linux/arch/powerpc/platforms/powernv/pci-ioda.c
<<
>>
Prefs
   1/*
   2 * Support PCI/PCIe on PowerNV platforms
   3 *
   4 * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * as published by the Free Software Foundation; either version
   9 * 2 of the License, or (at your option) any later version.
  10 */
  11
  12#undef DEBUG
  13
  14#include <linux/kernel.h>
  15#include <linux/pci.h>
  16#include <linux/crash_dump.h>
  17#include <linux/delay.h>
  18#include <linux/string.h>
  19#include <linux/init.h>
  20#include <linux/memblock.h>
  21#include <linux/irq.h>
  22#include <linux/io.h>
  23#include <linux/msi.h>
  24#include <linux/iommu.h>
  25#include <linux/rculist.h>
  26#include <linux/sizes.h>
  27
  28#include <asm/sections.h>
  29#include <asm/io.h>
  30#include <asm/prom.h>
  31#include <asm/pci-bridge.h>
  32#include <asm/machdep.h>
  33#include <asm/msi_bitmap.h>
  34#include <asm/ppc-pci.h>
  35#include <asm/opal.h>
  36#include <asm/iommu.h>
  37#include <asm/tce.h>
  38#include <asm/xics.h>
  39#include <asm/debugfs.h>
  40#include <asm/firmware.h>
  41#include <asm/pnv-pci.h>
  42#include <asm/mmzone.h>
  43
  44#include <misc/cxl-base.h>
  45
  46#include "powernv.h"
  47#include "pci.h"
  48#include "../../../../drivers/pci/pci.h"
  49
  50#define PNV_IODA1_M64_NUM       16      /* Number of M64 BARs   */
  51#define PNV_IODA1_M64_SEGS      8       /* Segments per M64 BAR */
  52#define PNV_IODA1_DMA32_SEGSIZE 0x10000000
  53
  54static const char * const pnv_phb_names[] = { "IODA1", "IODA2", "NPU_NVLINK",
  55                                              "NPU_OCAPI" };
  56
  57void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
  58                            const char *fmt, ...)
  59{
  60        struct va_format vaf;
  61        va_list args;
  62        char pfix[32];
  63
  64        va_start(args, fmt);
  65
  66        vaf.fmt = fmt;
  67        vaf.va = &args;
  68
  69        if (pe->flags & PNV_IODA_PE_DEV)
  70                strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix));
  71        else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
  72                sprintf(pfix, "%04x:%02x     ",
  73                        pci_domain_nr(pe->pbus), pe->pbus->number);
  74#ifdef CONFIG_PCI_IOV
  75        else if (pe->flags & PNV_IODA_PE_VF)
  76                sprintf(pfix, "%04x:%02x:%2x.%d",
  77                        pci_domain_nr(pe->parent_dev->bus),
  78                        (pe->rid & 0xff00) >> 8,
  79                        PCI_SLOT(pe->rid), PCI_FUNC(pe->rid));
  80#endif /* CONFIG_PCI_IOV*/
  81
  82        printk("%spci %s: [PE# %.2x] %pV",
  83               level, pfix, pe->pe_number, &vaf);
  84
  85        va_end(args);
  86}
  87
  88static bool pnv_iommu_bypass_disabled __read_mostly;
  89static bool pci_reset_phbs __read_mostly;
  90
  91static int __init iommu_setup(char *str)
  92{
  93        if (!str)
  94                return -EINVAL;
  95
  96        while (*str) {
  97                if (!strncmp(str, "nobypass", 8)) {
  98                        pnv_iommu_bypass_disabled = true;
  99                        pr_info("PowerNV: IOMMU bypass window disabled.\n");
 100                        break;
 101                }
 102                str += strcspn(str, ",");
 103                if (*str == ',')
 104                        str++;
 105        }
 106
 107        return 0;
 108}
 109early_param("iommu", iommu_setup);
 110
 111static int __init pci_reset_phbs_setup(char *str)
 112{
 113        pci_reset_phbs = true;
 114        return 0;
 115}
 116
 117early_param("ppc_pci_reset_phbs", pci_reset_phbs_setup);
 118
 119static inline bool pnv_pci_is_m64(struct pnv_phb *phb, struct resource *r)
 120{
 121        /*
 122         * WARNING: We cannot rely on the resource flags. The Linux PCI
 123         * allocation code sometimes decides to put a 64-bit prefetchable
 124         * BAR in the 32-bit window, so we have to compare the addresses.
