linux/arch/powerpc/kernel/process.c
<<
>>
Prefs
   1/*
   2 *  Derived from "arch/i386/kernel/process.c"
   3 *    Copyright (C) 1995  Linus Torvalds
   4 *
   5 *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
   6 *  Paul Mackerras (paulus@cs.anu.edu.au)
   7 *
   8 *  PowerPC version
   9 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
  10 *
  11 *  This program is free software; you can redistribute it and/or
  12 *  modify it under the terms of the GNU General Public License
  13 *  as published by the Free Software Foundation; either version
  14 *  2 of the License, or (at your option) any later version.
  15 */
  16
  17#include <linux/errno.h>
  18#include <linux/sched.h>
  19#include <linux/sched/debug.h>
  20#include <linux/sched/task.h>
  21#include <linux/sched/task_stack.h>
  22#include <linux/kernel.h>
  23#include <linux/mm.h>
  24#include <linux/smp.h>
  25#include <linux/stddef.h>
  26#include <linux/unistd.h>
  27#include <linux/ptrace.h>
  28#include <linux/slab.h>
  29#include <linux/user.h>
  30#include <linux/elf.h>
  31#include <linux/prctl.h>
  32#include <linux/init_task.h>
  33#include <linux/export.h>
  34#include <linux/kallsyms.h>
  35#include <linux/mqueue.h>
  36#include <linux/hardirq.h>
  37#include <linux/utsname.h>
  38#include <linux/ftrace.h>
  39#include <linux/kernel_stat.h>
  40#include <linux/personality.h>
  41#include <linux/random.h>
  42#include <linux/hw_breakpoint.h>
  43#include <linux/uaccess.h>
  44#include <linux/elf-randomize.h>
  45#include <linux/pkeys.h>
  46#include <linux/seq_buf.h>
  47
  48#include <asm/pgtable.h>
  49#include <asm/io.h>
  50#include <asm/processor.h>
  51#include <asm/mmu.h>
  52#include <asm/prom.h>
  53#include <asm/machdep.h>
  54#include <asm/time.h>
  55#include <asm/runlatch.h>
  56#include <asm/syscalls.h>
  57#include <asm/switch_to.h>
  58#include <asm/tm.h>
  59#include <asm/debug.h>
  60#ifdef CONFIG_PPC64
  61#include <asm/firmware.h>
  62#include <asm/hw_irq.h>
  63#endif
  64#include <asm/code-patching.h>
  65#include <asm/exec.h>
  66#include <asm/livepatch.h>
  67#include <asm/cpu_has_feature.h>
  68#include <asm/asm-prototypes.h>
  69#include <asm/stacktrace.h>
  70
  71#include <linux/kprobes.h>
  72#include <linux/kdebug.h>
  73
  74/* Transactional Memory debug */
  75#ifdef TM_DEBUG_SW
  76#define TM_DEBUG(x...) printk(KERN_INFO x)
  77#else
  78#define TM_DEBUG(x...) do { } while(0)
  79#endif
  80
  81extern unsigned long _get_SP(void);
  82
  83#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
  84/*
  85 * Are we running in "Suspend disabled" mode? If so we have to block any
  86 * sigreturn that would get us into suspended state, and we also warn in some
  87 * other paths that we should never reach with suspend disabled.
  88 */
  89bool tm_suspend_disabled __ro_after_init = false;
  90
  91static void check_if_tm_restore_required(struct task_struct *tsk)
  92{
  93        /*
  94         * If we are saving the current thread's registers, and the
  95         * thread is in a transactional state, set the TIF_RESTORE_TM
  96         * bit so that we know to restore the registers before
  97         * returning to userspace.
  98         */
  99        if (tsk == current && tsk->thread.regs &&
 100            MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
 101            !test_thread_flag(TIF_RESTORE_TM)) {
 102                tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
 103                set_thread_flag(TIF_RESTORE_TM);
 104        }
 105}
 106
 107static bool tm_active_with_fp(struct task_struct *tsk)
 108{
 109        return MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
 110                (tsk->thread.ckpt_regs.msr & MSR_FP);
 111}
 112
 113static bool tm_active_with_altivec(struct task_struct *tsk)
 114{
 115        return MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
 116                (tsk->thread.ckpt_regs.msr & MSR_VEC);
 117}
 118#else
 119static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
 120static inline bool tm_active_with_fp(struct task_struct *tsk) { return false; }
 121static inline bool tm_active_with_altivec(struct task_struct *tsk) { return false; }
 122#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
 123
 124bool strict_msr_control;
 125EXPORT_SYMBOL(strict_msr_control);
 126
 127static int __init enable_strict_msr_control(char *str)
 128{
 129        strict_msr_control = true;
 130        pr_info("Enabling strict facility control\n");
 131
 132        return 0;
 133}
 134early_param("ppc_strict_facility_enable", enable_strict_msr_control);
 135
 136unsigned long msr_check_and_set(unsigned long bits)
 137{
 138        unsigned long oldmsr = mfmsr();
 139        unsigned long newmsr;
 140
 141        newmsr = oldmsr | bits;
 142
 143#ifdef CONFIG_VSX
 144        if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
 145                newmsr |= MSR_VSX;
 146#endif
 147
 148        if (oldmsr != newmsr)
 149                mtmsr_isync(newmsr);
 150
 151        return newmsr;
 152}
 153EXPORT_SYMBOL_GPL(msr_check_and_set);
 154
 155void __msr_check_and_clear(unsigned long bits)
 156{
 157        unsigned long oldmsr = mfmsr();
 158        unsigned long newmsr;
 159
 160        newmsr = oldmsr & ~bits;
 161
 162#ifdef CONFIG_VSX
 163        if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
 164                newmsr &= ~MSR_VSX;
 165#endif
 166
 167        if (oldmsr != newmsr)
 168                mtmsr_isync(newmsr);
 169}
 170EXPORT_SYMBOL(__msr_check_and_clear);
 171
 172#ifdef CONFIG_PPC_FPU
 173static void __giveup_fpu(struct task_struct *tsk)
 174{
 175        unsigned long msr;
 176
 177        save_fpu(tsk);
 178        msr = tsk->thread.regs->msr;
 179        msr &= ~MSR_FP;
 180#ifdef CONFIG_VSX
 181        if (cpu_has_feature(CPU_FTR_VSX))
 182                msr &= ~MSR_VSX;
 183#endif
 184        tsk->thread.regs->msr = msr;
 185}
 186
 187void giveup_fpu(struct task_struct *tsk)
 188{
 189        check_if_tm_restore_required(tsk);
 190
 191        msr_check_and_set(MSR_FP);
 192        __giveup_fpu(tsk);
 193        msr_check_and_clear(MSR_FP);
 194}
 195EXPORT_SYMBOL(giveup_fpu);
 196
 197/*
 198 * Make sure the floating-point register state in the
 199 * the thread_struct is up to date for task tsk.
 200 */
 201void flush_fp_to_thread(struct task_struct *tsk)
 202{
 203        if (tsk->thread.regs) {
 204                /*
 205                 * We need to disable preemption here because if we didn't,
 206                 * another process could get scheduled after the regs->msr
 207                 * test but before we have finished saving the FP registers
 208                 * to the thread_struct.  That process could take over the
 209                 * FPU, and then when we get scheduled again we would store
 210                 * bogus values for the remaining FP registers.
 211                 */
 212                preempt_disable();
 213                if (tsk->thread.regs->msr & MSR_FP) {
 214                        /*
 215                         * This should only ever be called for current or
 216                         * for a stopped child process.  Since we save away
 217                         * the FP register state on context switch,
 218                         * there is something wrong if a stopped child appears
 219                         * to still have its FP state in the CPU registers.
 220                         */
 221                        BUG_ON(tsk != current);
 222                        giveup_fpu(tsk);
 223                }
 224                preempt_enable();
 225        }
 226}
 227EXPORT_SYMBOL_GPL(flush_fp_to_thread);
 228
 229void enable_kernel_fp(void)
 230{
 231        unsigned long cpumsr;
 232
 233        WARN_ON(preemptible());
 234
 235        cpumsr = msr_check_and_set(MSR_FP);
 236
 237        if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
 238                check_if_tm_restore_required(current);
 239                /*
 240                 * If a thread has already been reclaimed then the
 241                 * checkpointed registers are on the CPU but have definitely
 242                 * been saved by the reclaim code. Don't need to and *cannot*
 243                 * giveup as this would save  to the 'live' structure not the
 244                 * checkpointed structure.
