linux/arch/powerpc/mm/pgtable-radix.c
<<
>>
Prefs
   1/*
   2 * Page table handling routines for radix page table.
   3 *
   4 * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * as published by the Free Software Foundation; either version
   9 * 2 of the License, or (at your option) any later version.
  10 */
  11
  12#define pr_fmt(fmt) "radix-mmu: " fmt
  13
  14#include <linux/kernel.h>
  15#include <linux/sched/mm.h>
  16#include <linux/memblock.h>
  17#include <linux/of_fdt.h>
  18#include <linux/mm.h>
  19#include <linux/string_helpers.h>
  20#include <linux/stop_machine.h>
  21
  22#include <asm/pgtable.h>
  23#include <asm/pgalloc.h>
  24#include <asm/mmu_context.h>
  25#include <asm/dma.h>
  26#include <asm/machdep.h>
  27#include <asm/mmu.h>
  28#include <asm/firmware.h>
  29#include <asm/powernv.h>
  30#include <asm/sections.h>
  31#include <asm/trace.h>
  32
  33#include <trace/events/thp.h>
  34
  35unsigned int mmu_pid_bits;
  36unsigned int mmu_base_pid;
  37
  38static int native_register_process_table(unsigned long base, unsigned long pg_sz,
  39                                         unsigned long table_size)
  40{
  41        unsigned long patb0, patb1;
  42
  43        patb0 = be64_to_cpu(partition_tb[0].patb0);
  44        patb1 = base | table_size | PATB_GR;
  45
  46        mmu_partition_table_set_entry(0, patb0, patb1);
  47
  48        return 0;
  49}
  50
  51static __ref void *early_alloc_pgtable(unsigned long size, int nid,
  52                        unsigned long region_start, unsigned long region_end)
  53{
  54        unsigned long pa = 0;
  55        void *pt;
  56
  57        if (region_start || region_end) /* has region hint */
  58                pa = memblock_alloc_range(size, size, region_start, region_end,
  59                                                MEMBLOCK_NONE);
  60        else if (nid != -1) /* has node hint */
  61                pa = memblock_alloc_base_nid(size, size,
  62                                                MEMBLOCK_ALLOC_ANYWHERE,
  63                                                nid, MEMBLOCK_NONE);
  64
  65        if (!pa)
  66                pa = memblock_alloc_base(size, size, MEMBLOCK_ALLOC_ANYWHERE);
  67
  68        BUG_ON(!pa);
  69
  70        pt = __va(pa);
  71        memset(pt, 0, size);
  72
  73        return pt;
  74}
  75
  76static int early_map_kernel_page(unsigned long ea, unsigned long pa,
  77                          pgprot_t flags,
  78                          unsigned int map_page_size,
  79                          int nid,
  80                          unsigned long region_start, unsigned long region_end)
  81{
  82        unsigned long pfn = pa >> PAGE_SHIFT;
  83        pgd_t *pgdp;
  84        pud_t *pudp;
  85        pmd_t *pmdp;
  86        pte_t *ptep;
  87
  88        pgdp = pgd_offset_k(ea);
  89        if (pgd_none(*pgdp)) {
  90                pudp = early_alloc_pgtable(PUD_TABLE_SIZE, nid,
  91                                                region_start, region_end);
  92                pgd_populate(&init_mm, pgdp, pudp);
  93        }
  94        pudp = pud_offset(pgdp, ea);
  95        if (map_page_size == PUD_SIZE) {
  96                ptep = (pte_t *)pudp;
  97                goto set_the_pte;
  98        }
  99        if (pud_none(*pudp)) {
 100                pmdp = early_alloc_pgtable(PMD_TABLE_SIZE, nid,
 101                                                region_start, region_end);
 102                pud_populate(&init_mm, pudp, pmdp);
 103        }
 104        pmdp = pmd_offset(pudp, ea);
 105        if (map_page_size == PMD_SIZE) {
 106                ptep = pmdp_ptep(pmdp);
 107                goto set_the_pte;
 108        }
 109        if (!pmd_present(*pmdp)) {
 110                ptep = early_alloc_pgtable(PAGE_SIZE, nid,
 111                                                region_start, region_end);
 112                pmd_populate_kernel(&init_mm, pmdp, ptep);
 113        }
 114        ptep = pte_offset_kernel(pmdp, ea);
 115
 116set_the_pte:
 117        set_pte_at(&init_mm, ea, ptep, pfn_pte(pfn, flags));
 118        smp_wmb();
 119        return 0;
 120}
 121
 122/*
 123 * nid, region_start, and region_end are hints to try to place the page
 124 * table memory in the same node or region.
