linux/arch/powerpc/kernel/time.c
<<
>>
Prefs
   1/*
   2 * Common time routines among all ppc machines.
   3 *
   4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
   5 * Paul Mackerras' version and mine for PReP and Pmac.
   6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
   7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
   8 *
   9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
  10 * to make clock more stable (2.4.0-test5). The only thing
  11 * that this code assumes is that the timebases have been synchronized
  12 * by firmware on SMP and are never stopped (never do sleep
  13 * on SMP then, nap and doze are OK).
  14 * 
  15 * Speeded up do_gettimeofday by getting rid of references to
  16 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
  17 *
  18 * TODO (not necessarily in this file):
  19 * - improve precision and reproducibility of timebase frequency
  20 * measurement at boot time.
  21 * - for astronomical applications: add a new function to get
  22 * non ambiguous timestamps even around leap seconds. This needs
  23 * a new timestamp format and a good name.
  24 *
  25 * 1997-09-10  Updated NTP code according to technical memorandum Jan '96
  26 *             "A Kernel Model for Precision Timekeeping" by Dave Mills
  27 *
  28 *      This program is free software; you can redistribute it and/or
  29 *      modify it under the terms of the GNU General Public License
  30 *      as published by the Free Software Foundation; either version
  31 *      2 of the License, or (at your option) any later version.
  32 */
  33
  34#include <linux/errno.h>
  35#include <linux/export.h>
  36#include <linux/sched.h>
  37#include <linux/sched/clock.h>
  38#include <linux/kernel.h>
  39#include <linux/param.h>
  40#include <linux/string.h>
  41#include <linux/mm.h>
  42#include <linux/interrupt.h>
  43#include <linux/timex.h>
  44#include <linux/kernel_stat.h>
  45#include <linux/time.h>
  46#include <linux/clockchips.h>
  47#include <linux/init.h>
  48#include <linux/profile.h>
  49#include <linux/cpu.h>
  50#include <linux/security.h>
  51#include <linux/percpu.h>
  52#include <linux/rtc.h>
  53#include <linux/jiffies.h>
  54#include <linux/posix-timers.h>
  55#include <linux/irq.h>
  56#include <linux/delay.h>
  57#include <linux/irq_work.h>
  58#include <linux/clk-provider.h>
  59#include <linux/suspend.h>
  60#include <linux/rtc.h>
  61#include <linux/sched/cputime.h>
  62#include <linux/processor.h>
  63#include <asm/trace.h>
  64
  65#include <asm/io.h>
  66#include <asm/nvram.h>
  67#include <asm/cache.h>
  68#include <asm/machdep.h>
  69#include <linux/uaccess.h>
  70#include <asm/time.h>
  71#include <asm/prom.h>
  72#include <asm/irq.h>
  73#include <asm/div64.h>
  74#include <asm/smp.h>
  75#include <asm/vdso_datapage.h>
  76#include <asm/firmware.h>
  77#include <asm/asm-prototypes.h>
  78
  79/* powerpc clocksource/clockevent code */
  80
  81#include <linux/clockchips.h>
  82#include <linux/timekeeper_internal.h>
  83
  84static u64 rtc_read(struct clocksource *);
  85static struct clocksource clocksource_rtc = {
  86        .name         = "rtc",
  87        .rating       = 400,
  88        .flags        = CLOCK_SOURCE_IS_CONTINUOUS,
  89        .mask         = CLOCKSOURCE_MASK(64),
  90        .read         = rtc_read,
  91};
  92
  93static u64 timebase_read(struct clocksource *);
  94static struct clocksource clocksource_timebase = {
  95        .name         = "timebase",
  96        .rating       = 400,
  97        .flags        = CLOCK_SOURCE_IS_CONTINUOUS,
  98        .mask         = CLOCKSOURCE_MASK(64),
  99        .read         = timebase_read,
 100};
 101
 102#define DECREMENTER_DEFAULT_MAX 0x7FFFFFFF
 103u64 decrementer_max = DECREMENTER_DEFAULT_MAX;
 104
 105static int decrementer_set_next_event(unsigned long evt,
 106                                      struct clock_event_device *dev);
 107static int decrementer_shutdown(struct clock_event_device *evt);
 108
 109struct clock_event_device decrementer_clockevent = {
 110        .name                   = "decrementer",
 111        .rating                 = 200,
 112        .irq                    = 0,
 113        .set_next_event         = decrementer_set_next_event,
 114        .set_state_oneshot_stopped = decrementer_shutdown,
 115        .set_state_shutdown     = decrementer_shutdown,
 116        .tick_resume            = decrementer_shutdown,
 117        .features               = CLOCK_EVT_FEAT_ONESHOT |
 118                                  CLOCK_EVT_FEAT_C3STOP,
 119};
 120EXPORT_SYMBOL(decrementer_clockevent);
 121
 122DEFINE_PER_CPU(u64, decrementers_next_tb);
 123static DEFINE_PER_CPU(struct clock_event_device, decrementers);
 124
 125#define XSEC_PER_SEC (1024*1024)
 126
 127#ifdef CONFIG_PPC64
 128#define SCALE_XSEC(xsec, max)   (((xsec) * max) / XSEC_PER_SEC)
 129#else
 130/* compute ((xsec << 12) * max) >> 32 */
 131#define SCALE_XSEC(xsec, max)   mulhwu((xsec) << 12, max)
 132#endif
 133
 134unsigned long tb_ticks_per_jiffy;
 135unsigned long tb_ticks_per_usec = 100; /* sane default */
 136EXPORT_SYMBOL(tb_ticks_per_usec);
 137unsigned long tb_ticks_per_sec;
 138EXPORT_SYMBOL(tb_ticks_per_sec);        /* for cputime_t conversions */
 139
 140DEFINE_SPINLOCK(rtc_lock);
 141EXPORT_SYMBOL_GPL(rtc_lock);
 142
 143static u64 tb_to_ns_scale __read_mostly;
 144static unsigned tb_to_ns_shift __read_mostly;
 145static u64 boot_tb __read_mostly;
 146
 147extern struct timezone sys_tz;
 148static long timezone_offset;
 149
 150unsigned long ppc_proc_freq;
 151EXPORT_SYMBOL_GPL(ppc_proc_freq);
 152unsigned long ppc_tb_freq;
 153EXPORT_SYMBOL_GPL(ppc_tb_freq);
 154
 155#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
 156/*
 157 * Factor for converting from cputime_t (timebase ticks) to
 158 * microseconds. This is stored as 0.64 fixed-point binary fraction.