 245                 */
 246                if (!MSR_TM_ACTIVE(cpumsr) &&
 247                     MSR_TM_ACTIVE(current->thread.regs->msr))
 248                        return;
 249                __giveup_fpu(current);
 250        }
 251}
 252EXPORT_SYMBOL(enable_kernel_fp);
 253
 254static int restore_fp(struct task_struct *tsk)
 255{
 256        if (tsk->thread.load_fp || tm_active_with_fp(tsk)) {
 257                load_fp_state(&current->thread.fp_state);
 258                current->thread.load_fp++;
 259                return 1;
 260        }
 261        return 0;
 262}
 263#else
 264static int restore_fp(struct task_struct *tsk) { return 0; }
 265#endif /* CONFIG_PPC_FPU */
 266
 267#ifdef CONFIG_ALTIVEC
 268#define loadvec(thr) ((thr).load_vec)
 269
 270static void __giveup_altivec(struct task_struct *tsk)
 271{
 272        unsigned long msr;
 273
 274        save_altivec(tsk);
 275        msr = tsk->thread.regs->msr;
 276        msr &= ~MSR_VEC;
 277#ifdef CONFIG_VSX
 278        if (cpu_has_feature(CPU_FTR_VSX))
 279                msr &= ~MSR_VSX;
 280#endif
 281        tsk->thread.regs->msr = msr;
 282}
 283
 284void giveup_altivec(struct task_struct *tsk)
 285{
 286        check_if_tm_restore_required(tsk);
 287
 288        msr_check_and_set(MSR_VEC);
 289        __giveup_altivec(tsk);
 290        msr_check_and_clear(MSR_VEC);
 291}
 292EXPORT_SYMBOL(giveup_altivec);
 293
 294void enable_kernel_altivec(void)
 295{
 296        unsigned long cpumsr;
 297
 298        WARN_ON(preemptible());
 299
 300        cpumsr = msr_check_and_set(MSR_VEC);
 301
 302        if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
 303                check_if_tm_restore_required(current);
 304                /*
 305                 * If a thread has already been reclaimed then the
 306                 * checkpointed registers are on the CPU but have definitely
 307                 * been saved by the reclaim code. Don't need to and *cannot*
 308                 * giveup as this would save  to the 'live' structure not the
 309                 * checkpointed structure.
 310                 */
 311                if (!MSR_TM_ACTIVE(cpumsr) &&
 312                     MSR_TM_ACTIVE(current->thread.regs->msr))
 313                        return;
 314                __giveup_altivec(current);
 315        }
 316}
 317EXPORT_SYMBOL(enable_kernel_altivec);
 318
 319/*
 320 * Make sure the VMX/Altivec register state in the
 321 * the thread_struct is up to date for task tsk.
 322 */
 323void flush_altivec_to_thread(struct task_struct *tsk)
 324{
 325        if (tsk->thread.regs) {
 326                preempt_disable();
 327                if (tsk->thread.regs->msr & MSR_VEC) {
 328                        BUG_ON(tsk != current);
 329                        giveup_altivec(tsk);
 330                }
 331                preempt_enable();
 332        }
 333}
 334EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
 335
 336static int restore_altivec(struct task_struct *tsk)
 337{
 338        if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
 339                (tsk->thread.load_vec || tm_active_with_altivec(tsk))) {
 340                load_vr_state(&tsk->thread.vr_state);
 341                tsk->thread.used_vr = 1;
 342                tsk->thread.load_vec++;
 343
 344                return 1;
 345        }
 346        return 0;
 347}
 348#else
 349#define loadvec(thr) 0
 350static inline int restore_altivec(struct task_struct *tsk) { return 0; }
 351#endif /* CONFIG_ALTIVEC */
 352
 353#ifdef CONFIG_VSX
 354static void __giveup_vsx(struct task_struct *tsk)
 355{
 356        unsigned long msr = tsk->thread.regs->msr;
 357
 358        /*
 359         * We should never be ssetting MSR_VSX without also setting
 360         * MSR_FP and MSR_VEC
 361         */
 362        WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC)));
 363
 364        /* __giveup_fpu will clear MSR_VSX */
 365        if (msr & MSR_FP)
 366                __giveup_fpu(tsk);
 367        if (msr & MSR_VEC)
 368                __giveup_altivec(tsk);
 369}
 370
 371static void giveup_vsx(struct task_struct *tsk)
 372{
 373        check_if_tm_restore_required(tsk);
 374
 375        msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
 376        __giveup_vsx(tsk);
 377        msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
 378}
 379
 380void enable_kernel_vsx(void)
 381{
 382        unsigned long cpumsr;
 383
 384        WARN_ON(preemptible());
 385
 386        cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
 387
 388        if (current->thread.regs &&
 389            (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) {
 390                check_if_tm_restore_required(current);
 391                /*
 392                 * If a thread has already been reclaimed then the
 393                 * checkpointed registers are on the CPU but have definitely
 394                 * been saved by the reclaim code. Don't need to and *cannot*
 395                 * giveup as this would save  to the 'live' structure not the
 396                 * checkpointed structure.
 397                 */
 398                if (!MSR_TM_ACTIVE(cpumsr) &&
 399                     MSR_TM_ACTIVE(current->thread.regs->msr))
 400                        return;
 401                __giveup_vsx(current);
 402        }
 403}
 404EXPORT_SYMBOL(enable_kernel_vsx);
 405
 406void flush_vsx_to_thread(struct task_struct *tsk)
 407{
 408        if (tsk->thread.regs) {
 409                preempt_disable();
 410                if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) {
 411                        BUG_ON(tsk != current);
 412                        giveup_vsx(tsk);
 413                }
 414                preempt_enable();
 415        }
 416}
 417EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
 418
 419static int restore_vsx(struct task_struct *tsk)
 420{
 421        if (cpu_has_feature(CPU_FTR_VSX)) {
 422                tsk->thread.used_vsr = 1;
 423                return 1;
 424        }
 425
 426        return 0;
 427}
 428#else
 429static inline int restore_vsx(struct task_struct *tsk) { return 0; }
 430#endif /* CONFIG_VSX */
 431
 432#ifdef CONFIG_SPE
 433void giveup_spe(struct task_struct *tsk)
 434{
 435        check_if_tm_restore_required(tsk);
 436
 437        msr_check_and_set(MSR_SPE);
 438        __giveup_spe(tsk);
 439        msr_check_and_clear(MSR_SPE);
 440}
 441EXPORT_SYMBOL(giveup_spe);
 442
 443void enable_kernel_spe(void)
 444{
 445        WARN_ON(preemptible());
 446
 447        msr_check_and_set(MSR_SPE);
 448
 449        if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
 450                check_if_tm_restore_required(current);
 451                __giveup_spe(current);
 452        }
 453}
 454EXPORT_SYMBOL(enable_kernel_spe);
 455
 456void flush_spe_to_thread(struct task_struct *tsk)
 457{
 458        if (tsk->thread.regs) {
 459                preempt_disable();
 460                if (tsk->thread.regs->msr & MSR_SPE) {
 461                        BUG_ON(tsk != current);
 462                        tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
 463                        giveup_spe(tsk);
 464                }
 465                preempt_enable();
 466        }
 467}
 468#endif /* CONFIG_SPE */
 469
 470static unsigned long msr_all_available;
 471
 472static int __init init_msr_all_available(void)
 473{
 474#ifdef CONFIG_PPC_FPU
 475        msr_all_available |= MSR_FP;
 476#endif
 477#ifdef CONFIG_ALTIVEC
 478        if (cpu_has_feature(CPU_FTR_ALTIVEC))
 479                msr_all_available |= MSR_VEC;
 480#endif
 481#ifdef CONFIG_VSX
 482        if (cpu_has_feature(CPU_FTR_VSX))
 483                msr_all_available |= MSR_VSX;
 484#endif
 485#ifdef CONFIG_SPE
 486        if (cpu_has_feature(CPU_FTR_SPE))
 487                msr_all_available |= MSR_SPE;
 488#endif
 489
 490        return 0;
 491}
 492early_initcall(init_msr_all_available);
 493
 494void giveup_all(struct task_struct *tsk)
 495{
 496        unsigned long usermsr;
 497
 498        if (!tsk->thread.regs)
 499                return;
 500
 501        usermsr = tsk->thread.regs->msr;
 502
 503        if ((usermsr & msr_all_available) == 0)
 504                return;
 505
 506        msr_check_and_set(msr_all_available);
 507        check_if_tm_restore_required(tsk);
 508
 509        WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
 510
 511#ifdef CONFIG_PPC_FPU
 512        if (usermsr & MSR_FP)
 513                __giveup_fpu(tsk);
 514#endif
 515#ifdef CONFIG_ALTIVEC
 516        if (usermsr & MSR_VEC)
 517                __giveup_altivec(tsk);
 518#endif
 519#ifdef CONFIG_SPE
 520        if (usermsr & MSR_SPE)
 521                __giveup_spe(tsk);
 522#endif
 523
 524        msr_check_and_clear(msr_all_available);
 525}
 526EXPORT_SYMBOL(giveup_all);
 527
 528void restore_math(struct pt_regs *regs)
 529{
 530        unsigned long msr;
 531
 532        if (!MSR_TM_ACTIVE(regs->msr) &&
 533                !current->thread.load_fp && !loadvec(current->thread))
 534                return;
 535
 536        msr = regs->msr;
 537        msr_check_and_set(msr_all_available);
 538
 539        /*
 540         * Only reload if the bit is not set in the user MSR, the bit BEING set
 541         * indicates that the registers are hot
 542         */
 543        if ((!(msr & MSR_FP)) && restore_fp(current))
 544                msr |= MSR_FP | current->thread.fpexc_mode;
 545
 546        if ((!(msr & MSR_VEC)) && restore_altivec(current))
 547                msr |= MSR_VEC;
 548
 549        if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
 550                        restore_vsx(current)) {
 551                msr |= MSR_VSX;
 552        }
 553
 554        msr_check_and_clear(msr_all_available);
 555
 556        regs->msr = msr;
 557}
 558
 559static void save_all(struct task_struct *tsk)
 560{
 561        unsigned long usermsr;
 562
 563        if (!tsk->thread.regs)
 564                return;
 565
 566        usermsr = tsk->thread.regs->msr;
 567
 568        if ((usermsr & msr_all_available) == 0)
 569                return;
 570
 571        msr_check_and_set(msr_all_available);
 572
 573        WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
 574
 575        if (usermsr & MSR_FP)
 576                save_fpu(tsk);
 577
 578        if (usermsr & MSR_VEC)
 579                save_altivec(tsk);
 580
 581        if (usermsr & MSR_SPE)
 582                __giveup_spe(tsk);
 583
 584        msr_check_and_clear(msr_all_available);
 585        thread_pkey_regs_save(&tsk->thread);
 586}
 587
 588void flush_all_to_thread(struct task_struct *tsk)
 589{
 590        if (tsk->thread.regs) {
 591                preempt_disable();
 592                BUG_ON(tsk != current);
 593#ifdef CONFIG_SPE
 594                if (tsk->thread.regs->msr & MSR_SPE)
 595                        tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
 596#endif
 597                save_all(tsk);
 598
 599                preempt_enable();
 600        }
 601}
 602EXPORT_SYMBOL(flush_all_to_thread);
 603
 604#ifdef CONFIG_PPC_ADV_DEBUG_REGS
 605void do_send_trap(struct pt_regs *regs, unsigned long address,
 606                  unsigned long error_code, int breakpt)
 607{
 608        current->thread.trap_nr = TRAP_HWBKPT;
 609        if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
 610                        11, SIGSEGV) == NOTIFY_STOP)
 611                return;
 612
 613        /* Deliver the signal to userspace */
 614        force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */
 615                                    (void __user *)address);
 616}
 617#else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
 618void do_break (struct pt_regs *regs, unsigned long address,
 619                    unsigned long error_code)
 620{
 621        current->thread.trap_nr = TRAP_HWBKPT;
 622        if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
 623                        11, SIGSEGV) == NOTIFY_STOP)
 624                return;
 625
 626        if (debugger_break_match(regs))
 627                return;
 628
 629        /* Clear the breakpoint */
 630        hw_breakpoint_disable();
 631
 632        /* Deliver the signal to userspace */
 633        force_sig_fault(SIGTRAP, TRAP_HWBKPT, (void __user *)address, current);
 634}
 635#endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
 636
 637static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
 638
 639#ifdef CONFIG_PPC_ADV_DEBUG_REGS
 640/*
 641 * Set the debug registers back to their default "safe" values.