 125         *
 126         * For simplicity we only test resource start.
 127         */
 128        return (r->start >= phb->ioda.m64_base &&
 129                r->start < (phb->ioda.m64_base + phb->ioda.m64_size));
 130}
 131
 132static inline bool pnv_pci_is_m64_flags(unsigned long resource_flags)
 133{
 134        unsigned long flags = (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
 135
 136        return (resource_flags & flags) == flags;
 137}
 138
 139static struct pnv_ioda_pe *pnv_ioda_init_pe(struct pnv_phb *phb, int pe_no)
 140{
 141        s64 rc;
 142
 143        phb->ioda.pe_array[pe_no].phb = phb;
 144        phb->ioda.pe_array[pe_no].pe_number = pe_no;
 145
 146        /*
 147         * Clear the PE frozen state as it might be put into frozen state
 148         * in the last PCI remove path. It's not harmful to do so when the
 149         * PE is already in unfrozen state.
 150         */
 151        rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no,
 152                                       OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
 153        if (rc != OPAL_SUCCESS && rc != OPAL_UNSUPPORTED)
 154                pr_warn("%s: Error %lld unfreezing PHB#%x-PE#%x\n",
 155                        __func__, rc, phb->hose->global_number, pe_no);
 156
 157        return &phb->ioda.pe_array[pe_no];
 158}
 159
 160static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no)
 161{
 162        if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe_num)) {
 163                pr_warn("%s: Invalid PE %x on PHB#%x\n",
 164                        __func__, pe_no, phb->hose->global_number);
 165                return;
 166        }
 167
 168        if (test_and_set_bit(pe_no, phb->ioda.pe_alloc))
 169                pr_debug("%s: PE %x was reserved on PHB#%x\n",
 170                         __func__, pe_no, phb->hose->global_number);
 171
 172        pnv_ioda_init_pe(phb, pe_no);
 173}
 174
 175static struct pnv_ioda_pe *pnv_ioda_alloc_pe(struct pnv_phb *phb)
 176{
 177        long pe;
 178
 179        for (pe = phb->ioda.total_pe_num - 1; pe >= 0; pe--) {
 180                if (!test_and_set_bit(pe, phb->ioda.pe_alloc))
 181                        return pnv_ioda_init_pe(phb, pe);
 182        }
 183
 184        return NULL;
 185}
 186
 187static void pnv_ioda_free_pe(struct pnv_ioda_pe *pe)
 188{
 189        struct pnv_phb *phb = pe->phb;
 190        unsigned int pe_num = pe->pe_number;
 191
 192        WARN_ON(pe->pdev);
 193        WARN_ON(pe->npucomp); /* NPUs are not supposed to be freed */
 194        kfree(pe->npucomp);
 195        memset(pe, 0, sizeof(struct pnv_ioda_pe));
 196        clear_bit(pe_num, phb->ioda.pe_alloc);
 197}
 198
 199/* The default M64 BAR is shared by all PEs */
 200static int pnv_ioda2_init_m64(struct pnv_phb *phb)
 201{
 202        const char *desc;
 203        struct resource *r;
 204        s64 rc;
 205
 206        /* Configure the default M64 BAR */
 207        rc = opal_pci_set_phb_mem_window(phb->opal_id,
 208                                         OPAL_M64_WINDOW_TYPE,
 209                                         phb->ioda.m64_bar_idx,
 210                                         phb->ioda.m64_base,
 211                                         0, /* unused */
 212                                         phb->ioda.m64_size);
 213        if (rc != OPAL_SUCCESS) {
 214                desc = "configuring";
 215                goto fail;
 216        }
 217
 218        /* Enable the default M64 BAR */
 219        rc = opal_pci_phb_mmio_enable(phb->opal_id,
 220                                      OPAL_M64_WINDOW_TYPE,
 221                                      phb->ioda.m64_bar_idx,
 222                                      OPAL_ENABLE_M64_SPLIT);
 223        if (rc != OPAL_SUCCESS) {
 224                desc = "enabling";
 225                goto fail;
 226        }
 227
 228        /*
 229         * Exclude the segments for reserved and root bus PE, which
 230         * are first or last two PEs.