 125 */
 126static int __map_kernel_page(unsigned long ea, unsigned long pa,
 127                          pgprot_t flags,
 128                          unsigned int map_page_size,
 129                          int nid,
 130                          unsigned long region_start, unsigned long region_end)
 131{
 132        unsigned long pfn = pa >> PAGE_SHIFT;
 133        pgd_t *pgdp;
 134        pud_t *pudp;
 135        pmd_t *pmdp;
 136        pte_t *ptep;
 137        /*
 138         * Make sure task size is correct as per the max adddr
 139         */
 140        BUILD_BUG_ON(TASK_SIZE_USER64 > RADIX_PGTABLE_RANGE);
 141
 142        if (unlikely(!slab_is_available()))
 143                return early_map_kernel_page(ea, pa, flags, map_page_size,
 144                                                nid, region_start, region_end);
 145
 146        /*
 147         * Should make page table allocation functions be able to take a
 148         * node, so we can place kernel page tables on the right nodes after
 149         * boot.
 150         */
 151        pgdp = pgd_offset_k(ea);
 152        pudp = pud_alloc(&init_mm, pgdp, ea);
 153        if (!pudp)
 154                return -ENOMEM;
 155        if (map_page_size == PUD_SIZE) {
 156                ptep = (pte_t *)pudp;
 157                goto set_the_pte;
 158        }
 159        pmdp = pmd_alloc(&init_mm, pudp, ea);
 160        if (!pmdp)
 161                return -ENOMEM;
 162        if (map_page_size == PMD_SIZE) {
 163                ptep = pmdp_ptep(pmdp);
 164                goto set_the_pte;
 165        }
 166        ptep = pte_alloc_kernel(pmdp, ea);
 167        if (!ptep)
 168                return -ENOMEM;
 169
 170set_the_pte:
 171        set_pte_at(&init_mm, ea, ptep, pfn_pte(pfn, flags));
 172        smp_wmb();
 173        return 0;
 174}
 175
 176int radix__map_kernel_page(unsigned long ea, unsigned long pa,
 177                          pgprot_t flags,
 178                          unsigned int map_page_size)
 179{
 180        return __map_kernel_page(ea, pa, flags, map_page_size, -1, 0, 0);
 181}
 182
 183#ifdef CONFIG_STRICT_KERNEL_RWX
 184void radix__change_memory_range(unsigned long start, unsigned long end,
 185                                unsigned long clear)
 186{
 187        unsigned long idx;
 188        pgd_t *pgdp;
 189        pud_t *pudp;
 190        pmd_t *pmdp;
 191        pte_t *ptep;
 192
 193        start = ALIGN_DOWN(start, PAGE_SIZE);
 194        end = PAGE_ALIGN(end); // aligns up
 195
 196        pr_debug("Changing flags on range %lx-%lx removing 0x%lx\n",
 197                 start, end, clear);
 198
 199        for (idx = start; idx < end; idx += PAGE_SIZE) {
 200                pgdp = pgd_offset_k(idx);
 201                pudp = pud_alloc(&init_mm, pgdp, idx);
 202                if (!pudp)
 203                        continue;
 204                if (pud_huge(*pudp)) {
 205                        ptep = (pte_t *)pudp;
 206                        goto update_the_pte;
 207                }
 208                pmdp = pmd_alloc(&init_mm, pudp, idx);
 209                if (!pmdp)
 210                        continue;
 211                if (pmd_huge(*pmdp)) {
 212                        ptep = pmdp_ptep(pmdp);
 213                        goto update_the_pte;
 214                }
 215                ptep = pte_alloc_kernel(pmdp, idx);
 216                if (!ptep)
 217                        continue;
 218update_the_pte:
 219                radix__pte_update(&init_mm, idx, ptep, clear, 0, 0);
 220        }
 221
 222        radix__flush_tlb_kernel_range(start, end);
 223}
 224
 225void radix__mark_rodata_ro(void)
 226{
 227        unsigned long start, end;
 228
 229        start = (unsigned long)_stext;
 230        end = (unsigned long)__init_begin;
 231
 232        radix__change_memory_range(start, end, _PAGE_WRITE);
 233}
 234
 235void radix__mark_initmem_nx(void)
 236{
 237        unsigned long start = (unsigned long)__init_begin;
 238        unsigned long end = (unsigned long)__init_end;
 239
 240        radix__change_memory_range(start, end, _PAGE_EXEC);
 241}
 242#endif /* CONFIG_STRICT_KERNEL_RWX */
 243
 244static inline void __meminit
 245print_mapping(unsigned long start, unsigned long end, unsigned long size, bool exec)
 246{
 247        char buf[10];
 248
 249        if (end <= start)
 250                return;
 251
 252        string_get_size(size, 1, STRING_UNITS_2, buf, sizeof(buf));
 253
 254        pr_info("Mapped 0x%016lx-0x%016lx with %s pages%s\n", start, end, buf,
 255                exec ? " (exec)" : "");
 256}
 257
 258static unsigned long next_boundary(unsigned long addr, unsigned long end)
 259{
 260#ifdef CONFIG_STRICT_KERNEL_RWX
 261        if (addr < __pa_symbol(__init_begin))
 262                return __pa_symbol(__init_begin);
 263#endif
 264        return end;
 265}
 266
 267static int __meminit create_physical_mapping(unsigned long start,
 268                                             unsigned long end,
 269                                             int nid)
 270{
 271        unsigned long vaddr, addr, mapping_size = 0;
 272        bool prev_exec, exec = false;
 273        pgprot_t prot;
 274        int psize;
 275