 159 */
 160u64 __cputime_usec_factor;
 161EXPORT_SYMBOL(__cputime_usec_factor);
 162
 163#ifdef CONFIG_PPC_SPLPAR
 164void (*dtl_consumer)(struct dtl_entry *, u64);
 165#endif
 166
 167static void calc_cputime_factors(void)
 168{
 169        struct div_result res;
 170
 171        div128_by_32(1000000, 0, tb_ticks_per_sec, &res);
 172        __cputime_usec_factor = res.result_low;
 173}
 174
 175/*
 176 * Read the SPURR on systems that have it, otherwise the PURR,
 177 * or if that doesn't exist return the timebase value passed in.
 178 */
 179static inline unsigned long read_spurr(unsigned long tb)
 180{
 181        if (cpu_has_feature(CPU_FTR_SPURR))
 182                return mfspr(SPRN_SPURR);
 183        if (cpu_has_feature(CPU_FTR_PURR))
 184                return mfspr(SPRN_PURR);
 185        return tb;
 186}
 187
 188#ifdef CONFIG_PPC_SPLPAR
 189
 190/*
 191 * Scan the dispatch trace log and count up the stolen time.
 192 * Should be called with interrupts disabled.
 193 */
 194static u64 scan_dispatch_log(u64 stop_tb)
 195{
 196        u64 i = local_paca->dtl_ridx;
 197        struct dtl_entry *dtl = local_paca->dtl_curr;
 198        struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
 199        struct lppaca *vpa = local_paca->lppaca_ptr;
 200        u64 tb_delta;
 201        u64 stolen = 0;
 202        u64 dtb;
 203
 204        if (!dtl)
 205                return 0;
 206
 207        if (i == be64_to_cpu(vpa->dtl_idx))
 208                return 0;
 209        while (i < be64_to_cpu(vpa->dtl_idx)) {
 210                dtb = be64_to_cpu(dtl->timebase);
 211                tb_delta = be32_to_cpu(dtl->enqueue_to_dispatch_time) +
 212                        be32_to_cpu(dtl->ready_to_enqueue_time);
 213                barrier();
 214                if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) {
 215                        /* buffer has overflowed */
 216                        i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG;
 217                        dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
 218                        continue;
 219                }
 220                if (dtb > stop_tb)
 221                        break;
 222                if (dtl_consumer)
 223                        dtl_consumer(dtl, i);
 224                stolen += tb_delta;
 225                ++i;
 226                ++dtl;
 227                if (dtl == dtl_end)
 228                        dtl = local_paca->dispatch_log;
 229        }
 230        local_paca->dtl_ridx = i;
 231        local_paca->dtl_curr = dtl;
 232        return stolen;
 233}
 234
 235/*
 236 * Accumulate stolen time by scanning the dispatch trace log.
 237 * Called on entry from user mode.
 238 */
 239void accumulate_stolen_time(void)
 240{
 241        u64 sst, ust;
 242        unsigned long save_irq_soft_mask = irq_soft_mask_return();
 243        struct cpu_accounting_data *acct = &local_paca->accounting;
 244
 245        /* We are called early in the exception entry, before
 246         * soft/hard_enabled are sync'ed to the expected state
 247         * for the exception. We are hard disabled but the PACA
 248         * needs to reflect that so various debug stuff doesn't
 249         * complain
 250         */
 251        irq_soft_mask_set(IRQS_DISABLED);
 252
 253        sst = scan_dispatch_log(acct->starttime_user);
 254        ust = scan_dispatch_log(acct->starttime);
 255        acct->stime -= sst;
 256        acct->utime -= ust;
 257        acct->steal_time += ust + sst;
 258
 259        irq_soft_mask_set(save_irq_soft_mask);
 260}
 261
 262static inline u64 calculate_stolen_time(u64 stop_tb)
 263{
 264        if (!firmware_has_feature(FW_FEATURE_SPLPAR))
 265                return 0;
 266
 267        if (get_paca()->dtl_ridx != be64_to_cpu(get_lppaca()->dtl_idx))
 268                return scan_dispatch_log(stop_tb);
 269
 270        return 0;
 271}
 272
 273#else /* CONFIG_PPC_SPLPAR */
 274static inline u64 calculate_stolen_time(u64 stop_tb)
 275{
 276        return 0;
 277}
 278
 279#endif /* CONFIG_PPC_SPLPAR */
 280
 281/*
 282 * Account time for a transition between system, hard irq
 283 * or soft irq state.