 642 */
 643static void set_debug_reg_defaults(struct thread_struct *thread)
 644{
 645        thread->debug.iac1 = thread->debug.iac2 = 0;
 646#if CONFIG_PPC_ADV_DEBUG_IACS > 2
 647        thread->debug.iac3 = thread->debug.iac4 = 0;
 648#endif
 649        thread->debug.dac1 = thread->debug.dac2 = 0;
 650#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
 651        thread->debug.dvc1 = thread->debug.dvc2 = 0;
 652#endif
 653        thread->debug.dbcr0 = 0;
 654#ifdef CONFIG_BOOKE
 655        /*
 656         * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
 657         */
 658        thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
 659                        DBCR1_IAC3US | DBCR1_IAC4US;
 660        /*
 661         * Force Data Address Compare User/Supervisor bits to be User-only
 662         * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
 663         */
 664        thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
 665#else
 666        thread->debug.dbcr1 = 0;
 667#endif
 668}
 669
 670static void prime_debug_regs(struct debug_reg *debug)
 671{
 672        /*
 673         * We could have inherited MSR_DE from userspace, since
 674         * it doesn't get cleared on exception entry.  Make sure
 675         * MSR_DE is clear before we enable any debug events.
 676         */
 677        mtmsr(mfmsr() & ~MSR_DE);
 678
 679        mtspr(SPRN_IAC1, debug->iac1);
 680        mtspr(SPRN_IAC2, debug->iac2);
 681#if CONFIG_PPC_ADV_DEBUG_IACS > 2
 682        mtspr(SPRN_IAC3, debug->iac3);
 683        mtspr(SPRN_IAC4, debug->iac4);
 684#endif
 685        mtspr(SPRN_DAC1, debug->dac1);
 686        mtspr(SPRN_DAC2, debug->dac2);
 687#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
 688        mtspr(SPRN_DVC1, debug->dvc1);
 689        mtspr(SPRN_DVC2, debug->dvc2);
 690#endif
 691        mtspr(SPRN_DBCR0, debug->dbcr0);
 692        mtspr(SPRN_DBCR1, debug->dbcr1);
 693#ifdef CONFIG_BOOKE
 694        mtspr(SPRN_DBCR2, debug->dbcr2);
 695#endif
 696}
 697/*
 698 * Unless neither the old or new thread are making use of the
 699 * debug registers, set the debug registers from the values
 700 * stored in the new thread.
 701 */
 702void switch_booke_debug_regs(struct debug_reg *new_debug)
 703{
 704        if ((current->thread.debug.dbcr0 & DBCR0_IDM)
 705                || (new_debug->dbcr0 & DBCR0_IDM))
 706                        prime_debug_regs(new_debug);
 707}
 708EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
 709#else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
 710#ifndef CONFIG_HAVE_HW_BREAKPOINT
 711static void set_breakpoint(struct arch_hw_breakpoint *brk)
 712{
 713        preempt_disable();
 714        __set_breakpoint(brk);
 715        preempt_enable();
 716}
 717
 718static void set_debug_reg_defaults(struct thread_struct *thread)
 719{
 720        thread->hw_brk.address = 0;
 721        thread->hw_brk.type = 0;
 722        if (ppc_breakpoint_available())
 723                set_breakpoint(&thread->hw_brk);
 724}
 725#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
 726#endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
 727
 728#ifdef CONFIG_PPC_ADV_DEBUG_REGS
 729static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
 730{
 731        mtspr(SPRN_DAC1, dabr);
 732#ifdef CONFIG_PPC_47x
 733        isync();
 734#endif
 735        return 0;
 736}
 737#elif defined(CONFIG_PPC_BOOK3S)
 738static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
 739{
 740        mtspr(SPRN_DABR, dabr);
 741        if (cpu_has_feature(CPU_FTR_DABRX))
 742                mtspr(SPRN_DABRX, dabrx);
 743        return 0;
 744}
 745#elif defined(CONFIG_PPC_8xx)
 746static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
 747{
 748        unsigned long addr = dabr & ~HW_BRK_TYPE_DABR;
 749        unsigned long lctrl1 = 0x90000000; /* compare type: equal on E & F */
 750        unsigned long lctrl2 = 0x8e000002; /* watchpoint 1 on cmp E | F */
 751
 752        if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
 753                lctrl1 |= 0xa0000;
 754        else if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
 755                lctrl1 |= 0xf0000;
 756        else if ((dabr & HW_BRK_TYPE_RDWR) == 0)
 757                lctrl2 = 0;
 758
 759        mtspr(SPRN_LCTRL2, 0);
 760        mtspr(SPRN_CMPE, addr);
 761        mtspr(SPRN_CMPF, addr + 4);
 762        mtspr(SPRN_LCTRL1, lctrl1);
 763        mtspr(SPRN_LCTRL2, lctrl2);
 764
 765        return 0;
 766}
 767#else
 768static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
 769{
 770        return -EINVAL;
 771}
 772#endif
 773
 774static inline int set_dabr(struct arch_hw_breakpoint *brk)
 775{
 776        unsigned long dabr, dabrx;
 777
 778        dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
 779        dabrx = ((brk->type >> 3) & 0x7);
 780
 781        if (ppc_md.set_dabr)
 782                return ppc_md.set_dabr(dabr, dabrx);
 783
 784        return __set_dabr(dabr, dabrx);
 785}
 786
 787static inline int set_dawr(struct arch_hw_breakpoint *brk)
 788{
 789        unsigned long dawr, dawrx, mrd;
 790
 791        dawr = brk->address;
 792
 793        dawrx  = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
 794                                   << (63 - 58); //* read/write bits */
 795        dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
 796                                   << (63 - 59); //* translate */
 797        dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
 798                                   >> 3; //* PRIM bits */
 799        /* dawr length is stored in field MDR bits 48:53.  Matches range in
 800           doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
 801           0b111111=64DW.
 802           brk->len is in bytes.
 803           This aligns up to double word size, shifts and does the bias.
 804        */
 805        mrd = ((brk->len + 7) >> 3) - 1;
 806        dawrx |= (mrd & 0x3f) << (63 - 53);
 807
 808        if (ppc_md.set_dawr)
 809                return ppc_md.set_dawr(dawr, dawrx);
 810        mtspr(SPRN_DAWR, dawr);
 811        mtspr(SPRN_DAWRX, dawrx);
 812        return 0;
 813}
 814
 815void __set_breakpoint(struct arch_hw_breakpoint *brk)
 816{
 817        memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
 818
 819        if (cpu_has_feature(CPU_FTR_DAWR))
 820                // Power8 or later
 821                set_dawr(brk);
 822        else if (!cpu_has_feature(CPU_FTR_ARCH_207S))
 823                // Power7 or earlier
 824                set_dabr(brk);
 825        else
 826                // Shouldn't happen due to higher level checks
 827                WARN_ON_ONCE(1);
 828}
 829
 830/* Check if we have DAWR or DABR hardware */
 831bool ppc_breakpoint_available(void)
 832{
 833        if (cpu_has_feature(CPU_FTR_DAWR))
 834                return true; /* POWER8 DAWR */
 835        if (cpu_has_feature(CPU_FTR_ARCH_207S))
 836                return false; /* POWER9 with DAWR disabled */
 837        /* DABR: Everything but POWER8 and POWER9 */
 838        return true;
 839}
 840EXPORT_SYMBOL_GPL(ppc_breakpoint_available);
 841
 842static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
 843                              struct arch_hw_breakpoint *b)
 844{
 845        if (a->address != b->address)
 846                return false;
 847        if (a->type != b->type)
 848                return false;
 849        if (a->len != b->len)
 850                return false;
 851        return true;
 852}
 853
 854#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 855
 856static inline bool tm_enabled(struct task_struct *tsk)
 857{
 858        return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
 859}
 860
 861static void tm_reclaim_thread(struct thread_struct *thr, uint8_t cause)
 862{
 863        /*
 864         * Use the current MSR TM suspended bit to track if we have
 865         * checkpointed state outstanding.