 276        start = _ALIGN_UP(start, PAGE_SIZE);
 277        for (addr = start; addr < end; addr += mapping_size) {
 278                unsigned long gap, previous_size;
 279                int rc;
 280
 281                gap = next_boundary(addr, end) - addr;
 282                previous_size = mapping_size;
 283                prev_exec = exec;
 284
 285                if (IS_ALIGNED(addr, PUD_SIZE) && gap >= PUD_SIZE &&
 286                    mmu_psize_defs[MMU_PAGE_1G].shift) {
 287                        mapping_size = PUD_SIZE;
 288                        psize = MMU_PAGE_1G;
 289                } else if (IS_ALIGNED(addr, PMD_SIZE) && gap >= PMD_SIZE &&
 290                           mmu_psize_defs[MMU_PAGE_2M].shift) {
 291                        mapping_size = PMD_SIZE;
 292                        psize = MMU_PAGE_2M;
 293                } else {
 294                        mapping_size = PAGE_SIZE;
 295                        psize = mmu_virtual_psize;
 296                }
 297
 298                vaddr = (unsigned long)__va(addr);
 299
 300                if (overlaps_kernel_text(vaddr, vaddr + mapping_size) ||
 301                    overlaps_interrupt_vector_text(vaddr, vaddr + mapping_size)) {
 302                        prot = PAGE_KERNEL_X;
 303                        exec = true;
 304                } else {
 305                        prot = PAGE_KERNEL;
 306                        exec = false;
 307                }
 308
 309                if (mapping_size != previous_size || exec != prev_exec) {
 310                        print_mapping(start, addr, previous_size, prev_exec);
 311                        start = addr;
 312                }
 313
 314                rc = __map_kernel_page(vaddr, addr, prot, mapping_size, nid, start, end);
 315                if (rc)
 316                        return rc;
 317
 318                update_page_count(psize, 1);
 319        }
 320
 321        print_mapping(start, addr, mapping_size, exec);
 322        return 0;
 323}
 324
 325void __init radix_init_pgtable(void)
 326{
 327        unsigned long rts_field;
 328        struct memblock_region *reg;
 329
 330        /* We don't support slb for radix */
 331        mmu_slb_size = 0;
 332        /*
 333         * Create the linear mapping, using standard page size for now
 334         */
 335        for_each_memblock(memory, reg) {
 336                /*
 337                 * The memblock allocator  is up at this point, so the
 338                 * page tables will be allocated within the range. No
 339                 * need or a node (which we don't have yet).
 340                 */
 341                WARN_ON(create_physical_mapping(reg->base,
 342                                                reg->base + reg->size,
 343                                                -1));
 344        }
 345
 346        /* Find out how many PID bits are supported */
 347        if (cpu_has_feature(CPU_FTR_HVMODE)) {
 348                if (!mmu_pid_bits)
 349                        mmu_pid_bits = 20;
 350#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
 351                /*
 352                 * When KVM is possible, we only use the top half of the
 353                 * PID space to avoid collisions between host and guest PIDs
 354                 * which can cause problems due to prefetch when exiting the
 355                 * guest with AIL=3
 356                 */
 357                mmu_base_pid = 1 << (mmu_pid_bits - 1);
 358#else
 359                mmu_base_pid = 1;
 360#endif
 361        } else {
 362                /* The guest uses the bottom half of the PID space */
 363                if (!mmu_pid_bits)
 364                        mmu_pid_bits = 19;
 365                mmu_base_pid = 1;
 366        }
 367
 368        /*
 369         * Allocate Partition table and process table for the
 370         * host.
 371         */
 372        BUG_ON(PRTB_SIZE_SHIFT > 36);
 373        process_tb = early_alloc_pgtable(1UL << PRTB_SIZE_SHIFT, -1, 0, 0);
 374        /*
 375         * Fill in the process table.
 376         */
 377        rts_field = radix__get_tree_size();
 378        process_tb->prtb0 = cpu_to_be64(rts_field | __pa(init_mm.pgd) | RADIX_PGD_INDEX_SIZE);
 379        /*
 380         * Fill in the partition table. We are suppose to use effective address
 381         * of process table here. But our linear mapping also enable us to use
 382         * physical address here.
 383         */
 384        register_process_table(__pa(process_tb), 0, PRTB_SIZE_SHIFT - 12);
 385        pr_info("Process table %p and radix root for kernel: %p\n", process_tb, init_mm.pgd);
 386        asm volatile("ptesync" : : : "memory");
 387        asm volatile(PPC_TLBIE_5(%0,%1,2,1,1) : :
 388                     "r" (TLBIEL_INVAL_SET_LPID), "r" (0));
 389        asm volatile("eieio; tlbsync; ptesync" : : : "memory");
 390        trace_tlbie(0, 0, TLBIEL_INVAL_SET_LPID, 0, 2, 1, 1);
 391
 392        /*
 393         * The init_mm context is given the first available (non-zero) PID,
 394         * which is the "guard PID" and contains no page table. PIDR should
 395         * never be set to zero because that duplicates the kernel address
 396         * space at the 0x0... offset (quadrant 0)!
