NULL;
2201
2202        return r;
2203}
2204
2205/*
2206 * These are the invariant sys_reg registers: we let the guest see the
2207 * host versions of these, so they're part of the guest state.
2208 *
2209 * A future CPU may provide a mechanism to present different values to
2210 * the guest, or a future kvm may trap them.
2211 */
2212
2213#define FUNCTION_INVARIANT(reg)                                         \
2214        static void get_##reg(struct kvm_vcpu *v,                       \
2215                              const struct sys_reg_desc *r)             \
2216        {                                                               \
2217                ((struct sys_reg_desc *)r)->val = read_sysreg(reg);     \
2218        }
2219
2220FUNCTION_INVARIANT(midr_el1)
2221FUNCTION_INVARIANT(ctr_el0)
2222FUNCTION_INVARIANT(revidr_el1)
2223FUNCTION_INVARIANT(clidr_el1)
2224FUNCTION_INVARIANT(aidr_el1)
2225
2226/* ->val is filled in by kvm_sys_reg_table_init() */
2227static struct sys_reg_desc invariant_sys_regs[] = {
2228        { SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 },
2229        { SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 },
2230        { SYS_DESC(SYS_CLIDR_EL1), NULL, get_clidr_el1 },
2231        { SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 },
2232        { SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 },
2233};
2234
2235static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
2236{
2237        if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
2238                return -EFAULT;
2239        return 0;
2240}
2241
2242static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
2243{
2244        if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
2245                return -EFAULT;
2246        return 0;
2247}
2248
2249static int get_invariant_sys_reg(u64 id, void __user *uaddr)
2250{
2251        struct sys_reg_params params;
2252        const struct sys_reg_desc *r;
2253
2254        r = find_reg_by_id(id, &params, invariant_sys_regs,
2255                           ARRAY_SIZE(invariant_sys_regs));
2256        if (!r)
2257                return -ENOENT;
2258
2259        return reg_to_user(uaddr, &r->val, id);
2260}
2261
2262static int set_invariant_sys_reg(u64 id, void __user *uaddr)
2263{
2264        struct sys_reg_params params;
2265        const struct sys_reg_desc *r;
2266        int err;
2267        u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
2268
2269        r = find_reg_by_id(id, &params, invariant_sys_regs,
2270                           ARRAY_SIZE(invariant_sys_regs));
2271        if (!r)
2272                return -ENOENT;
2273
2274        err = reg_from_user(&val, uaddr, id);
2275        if (err)
2276                return err;
2277
2278        /* This is what we mean by invariant: you can't change it. */
2279        if (r->val != val)
2280                return -EINVAL;
2281
2282        return 0;
2283}
2284
2285static bool is_valid_cache(u32 val)
2286{
2287        u32 level, ctype;
2288
2289        if (val >= CSSELR_MAX)
2290                return false;
2291
2292        /* Bottom bit is Instruction or Data bit.  Next 3 bits are level. */
2293        level = (val >> 1);
2294        ctype = (cache_levels >> (level * 3)) & 7;
2295
2296        switch (ctype) {
2297        case 0: /* No cache */
2298                return false;
2299        case 1: /* Instruction cache only */
2300                return (val & 1);
2301        case 2: /* Data cache only */
2302        case 4: /* Unified cache */
2303                return !(val & 1);
2304        case 3: /* Separate instruction and data caches */
2305                return true;
2306        default: /* Reserved: we can't know instruction or data. */
2307                return false;
2308        }
2309}
2310
2311static int demux_c15_get(u64 id, void __user *uaddr)
2312{
2313        u32 val;
2314        u32 __user *uval = uaddr;
2315
2316        /* Fail if we have unknown bits set. */
2317        if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2318                   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2319                return -ENOENT;
2320
2321        switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2322        case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2323                if (KVM_REG_SIZE(id) != 4)
2324                        return -ENOENT;
2325                val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2326                        >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2327                if (!is_valid_cache(val))
2328                        return -ENOENT;
2329
2330                return put_user(get_ccsidr(val), uval);
2331        default:
2332                return -ENOENT;