 866         * On signal delivery, we'd normally reclaim the checkpointed
 867         * state to obtain stack pointer (see:get_tm_stackpointer()).
 868         * This will then directly return to userspace without going
 869         * through __switch_to(). However, if the stack frame is bad,
 870         * we need to exit this thread which calls __switch_to() which
 871         * will again attempt to reclaim the already saved tm state.
 872         * Hence we need to check that we've not already reclaimed
 873         * this state.
 874         * We do this using the current MSR, rather tracking it in
 875         * some specific thread_struct bit, as it has the additional
 876         * benefit of checking for a potential TM bad thing exception.
 877         */
 878        if (!MSR_TM_SUSPENDED(mfmsr()))
 879                return;
 880
 881        giveup_all(container_of(thr, struct task_struct, thread));
 882
 883        tm_reclaim(thr, cause);
 884
 885        /*
 886         * If we are in a transaction and FP is off then we can't have
 887         * used FP inside that transaction. Hence the checkpointed
 888         * state is the same as the live state. We need to copy the
 889         * live state to the checkpointed state so that when the
 890         * transaction is restored, the checkpointed state is correct
 891         * and the aborted transaction sees the correct state. We use
 892         * ckpt_regs.msr here as that's what tm_reclaim will use to
 893         * determine if it's going to write the checkpointed state or
 894         * not. So either this will write the checkpointed registers,
 895         * or reclaim will. Similarly for VMX.
 896         */
 897        if ((thr->ckpt_regs.msr & MSR_FP) == 0)
 898                memcpy(&thr->ckfp_state, &thr->fp_state,
 899                       sizeof(struct thread_fp_state));
 900        if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
 901                memcpy(&thr->ckvr_state, &thr->vr_state,
 902                       sizeof(struct thread_vr_state));
 903}
 904
 905void tm_reclaim_current(uint8_t cause)
 906{
 907        tm_enable();
 908        tm_reclaim_thread(&current->thread, cause);
 909}
 910
 911static inline void tm_reclaim_task(struct task_struct *tsk)
 912{
 913        /* We have to work out if we're switching from/to a task that's in the
 914         * middle of a transaction.
 915         *
 916         * In switching we need to maintain a 2nd register state as
 917         * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
 918         * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
 919         * ckvr_state
 920         *
 921         * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
 922         */
 923        struct thread_struct *thr = &tsk->thread;
 924
 925        if (!thr->regs)
 926                return;
 927
 928        if (!MSR_TM_ACTIVE(thr->regs->msr))
 929                goto out_and_saveregs;
 930
 931        WARN_ON(tm_suspend_disabled);
 932
 933        TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
 934                 "ccr=%lx, msr=%lx, trap=%lx)\n",
 935                 tsk->pid, thr->regs->nip,
 936                 thr->regs->ccr, thr->regs->msr,
 937                 thr->regs->trap);
 938
 939        tm_reclaim_thread(thr, TM_CAUSE_RESCHED);
 940
 941        TM_DEBUG("--- tm_reclaim on pid %d complete\n",
 942                 tsk->pid);
 943
 944out_and_saveregs:
 945        /* Always save the regs here, even if a transaction's not active.
 946         * This context-switches a thread's TM info SPRs.  We do it here to
 947         * be consistent with the restore path (in recheckpoint) which
 948         * cannot happen later in _switch().
 949         */
 950        tm_save_sprs(thr);
 951}
 952
 953extern void __tm_recheckpoint(struct thread_struct *thread);
 954
 955void tm_recheckpoint(struct thread_struct *thread)
 956{
 957        unsigned long flags;
 958
 959        if (!(thread->regs->msr & MSR_TM))
 960                return;
 961
 962        /* We really can't be interrupted here as the TEXASR registers can't
 963         * change and later in the trecheckpoint code, we have a userspace R1.
 964         * So let's hard disable over this region.
 965         */
 966        local_irq_save(flags);
 967        hard_irq_disable();
 968
 969        /* The TM SPRs are restored here, so that TEXASR.FS can be set
 970         * before the trecheckpoint and no explosion occurs.
 971         */
 972        tm_restore_sprs(thread);
 973
 974        __tm_recheckpoint(thread);
 975
 976        local_irq_restore(flags);
 977}
 978
 979static inline void tm_recheckpoint_new_task(struct task_struct *new)
 980{
 981        if (!cpu_has_feature(CPU_FTR_TM))
 982                return;
 983
 984        /* Recheckpoint the registers of the thread we're about to switch to.
 985         *
 986         * If the task was using FP, we non-lazily reload both the original and
 987         * the speculative FP register states.  This is because the kernel
 988         * doesn't see if/when a TM rollback occurs, so if we take an FP
 989         * unavailable later, we are unable to determine which set of FP regs
 990         * need to be restored.
 991         */
 992        if (!tm_enabled(new))
 993                return;
 994
 995        if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
 996                tm_restore_sprs(&new->thread);
 997                return;
 998        }
 999        /* Recheckpoint to restore original checkpointed register state. */
1000        TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n",
1001                 new->pid, new->thread.regs->msr);
1002
1003        tm_recheckpoint(&new->thread);
1004
1005        /*
1006         * The checkpointed state has been restored but the live state has
1007         * not, ensure all the math functionality is turned off to trigger
1008         * restore_math() to reload.
1009         */
1010        new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
1011
1012        TM_DEBUG("*** tm_recheckpoint of pid %d complete "
1013                 "(kernel msr 0x%lx)\n",
1014                 new->pid, mfmsr());
1015}
1016
1017static inline void __switch_to_tm(struct task_struct *prev,
1018                struct task_struct *new)
1019{
1020        if (cpu_has_feature(CPU_FTR_TM)) {
1021                if (tm_enabled(prev) || tm_enabled(new))
1022                        tm_enable();
1023
1024                if (tm_enabled(prev)) {
1025                        prev->thread.load_tm++;
1026                        tm_reclaim_task(prev);
1027                        if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
1028                                prev->thread.regs->msr &= ~MSR_TM;
1029                }
1030
1031                tm_recheckpoint_new_task(new);
1032        }
1033}
1034
1035/*
1036 * This is called if we are on the way out to userspace and the
1037 * TIF_RESTORE_TM flag is set.  It checks if we need to reload
1038 * FP and/or vector state and does so if necessary.
1039 * If userspace is inside a transaction (whether active or
1040 * suspended) and FP/VMX/VSX instructions have ever been enabled
1041 * inside that transaction, then we have to keep them enabled
1042 * and keep the FP/VMX/VSX state loaded while ever the transaction
1043 * continues.  The reason is that if we didn't, and subsequently
1044 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
1045 * we don't know whether it's the same transaction, and thus we
1046 * don't know which of the checkpointed state and the transactional
1047 * state to use.
1048 */
1049void restore_tm_state(struct pt_regs *regs)
1050{
1051        unsigned long msr_diff;
1052
1053        /*
1054         * This is the only moment we should clear TIF_RESTORE_TM as
1055         * it is here that ckpt_regs.msr and pt_regs.msr become the same
1056         * again, anything else could lead to an incorrect ckpt_msr being
1057         * saved and therefore incorrect signal contexts.
1058         */
1059        clear_thread_flag(TIF_RESTORE_TM);
1060        if (!MSR_TM_ACTIVE(regs->msr))
1061                return;
1062
1063        msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1064        msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1065
1066        /* Ensure that restore_math() will restore */
1067        if (msr_diff & MSR_FP)
1068                current->thread.load_fp = 1;
1069#ifdef CONFIG_ALTIVEC
1070        if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1071                current->thread.load_vec = 1;
1072#endif
1073        restore_math(regs);
1074
1075        regs->msr |= msr_diff;
1076}
1077
1078#else
1079#define tm_recheckpoint_new_task(new)
1080#define __switch_to_tm(prev, new)
1081#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1082
1083static inline void save_sprs(struct thread_struct *t)
1084{
1085#ifdef CONFIG_ALTIVEC
1086        if (cpu_has_feature(CPU_FTR_ALTIVEC))
1087                t->vrsave = mfspr(SPRN_VRSAVE);
1088#endif
1089#ifdef CONFIG_PPC_BOOK3S_64
1090        if (cpu_has_feature(CPU_FTR_DSCR))
1091                t->dscr = mfspr(SPRN_DSCR);
1092
1093        if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1094                t->bescr = mfspr(SPRN_BESCR);
1095                t->ebbhr = mfspr(SPRN_EBBHR);
1096                t->ebbrr = mfspr(SPRN_EBBRR);
1097
1098                t->fscr = mfspr(SPRN_FSCR);
1099
1100                /*
1101                 * Note that the TAR is not available for use in the kernel.