 284 */
 285static unsigned long vtime_delta_scaled(struct cpu_accounting_data *acct,
 286                                        unsigned long now, unsigned long stime)
 287{
 288        unsigned long stime_scaled = 0;
 289#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
 290        unsigned long nowscaled, deltascaled;
 291        unsigned long utime, utime_scaled;
 292
 293        nowscaled = read_spurr(now);
 294        deltascaled = nowscaled - acct->startspurr;
 295        acct->startspurr = nowscaled;
 296        utime = acct->utime - acct->utime_sspurr;
 297        acct->utime_sspurr = acct->utime;
 298
 299        /*
 300         * Because we don't read the SPURR on every kernel entry/exit,
 301         * deltascaled includes both user and system SPURR ticks.
 302         * Apportion these ticks to system SPURR ticks and user
 303         * SPURR ticks in the same ratio as the system time (delta)
 304         * and user time (udelta) values obtained from the timebase
 305         * over the same interval.  The system ticks get accounted here;
 306         * the user ticks get saved up in paca->user_time_scaled to be
 307         * used by account_process_tick.
 308         */
 309        stime_scaled = stime;
 310        utime_scaled = utime;
 311        if (deltascaled != stime + utime) {
 312                if (utime) {
 313                        stime_scaled = deltascaled * stime / (stime + utime);
 314                        utime_scaled = deltascaled - stime_scaled;
 315                } else {
 316                        stime_scaled = deltascaled;
 317                }
 318        }
 319        acct->utime_scaled += utime_scaled;
 320#endif
 321
 322        return stime_scaled;
 323}
 324
 325static unsigned long vtime_delta(struct task_struct *tsk,
 326                                 unsigned long *stime_scaled,
 327                                 unsigned long *steal_time)
 328{
 329        unsigned long now, stime;
 330        struct cpu_accounting_data *acct = get_accounting(tsk);
 331
 332        WARN_ON_ONCE(!irqs_disabled());
 333
 334        now = mftb();
 335        stime = now - acct->starttime;
 336        acct->starttime = now;
 337
 338        *stime_scaled = vtime_delta_scaled(acct, now, stime);
 339
 340        *steal_time = calculate_stolen_time(now);
 341
 342        return stime;
 343}
 344
 345void vtime_account_system(struct task_struct *tsk)
 346{
 347        unsigned long stime, stime_scaled, steal_time;
 348        struct cpu_accounting_data *acct = get_accounting(tsk);
 349
 350        stime = vtime_delta(tsk, &stime_scaled, &steal_time);
 351
 352        stime -= min(stime, steal_time);
 353        acct->steal_time += steal_time;
 354
 355        if ((tsk->flags & PF_VCPU) && !irq_count()) {
 356                acct->gtime += stime;
 357#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
 358                acct->utime_scaled += stime_scaled;
 359#endif
 360        } else {
 361                if (hardirq_count())
 362                        acct->hardirq_time += stime;
 363                else if (in_serving_softirq())
 364                        acct->softirq_time += stime;
 365                else
 366                        acct->stime += stime;
 367
 368#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
 369                acct->stime_scaled += stime_scaled;
 370#endif
 371        }
 372}
 373EXPORT_SYMBOL_GPL(vtime_account_system);
 374
 375void vtime_account_idle(struct task_struct *tsk)
 376{
 377        unsigned long stime, stime_scaled, steal_time;
 378        struct cpu_accounting_data *acct = get_accounting(tsk);
 379
 380        stime = vtime_delta(tsk, &stime_scaled, &steal_time);
 381        acct->idle_time += stime + steal_time;
 382}
 383
 384static void vtime_flush_scaled(struct task_struct *tsk,
 385                               struct cpu_accounting_data *acct)
 386{
 387#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
 388        if (acct->utime_scaled)
 389                tsk->utimescaled += cputime_to_nsecs(acct->utime_scaled);
 390        if (acct->stime_scaled)
 391                tsk->stimescaled += cputime_to_nsecs(acct->stime_scaled);
 392
 393        acct->utime_scaled = 0;
 394        acct->utime_sspurr = 0;
 395        acct->stime_scaled = 0;
 396#endif
 397}
 398
 399/*
 400 * Account the whole cputime accumulated in the paca
 401 * Must be called with interrupts disabled.
 402 * Assumes that vtime_account_system/idle() has been called
 403 * recently (i.e. since the last entry from usermode) so that
 404 * get_paca()->user_time_scaled is up to date.