 231         */
 232        r = &phb->hose->mem_resources[1];
 233        if (phb->ioda.reserved_pe_idx == 0)
 234                r->start += (2 * phb->ioda.m64_segsize);
 235        else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
 236                r->end -= (2 * phb->ioda.m64_segsize);
 237        else
 238                pr_warn("  Cannot strip M64 segment for reserved PE#%x\n",
 239                        phb->ioda.reserved_pe_idx);
 240
 241        return 0;
 242
 243fail:
 244        pr_warn("  Failure %lld %s M64 BAR#%d\n",
 245                rc, desc, phb->ioda.m64_bar_idx);
 246        opal_pci_phb_mmio_enable(phb->opal_id,
 247                                 OPAL_M64_WINDOW_TYPE,
 248                                 phb->ioda.m64_bar_idx,
 249                                 OPAL_DISABLE_M64);
 250        return -EIO;
 251}
 252
 253static void pnv_ioda_reserve_dev_m64_pe(struct pci_dev *pdev,
 254                                         unsigned long *pe_bitmap)
 255{
 256        struct pci_controller *hose = pci_bus_to_host(pdev->bus);
 257        struct pnv_phb *phb = hose->private_data;
 258        struct resource *r;
 259        resource_size_t base, sgsz, start, end;
 260        int segno, i;
 261
 262        base = phb->ioda.m64_base;
 263        sgsz = phb->ioda.m64_segsize;
 264        for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
 265                r = &pdev->resource[i];
 266                if (!r->parent || !pnv_pci_is_m64(phb, r))
 267                        continue;
 268
 269                start = _ALIGN_DOWN(r->start - base, sgsz);
 270                end = _ALIGN_UP(r->end - base, sgsz);
 271                for (segno = start / sgsz; segno < end / sgsz; segno++) {
 272                        if (pe_bitmap)
 273                                set_bit(segno, pe_bitmap);
 274                        else
 275                                pnv_ioda_reserve_pe(phb, segno);
 276                }
 277        }
 278}
 279
 280static int pnv_ioda1_init_m64(struct pnv_phb *phb)
 281{
 282        struct resource *r;
 283        int index;
 284
 285        /*
 286         * There are 16 M64 BARs, each of which has 8 segments. So
 287         * there are as many M64 segments as the maximum number of
 288         * PEs, which is 128.
 289         */
 290        for (index = 0; index < PNV_IODA1_M64_NUM; index++) {
 291                unsigned long base, segsz = phb->ioda.m64_segsize;
 292                int64_t rc;
 293
 294                base = phb->ioda.m64_base +
 295                       index * PNV_IODA1_M64_SEGS * segsz;
 296                rc = opal_pci_set_phb_mem_window(phb->opal_id,
 297                                OPAL_M64_WINDOW_TYPE, index, base, 0,
 298                                PNV_IODA1_M64_SEGS * segsz);
 299                if (rc != OPAL_SUCCESS) {
 300                        pr_warn("  Error %lld setting M64 PHB#%x-BAR#%d\n",
 301                                rc, phb->hose->global_number, index);
 302                        goto fail;
 303                }
 304
 305                rc = opal_pci_phb_mmio_enable(phb->opal_id,
 306                                OPAL_M64_WINDOW_TYPE, index,
 307                                OPAL_ENABLE_M64_SPLIT);
 308                if (rc != OPAL_SUCCESS) {
 309                        pr_warn("  Error %lld enabling M64 PHB#%x-BAR#%d\n",
 310                                rc, phb->hose->global_number, index);
 311                        goto fail;
 312                }
 313        }
 314
 315        /*
 316         * Exclude the segments for reserved and root bus PE, which
 317         * are first or last two PEs.