 397         *
 398         * An arbitrary PID that may later be allocated by the PID allocator
 399         * for userspace processes must not be used either, because that
 400         * would cause stale user mappings for that PID on CPUs outside of
 401         * the TLB invalidation scheme (because it won't be in mm_cpumask).
 402         *
 403         * So permanently carve out one PID for the purpose of a guard PID.
 404         */
 405        init_mm.context.id = mmu_base_pid;
 406        mmu_base_pid++;
 407}
 408
 409static void __init radix_init_partition_table(void)
 410{
 411        unsigned long rts_field, dw0;
 412
 413        mmu_partition_table_init();
 414        rts_field = radix__get_tree_size();
 415        dw0 = rts_field | __pa(init_mm.pgd) | RADIX_PGD_INDEX_SIZE | PATB_HR;
 416        mmu_partition_table_set_entry(0, dw0, 0);
 417
 418        pr_info("Initializing Radix MMU\n");
 419        pr_info("Partition table %p\n", partition_tb);
 420}
 421
 422void __init radix_init_native(void)
 423{
 424        register_process_table = native_register_process_table;
 425}
 426
 427static int __init get_idx_from_shift(unsigned int shift)
 428{
 429        int idx = -1;
 430
 431        switch (shift) {
 432        case 0xc:
 433                idx = MMU_PAGE_4K;
 434                break;
 435        case 0x10:
 436                idx = MMU_PAGE_64K;
 437                break;
 438        case 0x15:
 439                idx = MMU_PAGE_2M;
 440                break;
 441        case 0x1e:
 442                idx = MMU_PAGE_1G;
 443                break;
 444        }
 445        return idx;
 446}
 447
 448static int __init radix_dt_scan_page_sizes(unsigned long node,
 449                                           const char *uname, int depth,
 450                                           void *data)
 451{
 452        int size = 0;
 453        int shift, idx;
 454        unsigned int ap;
 455        const __be32 *prop;
 456        const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
 457
 458        /* We are scanning "cpu" nodes only */
 459        if (type == NULL || strcmp(type, "cpu") != 0)
 460                return 0;
 461
 462        /* Find MMU PID size */
 463        prop = of_get_flat_dt_prop(node, "ibm,mmu-pid-bits", &size);
 464        if (prop && size == 4)
 465                mmu_pid_bits = be32_to_cpup(prop);
 466
 467        /* Grab page size encodings */
 468        prop = of_get_flat_dt_prop(node, "ibm,processor-radix-AP-encodings", &size);
 469        if (!prop)
 470                return 0;
 471
 472        pr_info("Page sizes from device-tree:\n");
 473        for (; size >= 4; size -= 4, ++prop) {
 474
 475                struct mmu_psize_def *def;
 476
 477                /* top 3 bit is AP encoding */
 478                shift = be32_to_cpu(prop[0]) & ~(0xe << 28);
 479                ap = be32_to_cpu(prop[0]) >> 29;
 480                pr_info("Page size shift = %d AP=0x%x\n", shift, ap);
 481
 482                idx = get_idx_from_shift(shift);
 483                if (idx < 0)
 484                        continue;
 485
 486                def = &mmu_psize_defs[idx];
 487                def->shift = shift;
 488                def->ap  = ap;
 489        }
 490
 491        /* needed ? */
 492        cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B;
 493        return 1;
 494}
 495
 496void __init radix__early_init_devtree(void)
 497{
 498        int rc;
 499
 500        /*
 501         * Try to find the available page sizes in the device-tree
 502         */
 503        rc = of_scan_flat_dt(radix_dt_scan_page_sizes, NULL);
 504        if (rc != 0)  /* Found */
 505                goto found;
 506        /*
 507         * let's assume we have page 4k and 64k support
 508         */
 509        mmu_psize_defs[MMU_PAGE_4K].shift = 12;
 510        mmu_psize_defs[MMU_PAGE_4K].ap = 0x0;
 511
 512        mmu_psize_defs[MMU_PAGE_64K].shift = 16;
 513        mmu_psize_defs[MMU_PAGE_64K].ap = 0x5;
 514found:
 515#ifdef CONFIG_SPARSEMEM_VMEMMAP
 516        if (mmu_psize_defs[MMU_PAGE_2M].shift) {
 517                /*
 518                 * map vmemmap using 2M if available
 519                 */
 520                mmu_vmemmap_psize = MMU_PAGE_2M;
 521        }
 522#endif /* CONFIG_SPARSEMEM_VMEMMAP */
 523        return;
 524}
 525
 526static void radix_init_amor(void)
 527{
 528        /*
 529        * In HV mode, we init AMOR (Authority Mask Override Register) so that
 530        * the hypervisor and guest can setup IAMR (Instruction Authority Mask
 531        * Register), enable key 0 and set it to 1.