1102                 * (To provide this, the TAR should be backed up/restored on
1103                 * exception entry/exit instead, and be in pt_regs.  FIXME,
1104                 * this should be in pt_regs anyway (for debug).)
1105                 */
1106                t->tar = mfspr(SPRN_TAR);
1107        }
1108#endif
1109
1110        thread_pkey_regs_save(t);
1111}
1112
1113static inline void restore_sprs(struct thread_struct *old_thread,
1114                                struct thread_struct *new_thread)
1115{
1116#ifdef CONFIG_ALTIVEC
1117        if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1118            old_thread->vrsave != new_thread->vrsave)
1119                mtspr(SPRN_VRSAVE, new_thread->vrsave);
1120#endif
1121#ifdef CONFIG_PPC_BOOK3S_64
1122        if (cpu_has_feature(CPU_FTR_DSCR)) {
1123                u64 dscr = get_paca()->dscr_default;
1124                if (new_thread->dscr_inherit)
1125                        dscr = new_thread->dscr;
1126
1127                if (old_thread->dscr != dscr)
1128                        mtspr(SPRN_DSCR, dscr);
1129        }
1130
1131        if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1132                if (old_thread->bescr != new_thread->bescr)
1133                        mtspr(SPRN_BESCR, new_thread->bescr);
1134                if (old_thread->ebbhr != new_thread->ebbhr)
1135                        mtspr(SPRN_EBBHR, new_thread->ebbhr);
1136                if (old_thread->ebbrr != new_thread->ebbrr)
1137                        mtspr(SPRN_EBBRR, new_thread->ebbrr);
1138
1139                if (old_thread->fscr != new_thread->fscr)
1140                        mtspr(SPRN_FSCR, new_thread->fscr);
1141
1142                if (old_thread->tar != new_thread->tar)
1143                        mtspr(SPRN_TAR, new_thread->tar);
1144        }
1145
1146        if (cpu_has_feature(CPU_FTR_P9_TIDR) &&
1147            old_thread->tidr != new_thread->tidr)
1148                mtspr(SPRN_TIDR, new_thread->tidr);
1149#endif
1150
1151        thread_pkey_regs_restore(new_thread, old_thread);
1152}
1153
1154#ifdef CONFIG_PPC_BOOK3S_64
1155#define CP_SIZE 128
1156static const u8 dummy_copy_buffer[CP_SIZE] __attribute__((aligned(CP_SIZE)));
1157#endif
1158
1159struct task_struct *__switch_to(struct task_struct *prev,
1160        struct task_struct *new)
1161{
1162        struct thread_struct *new_thread, *old_thread;
1163        struct task_struct *last;
1164#ifdef CONFIG_PPC_BOOK3S_64
1165        struct ppc64_tlb_batch *batch;
1166#endif
1167
1168        new_thread = &new->thread;
1169        old_thread = &current->thread;
1170
1171        WARN_ON(!irqs_disabled());
1172
1173#ifdef CONFIG_PPC_BOOK3S_64
1174        batch = this_cpu_ptr(&ppc64_tlb_batch);
1175        if (batch->active) {
1176                current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1177                if (batch->index)
1178                        __flush_tlb_pending(batch);
1179                batch->active = 0;
1180        }
1181#endif /* CONFIG_PPC_BOOK3S_64 */
1182
1183#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1184        switch_booke_debug_regs(&new->thread.debug);
1185#else
1186/*
1187 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1188 * schedule DABR
1189 */
1190#ifndef CONFIG_HAVE_HW_BREAKPOINT
1191        if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
1192                __set_breakpoint(&new->thread.hw_brk);
1193#endif /* CONFIG_HAVE_HW_BREAKPOINT */
1194#endif
1195
1196        /*
1197         * We need to save SPRs before treclaim/trecheckpoint as these will
1198         * change a number of them.
1199         */
1200        save_sprs(&prev->thread);
1201
1202        /* Save FPU, Altivec, VSX and SPE state */
1203        giveup_all(prev);
1204
1205        __switch_to_tm(prev, new);
1206
1207        if (!radix_enabled()) {
1208                /*
1209                 * We can't take a PMU exception inside _switch() since there
1210                 * is a window where the kernel stack SLB and the kernel stack
1211                 * are out of sync. Hard disable here.
1212                 */
1213                hard_irq_disable();
1214        }
1215
1216        /*
1217         * Call restore_sprs() before calling _switch(). If we move it after
1218         * _switch() then we miss out on calling it for new tasks. The reason
1219         * for this is we manually create a stack frame for new tasks that
1220         * directly returns through ret_from_fork() or
1221         * ret_from_kernel_thread(). See copy_thread() for details.
1222         */
1223        restore_sprs(old_thread, new_thread);
1224
1225        last = _switch(old_thread, new_thread);
1226
1227#ifdef CONFIG_PPC_BOOK3S_64
1228        if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1229                current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1230                batch = this_cpu_ptr(&ppc64_tlb_batch);
1231                batch->active = 1;
1232        }
1233
1234        if (current_thread_info()->task->thread.regs) {
1235                restore_math(current_thread_info()->task->thread.regs);
1236
1237                /*
1238                 * The copy-paste buffer can only store into foreign real
1239                 * addresses, so unprivileged processes can not see the
1240                 * data or use it in any way unless they have foreign real
1241                 * mappings. If the new process has the foreign real address
1242                 * mappings, we must issue a cp_abort to clear any state and
1243                 * prevent snooping, corruption or a covert channel.
1244                 */
1245                if (current_thread_info()->task->thread.used_vas)
1246                        asm volatile(PPC_CP_ABORT);
1247        }
1248#endif /* CONFIG_PPC_BOOK3S_64 */
1249
1250        return last;
1251}
1252
1253#define NR_INSN_TO_PRINT        16
1254
1255static void show_instructions(struct pt_regs *regs)
1256{
1257        int i;
1258        unsigned long pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1259
1260        printk("Instruction dump:");
1261
1262        for (i = 0; i < NR_INSN_TO_PRINT; i++) {
1263                int instr;
1264
1265                if (!(i % 8))
1266                        pr_cont("\n");
1267
1268#if !defined(CONFIG_BOOKE)
1269                /* If executing with the IMMU off, adjust pc rather
1270                 * than print XXXXXXXX.
1271                 */
1272                if (!(regs->msr & MSR_IR))
1273                        pc = (unsigned long)phys_to_virt(pc);
1274#endif
1275
1276                if (!__kernel_text_address(pc) ||
1277                    probe_kernel_address((const void *)pc, instr)) {
1278                        pr_cont("XXXXXXXX ");
1279                } else {
1280                        if (regs->nip == pc)
1281                                pr_cont("<%08x> ", instr);
1282                        else
1283                                pr_cont("%08x ", instr);
1284                }
1285
1286                pc += sizeof(int);
1287        }
1288
1289        pr_cont("\n");
1290}
1291
1292void show_user_instructions(struct pt_regs *regs)
1293{
1294        unsigned long pc;
1295        int n = NR_INSN_TO_PRINT;
1296        struct seq_buf s;
1297        char buf[96]; /* enough for 8 times 9 + 2 chars */
1298
1299        pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1300
1301        /*
1302         * Make sure the NIP points at userspace, not kernel text/data or
1303         * elsewhere.
1304         */
1305        if (!__access_ok(pc, NR_INSN_TO_PRINT * sizeof(int), USER_DS)) {
1306                pr_info("%s[%d]: Bad NIP, not dumping instructions.\n",
1307                        current->comm, current->pid);
1308                return;
1309        }
1310
1311        seq_buf_init(&s, buf, sizeof(buf));
1312
1313        while (n) {
1314                int i;
1315
1316                seq_buf_clear(&s);
1317
1318                for (i = 0; i < 8 && n; i++, n--, pc += sizeof(int)) {
1319                        int instr;
1320
1321                        if (probe_kernel_address((const void *)pc, instr)) {
1322                                seq_buf_printf(&s, "XXXXXXXX ");
1323                                continue;
1324                        }
1325                        seq_buf_printf(&s, regs->nip == pc ? "<%08x> " : "%08x ", instr);
1326                }
1327
1328                if (!seq_buf_has_overflowed(&s))
1329                        pr_info("%s[%d]: code: %s\n", current->comm,
1330                                current->pid, s.buffer);
1331        }
1332}
1333
1334struct regbit {
1335        unsigned long bit;
1336        const char *name;
1337};
1338
1339static struct regbit msr_bits[] = {
1340#if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1341        {MSR_SF,        "SF"},
1342        {MSR_HV,        "HV"},
1343#endif
1344        {MSR_VEC,       "VEC"},
1345        {MSR_VSX,       "VSX"},
1346#ifdef CONFIG_BOOKE
1347        {MSR_CE,        "CE"},
1348#endif
1349        {MSR_EE,        "EE"},
1350        {MSR_PR,        "PR"},
1351        {MSR_FP,        "FP"},
1352        {MSR_ME,        "ME"},
1353#ifdef CONFIG_BOOKE
1354        {MSR_DE,        "DE"},
1355#else
1356        {MSR_SE,        "SE"},
1357        {MSR_BE,        "BE"},
1358#endif
1359        {MSR_IR,        "IR"},
1360        {MSR_DR,        "DR"},
1361        {MSR_PMM,       "PMM"},
1362#ifndef CONFIG_BOOKE
1363        {MSR_RI,        "RI"},
1364        {MSR_LE,        "LE"},
1365#endif
1366        {0,             NULL}
1367};
1368
1369static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1370{
1371        const char *s = "";
1372
1373        for (; bits->bit; ++bits)
1374                if (val & bits->bit) {
1375                        pr_cont("%s%s", s, bits->name);
1376                        s = sep;
1377                }
1378}
1379
1380#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1381static struct regbit msr_tm_bits[] = {
1382        {MSR_TS_T,      "T"},
1383        {MSR_TS_S,      "S"},
1384        {MSR_TM,        "E"},
1385        {0,             NULL}
1386};
1387
1388static void print_tm_bits(unsigned long val)
1389{
1390/*
1391 * This only prints something if at least one of the TM bit is set.