 318         */
 319        r = &phb->hose->mem_resources[1];
 320        if (phb->ioda.reserved_pe_idx == 0)
 321                r->start += (2 * phb->ioda.m64_segsize);
 322        else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
 323                r->end -= (2 * phb->ioda.m64_segsize);
 324        else
 325                WARN(1, "Wrong reserved PE#%x on PHB#%x\n",
 326                     phb->ioda.reserved_pe_idx, phb->hose->global_number);
 327
 328        return 0;
 329
 330fail:
 331        for ( ; index >= 0; index--)
 332                opal_pci_phb_mmio_enable(phb->opal_id,
 333                        OPAL_M64_WINDOW_TYPE, index, OPAL_DISABLE_M64);
 334
 335        return -EIO;
 336}
 337
 338static void pnv_ioda_reserve_m64_pe(struct pci_bus *bus,
 339                                    unsigned long *pe_bitmap,
 340                                    bool all)
 341{
 342        struct pci_dev *pdev;
 343
 344        list_for_each_entry(pdev, &bus->devices, bus_list) {
 345                pnv_ioda_reserve_dev_m64_pe(pdev, pe_bitmap);
 346
 347                if (all && pdev->subordinate)
 348                        pnv_ioda_reserve_m64_pe(pdev->subordinate,
 349                                                pe_bitmap, all);
 350        }
 351}
 352
 353static struct pnv_ioda_pe *pnv_ioda_pick_m64_pe(struct pci_bus *bus, bool all)
 354{
 355        struct pci_controller *hose = pci_bus_to_host(bus);
 356        struct pnv_phb *phb = hose->private_data;
 357        struct pnv_ioda_pe *master_pe, *pe;
 358        unsigned long size, *pe_alloc;
 359        int i;
 360
 361        /* Root bus shouldn't use M64 */
 362        if (pci_is_root_bus(bus))
 363                return NULL;
 364
 365        /* Allocate bitmap */
 366        size = _ALIGN_UP(phb->ioda.total_pe_num / 8, sizeof(unsigned long));
 367        pe_alloc = kzalloc(size, GFP_KERNEL);
 368        if (!pe_alloc) {
 369                pr_warn("%s: Out of memory !\n",
 370                        __func__);
 371                return NULL;
 372        }
 373
 374        /* Figure out reserved PE numbers by the PE */
 375        pnv_ioda_reserve_m64_pe(bus, pe_alloc, all);
 376
 377        /*
 378         * the current bus might not own M64 window and that's all
 379         * contributed by its child buses. For the case, we needn't
 380         * pick M64 dependent PE#.
 381         */
 382        if (bitmap_empty(pe_alloc, phb->ioda.total_pe_num)) {
 383                kfree(pe_alloc);
 384                return NULL;
 385        }
 386
 387        /*
 388         * Figure out the master PE and put all slave PEs to master
 389         * PE's list to form compound PE.
 390         */
 391        master_pe = NULL;
 392        i = -1;
 393        while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe_num, i + 1)) <
 394                phb->ioda.total_pe_num) {
 395                pe = &phb->ioda.pe_array[i];
 396
 397                phb->ioda.m64_segmap[pe->pe_number] = pe->pe_number;
 398                if (!master_pe) {
 399                        pe->flags |= PNV_IODA_PE_MASTER;
 400                        INIT_LIST_HEAD(&pe->slaves);
 401                        master_pe = pe;
 402                } else {
 403                        pe->flags |= PNV_IODA_PE_SLAVE;
 404                        pe->master = master_pe;
 405                        list_add_tail(&pe->list, &master_pe->slaves);
 406                }
 407
 408                /*
 409                 * P7IOC supports M64DT, which helps mapping M64 segment
 410                 * to one particular PE#. However, PHB3 has fixed mapping
 411                 * between M64 segment and PE#. In order to have same logic
 412                 * for P7IOC and PHB3, we enforce fixed mapping between M64
 413                 * segment and PE# on P7IOC.
 414                 */
 415                if (phb->type == PNV_PHB_IODA1) {
 416                        int64_t rc;
 417
 418                        rc = opal_pci_map_pe_mmio_window(phb->opal_id,
 419                                        pe->pe_number, OPAL_M64_WINDOW_TYPE,
 420                                        pe->pe_number / PNV_IODA1_M64_SEGS,
 421                                        pe->pe_number % PNV_IODA1_M64_SEGS);
 422                        if (rc != OPAL_SUCCESS)
 423                                pr_warn("%s: Error %lld mapping M64 for PHB#%x-PE#%x\n",
 424                                        __func__, rc, phb->hose->global_number,
 425                                        pe->pe_number);
 426                }
 427        }
 428
 429        kfree(pe_alloc);
 430        return master_pe;
 431}
 432
 433static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb)
 434{
 435        struct pci_controller *hose = phb->hose;
 436        struct device_node *dn = hose->dn;
 437        struct resource *res;
 438        u32 m64_range[2], i;
 439        const __be32 *r;
 440        u64 pci_addr;
 441
 442        if (phb->type != PNV_PHB_IODA1 && phb->type != PNV_PHB_IODA2) {
 443                pr_info("  Not support M64 window\n");
 444                return;
 445        }
 446
 447        if (!firmware_has_feature(FW_FEATURE_OPAL)) {
 448                pr_info("  Firmware too old to support M64 window\n");
 449                return;
 450        }
 451
 452        r = of_get_property(dn, "ibm,opal-m64-window", NULL);
 453        if (!r) {
 454                pr_info("  No <ibm,opal-m64-window> on %pOF\n",
 455                        dn);
 456                return;
 457        }
 458
 459        /*
 460         * Find the available M64 BAR range and pickup the last one for
 461         * covering the whole 64-bits space. We support only one range.