 532        *
 533        * AMOR = 0b1100 .... 0000 (Mask for key 0 is 11)
 534        */
 535        mtspr(SPRN_AMOR, (3ul << 62));
 536}
 537
 538static void radix_init_iamr(void)
 539{
 540        /*
 541         * Radix always uses key0 of the IAMR to determine if an access is
 542         * allowed. We set bit 0 (IBM bit 1) of key0, to prevent instruction
 543         * fetch.
 544         */
 545        mtspr(SPRN_IAMR, (1ul << 62));
 546}
 547
 548void __init radix__early_init_mmu(void)
 549{
 550        unsigned long lpcr;
 551
 552#ifdef CONFIG_PPC_64K_PAGES
 553        /* PAGE_SIZE mappings */
 554        mmu_virtual_psize = MMU_PAGE_64K;
 555#else
 556        mmu_virtual_psize = MMU_PAGE_4K;
 557#endif
 558
 559#ifdef CONFIG_SPARSEMEM_VMEMMAP
 560        /* vmemmap mapping */
 561        mmu_vmemmap_psize = mmu_virtual_psize;
 562#endif
 563        /*
 564         * initialize page table size
 565         */
 566        __pte_index_size = RADIX_PTE_INDEX_SIZE;
 567        __pmd_index_size = RADIX_PMD_INDEX_SIZE;
 568        __pud_index_size = RADIX_PUD_INDEX_SIZE;
 569        __pgd_index_size = RADIX_PGD_INDEX_SIZE;
 570        __pud_cache_index = RADIX_PUD_INDEX_SIZE;
 571        __pte_table_size = RADIX_PTE_TABLE_SIZE;
 572        __pmd_table_size = RADIX_PMD_TABLE_SIZE;
 573        __pud_table_size = RADIX_PUD_TABLE_SIZE;
 574        __pgd_table_size = RADIX_PGD_TABLE_SIZE;
 575
 576        __pmd_val_bits = RADIX_PMD_VAL_BITS;
 577        __pud_val_bits = RADIX_PUD_VAL_BITS;
 578        __pgd_val_bits = RADIX_PGD_VAL_BITS;
 579
 580        __kernel_virt_start = RADIX_KERN_VIRT_START;
 581        __kernel_virt_size = RADIX_KERN_VIRT_SIZE;
 582        __vmalloc_start = RADIX_VMALLOC_START;
 583        __vmalloc_end = RADIX_VMALLOC_END;
 584        __kernel_io_start = RADIX_KERN_IO_START;
 585        vmemmap = (struct page *)RADIX_VMEMMAP_BASE;
 586        ioremap_bot = IOREMAP_BASE;
 587
 588#ifdef CONFIG_PCI
 589        pci_io_base = ISA_IO_BASE;
 590#endif
 591        __pte_frag_nr = RADIX_PTE_FRAG_NR;
 592        __pte_frag_size_shift = RADIX_PTE_FRAG_SIZE_SHIFT;
 593        __pmd_frag_nr = RADIX_PMD_FRAG_NR;
 594        __pmd_frag_size_shift = RADIX_PMD_FRAG_SIZE_SHIFT;
 595
 596        if (!firmware_has_feature(FW_FEATURE_LPAR)) {
 597                radix_init_native();
 598                lpcr = mfspr(SPRN_LPCR);
 599                mtspr(SPRN_LPCR, lpcr | LPCR_UPRT | LPCR_HR);
 600                radix_init_partition_table();
 601                radix_init_amor();
 602        } else {
 603                radix_init_pseries();
 604        }
 605
 606        memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
 607
 608        radix_init_iamr();
 609        radix_init_pgtable();
 610        /* Switch to the guard PID before turning on MMU */
 611        radix__switch_mmu_context(NULL, &init_mm);
 612        if (cpu_has_feature(CPU_FTR_HVMODE))
 613                tlbiel_all();
 614}
 615
 616void radix__early_init_mmu_secondary(void)
 617{
 618        unsigned long lpcr;
 619        /*
 620         * update partition table control register and UPRT
 621         */
 622        if (!firmware_has_feature(FW_FEATURE_LPAR)) {
 623                lpcr = mfspr(SPRN_LPCR);
 624                mtspr(SPRN_LPCR, lpcr | LPCR_UPRT | LPCR_HR);
 625
 626                mtspr(SPRN_PTCR,
 627                      __pa(partition_tb) | (PATB_SIZE_SHIFT - 12));
 628                radix_init_amor();
 629        }
 630        radix_init_iamr();
 631
 632        radix__switch_mmu_context(NULL, &init_mm);
 633        if (cpu_has_feature(CPU_FTR_HVMODE))
 634                tlbiel_all();
 635}
 636
 637void radix__mmu_cleanup_all(void)
 638{
 639        unsigned long lpcr;
 640
 641        if (!firmware_has_feature(FW_FEATURE_LPAR)) {
 642                lpcr = mfspr(SPRN_LPCR);
 643                mtspr(SPRN_LPCR, lpcr & ~LPCR_UPRT);
 644                mtspr(SPRN_PTCR, 0);
 645                powernv_set_nmmu_ptcr(0);
 646                radix__flush_tlb_all();
 647        }
 648}
 649
 650void radix__setup_initial_memory_limit(phys_addr_t first_memblock_base,
 651                                phys_addr_t first_memblock_size)
 652{
 653        /* We don't currently support the first MEMBLOCK not mapping 0
 654         * physical on those processors
 655         */
 656        BUG_ON(first_memblock_base != 0);
 657
 658        /*
 659         * Radix mode is not limited by RMA / VRMA addressing.