1392 * Inside the TM[], the output means:
1393 *   E: Enabled         (bit 32)
1394 *   S: Suspended       (bit 33)
1395 *   T: Transactional   (bit 34)
1396 */
1397        if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1398                pr_cont(",TM[");
1399                print_bits(val, msr_tm_bits, "");
1400                pr_cont("]");
1401        }
1402}
1403#else
1404static void print_tm_bits(unsigned long val) {}
1405#endif
1406
1407static void print_msr_bits(unsigned long val)
1408{
1409        pr_cont("<");
1410        print_bits(val, msr_bits, ",");
1411        print_tm_bits(val);
1412        pr_cont(">");
1413}
1414
1415#ifdef CONFIG_PPC64
1416#define REG             "%016lx"
1417#define REGS_PER_LINE   4
1418#define LAST_VOLATILE   13
1419#else
1420#define REG             "%08lx"
1421#define REGS_PER_LINE   8
1422#define LAST_VOLATILE   12
1423#endif
1424
1425void show_regs(struct pt_regs * regs)
1426{
1427        int i, trap;
1428
1429        show_regs_print_info(KERN_DEFAULT);
1430
1431        printk("NIP:  "REG" LR: "REG" CTR: "REG"\n",
1432               regs->nip, regs->link, regs->ctr);
1433        printk("REGS: %px TRAP: %04lx   %s  (%s)\n",
1434               regs, regs->trap, print_tainted(), init_utsname()->release);
1435        printk("MSR:  "REG" ", regs->msr);
1436        print_msr_bits(regs->msr);
1437        pr_cont("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1438        trap = TRAP(regs);
1439        if ((TRAP(regs) != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1440                pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1441        if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1442#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1443                pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1444#else
1445                pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1446#endif
1447#ifdef CONFIG_PPC64
1448        pr_cont("IRQMASK: %lx ", regs->softe);
1449#endif
1450#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1451        if (MSR_TM_ACTIVE(regs->msr))
1452                pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1453#endif
1454
1455        for (i = 0;  i < 32;  i++) {
1456                if ((i % REGS_PER_LINE) == 0)
1457                        pr_cont("\nGPR%02d: ", i);
1458                pr_cont(REG " ", regs->gpr[i]);
1459                if (i == LAST_VOLATILE && !FULL_REGS(regs))
1460                        break;
1461        }
1462        pr_cont("\n");
1463#ifdef CONFIG_KALLSYMS
1464        /*
1465         * Lookup NIP late so we have the best change of getting the
1466         * above info out without failing
1467         */
1468        printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1469        printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1470#endif
1471        show_stack(current, (unsigned long *) regs->gpr[1]);
1472        if (!user_mode(regs))
1473                show_instructions(regs);
1474}
1475
1476void flush_thread(void)
1477{
1478#ifdef CONFIG_HAVE_HW_BREAKPOINT
1479        flush_ptrace_hw_breakpoint(current);
1480#else /* CONFIG_HAVE_HW_BREAKPOINT */
1481        set_debug_reg_defaults(&current->thread);
1482#endif /* CONFIG_HAVE_HW_BREAKPOINT */
1483}
1484
1485#ifdef CONFIG_PPC_BOOK3S_64
1486void arch_setup_new_exec(void)
1487{
1488        if (radix_enabled())
1489                return;
1490        hash__setup_new_exec();
1491}
1492#endif
1493
1494int set_thread_uses_vas(void)
1495{
1496#ifdef CONFIG_PPC_BOOK3S_64
1497        if (!cpu_has_feature(CPU_FTR_ARCH_300))
1498                return -EINVAL;
1499
1500        current->thread.used_vas = 1;
1501
1502        /*
1503         * Even a process that has no foreign real address mapping can use
1504         * an unpaired COPY instruction (to no real effect). Issue CP_ABORT
1505         * to clear any pending COPY and prevent a covert channel.
1506         *
1507         * __switch_to() will issue CP_ABORT on future context switches.
1508         */
1509        asm volatile(PPC_CP_ABORT);
1510
1511#endif /* CONFIG_PPC_BOOK3S_64 */
1512        return 0;
1513}
1514
1515#ifdef CONFIG_PPC64
1516/**
1517 * Assign a TIDR (thread ID) for task @t and set it in the thread
1518 * structure. For now, we only support setting TIDR for 'current' task.
1519 *
1520 * Since the TID value is a truncated form of it PID, it is possible
1521 * (but unlikely) for 2 threads to have the same TID. In the unlikely event
1522 * that 2 threads share the same TID and are waiting, one of the following
1523 * cases will happen:
1524 *
1525 * 1. The correct thread is running, the wrong thread is not
1526 * In this situation, the correct thread is woken and proceeds to pass it's
1527 * condition check.
1528 *
1529 * 2. Neither threads are running
1530 * In this situation, neither thread will be woken. When scheduled, the waiting
1531 * threads will execute either a wait, which will return immediately, followed
1532 * by a condition check, which will pass for the correct thread and fail
1533 * for the wrong thread, or they will execute the condition check immediately.
1534 *
1535 * 3. The wrong thread is running, the correct thread is not
1536 * The wrong thread will be woken, but will fail it's condition check and
1537 * re-execute wait. The correct thread, when scheduled, will execute either
1538 * it's condition check (which will pass), or wait, which returns immediately
1539 * when called the first time after the thread is scheduled, followed by it's
1540 * condition check (which will pass).
1541 *
1542 * 4. Both threads are running
1543 * Both threads will be woken. The wrong thread will fail it's condition check
1544 * and execute another wait, while the correct thread will pass it's condition
1545 * check.
1546 *
1547 * @t: the task to set the thread ID for
1548 */
1549int set_thread_tidr(struct task_struct *t)
1550{
1551        if (!cpu_has_feature(CPU_FTR_P9_TIDR))
1552                return -EINVAL;
1553
1554        if (t != current)
1555                return -EINVAL;
1556
1557        if (t->thread.tidr)
1558                return 0;
1559
1560        t->thread.tidr = (u16)task_pid_nr(t);
1561        mtspr(SPRN_TIDR, t->thread.tidr);
1562
1563        return 0;
1564}
1565EXPORT_SYMBOL_GPL(set_thread_tidr);
1566
1567#endif /* CONFIG_PPC64 */
1568
1569void
1570release_thread(struct task_struct *t)
1571{
1572}
1573
1574/*
1575 * this gets called so that we can store coprocessor state into memory and
1576 * copy the current task into the new thread.
1577 */
1578int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1579{
1580        flush_all_to_thread(src);
1581        /*
1582         * Flush TM state out so we can copy it.  __switch_to_tm() does this
1583         * flush but it removes the checkpointed state from the current CPU and
1584         * transitions the CPU out of TM mode.  Hence we need to call
1585         * tm_recheckpoint_new_task() (on the same task) to restore the
1586         * checkpointed state back and the TM mode.
1587         *
1588         * Can't pass dst because it isn't ready. Doesn't matter, passing
1589         * dst is only important for __switch_to()
1590         */
1591        __switch_to_tm(src, src);
1592
1593        *dst = *src;
1594
1595        clear_task_ebb(dst);
1596
1597        return 0;
1598}
1599
1600static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1601{
1602#ifdef CONFIG_PPC_BOOK3S_64
1603        unsigned long sp_vsid;
1604        unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1605
1606        if (radix_enabled())
1607                return;
1608
1609        if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1610                sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1611                        << SLB_VSID_SHIFT_1T;
1612        else
1613                sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1614                        << SLB_VSID_SHIFT;
1615        sp_vsid |= SLB_VSID_KERNEL | llp;
1616        p->thread.ksp_vsid = sp_vsid;
1617#endif
1618}
1619
1620/*
1621 * Copy a thread..
1622 */
1623
1624/*
1625 * Copy architecture-specific thread state
1626 */
1627int copy_thread(unsigned long clone_flags, unsigned long usp,
1628                unsigned long kthread_arg, struct task_struct *p)
1629{
1630        struct pt_regs *childregs, *kregs;
1631        extern void ret_from_fork(void);
1632        extern void ret_from_kernel_thread(void);
1633        void (*f)(void);
1634        unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1635        struct thread_info *ti = task_thread_info(p);
1636
1637        klp_init_thread_info(ti);
1638
1639        /* Copy registers */
1640        sp -= sizeof(struct pt_regs);
1641        childregs = (struct pt_regs *) sp;
1642        if (unlikely(p->flags & PF_KTHREAD)) {
1643                /* kernel thread */
1644                memset(childregs, 0, sizeof(struct pt_regs));
1645                childregs->gpr[1] = sp + sizeof(struct pt_regs);
1646                /* function */
1647                if (usp)
1648                        childregs->gpr[14] = ppc_function_entry((void *)usp);
1649#ifdef CONFIG_PPC64
1650                clear_tsk_thread_flag(p, TIF_32BIT);
1651                childregs->softe = IRQS_ENABLED;
1652#endif
1653                childregs->gpr[15] = kthread_arg;
1654                p->thread.regs = NULL;  /* no user register state */
1655                ti->flags |= _TIF_RESTOREALL;
1656                f = ret_from_kernel_thread;
1657        } else {
1658                /* user thread */
1659                struct pt_regs *regs = current_pt_regs();
1660                CHECK_FULL_REGS(regs);
1661                *childregs = *regs;
1662                if (usp)
1663                        childregs->gpr[1] = usp;
1664                p->thread.regs = childregs;
1665                childregs->gpr[3] = 0;  /* Result from fork() */
1666                if (clone_flags & CLONE_SETTLS) {
1667#ifdef CONFIG_PPC64
1668                        if (!is_32bit_task())
1669                                childregs->gpr[13] = childregs->gpr[6];
1670                        else
1671#endif
1672                                childregs->gpr[2] = childregs->gpr[6];
1673                }
1674
1675                f = ret_from_fork;
1676        }
1677        childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1678        sp -= STACK_FRAME_OVERHEAD;
1679
1680        /*
1681         * The way this works is that at some point in the future
1682         * some task will call _switch to switch to the new task.