 462         */
 463        if (of_property_read_u32_array(dn, "ibm,opal-available-m64-ranges",
 464                                       m64_range, 2)) {
 465                /* In absence of the property, assume 0..15 */
 466                m64_range[0] = 0;
 467                m64_range[1] = 16;
 468        }
 469        /* We only support 64 bits in our allocator */
 470        if (m64_range[1] > 63) {
 471                pr_warn("%s: Limiting M64 range to 63 (from %d) on PHB#%x\n",
 472                        __func__, m64_range[1], phb->hose->global_number);
 473                m64_range[1] = 63;
 474        }
 475        /* Empty range, no m64 */
 476        if (m64_range[1] <= m64_range[0]) {
 477                pr_warn("%s: M64 empty, disabling M64 usage on PHB#%x\n",
 478                        __func__, phb->hose->global_number);
 479                return;
 480        }
 481
 482        /* Configure M64 informations */
 483        res = &hose->mem_resources[1];
 484        res->name = dn->full_name;
 485        res->start = of_translate_address(dn, r + 2);
 486        res->end = res->start + of_read_number(r + 4, 2) - 1;
 487        res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
 488        pci_addr = of_read_number(r, 2);
 489        hose->mem_offset[1] = res->start - pci_addr;
 490
 491        phb->ioda.m64_size = resource_size(res);
 492        phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe_num;
 493        phb->ioda.m64_base = pci_addr;
 494
 495        /* This lines up nicely with the display from processing OF ranges */
 496        pr_info(" MEM 0x%016llx..0x%016llx -> 0x%016llx (M64 #%d..%d)\n",
 497                res->start, res->end, pci_addr, m64_range[0],
 498                m64_range[0] + m64_range[1] - 1);
 499
 500        /* Mark all M64 used up by default */
 501        phb->ioda.m64_bar_alloc = (unsigned long)-1;
 502
 503        /* Use last M64 BAR to cover M64 window */
 504        m64_range[1]--;
 505        phb->ioda.m64_bar_idx = m64_range[0] + m64_range[1];
 506
 507        pr_info(" Using M64 #%d as default window\n", phb->ioda.m64_bar_idx);
 508
 509        /* Mark remaining ones free */
 510        for (i = m64_range[0]; i < m64_range[1]; i++)
 511                clear_bit(i, &phb->ioda.m64_bar_alloc);
 512
 513        /*
 514         * Setup init functions for M64 based on IODA version, IODA3 uses
 515         * the IODA2 code.
 516         */
 517        if (phb->type == PNV_PHB_IODA1)
 518                phb->init_m64 = pnv_ioda1_init_m64;
 519        else
 520                phb->init_m64 = pnv_ioda2_init_m64;
 521}
 522
 523static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no)
 524{
 525        struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no];
 526        struct pnv_ioda_pe *slave;
 527        s64 rc;
 528
 529        /* Fetch master PE */
 530        if (pe->flags & PNV_IODA_PE_SLAVE) {
 531                pe = pe->master;
 532                if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)))
 533                        return;
 534
 535                pe_no = pe->pe_number;
 536        }
 537
 538        /* Freeze master PE */
 539        rc = opal_pci_eeh_freeze_set(phb->opal_id,
 540                                     pe_no,
 541                                     OPAL_EEH_ACTION_SET_FREEZE_ALL);
 542        if (rc != OPAL_SUCCESS) {
 543                pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
 544                        __func__, rc, phb->hose->global_number, pe_no);
 545                return;
 546        }
 547
 548        /* Freeze slave PEs */
 549        if (!(pe->flags & PNV_IODA_PE_MASTER))
 550                return;
 551
 552        list_for_each_entry(slave, &pe->slaves, list) {
 553                rc = opal_pci_eeh_freeze_set(phb->opal_id,
 554                                             slave->pe_number,
 555                                             OPAL_EEH_ACTION_SET_FREEZE_ALL);
 556                if (rc != OPAL_SUCCESS)
 557                        pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