 405 */
 406void vtime_flush(struct task_struct *tsk)
 407{
 408        struct cpu_accounting_data *acct = get_accounting(tsk);
 409
 410        if (acct->utime)
 411                account_user_time(tsk, cputime_to_nsecs(acct->utime));
 412
 413        if (acct->gtime)
 414                account_guest_time(tsk, cputime_to_nsecs(acct->gtime));
 415
 416        if (IS_ENABLED(CONFIG_PPC_SPLPAR) && acct->steal_time) {
 417                account_steal_time(cputime_to_nsecs(acct->steal_time));
 418                acct->steal_time = 0;
 419        }
 420
 421        if (acct->idle_time)
 422                account_idle_time(cputime_to_nsecs(acct->idle_time));
 423
 424        if (acct->stime)
 425                account_system_index_time(tsk, cputime_to_nsecs(acct->stime),
 426                                          CPUTIME_SYSTEM);
 427
 428        if (acct->hardirq_time)
 429                account_system_index_time(tsk, cputime_to_nsecs(acct->hardirq_time),
 430                                          CPUTIME_IRQ);
 431        if (acct->softirq_time)
 432                account_system_index_time(tsk, cputime_to_nsecs(acct->softirq_time),
 433                                          CPUTIME_SOFTIRQ);
 434
 435        vtime_flush_scaled(tsk, acct);
 436
 437        acct->utime = 0;
 438        acct->gtime = 0;
 439        acct->idle_time = 0;
 440        acct->stime = 0;
 441        acct->hardirq_time = 0;
 442        acct->softirq_time = 0;
 443}
 444
 445#else /* ! CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
 446#define calc_cputime_factors()
 447#endif
 448
 449void __delay(unsigned long loops)
 450{
 451        unsigned long start;
 452        int diff;
 453
 454        spin_begin();
 455        if (__USE_RTC()) {
 456                start = get_rtcl();
 457                do {
 458                        /* the RTCL register wraps at 1000000000 */
 459                        diff = get_rtcl() - start;
 460                        if (diff < 0)
 461                                diff += 1000000000;
 462                        spin_cpu_relax();
 463                } while (diff < loops);
 464        } else {
 465                start = get_tbl();
 466                while (get_tbl() - start < loops)
 467                        spin_cpu_relax();
 468        }
 469        spin_end();
 470}
 471EXPORT_SYMBOL(__delay);
 472
 473void udelay(unsigned long usecs)
 474{
 475        __delay(tb_ticks_per_usec * usecs);
 476}
 477EXPORT_SYMBOL(udelay);
 478
 479#ifdef CONFIG_SMP
 480unsigned long profile_pc(struct pt_regs *regs)
 481{
 482        unsigned long pc = instruction_pointer(regs);
 483
 484        if (in_lock_functions(pc))
 485                return regs->link;
 486
 487        return pc;
 488}
 489EXPORT_SYMBOL(profile_pc);
 490#endif
 491
 492#ifdef CONFIG_IRQ_WORK
 493
 494/*
 495 * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
 496 */
 497#ifdef CONFIG_PPC64
 498static inline unsigned long test_irq_work_pending(void)
 499{
 500        unsigned long x;
 501
 502        asm volatile("lbz %0,%1(13)"
 503                : "=r" (x)
 504                : "i" (offsetof(struct paca_struct, irq_work_pending)));
 505        return x;
 506}
 507
 508static inline void set_irq_work_pending_flag(void)
 509{
 510        asm volatile("stb %0,%1(13)" : :
 511                "r" (1),
 512                "i" (offsetof(struct paca_struct, irq_work_pending)));
 513}
 514
 515static inline void clear_irq_work_pending(void)
 516{
 517        asm volatile("stb %0,%1(13)" : :
 518                "r" (0),
 519                "i" (offsetof(struct paca_struct, irq_work_pending)));
 520}
 521
 522void arch_irq_work_raise(void)
 523{
 524        preempt_disable();
 525        set_irq_work_pending_flag();
 526        /*
 527         * Non-nmi code running with interrupts disabled will replay
 528         * irq_happened before it re-enables interrupts, so setthe
 529         * decrementer there instead of causing a hardware exception
 530         * which would immediately hit the masked interrupt handler
 531         * and have the net effect of setting the decrementer in
 532         * irq_happened.
 533         *
 534         * NMI interrupts can not check this when they return, so the
 535         * decrementer hardware exception is raised, which will fire
 536         * when interrupts are next enabled.
 537         *
 538         * BookE does not support this yet, it must audit all NMI
 539         * interrupt handlers to ensure they call nmi_enter() so this
 540         * check would be correct.
 541         */
 542        if (IS_ENABLED(CONFIG_BOOKE) || !irqs_disabled() || in_nmi()) {
 543                set_dec(1);
 544        } else {
 545                hard_irq_disable();
 546                local_paca->irq_happened |= PACA_IRQ_DEC;
 547        }
 548        preempt_enable();
 549}
 550
 551#else /* 32-bit */
 552
 553DEFINE_PER_CPU(u8, irq_work_pending);
 554
 555#define set_irq_work_pending_flag()     __this_cpu_write(irq_work_pending, 1)
 556#define test_irq_work_pending()         __this_cpu_read(irq_work_pending)
 557#define clear_irq_work_pending()        __this_cpu_write(irq_work_pending, 0)
 558
 559void arch_irq_work_raise(void)
 560{
 561        preempt_disable();
 562        set_irq_work_pending_flag();
 563        set_dec(1);
 564        preempt_enable();
 565}
 566
 567#endif /* 32 vs 64 bit */
 568
 569#else  /* CONFIG_IRQ_WORK */
 570
 571#define test_irq_work_pending() 0
 572#define clear_irq_work_pending()
 573
 574#endif /* CONFIG_IRQ_WORK */
 575
 576/*
 577 * timer_interrupt - gets called when the decrementer overflows,
 578 * with interrupts disabled.
 579 */
 580void timer_interrupt(struct pt_regs *regs)
 581{
 582        struct clock_event_device *evt = this_cpu_ptr(&decrementers);
 583        u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
 584        struct pt_regs *old_regs;
 585        u64 now;
 586
 587        /* Some implementations of hotplug will get timer interrupts while
 588         * offline, just ignore these and we also need to set
 589         * decrementers_next_tb as MAX to make sure __check_irq_replay
 590         * don't replay timer interrupt when return, otherwise we'll trap
 591         * here infinitely :(
 592         */
 593        if (unlikely(!cpu_online(smp_processor_id()))) {
 594                *next_tb = ~(u64)0;
 595                set_dec(decrementer_max);
 596                return;
 597        }
 598
 599        /* Ensure a positive value is written to the decrementer, or else
 600         * some CPUs will continue to take decrementer exceptions. When the
 601         * PPC_WATCHDOG (decrementer based) is configured, keep this at most
 602         * 31 bits, which is about 4 seconds on most systems, which gives
 603         * the watchdog a chance of catching timer interrupt hard lockups.