 660         */
 661        ppc64_rma_size = ULONG_MAX;
 662}
 663
 664#ifdef CONFIG_MEMORY_HOTPLUG
 665static void free_pte_table(pte_t *pte_start, pmd_t *pmd)
 666{
 667        pte_t *pte;
 668        int i;
 669
 670        for (i = 0; i < PTRS_PER_PTE; i++) {
 671                pte = pte_start + i;
 672                if (!pte_none(*pte))
 673                        return;
 674        }
 675
 676        pte_free_kernel(&init_mm, pte_start);
 677        pmd_clear(pmd);
 678}
 679
 680static void free_pmd_table(pmd_t *pmd_start, pud_t *pud)
 681{
 682        pmd_t *pmd;
 683        int i;
 684
 685        for (i = 0; i < PTRS_PER_PMD; i++) {
 686                pmd = pmd_start + i;
 687                if (!pmd_none(*pmd))
 688                        return;
 689        }
 690
 691        pmd_free(&init_mm, pmd_start);
 692        pud_clear(pud);
 693}
 694
 695struct change_mapping_params {
 696        pte_t *pte;
 697        unsigned long start;
 698        unsigned long end;
 699        unsigned long aligned_start;
 700        unsigned long aligned_end;
 701};
 702
 703static int __meminit stop_machine_change_mapping(void *data)
 704{
 705        struct change_mapping_params *params =
 706                        (struct change_mapping_params *)data;
 707
 708        if (!data)
 709                return -1;
 710
 711        spin_unlock(&init_mm.page_table_lock);
 712        pte_clear(&init_mm, params->aligned_start, params->pte);
 713        create_physical_mapping(params->aligned_start, params->start, -1);
 714        create_physical_mapping(params->end, params->aligned_end, -1);
 715        spin_lock(&init_mm.page_table_lock);
 716        return 0;
 717}
 718
 719static void remove_pte_table(pte_t *pte_start, unsigned long addr,
 720                             unsigned long end)
 721{
 722        unsigned long next;
 723        pte_t *pte;
 724
 725        pte = pte_start + pte_index(addr);
 726        for (; addr < end; addr = next, pte++) {
 727                next = (addr + PAGE_SIZE) & PAGE_MASK;
 728                if (next > end)
 729                        next = end;
 730
 731                if (!pte_present(*pte))
 732                        continue;
 733
 734                if (!PAGE_ALIGNED(addr) || !PAGE_ALIGNED(next)) {
 735                        /*
 736                         * The vmemmap_free() and remove_section_mapping()
 737                         * codepaths call us with aligned addresses.
 738                         */
 739                        WARN_ONCE(1, "%s: unaligned range\n", __func__);
 740                        continue;
 741                }
 742
 743                pte_clear(&init_mm, addr, pte);
 744        }
 745}
 746
 747/*
 748 * clear the pte and potentially split the mapping helper
 749 */
 750static void __meminit split_kernel_mapping(unsigned long addr, unsigned long end,
 751                                unsigned long size, pte_t *pte)
 752{
 753        unsigned long mask = ~(size - 1);
 754        unsigned long aligned_start = addr & mask;
 755        unsigned long aligned_end = addr + size;
 756        struct change_mapping_params params;
 757        bool split_region = false;
 758
 759        if ((end - addr) < size) {
 760                /*
 761                 * We're going to clear the PTE, but not flushed
 762                 * the mapping, time to remap and flush. The
 763                 * effects if visible outside the processor or
 764                 * if we are running in code close to the
 765                 * mapping we cleared, we are in trouble.