 558                                __func__, rc, phb->hose->global_number,
 559                                slave->pe_number);
 560        }
 561}
 562
 563static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt)
 564{
 565        struct pnv_ioda_pe *pe, *slave;
 566        s64 rc;
 567
 568        /* Find master PE */
 569        pe = &phb->ioda.pe_array[pe_no];
 570        if (pe->flags & PNV_IODA_PE_SLAVE) {
 571                pe = pe->master;
 572                WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
 573                pe_no = pe->pe_number;
 574        }
 575
 576        /* Clear frozen state for master PE */
 577        rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt);
 578        if (rc != OPAL_SUCCESS) {
 579                pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
 580                        __func__, rc, opt, phb->hose->global_number, pe_no);
 581                return -EIO;
 582        }
 583
 584        if (!(pe->flags & PNV_IODA_PE_MASTER))
 585                return 0;
 586
 587        /* Clear frozen state for slave PEs */
 588        list_for_each_entry(slave, &pe->slaves, list) {
 589                rc = opal_pci_eeh_freeze_clear(phb->opal_id,
 590                                             slave->pe_number,
 591                                             opt);
 592                if (rc != OPAL_SUCCESS) {
 593                        pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
 594                                __func__, rc, opt, phb->hose->global_number,
 595                                slave->pe_number);
 596                        return -EIO;
 597                }
 598        }
 599
 600        return 0;
 601}
 602
 603static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no)
 604{
 605        struct pnv_ioda_pe *slave, *pe;
 606        u8 fstate = 0, state;
 607        __be16 pcierr = 0;
 608        s64 rc;
 609
 610        /* Sanity check on PE number */
 611        if (pe_no < 0 || pe_no >= phb->ioda.total_pe_num)
 612                return OPAL_EEH_STOPPED_PERM_UNAVAIL;
 613
 614        /*
 615         * Fetch the master PE and the PE instance might be
 616         * not initialized yet.
 617         */
 618        pe = &phb->ioda.pe_array[pe_no];
 619        if (pe->flags & PNV_IODA_PE_SLAVE) {
 620                pe = pe->master;
 621                WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
 622                pe_no = pe->pe_number;
 623        }
 624
 625        /* Check the master PE */
 626        rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
 627                                        &state, &pcierr, NULL);
 628        if (rc != OPAL_SUCCESS) {
 629                pr_warn("%s: Failure %lld getting "
 630                        "PHB#%x-PE#%x state\n",
 631                        __func__, rc,
 632                        phb->hose->global_number, pe_no);
 633                return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
 634        }
 635
 636        /* Check the slave PE */
 637        if (!(pe->flags & PNV_IODA_PE_MASTER))
 638                return state;
 639
 640        list_for_each_entry(slave, &pe->slaves, list) {
 641                rc = opal_pci_eeh_freeze_status(phb->opal_id,
 642                                                slave->pe_number,
 643                                                &fstate,
 644                                                &pcierr,
 645                                                NULL);
 646                if (rc != OPAL_SUCCESS) {
 647                        pr_warn("%s: Failure %lld getting "
 648                                "PHB#%x-PE#%x state\n",
 649                                __func__, rc,
 650                                phb->hose->global_number, slave->pe_number);
 651                        return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
 652                }
 653
 654                /*
 655                 * Override the result based on the ascending
 656                 * priority.