 604         */
 605        if (IS_ENABLED(CONFIG_PPC_WATCHDOG))
 606                set_dec(0x7fffffff);
 607        else
 608                set_dec(decrementer_max);
 609
 610        /* Conditionally hard-enable interrupts now that the DEC has been
 611         * bumped to its maximum value
 612         */
 613        may_hard_irq_enable();
 614
 615
 616#if defined(CONFIG_PPC32) && defined(CONFIG_PPC_PMAC)
 617        if (atomic_read(&ppc_n_lost_interrupts) != 0)
 618                do_IRQ(regs);
 619#endif
 620
 621        old_regs = set_irq_regs(regs);
 622        irq_enter();
 623        trace_timer_interrupt_entry(regs);
 624
 625        if (test_irq_work_pending()) {
 626                clear_irq_work_pending();
 627                irq_work_run();
 628        }
 629
 630        now = get_tb_or_rtc();
 631        if (now >= *next_tb) {
 632                *next_tb = ~(u64)0;
 633                if (evt->event_handler)
 634                        evt->event_handler(evt);
 635                __this_cpu_inc(irq_stat.timer_irqs_event);
 636        } else {
 637                now = *next_tb - now;
 638                if (now <= decrementer_max)
 639                        set_dec(now);
 640                /* We may have raced with new irq work */
 641                if (test_irq_work_pending())
 642                        set_dec(1);
 643                __this_cpu_inc(irq_stat.timer_irqs_others);
 644        }
 645
 646        trace_timer_interrupt_exit(regs);
 647        irq_exit();
 648        set_irq_regs(old_regs);
 649}
 650EXPORT_SYMBOL(timer_interrupt);
 651
 652#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
 653void timer_broadcast_interrupt(void)
 654{
 655        u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
 656
 657        *next_tb = ~(u64)0;
 658        tick_receive_broadcast();
 659        __this_cpu_inc(irq_stat.broadcast_irqs_event);
 660}
 661#endif
 662
 663/*
 664 * Hypervisor decrementer interrupts shouldn't occur but are sometimes
 665 * left pending on exit from a KVM guest.  We don't need to do anything
 666 * to clear them, as they are edge-triggered.
 667 */
 668void hdec_interrupt(struct pt_regs *regs)
 669{
 670}
 671
 672#ifdef CONFIG_SUSPEND
 673static void generic_suspend_disable_irqs(void)
 674{
 675        /* Disable the decrementer, so that it doesn't interfere
 676         * with suspending.
 677         */
 678
 679        set_dec(decrementer_max);
 680        local_irq_disable();
 681        set_dec(decrementer_max);
 682}
 683
 684static void generic_suspend_enable_irqs(void)
 685{
 686        local_irq_enable();
 687}
 688
 689/* Overrides the weak version in kernel/power/main.c */
 690void arch_suspend_disable_irqs(void)
 691{
 692        if (ppc_md.suspend_disable_irqs)
 693                ppc_md.suspend_disable_irqs();
 694        generic_suspend_disable_irqs();
 695}
 696
 697/* Overrides the weak version in kernel/power/main.c */
 698void arch_suspend_enable_irqs(void)
 699{
 700        generic_suspend_enable_irqs();
 701        if (ppc_md.suspend_enable_irqs)
 702                ppc_md.suspend_enable_irqs();
 703}
 704#endif
 705
 706unsigned long long tb_to_ns(unsigned long long ticks)
 707{
 708        return mulhdu(ticks, tb_to_ns_scale) << tb_to_ns_shift;
 709}
 710EXPORT_SYMBOL_GPL(tb_to_ns);
 711
 712/*
 713 * Scheduler clock - returns current time in nanosec units.
 714 *
 715 * Note: mulhdu(a, b) (multiply high double unsigned) returns
 716 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
 717 * are 64-bit unsigned numbers.
 718 */
 719notrace unsigned long long sched_clock(void)
 720{
 721        if (__USE_RTC())
 722                return get_rtc();
 723        return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
 724}
 725
 726
 727#ifdef CONFIG_PPC_PSERIES
 728
 729/*
 730 * Running clock - attempts to give a view of time passing for a virtualised
 731 * kernels.
 732 * Uses the VTB register if available otherwise a next best guess.
 733 */
 734unsigned long long running_clock(void)
 735{
 736        /*
 737         * Don't read the VTB as a host since KVM does not switch in host
 738         * timebase into the VTB when it takes a guest off the CPU, reading the
 739         * VTB would result in reading 'last switched out' guest VTB.
 740         *
 741         * Host kernels are often compiled with CONFIG_PPC_PSERIES checked, it
 742         * would be unsafe to rely only on the #ifdef above.
 743         */
 744        if (firmware_has_feature(FW_FEATURE_LPAR) &&
 745            cpu_has_feature(CPU_FTR_ARCH_207S))
 746                return mulhdu(get_vtb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
 747
 748        /*
 749         * This is a next best approximation without a VTB.
 750         * On a host which is running bare metal there should never be any stolen
 751         * time and on a host which doesn't do any virtualisation TB *should* equal
 752         * VTB so it makes no difference anyway.