2333        }
2334}
2335
2336static int demux_c15_set(u64 id, void __user *uaddr)
2337{
2338        u32 val, newval;
2339        u32 __user *uval = uaddr;
2340
2341        /* Fail if we have unknown bits set. */
2342        if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2343                   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2344                return -ENOENT;
2345
2346        switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2347        case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2348                if (KVM_REG_SIZE(id) != 4)
2349                        return -ENOENT;
2350                val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2351                        >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2352                if (!is_valid_cache(val))
2353                        return -ENOENT;
2354
2355                if (get_user(newval, uval))
2356                        return -EFAULT;
2357
2358                /* This is also invariant: you can't change it. */
2359                if (newval != get_ccsidr(val))
2360                        return -EINVAL;
2361                return 0;
2362        default:
2363                return -ENOENT;
2364        }
2365}
2366
2367int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2368{
2369        const struct sys_reg_desc *r;
2370        void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2371
2372        if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2373                return demux_c15_get(reg->id, uaddr);
2374
2375        if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2376                return -ENOENT;
2377
2378        r = index_to_sys_reg_desc(vcpu, reg->id);
2379        if (!r)
2380                return get_invariant_sys_reg(reg->id, uaddr);
2381
2382        if (r->get_user)
2383                return (r->get_user)(vcpu, r, reg, uaddr);
2384
2385        return reg_to_user(uaddr, &__vcpu_sys_reg(vcpu, r->reg), reg->id);
2386}
2387
2388int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2389{
2390        const struct sys_reg_desc *r;
2391        void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2392
2393        if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2394                return demux_c15_set(reg->id, uaddr);
2395
2396        if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2397                return -ENOENT;
2398
2399        r = index_to_sys_reg_desc(vcpu, reg->id);
2400        if (!r)
2401                return set_invariant_sys_reg(reg->id, uaddr);
2402
2403        if (r->set_user)
2404                return (r->set_user)(vcpu, r, reg, uaddr);
2405
2406        return reg_from_user(&__vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
2407}
2408
2409static unsigned int num_demux_regs(void)
2410{
2411        unsigned int i, count = 0;
2412
2413        for (i = 0; i < CSSELR_MAX; i++)
2414                if (is_valid_cache(i))
2415                        count++;
2416
2417        return count;
2418}
2419
2420static int write_demux_regids(u64 __user *uindices)
2421{
2422        u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
2423        unsigned int i;
2424
2425        val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
2426        for (i = 0; i < CSSELR_MAX; i++) {
2427                if (!is_valid_cache(i))
2428                        continue;
2429                if (put_user(val | i, uindices))
2430                        return -EFAULT;
2431                uindices++;
2432        }
2433        return 0;
2434}
2435
2436static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
2437{
2438        return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
2439                KVM_REG_ARM64_SYSREG |
2440                (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
2441                (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
2442                (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
2443                (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
2444                (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
2445}
2446
2447static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
2448{
2449        if (!*uind)
2450                return true;
2451
2452        if (put_user(sys_reg_to_index(reg), *uind))
2453                return false;
2454
2455        (*uind)++;
2456        return true;
2457}
2458
2459static int walk_one_sys_reg(const struct sys_reg_desc *rd,
2460                            u64 __user **uind,
2461                            unsigned int *total)
2462{
2463        /*
2464         * Ignore registers we trap but don't save,
2465         * and for which no custom user accessor is provided.