 657                 */
 658                if (fstate > state)
 659                        state = fstate;
 660        }
 661
 662        return state;
 663}
 664
 665struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
 666{
 667        struct pci_controller *hose = pci_bus_to_host(dev->bus);
 668        struct pnv_phb *phb = hose->private_data;
 669        struct pci_dn *pdn = pci_get_pdn(dev);
 670
 671        if (!pdn)
 672                return NULL;
 673        if (pdn->pe_number == IODA_INVALID_PE)
 674                return NULL;
 675        return &phb->ioda.pe_array[pdn->pe_number];
 676}
 677
 678static int pnv_ioda_set_one_peltv(struct pnv_phb *phb,
 679                                  struct pnv_ioda_pe *parent,
 680                                  struct pnv_ioda_pe *child,
 681                                  bool is_add)
 682{
 683        const char *desc = is_add ? "adding" : "removing";
 684        uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN :
 685                              OPAL_REMOVE_PE_FROM_DOMAIN;
 686        struct pnv_ioda_pe *slave;
 687        long rc;
 688
 689        /* Parent PE affects child PE */
 690        rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
 691                                child->pe_number, op);
 692        if (rc != OPAL_SUCCESS) {
 693                pe_warn(child, "OPAL error %ld %s to parent PELTV\n",
 694                        rc, desc);
 695                return -ENXIO;
 696        }
 697
 698        if (!(child->flags & PNV_IODA_PE_MASTER))
 699                return 0;
 700
 701        /* Compound case: parent PE affects slave PEs */
 702        list_for_each_entry(slave, &child->slaves, list) {
 703                rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
 704                                        slave->pe_number, op);
 705                if (rc != OPAL_SUCCESS) {
 706                        pe_warn(slave, "OPAL error %ld %s to parent PELTV\n",
 707                                rc, desc);
 708                        return -ENXIO;
 709                }
 710        }
 711
 712        return 0;
 713}
 714
 715static int pnv_ioda_set_peltv(struct pnv_phb *phb,
 716                              struct pnv_ioda_pe *pe,
 717                              bool is_add)
 718{
 719        struct pnv_ioda_pe *slave;
 720        struct pci_dev *pdev = NULL;
 721        int ret;
 722
 723        /*
 724         * Clear PE frozen state. If it's master PE, we need
 725         * clear slave PE frozen state as well.
 726         */
 727        if (is_add) {
 728                opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
 729                                          OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
 730                if (pe->flags & PNV_IODA_PE_MASTER) {
 731                        list_for_each_entry(slave, &pe->slaves, list)
 732                                opal_pci_eeh_freeze_clear(phb->opal_id,
 733                                                          slave->pe_number,
 734                                                          OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
 735                }
 736        }
 737
 738        /*
 739         * Associate PE in PELT. We need add the PE into the
 740         * corresponding PELT-V as well. Otherwise, the error
 741         * originated from the PE might contribute to other
 742         * PEs.
 743         */
 744        ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add);
 745        if (ret)
 746                return ret;
 747
 748        /* For compound PEs, any one affects all of them */
 749        if (pe->flags & PNV_IODA_PE_MASTER) {
 750                list_for_each_entry(slave, &pe->slaves, list) {
 751                        ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add);
 752                        if (ret)
 753                                return ret;
 754                }
 755        }
 756
 757        if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS))
 758                pdev = pe->pbus->self;
 759        else if (pe->flags & PNV_IODA_PE_DEV)
 760                pdev = pe->pdev->bus->self;
 761#ifdef CONFIG_PCI_IOV
 762        else if (pe->flags & PNV_IODA_PE_VF)
 763                pdev = pe->parent_dev;
 764#endif /* CONFIG_PCI_IOV */
 765        while (pdev) {
 766                struct pci_dn *pdn = pci_get_pdn(pdev);
 767                struct pnv_ioda_pe *parent;
 768
 769                if (pdn && pdn->pe_number != IODA_INVALID_PE) {
 770                        parent = &phb->ioda.pe_array[pdn->pe_number];
 771                        ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add);
 772                        if (ret)
 773                                return ret;
 774                }
 775
 776                pdev = pdev->bus->self;
 777        }
 778
 779        return 0;
 780}
 781
 782static int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
 783{
 784        struct pci_dev *parent;
 785        uint8_t bcomp, dcomp, fcomp;
 786        int64_t rc;
 787        long rid_end, rid;
 788
 789        /* Currently, we just deconfigure VF PE. Bus PE will always there.*/
 790        if (pe->pbus) {
 791                int count;
 792
 793                dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
 794                fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
 795                parent = pe->pbus->self;
 796                if (pe->flags & PNV_IODA_PE_BUS_ALL)
 797                        count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
 798                else
 799                        count = 1;
 800
 801                switch(count) {
 802                case  1: bcomp = OpalPciBusAll;         break;
 803                case  2: bcomp = OpalPciBus7Bits;       break;