 753         */
 754        return local_clock() - kcpustat_this_cpu->cpustat[CPUTIME_STEAL];
 755}
 756#endif
 757
 758static int __init get_freq(char *name, int cells, unsigned long *val)
 759{
 760        struct device_node *cpu;
 761        const __be32 *fp;
 762        int found = 0;
 763
 764        /* The cpu node should have timebase and clock frequency properties */
 765        cpu = of_find_node_by_type(NULL, "cpu");
 766
 767        if (cpu) {
 768                fp = of_get_property(cpu, name, NULL);
 769                if (fp) {
 770                        found = 1;
 771                        *val = of_read_ulong(fp, cells);
 772                }
 773
 774                of_node_put(cpu);
 775        }
 776
 777        return found;
 778}
 779
 780static void start_cpu_decrementer(void)
 781{
 782#if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
 783        unsigned int tcr;
 784
 785        /* Clear any pending timer interrupts */
 786        mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
 787
 788        tcr = mfspr(SPRN_TCR);
 789        /*
 790         * The watchdog may have already been enabled by u-boot. So leave
 791         * TRC[WP] (Watchdog Period) alone.
 792         */
 793        tcr &= TCR_WP_MASK;     /* Clear all bits except for TCR[WP] */
 794        tcr |= TCR_DIE;         /* Enable decrementer */
 795        mtspr(SPRN_TCR, tcr);
 796#endif
 797}
 798
 799void __init generic_calibrate_decr(void)
 800{
 801        ppc_tb_freq = DEFAULT_TB_FREQ;          /* hardcoded default */
 802
 803        if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
 804            !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
 805
 806                printk(KERN_ERR "WARNING: Estimating decrementer frequency "
 807                                "(not found)\n");
 808        }
 809
 810        ppc_proc_freq = DEFAULT_PROC_FREQ;      /* hardcoded default */
 811
 812        if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
 813            !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
 814
 815                printk(KERN_ERR "WARNING: Estimating processor frequency "
 816                                "(not found)\n");
 817        }
 818}
 819
 820int update_persistent_clock64(struct timespec64 now)
 821{
 822        struct rtc_time tm;
 823
 824        if (!ppc_md.set_rtc_time)
 825                return -ENODEV;
 826
 827        rtc_time64_to_tm(now.tv_sec + 1 + timezone_offset, &tm);
 828
 829        return ppc_md.set_rtc_time(&tm);
 830}
 831
 832static void __read_persistent_clock(struct timespec64 *ts)
 833{
 834        struct rtc_time tm;
 835        static int first = 1;
 836
 837        ts->tv_nsec = 0;
 838        /* XXX this is a litle fragile but will work okay in the short term */
 839        if (first) {
 840                first = 0;
 841                if (ppc_md.time_init)
 842                        timezone_offset = ppc_md.time_init();
 843
 844                /* get_boot_time() isn't guaranteed to be safe to call late */
 845                if (ppc_md.get_boot_time) {
 846                        ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
 847                        return;
 848                }
 849        }
 850        if (!ppc_md.get_rtc_time) {
 851                ts->tv_sec = 0;
 852                return;
 853        }
 854        ppc_md.get_rtc_time(&tm);
 855
 856        ts->tv_sec = rtc_tm_to_time64(&tm);
 857}
 858
 859void read_persistent_clock64(struct timespec64 *ts)
 860{
 861        __read_persistent_clock(ts);
 862
 863        /* Sanitize it in case real time clock is set below EPOCH */
 864        if (ts->tv_sec < 0) {
 865                ts->tv_sec = 0;
 866                ts->tv_nsec = 0;
 867        }
 868                
 869}
 870
 871/* clocksource code */
 872static notrace u64 rtc_read(struct clocksource *cs)
 873{
 874        return (u64)get_rtc();
 875}
 876
 877static notrace u64 timebase_read(struct clocksource *cs)
 878{
 879        return (u64)get_tb();
 880}
 881
 882
 883void update_vsyscall(struct timekeeper *tk)
 884{
 885        struct timespec xt;
 886        struct clocksource *clock = tk->tkr_mono.clock;
 887        u32 mult = tk->tkr_mono.mult;
 888        u32 shift = tk->tkr_mono.shift;
 889        u64 cycle_last = tk->tkr_mono.cycle_last;
 890        u64 new_tb_to_xs, new_stamp_xsec;
 891        u64 frac_sec;
 892
 893        if (clock != &clocksource_timebase)
 894                return;
 895
 896        xt.tv_sec = tk->xtime_sec;
 897        xt.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
 898
 899        /* Make userspace gettimeofday spin until we're done. */
 900        ++vdso_data->tb_update_count;
 901        smp_mb();
 902
 903        /*
 904         * This computes ((2^20 / 1e9) * mult) >> shift as a
 905         * 0.64 fixed-point fraction.
 906         * The computation in the else clause below won't overflow
 907         * (as long as the timebase frequency is >= 1.049 MHz)
 908         * but loses precision because we lose the low bits of the constant
 909         * in the shift.  Note that 19342813113834067 ~= 2^(20+64) / 1e9.
 910         * For a shift of 24 the error is about 0.5e-9, or about 0.5ns
 911         * over a second.  (Shift values are usually 22, 23 or 24.)
 912         * For high frequency clocks such as the 512MHz timebase clock
 913         * on POWER[6789], the mult value is small (e.g. 32768000)
 914         * and so we can shift the constant by 16 initially
 915         * (295147905179 ~= 2^(20+64-16) / 1e9) and then do the
 916         * remaining shifts after the multiplication, which gives a
 917         * more accurate result (e.g. with mult = 32768000, shift = 24,
 918         * the error is only about 1.2e-12, or 0.7ns over 10 minutes).
 919         */
 920        if (mult <= 62500000 && clock->shift >= 16)
 921                new_tb_to_xs = ((u64) mult * 295147905179ULL) >> (clock->shift - 16);
 922        else
 923                new_tb_to_xs = (u64) mult * (19342813113834067ULL >> clock->shift);
 924
 925        /*
 926         * Compute the fractional second in units of 2^-32 seconds.