1683         * That will pop off the stack frame created below and start
1684         * the new task running at ret_from_fork.  The new task will
1685         * do some house keeping and then return from the fork or clone
1686         * system call, using the stack frame created above.
1687         */
1688        ((unsigned long *)sp)[0] = 0;
1689        sp -= sizeof(struct pt_regs);
1690        kregs = (struct pt_regs *) sp;
1691        sp -= STACK_FRAME_OVERHEAD;
1692        p->thread.ksp = sp;
1693#ifdef CONFIG_PPC32
1694        p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1695                                _ALIGN_UP(sizeof(struct thread_info), 16);
1696#endif
1697#ifdef CONFIG_HAVE_HW_BREAKPOINT
1698        p->thread.ptrace_bps[0] = NULL;
1699#endif
1700
1701        p->thread.fp_save_area = NULL;
1702#ifdef CONFIG_ALTIVEC
1703        p->thread.vr_save_area = NULL;
1704#endif
1705
1706        setup_ksp_vsid(p, sp);
1707
1708#ifdef CONFIG_PPC64 
1709        if (cpu_has_feature(CPU_FTR_DSCR)) {
1710                p->thread.dscr_inherit = current->thread.dscr_inherit;
1711                p->thread.dscr = mfspr(SPRN_DSCR);
1712        }
1713        if (cpu_has_feature(CPU_FTR_HAS_PPR))
1714                childregs->ppr = DEFAULT_PPR;
1715
1716        p->thread.tidr = 0;
1717#endif
1718        kregs->nip = ppc_function_entry(f);
1719        return 0;
1720}
1721
1722void preload_new_slb_context(unsigned long start, unsigned long sp);
1723
1724/*
1725 * Set up a thread for executing a new program
1726 */
1727void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1728{
1729#ifdef CONFIG_PPC64
1730        unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1731
1732#ifdef CONFIG_PPC_BOOK3S_64
1733        preload_new_slb_context(start, sp);
1734#endif
1735#endif
1736
1737        /*
1738         * If we exec out of a kernel thread then thread.regs will not be
1739         * set.  Do it now.
1740         */
1741        if (!current->thread.regs) {
1742                struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1743                current->thread.regs = regs - 1;
1744        }
1745
1746#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1747        /*
1748         * Clear any transactional state, we're exec()ing. The cause is
1749         * not important as there will never be a recheckpoint so it's not
1750         * user visible.
1751         */
1752        if (MSR_TM_SUSPENDED(mfmsr()))
1753                tm_reclaim_current(0);
1754#endif
1755
1756        memset(regs->gpr, 0, sizeof(regs->gpr));
1757        regs->ctr = 0;
1758        regs->link = 0;
1759        regs->xer = 0;
1760        regs->ccr = 0;
1761        regs->gpr[1] = sp;
1762
1763        /*
1764         * We have just cleared all the nonvolatile GPRs, so make
1765         * FULL_REGS(regs) return true.  This is necessary to allow
1766         * ptrace to examine the thread immediately after exec.
1767         */
1768        regs->trap &= ~1UL;
1769
1770#ifdef CONFIG_PPC32
1771        regs->mq = 0;
1772        regs->nip = start;
1773        regs->msr = MSR_USER;
1774#else
1775        if (!is_32bit_task()) {
1776                unsigned long entry;
1777
1778                if (is_elf2_task()) {
1779                        /* Look ma, no function descriptors! */
1780                        entry = start;
1781
1782                        /*
1783                         * Ulrich says:
1784                         *   The latest iteration of the ABI requires that when
1785                         *   calling a function (at its global entry point),
1786                         *   the caller must ensure r12 holds the entry point
1787                         *   address (so that the function can quickly
1788                         *   establish addressability).
1789                         */
1790                        regs->gpr[12] = start;
1791                        /* Make sure that's restored on entry to userspace. */
1792                        set_thread_flag(TIF_RESTOREALL);
1793                } else {
1794                        unsigned long toc;
1795
1796                        /* start is a relocated pointer to the function
1797                         * descriptor for the elf _start routine.  The first
1798                         * entry in the function descriptor is the entry
1799                         * address of _start and the second entry is the TOC
1800                         * value we need to use.
1801                         */
1802                        __get_user(entry, (unsigned long __user *)start);
1803                        __get_user(toc, (unsigned long __user *)start+1);
1804
1805                        /* Check whether the e_entry function descriptor entries
1806                         * need to be relocated before we can use them.
1807                         */
1808                        if (load_addr != 0) {
1809                                entry += load_addr;
1810                                toc   += load_addr;
1811                        }
1812                        regs->gpr[2] = toc;
1813                }
1814                regs->nip = entry;
1815                regs->msr = MSR_USER64;
1816        } else {
1817                regs->nip = start;
1818                regs->gpr[2] = 0;
1819                regs->msr = MSR_USER32;
1820        }
1821#endif
1822#ifdef CONFIG_VSX
1823        current->thread.used_vsr = 0;
1824#endif
1825        current->thread.load_slb = 0;
1826        current->thread.load_fp = 0;
1827        memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1828        current->thread.fp_save_area = NULL;
1829#ifdef CONFIG_ALTIVEC
1830        memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1831        current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1832        current->thread.vr_save_area = NULL;
1833        current->thread.vrsave = 0;
1834        current->thread.used_vr = 0;
1835        current->thread.load_vec = 0;
1836#endif /* CONFIG_ALTIVEC */
1837#ifdef CONFIG_SPE
1838        memset(current->thread.evr, 0, sizeof(current->thread.evr));
1839        current->thread.acc = 0;
1840        current->thread.spefscr = 0;
1841        current->thread.used_spe = 0;
1842#endif /* CONFIG_SPE */
1843#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1844        current->thread.tm_tfhar = 0;
1845        current->thread.tm_texasr = 0;
1846        current->thread.tm_tfiar = 0;
1847        current->thread.load_tm = 0;
1848#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1849
1850        thread_pkey_regs_init(&current->thread);
1851}
1852EXPORT_SYMBOL(start_thread);
1853
1854#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1855                | PR_FP_EXC_RES | PR_FP_EXC_INV)
1856
1857int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1858{
1859        struct pt_regs *regs = tsk->thread.regs;
1860
1861        /* This is a bit hairy.  If we are an SPE enabled  processor
1862         * (have embedded fp) we store the IEEE exception enable flags in
1863         * fpexc_mode.  fpexc_mode is also used for setting FP exception
1864         * mode (asyn, precise, disabled) for 'Classic' FP. */
1865        if (val & PR_FP_EXC_SW_ENABLE) {
1866#ifdef CONFIG_SPE
1867                if (cpu_has_feature(CPU_FTR_SPE)) {
1868                        /*
1869                         * When the sticky exception bits are set
1870                         * directly by userspace, it must call prctl
1871                         * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1872                         * in the existing prctl settings) or
1873                         * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1874                         * the bits being set).  <fenv.h> functions
1875                         * saving and restoring the whole
1876                         * floating-point environment need to do so
1877                         * anyway to restore the prctl settings from
1878                         * the saved environment.
1879                         */
1880                        tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1881                        tsk->thread.fpexc_mode = val &
1882                                (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1883                        return 0;
1884                } else {
1885                        return -EINVAL;
1886                }
1887#else
1888                return -EINVAL;
1889#endif
1890        }
1891
1892        /* on a CONFIG_SPE this does not hurt us.  The bits that
1893         * __pack_fe01 use do not overlap with bits used for
1894         * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
1895         * on CONFIG_SPE implementations are reserved so writing to
1896         * them does not change anything */
1897        if (val > PR_FP_EXC_PRECISE)
1898                return -EINVAL;
1899        tsk->thread.fpexc_mode = __pack_fe01(val);
1900        if (regs != NULL && (regs->msr & MSR_FP) != 0)
1901                regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1902                        | tsk->thread.fpexc_mode;
1903        return 0;
1904}
1905
1906int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1907{
1908        unsigned int val;
1909
1910        if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1911#ifdef CONFIG_SPE
1912                if (cpu_has_feature(CPU_FTR_SPE)) {
1913                        /*
1914                         * When the sticky exception bits are set
1915                         * directly by userspace, it must call prctl
1916                         * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1917                         * in the existing prctl settings) or
1918                         * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1919                         * the bits being set).  <fenv.h> functions
1920                         * saving and restoring the whole
1921                         * floating-point environment need to do so
1922                         * anyway to restore the prctl settings from
1923                         * the saved environment.