2466         */
2467        if (!(rd->reg || rd->get_user))
2468                return 0;
2469
2470        if (!copy_reg_to_user(rd, uind))
2471                return -EFAULT;
2472
2473        (*total)++;
2474        return 0;
2475}
2476
2477/* Assumed ordered tables, see kvm_sys_reg_table_init. */
2478static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
2479{
2480        const struct sys_reg_desc *i1, *i2, *end1, *end2;
2481        unsigned int total = 0;
2482        size_t num;
2483        int err;
2484
2485        /* We check for duplicates here, to allow arch-specific overrides. */
2486        i1 = get_target_table(vcpu->arch.target, true, &num);
2487        end1 = i1 + num;
2488        i2 = sys_reg_descs;
2489        end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
2490
2491        BUG_ON(i1 == end1 || i2 == end2);
2492
2493        /* Walk carefully, as both tables may refer to the same register. */
2494        while (i1 || i2) {
2495                int cmp = cmp_sys_reg(i1, i2);
2496                /* target-specific overrides generic entry. */
2497                if (cmp <= 0)
2498                        err = walk_one_sys_reg(i1, &uind, &total);
2499                else
2500                        err = walk_one_sys_reg(i2, &uind, &total);
2501
2502                if (err)
2503                        return err;
2504
2505                if (cmp <= 0 && ++i1 == end1)
2506                        i1 = NULL;
2507                if (cmp >= 0 && ++i2 == end2)
2508                        i2 = NULL;
2509        }
2510        return total;
2511}
2512
2513unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
2514{
2515        return ARRAY_SIZE(invariant_sys_regs)
2516                + num_demux_regs()
2517                + walk_sys_regs(vcpu, (u64 __user *)NULL);
2518}
2519
2520int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
2521{
2522        unsigned int i;
2523        int err;
2524
2525        /* Then give them all the invariant registers' indices. */
2526        for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
2527                if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
2528                        return -EFAULT;
2529                uindices++;
2530        }
2531
2532        err = walk_sys_regs(vcpu, uindices);
2533        if (err < 0)
2534                return err;
2535        uindices += err;
2536
2537        return write_demux_regids(uindices);
2538}
2539
2540static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n)
2541{
2542        unsigned int i;
2543
2544        for (i = 1; i < n; i++) {
2545                if (cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
2546                        kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
2547                        return 1;
2548                }
2549        }
2550
2551        return 0;
2552}
2553
2554void kvm_sys_reg_table_init(void)
2555{
2556        unsigned int i;
2557        struct sys_reg_desc clidr;
2558
2559        /* Make sure tables are unique and in order. */
2560        BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs)));
2561        BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs)));
2562        BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs)));
2563        BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
2564        BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs)));
2565        BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs)));
2566
2567        /* We abuse the reset function to overwrite the table itself. */
2568        for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
2569                invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
2570
2571        /*
2572         * CLIDR format is awkward, so clean it up.  See ARM B4.1.20:
2573         *
2574         *   If software reads the Cache Type fields from Ctype1
2575         *   upwards, once it has seen a value of 0b000, no caches
2576         *   exist at further-out levels of the hierarchy. So, for
2577         *   example, if Ctype3 is the first Cache Type field with a
2578         *   value of 0b000, the values of Ctype4 to Ctype7 must be
2579         *   ignored.
2580         */
2581        get_clidr_el1(NULL, &clidr); /* Ugly... */
2582        cache_levels = clidr.val;
2583        for (i = 0; i < 7; i++)
2584                if (((cache_levels >> (i*3)) & 7) == 0)
2585                        break;
2586        /* Clear all higher bits. */
2587        cache_levels &= (1 << (i*3))-1;
2588}
2589
2590/**
2591 * kvm_reset_sys_regs - sets system registers to reset value
2592 * @vcpu: The VCPU pointer
2593 *
2594 * This function finds the right table above and sets the registers on the
2595 * virtual CPU struct to their architecturally defined reset values.
2596 */
2597void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
2598{
2599        size_t num;
2600        const struct sys_reg_desc *table;
2601
2602        /* Catch someone adding a register without putting in reset entry. */
2603        memset(&vcpu->arch.ctxt.sys_regs, 0x42, sizeof(vcpu->arch.ctxt.sys_regs));
2604
2605        /* Generic chip reset first (so target could override). */
2606        reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2607
2608        table = get_target_table(vcpu->arch.target, true, &num);
2609        reset_sys_reg_descs(vcpu, table, num);
2610
2611        for (num = 1; num < NR_SYS_REGS; num++) {
2612                if (WARN(__vcpu_sys_reg(vcpu, num) == 0x4242424242424242,
2613                         "Didn't reset __vcpu_sys_reg(%zi)\n", num))
2614                        break;
2615        }
2616}
2617