 927         * The fractional second is tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift
 928         * in nanoseconds, so multiplying that by 2^32 / 1e9 gives
 929         * it in units of 2^-32 seconds.
 930         * We assume shift <= 32 because clocks_calc_mult_shift()
 931         * generates shift values in the range 0 - 32.
 932         */
 933        frac_sec = tk->tkr_mono.xtime_nsec << (32 - shift);
 934        do_div(frac_sec, NSEC_PER_SEC);
 935
 936        /*
 937         * Work out new stamp_xsec value for any legacy users of systemcfg.
 938         * stamp_xsec is in units of 2^-20 seconds.
 939         */
 940        new_stamp_xsec = frac_sec >> 12;
 941        new_stamp_xsec += tk->xtime_sec * XSEC_PER_SEC;
 942
 943        /*
 944         * tb_update_count is used to allow the userspace gettimeofday code
 945         * to assure itself that it sees a consistent view of the tb_to_xs and
 946         * stamp_xsec variables.  It reads the tb_update_count, then reads
 947         * tb_to_xs and stamp_xsec and then reads tb_update_count again.  If
 948         * the two values of tb_update_count match and are even then the
 949         * tb_to_xs and stamp_xsec values are consistent.  If not, then it
 950         * loops back and reads them again until this criteria is met.
 951         */
 952        vdso_data->tb_orig_stamp = cycle_last;
 953        vdso_data->stamp_xsec = new_stamp_xsec;
 954        vdso_data->tb_to_xs = new_tb_to_xs;
 955        vdso_data->wtom_clock_sec = tk->wall_to_monotonic.tv_sec;
 956        vdso_data->wtom_clock_nsec = tk->wall_to_monotonic.tv_nsec;
 957        vdso_data->stamp_xtime = xt;
 958        vdso_data->stamp_sec_fraction = frac_sec;
 959        smp_wmb();
 960        ++(vdso_data->tb_update_count);
 961}
 962
 963void update_vsyscall_tz(void)
 964{
 965        vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
 966        vdso_data->tz_dsttime = sys_tz.tz_dsttime;
 967}
 968
 969static void __init clocksource_init(void)
 970{
 971        struct clocksource *clock;
 972
 973        if (__USE_RTC())
 974                clock = &clocksource_rtc;
 975        else
 976                clock = &clocksource_timebase;
 977
 978        if (clocksource_register_hz(clock, tb_ticks_per_sec)) {
 979                printk(KERN_ERR "clocksource: %s is already registered\n",
 980                       clock->name);
 981                return;
 982        }
 983
 984        printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
 985               clock->name, clock->mult, clock->shift);
 986}
 987
 988static int decrementer_set_next_event(unsigned long evt,
 989                                      struct clock_event_device *dev)
 990{
 991        __this_cpu_write(decrementers_next_tb, get_tb_or_rtc() + evt);
 992        set_dec(evt);
 993
 994        /* We may have raced with new irq work */
 995        if (test_irq_work_pending())
 996                set_dec(1);
 997
 998        return 0;
 999}
1000
1001static int decrementer_shutdown(struct clock_event_device *dev)
1002{
1003        decrementer_set_next_event(decrementer_max, dev);
1004        return 0;
1005}
1006
1007static void register_decrementer_clockevent(int cpu)
1008{
1009        struct clock_event_device *dec = &per_cpu(decrementers, cpu);
1010
1011        *dec = decrementer_clockevent;
1012        dec->cpumask = cpumask_of(cpu);
1013
1014        clockevents_config_and_register(dec, ppc_tb_freq, 2, decrementer_max);
1015
1016        printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
1017                    dec->name, dec->mult, dec->shift, cpu);
1018
1019        /* Set values for KVM, see kvm_emulate_dec() */
1020        decrementer_clockevent.mult = dec->mult;
1021        decrementer_clockevent.shift = dec->shift;
1022}
1023
1024static void enable_large_decrementer(void)
1025{
1026        if (!cpu_has_feature(CPU_FTR_ARCH_300))
1027                return;
1028
1029        if (decrementer_max <= DECREMENTER_DEFAULT_MAX)
1030                return;
1031
1032        /*
1033         * If we're running as the hypervisor we need to enable the LD manually
1034         * otherwise firmware should have done it for us.