1924                         */
1925                        tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1926                        val = tsk->thread.fpexc_mode;
1927                } else
1928                        return -EINVAL;
1929#else
1930                return -EINVAL;
1931#endif
1932        else
1933                val = __unpack_fe01(tsk->thread.fpexc_mode);
1934        return put_user(val, (unsigned int __user *) adr);
1935}
1936
1937int set_endian(struct task_struct *tsk, unsigned int val)
1938{
1939        struct pt_regs *regs = tsk->thread.regs;
1940
1941        if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1942            (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1943                return -EINVAL;
1944
1945        if (regs == NULL)
1946                return -EINVAL;
1947
1948        if (val == PR_ENDIAN_BIG)
1949                regs->msr &= ~MSR_LE;
1950        else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1951                regs->msr |= MSR_LE;
1952        else
1953                return -EINVAL;
1954
1955        return 0;
1956}
1957
1958int get_endian(struct task_struct *tsk, unsigned long adr)
1959{
1960        struct pt_regs *regs = tsk->thread.regs;
1961        unsigned int val;
1962
1963        if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1964            !cpu_has_feature(CPU_FTR_REAL_LE))
1965                return -EINVAL;
1966
1967        if (regs == NULL)
1968                return -EINVAL;
1969
1970        if (regs->msr & MSR_LE) {
1971                if (cpu_has_feature(CPU_FTR_REAL_LE))
1972                        val = PR_ENDIAN_LITTLE;
1973                else
1974                        val = PR_ENDIAN_PPC_LITTLE;
1975        } else
1976                val = PR_ENDIAN_BIG;
1977
1978        return put_user(val, (unsigned int __user *)adr);
1979}
1980
1981int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1982{
1983        tsk->thread.align_ctl = val;
1984        return 0;
1985}
1986
1987int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1988{
1989        return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1990}
1991
1992static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1993                                  unsigned long nbytes)
1994{
1995        unsigned long stack_page;
1996        unsigned long cpu = task_cpu(p);
1997
1998        /*
1999         * Avoid crashing if the stack has overflowed and corrupted
2000         * task_cpu(p), which is in the thread_info struct.
2001         */
2002        if (cpu < NR_CPUS && cpu_possible(cpu)) {
2003                stack_page = (unsigned long) hardirq_ctx[cpu];
2004                if (sp >= stack_page + sizeof(struct thread_struct)
2005                    && sp <= stack_page + THREAD_SIZE - nbytes)
2006                        return 1;
2007
2008                stack_page = (unsigned long) softirq_ctx[cpu];
2009                if (sp >= stack_page + sizeof(struct thread_struct)
2010                    && sp <= stack_page + THREAD_SIZE - nbytes)
2011                        return 1;
2012        }
2013        return 0;
2014}
2015
2016int validate_sp(unsigned long sp, struct task_struct *p,
2017                       unsigned long nbytes)
2018{
2019        unsigned long stack_page = (unsigned long)task_stack_page(p);
2020
2021        if (sp >= stack_page + sizeof(struct thread_struct)
2022            && sp <= stack_page + THREAD_SIZE - nbytes)
2023                return 1;
2024
2025        return valid_irq_stack(sp, p, nbytes);
2026}
2027
2028EXPORT_SYMBOL(validate_sp);
2029
2030unsigned long get_wchan(struct task_struct *p)
2031{
2032        unsigned long ip, sp;
2033        int count = 0;
2034
2035        if (!p || p == current || p->state == TASK_RUNNING)
2036                return 0;
2037
2038        sp = p->thread.ksp;
2039        if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
2040                return 0;
2041
2042        do {
2043                sp = *(unsigned long *)sp;
2044                if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) ||
2045                    p->state == TASK_RUNNING)
2046                        return 0;
2047                if (count > 0) {
2048                        ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
2049                        if (!in_sched_functions(ip))
2050                                return ip;
2051                }
2052        } while (count++ < 16);
2053        return 0;
2054}
2055
2056static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
2057
2058void show_stack(struct task_struct *tsk, unsigned long *stack)
2059{
2060        unsigned long sp, ip, lr, newsp;
2061        int count = 0;
2062        int firstframe = 1;
2063#ifdef CONFIG_FUNCTION_GRAPH_TRACER
2064        struct ftrace_ret_stack *ret_stack;
2065        extern void return_to_handler(void);
2066        unsigned long rth = (unsigned long)return_to_handler;
2067        int curr_frame = 0;
2068#endif
2069
2070        sp = (unsigned long) stack;
2071        if (tsk == NULL)
2072                tsk = current;
2073        if (sp == 0) {
2074                if (tsk == current)
2075                        sp = current_stack_pointer();
2076                else
2077                        sp = tsk->thread.ksp;
2078        }
2079
2080        lr = 0;
2081        printk("Call Trace:\n");
2082        do {
2083                if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
2084                        return;
2085
2086                stack = (unsigned long *) sp;
2087                newsp = stack[0];
2088                ip = stack[STACK_FRAME_LR_SAVE];
2089                if (!firstframe || ip != lr) {
2090                        printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
2091#ifdef CONFIG_FUNCTION_GRAPH_TRACER
2092                        if ((ip == rth) && curr_frame >= 0) {
2093                                ret_stack = ftrace_graph_get_ret_stack(current,
2094                                                                  curr_frame++);
2095                                if (ret_stack)
2096                                        pr_cont(" (%pS)",
2097                                                (void *)ret_stack->ret);
2098                                else
2099                                        curr_frame = -1;
2100                        }
2101#endif
2102                        if (firstframe)
2103                                pr_cont(" (unreliable)");
2104                        pr_cont("\n");
2105                }
2106                firstframe = 0;
2107
2108                /*
2109                 * See if this is an exception frame.
2110                 * We look for the "regshere" marker in the current frame.
2111                 */
2112                if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
2113                    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
2114                        struct pt_regs *regs = (struct pt_regs *)
2115                                (sp + STACK_FRAME_OVERHEAD);
2116                        lr = regs->link;
2117                        printk("--- interrupt: %lx at %pS\n    LR = %pS\n",
2118                               regs->trap, (void *)regs->nip, (void *)lr);
2119                        firstframe = 1;
2120                }
2121
2122                sp = newsp;
2123        } while (count++ < kstack_depth_to_print);
2124}
2125
2126#ifdef CONFIG_PPC64
2127/* Called with hard IRQs off */
2128void notrace __ppc64_runlatch_on(void)
2129{
2130        struct thread_info *ti = current_thread_info();
2131
2132        if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2133                /*
2134                 * Least significant bit (RUN) is the only writable bit of
2135                 * the CTRL register, so we can avoid mfspr. 2.06 is not the
2136                 * earliest ISA where this is the case, but it's convenient.
2137                 */
2138                mtspr(SPRN_CTRLT, CTRL_RUNLATCH);
2139        } else {
2140                unsigned long ctrl;
2141
2142                /*
2143                 * Some architectures (e.g., Cell) have writable fields other
2144                 * than RUN, so do the read-modify-write.
2145                 */
2146                ctrl = mfspr(SPRN_CTRLF);
2147                ctrl |= CTRL_RUNLATCH;
2148                mtspr(SPRN_CTRLT, ctrl);
2149        }
2150
2151        ti->local_flags |= _TLF_RUNLATCH;
2152}
2153
2154/* Called with hard IRQs off */
2155void notrace __ppc64_runlatch_off(void)
2156{
2157        struct thread_info *ti = current_thread_info();
2158
2159        ti->local_flags &= ~_TLF_RUNLATCH;
2160
2161        if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2162                mtspr(SPRN_CTRLT, 0);
2163        } else {
2164                unsigned long ctrl;
2165
2166                ctrl = mfspr(SPRN_CTRLF);
2167                ctrl &= ~CTRL_RUNLATCH;
2168                mtspr(SPRN_CTRLT, ctrl);
2169        }
2170}
2171#endif /* CONFIG_PPC64 */
2172
2173unsigned long arch_align_stack(unsigned long sp)
2174{
2175        if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
2176                sp -= get_random_int() & ~PAGE_MASK;
2177        return sp & ~0xf;
2178}
2179
2180static inline unsigned long brk_rnd(void)
2181{
2182        unsigned long rnd = 0;
2183
2184        /* 8MB for 32bit, 1GB for 64bit */
2185        if (is_32bit_task())
2186                rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
2187        else
2188                rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
2189
2190        return rnd << PAGE_SHIFT;
2191}
2192
2193unsigned long arch_randomize_brk(struct mm_struct *mm)
2194{
2195        unsigned long base = mm->brk;
2196        unsigned long ret;
2197
2198#ifdef CONFIG_PPC_BOOK3S_64
2199        /*
2200         * If we are using 1TB segments and we are allowed to randomise
2201         * the heap, we can put it above 1TB so it is backed by a 1TB
2202         * segment. Otherwise the heap will be in the bottom 1TB
2203         * which always uses 256MB segments and this may result in a
2204         * performance penalty. We don't need to worry about radix. For
2205         * radix, mmu_highuser_ssize remains unchanged from 256MB.
2206         */
2207        if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
2208                base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
2209#endif
2210
2211        ret = PAGE_ALIGN(base + brk_rnd());
2212
2213        if (ret < mm->brk)
2214                return mm->brk;
2215
2216        return ret;
2217}
2218
2219