 766                 */
 767                if (overlaps_kernel_text(aligned_start, addr) ||
 768                        overlaps_kernel_text(end, aligned_end)) {
 769                        /*
 770                         * Hack, just return, don't pte_clear
 771                         */
 772                        WARN_ONCE(1, "Linear mapping %lx->%lx overlaps kernel "
 773                                  "text, not splitting\n", addr, end);
 774                        return;
 775                }
 776                split_region = true;
 777        }
 778
 779        if (split_region) {
 780                params.pte = pte;
 781                params.start = addr;
 782                params.end = end;
 783                params.aligned_start = addr & ~(size - 1);
 784                params.aligned_end = min_t(unsigned long, aligned_end,
 785                                (unsigned long)__va(memblock_end_of_DRAM()));
 786                stop_machine(stop_machine_change_mapping, &params, NULL);
 787                return;
 788        }
 789
 790        pte_clear(&init_mm, addr, pte);
 791}
 792
 793static void remove_pmd_table(pmd_t *pmd_start, unsigned long addr,
 794                             unsigned long end)
 795{
 796        unsigned long next;
 797        pte_t *pte_base;
 798        pmd_t *pmd;
 799
 800        pmd = pmd_start + pmd_index(addr);
 801        for (; addr < end; addr = next, pmd++) {
 802                next = pmd_addr_end(addr, end);
 803
 804                if (!pmd_present(*pmd))
 805                        continue;
 806
 807                if (pmd_huge(*pmd)) {
 808                        split_kernel_mapping(addr, end, PMD_SIZE, (pte_t *)pmd);
 809                        continue;
 810                }
 811
 812                pte_base = (pte_t *)pmd_page_vaddr(*pmd);
 813                remove_pte_table(pte_base, addr, next);
 814                free_pte_table(pte_base, pmd);
 815        }
 816}
 817
 818static void remove_pud_table(pud_t *pud_start, unsigned long addr,
 819                             unsigned long end)
 820{
 821        unsigned long next;
 822        pmd_t *pmd_base;
 823        pud_t *pud;
 824
 825        pud = pud_start + pud_index(addr);
 826        for (; addr < end; addr = next, pud++) {
 827                next = pud_addr_end(addr, end);
 828
 829                if (!pud_present(*pud))
 830                        continue;
 831
 832                if (pud_huge(*pud)) {
 833                        split_kernel_mapping(addr, end, PUD_SIZE, (pte_t *)pud);
 834                        continue;
 835                }
 836
 837                pmd_base = (pmd_t *)pud_page_vaddr(*pud);
 838                remove_pmd_table(pmd_base, addr, next);
 839                free_pmd_table(pmd_base, pud);
 840        }
 841}
 842
 843static void __meminit remove_pagetable(unsigned long start, unsigned long end)
 844{
 845        unsigned long addr, next;
 846        pud_t *pud_base;
 847        pgd_t *pgd;
 848
 849        spin_lock(&init_mm.page_table_lock);
 850
 851        for (addr = start; addr < end; addr = next) {
 852                next = pgd_addr_end(addr, end);
 853
 854                pgd = pgd_offset_k(addr);
 855                if (!pgd_present(*pgd))
 856                        continue;
 857
 858                if (pgd_huge(*pgd)) {
 859                        split_kernel_mapping(addr, end, PGDIR_SIZE, (pte_t *)pgd);
 860                        continue;
 861                }
 862
 863                pud_base = (pud_t *)pgd_page_vaddr(*pgd);
 864                remove_pud_table(pud_base, addr, next);
 865        }
 866
 867        spin_unlock(&init_mm.page_table_lock);
 868        radix__flush_tlb_kernel_range(start, end);
 869}
 870
 871int __meminit radix__create_section_mapping(unsigned long start, unsigned long end, int nid)
 872{
 873        return create_physical_mapping(start, end, nid);
 874}
 875
 876int __meminit radix__remove_section_mapping(unsigned long start, unsigned long end)
 877{
 878        remove_pagetable(start, end);
 879        return 0;
 880}
 881#endif /* CONFIG_MEMORY_HOTPLUG */
 882
 883#ifdef CONFIG_SPARSEMEM_VMEMMAP
 884static int __map_kernel_page_nid(unsigned long ea, unsigned long pa,
 885                                 pgprot_t flags, unsigned int map_page_size,
 886                                 int nid)
 887{
 888        return __map_kernel_page(ea, pa, flags, map_page_size, nid, 0, 0);
 889}
 890
 891int __meminit radix__vmemmap_create_mapping(unsigned long start,
 892                                      unsigned long page_size,
 893                                      unsigned long phys)
 894{
 895        /* Create a PTE encoding */
 896        unsigned long flags = _PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_KERNEL_RW;
 897        int nid = early_pfn_to_nid(phys >> PAGE_SHIFT);
 898        int ret;
 899
 900        ret = __map_kernel_page_nid(start, phys, __pgprot(flags), page_size, nid);
 901        BUG_ON(ret);
 902
 903        return 0;
 904}
 905
 906#ifdef CONFIG_MEMORY_HOTPLUG
 907void __meminit radix__vmemmap_remove_mapping(unsigned long start, unsigned long page_size)
 908{
 909        remove_pagetable(start, start + page_size);
 910}
 911#endif
 912#endif
 913
 914#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 915
 916unsigned long radix__pmd_hugepage_update(struct mm_struct *mm, unsigned long addr,
 917                                  pmd_t *pmdp, unsigned long clr,
 918                                  unsigned long set)
 919{
 920        unsigned long old;
 921
 922#ifdef CONFIG_DEBUG_VM
 923        WARN_ON(!radix__pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp));
 924        assert_spin_locked(pmd_lockptr(mm, pmdp));
 925#endif
 926
 927        old = radix__pte_update(mm, addr, (pte_t *)pmdp, clr, set, 1);
 928        trace_hugepage_update(addr, old, clr, set);
 929
 930        return old;
 931}
 932
 933pmd_t radix__pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address,
 934                        pmd_t *pmdp)
 935
 936{
 937        pmd_t pmd;
 938
 939        VM_BUG_ON(address & ~HPAGE_PMD_MASK);
 940        VM_BUG_ON(radix__pmd_trans_huge(*pmdp));
 941        VM_BUG_ON(pmd_devmap(*pmdp));
 942        /*
 943         * khugepaged calls this for normal pmd
 944         */
 945        pmd = *pmdp;
 946        pmd_clear(pmdp);
 947
 948        /*FIXME!!  Verify whether we need this kick below */
 949        serialize_against_pte_lookup(vma->vm_mm);
 950
 951        radix__flush_tlb_collapsed_pmd(vma->vm_mm, address);
 952
 953        return pmd;
 954}
 955
 956/*
 957 * For us pgtable_t is pte_t *. Inorder to save the deposisted
 958 * page table, we consider the allocated page table as a list
 959 * head. On withdraw we need to make sure we zero out the used
 960 * list_head memory area.