1035         */
1036        if (cpu_has_feature(CPU_FTR_HVMODE))
1037                mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_LD);
1038}
1039
1040static void __init set_decrementer_max(void)
1041{
1042        struct device_node *cpu;
1043        u32 bits = 32;
1044
1045        /* Prior to ISAv3 the decrementer is always 32 bit */
1046        if (!cpu_has_feature(CPU_FTR_ARCH_300))
1047                return;
1048
1049        cpu = of_find_node_by_type(NULL, "cpu");
1050
1051        if (of_property_read_u32(cpu, "ibm,dec-bits", &bits) == 0) {
1052                if (bits > 64 || bits < 32) {
1053                        pr_warn("time_init: firmware supplied invalid ibm,dec-bits");
1054                        bits = 32;
1055                }
1056
1057                /* calculate the signed maximum given this many bits */
1058                decrementer_max = (1ul << (bits - 1)) - 1;
1059        }
1060
1061        of_node_put(cpu);
1062
1063        pr_info("time_init: %u bit decrementer (max: %llx)\n",
1064                bits, decrementer_max);
1065}
1066
1067static void __init init_decrementer_clockevent(void)
1068{
1069        register_decrementer_clockevent(smp_processor_id());
1070}
1071
1072void secondary_cpu_time_init(void)
1073{
1074        /* Enable and test the large decrementer for this cpu */
1075        enable_large_decrementer();
1076
1077        /* Start the decrementer on CPUs that have manual control
1078         * such as BookE
1079         */
1080        start_cpu_decrementer();
1081
1082        /* FIME: Should make unrelatred change to move snapshot_timebase
1083         * call here ! */
1084        register_decrementer_clockevent(smp_processor_id());
1085}
1086
1087/* This function is only called on the boot processor */
1088void __init time_init(void)
1089{
1090        struct div_result res;
1091        u64 scale;
1092        unsigned shift;
1093
1094        if (__USE_RTC()) {
1095                /* 601 processor: dec counts down by 128 every 128ns */
1096                ppc_tb_freq = 1000000000;
1097        } else {
1098                /* Normal PowerPC with timebase register */
1099                ppc_md.calibrate_decr();
1100                printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
1101                       ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
1102                printk(KERN_DEBUG "time_init: processor frequency   = %lu.%.6lu MHz\n",
1103                       ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
1104        }
1105
1106        tb_ticks_per_jiffy = ppc_tb_freq / HZ;
1107        tb_ticks_per_sec = ppc_tb_freq;
1108        tb_ticks_per_usec = ppc_tb_freq / 1000000;
1109        calc_cputime_factors();
1110
1111        /*
1112         * Compute scale factor for sched_clock.
1113         * The calibrate_decr() function has set tb_ticks_per_sec,
1114         * which is the timebase frequency.
1115         * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
1116         * the 128-bit result as a 64.64 fixed-point number.
1117         * We then shift that number right until it is less than 1.0,
1118         * giving us the scale factor and shift count to use in
1119         * sched_clock().
1120         */
1121        div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
1122        scale = res.result_low;
1123        for (shift = 0; res.result_high != 0; ++shift) {
1124                scale = (scale >> 1) | (res.result_high << 63);
1125                res.result_high >>= 1;
1126        }
1127        tb_to_ns_scale = scale;
1128        tb_to_ns_shift = shift;
1129        /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
1130        boot_tb = get_tb_or_rtc();
1131
1132        /* If platform provided a timezone (pmac), we correct the time */
1133        if (timezone_offset) {
1134                sys_tz.tz_minuteswest = -timezone_offset / 60;
1135                sys_tz.tz_dsttime = 0;
1136        }
1137
1138        vdso_data->tb_update_count = 0;
1139        vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
1140
1141        /* initialise and enable the large decrementer (if we have one) */
1142        set_decrementer_max();
1143        enable_large_decrementer();
1144
1145        /* Start the decrementer on CPUs that have manual control
1146         * such as BookE
1147         */
1148        start_cpu_decrementer();
1149
1150        /* Register the clocksource */
1151        clocksource_init();
1152
1153        init_decrementer_clockevent();
1154        tick_setup_hrtimer_broadcast();
1155
1156#ifdef CONFIG_COMMON_CLK
1157        of_clk_init(NULL);
1158#endif
1159}
1160
1161/*
1162 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1163 * result.
1164 */
1165void div128_by_32(u64 dividend_high, u64 dividend_low,
1166                  unsigned divisor, struct div_result *dr)
1167{
1168        unsigned long a, b, c, d;
1169        unsigned long w, x, y, z;
1170        u64 ra, rb, rc;
1171
1172        a = dividend_high >> 32;
1173        b = dividend_high & 0xffffffff;
1174        c = dividend_low >> 32;
1175        d = dividend_low & 0xffffffff;
1176
1177        w = a / divisor;
1178        ra = ((u64)(a - (w * divisor)) << 32) + b;
1179
1180        rb = ((u64) do_div(ra, divisor) << 32) + c;
1181        x = ra;
1182
1183        rc = ((u64) do_div(rb, divisor) << 32) + d;
1184        y = rb;
1185
1186        do_div(rc, divisor);
1187        z = rc;
1188
1189        dr->result_high = ((u64)w << 32) + x;
1190        dr->result_low  = ((u64)y << 32) + z;
1191
1192}
1193
1194/* We don't need to calibrate delay, we use the CPU timebase for that */
1195void calibrate_delay(void)
1196{
1197        /* Some generic code (such as spinlock debug) use loops_per_jiffy
1198         * as the number of __delay(1) in a jiffy, so make it so
1199         */
1200        loops_per_jiffy = tb_ticks_per_jiffy;
1201}
1202
1203#if IS_ENABLED(CONFIG_RTC_DRV_GENERIC)
1204static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm)
1205{
1206        ppc_md.get_rtc_time(tm);
1207        return 0;
1208}
1209
1210static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm)
1211{
1212        if (!ppc_md.set_rtc_time)
1213                return -EOPNOTSUPP;
1214
1215        if (ppc_md.set_rtc_time(tm) < 0)
1216                return -EOPNOTSUPP;
1217
1218        return 0;
1219}
1220
1221static const struct rtc_class_ops rtc_generic_ops = {
1222        .read_time = rtc_generic_get_time,
1223        .set_time = rtc_generic_set_time,
1224};
1225
1226static int __init rtc_init(void)
1227{
1228        struct platform_device *pdev;
1229
1230        if (!ppc_md.get_rtc_time)
1231                return -ENODEV;
1232
1233        pdev = platform_device_register_data(NULL, "rtc-generic", -1,
1234                                             &rtc_generic_ops,
1235                                             sizeof(rtc_generic_ops));
1236
1237        return PTR_ERR_OR_ZERO(pdev);
1238}
1239
1240device_initcall(rtc_init);
1241#endif
1242