 961 */
 962void radix__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
 963                                 pgtable_t pgtable)
 964{
 965        struct list_head *lh = (struct list_head *) pgtable;
 966
 967        assert_spin_locked(pmd_lockptr(mm, pmdp));
 968
 969        /* FIFO */
 970        if (!pmd_huge_pte(mm, pmdp))
 971                INIT_LIST_HEAD(lh);
 972        else
 973                list_add(lh, (struct list_head *) pmd_huge_pte(mm, pmdp));
 974        pmd_huge_pte(mm, pmdp) = pgtable;
 975}
 976
 977pgtable_t radix__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
 978{
 979        pte_t *ptep;
 980        pgtable_t pgtable;
 981        struct list_head *lh;
 982
 983        assert_spin_locked(pmd_lockptr(mm, pmdp));
 984
 985        /* FIFO */
 986        pgtable = pmd_huge_pte(mm, pmdp);
 987        lh = (struct list_head *) pgtable;
 988        if (list_empty(lh))
 989                pmd_huge_pte(mm, pmdp) = NULL;
 990        else {
 991                pmd_huge_pte(mm, pmdp) = (pgtable_t) lh->next;
 992                list_del(lh);
 993        }
 994        ptep = (pte_t *) pgtable;
 995        *ptep = __pte(0);
 996        ptep++;
 997        *ptep = __pte(0);
 998        return pgtable;
 999}
1000
1001
1002pmd_t radix__pmdp_huge_get_and_clear(struct mm_struct *mm,
1003                               unsigned long addr, pmd_t *pmdp)
1004{
1005        pmd_t old_pmd;
1006        unsigned long old;
1007
1008        old = radix__pmd_hugepage_update(mm, addr, pmdp, ~0UL, 0);
1009        old_pmd = __pmd(old);
1010        /*
1011         * Serialize against find_current_mm_pte which does lock-less
1012         * lookup in page tables with local interrupts disabled. For huge pages
1013         * it casts pmd_t to pte_t. Since format of pte_t is different from
1014         * pmd_t we want to prevent transit from pmd pointing to page table
1015         * to pmd pointing to huge page (and back) while interrupts are disabled.
1016         * We clear pmd to possibly replace it with page table pointer in
1017         * different code paths. So make sure we wait for the parallel
1018         * find_current_mm_pte to finish.
1019         */
1020        serialize_against_pte_lookup(mm);
1021        return old_pmd;
1022}
1023
1024int radix__has_transparent_hugepage(void)
1025{
1026        /* For radix 2M at PMD level means thp */
1027        if (mmu_psize_defs[MMU_PAGE_2M].shift == PMD_SHIFT)
1028                return 1;
1029        return 0;
1030}
1031#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1032
1033void radix__ptep_set_access_flags(struct vm_area_struct *vma, pte_t *ptep,
1034                                  pte_t entry, unsigned long address, int psize)
1035{
1036        struct mm_struct *mm = vma->vm_mm;
1037        unsigned long set = pte_val(entry) & (_PAGE_DIRTY | _PAGE_ACCESSED |
1038                                              _PAGE_RW | _PAGE_EXEC);
1039
1040        unsigned long change = pte_val(entry) ^ pte_val(*ptep);
1041        /*
1042         * To avoid NMMU hang while relaxing access, we need mark
1043         * the pte invalid in between.
1044         */
1045        if ((change & _PAGE_RW) && atomic_read(&mm->context.copros) > 0) {
1046                unsigned long old_pte, new_pte;
1047
1048                old_pte = __radix_pte_update(ptep, _PAGE_PRESENT, _PAGE_INVALID);
1049                /*
1050                 * new value of pte
1051                 */
1052                new_pte = old_pte | set;
1053                radix__flush_tlb_page_psize(mm, address, psize);
1054                __radix_pte_update(ptep, _PAGE_INVALID, new_pte);
1055        } else {
1056                __radix_pte_update(ptep, 0, set);
1057                /*
1058                 * Book3S does not require a TLB flush when relaxing access
1059                 * restrictions when the address space is not attached to a
1060                 * NMMU, because the core MMU will reload the pte after taking
1061                 * an access fault, which is defined by the architectue.
1062                 */
1063        }
1064        /* See ptesync comment in radix__set_pte_at */
1065}
1066