 804                case  4: bcomp = OpalPciBus6Bits;       break;
 805                case  8: bcomp = OpalPciBus5Bits;       break;
 806                case 16: bcomp = OpalPciBus4Bits;       break;
 807                case 32: bcomp = OpalPciBus3Bits;       break;
 808                default:
 809                        dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
 810                                count);
 811                        /* Do an exact match only */
 812                        bcomp = OpalPciBusAll;
 813                }
 814                rid_end = pe->rid + (count << 8);
 815        } else {
 816#ifdef CONFIG_PCI_IOV
 817                if (pe->flags & PNV_IODA_PE_VF)
 818                        parent = pe->parent_dev;
 819                else
 820#endif
 821                        parent = pe->pdev->bus->self;
 822                bcomp = OpalPciBusAll;
 823                dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
 824                fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
 825                rid_end = pe->rid + 1;
 826        }
 827
 828        /* Clear the reverse map */
 829        for (rid = pe->rid; rid < rid_end; rid++)
 830                phb->ioda.pe_rmap[rid] = IODA_INVALID_PE;
 831
 832        /* Release from all parents PELT-V */
 833        while (parent) {
 834                struct pci_dn *pdn = pci_get_pdn(parent);
 835                if (pdn && pdn->pe_number != IODA_INVALID_PE) {
 836                        rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
 837                                                pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
 838                        /* XXX What to do in case of error ? */
 839                }
 840                parent = parent->bus->self;
 841        }
 842
 843        opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
 844                                  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
 845
 846        /* Disassociate PE in PELT */
 847        rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number,
 848                                pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
 849        if (rc)
 850                pe_warn(pe, "OPAL error %ld remove self from PELTV\n", rc);
 851        rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
 852                             bcomp, dcomp, fcomp, OPAL_UNMAP_PE);
 853        if (rc)
 854                pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
 855
 856        pe->pbus = NULL;
 857        pe->pdev = NULL;
 858#ifdef CONFIG_PCI_IOV
 859        pe->parent_dev = NULL;
 860#endif
 861
 862        return 0;
 863}
 864
 865static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
 866{
 867        struct pci_dev *parent;
 868        uint8_t bcomp, dcomp, fcomp;
 869        long rc, rid_end, rid;
 870
 871        /* Bus validation ? */
 872        if (pe->pbus) {
 873                int count;
 874
 875                dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
 876                fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
 877                parent = pe->pbus->self;
 878                if (pe->flags & PNV_IODA_PE_BUS_ALL)
 879                        count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
 880                else
 881                        count = 1;
 882
 883                switch(count) {
 884                case  1: bcomp = OpalPciBusAll;         break;
 885                case  2: bcomp = OpalPciBus7Bits;       break;
 886                case  4: bcomp = OpalPciBus6Bits;       break;
 887                case  8: bcomp = OpalPciBus5Bits;       break;
 888                case 16: bcomp = OpalPciBus4Bits;       break;
 889                case 32: bcomp = OpalPciBus3Bits;       break;
 890                default:
 891                        dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
 892                                count);
 893                        /* Do an exact match only */
 894                        bcomp = OpalPciBusAll;
 895                }
 896                rid_end = pe->rid + (count << 8);
 897        } else {
 898#ifdef CONFIG_PCI_IOV
 899                if (pe->flags & PNV_IODA_PE_VF)
 900                        parent = pe->parent_dev;
 901                else
 902#endif /* CONFIG_PCI_IOV */
 903                        parent = pe->pdev->bus->self;
 904                bcomp = OpalPciBusAll;
 905                dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
 906                fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
 907                rid_end = pe->rid + 1;
 908        }
 909
 910        /*
 911         * Associate PE in PELT. We need add the PE into the
 912         * corresponding PELT-V as well. Otherwise, the error
 913         * originated from the PE might contribute to other
 914         * PEs.
 915         */
 916        rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
 917                             bcomp, dcomp, fcomp, OPAL_MAP_PE);
 918        if (rc) {
 919                pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
 920                return -ENXIO;
 921        }
 922
 923        /*
 924         * Configure PELTV. NPUs don't have a PELTV table so skip
 925         * configuration on them.
 926         */
 927        if (phb->type != PNV_PHB_NPU_NVLINK && phb->type != PNV_PHB_NPU_OCAPI)
 928                pnv_ioda_set_peltv(phb, pe, true);
 929
 930        /* Setup reverse map */
 931        for (rid = pe->rid; rid < rid_end; rid++)
 932                phb->ioda.pe_rmap[rid] = pe->pe_number;
 933
 934        /* Setup one MVTs on IODA1 */
 935        if (phb->type != PNV_PHB_IODA1) {
 936                pe->mve_number = 0;
 937                goto out;
 938        }
 939
 940        pe->mve_number = pe->pe_number;
 941        rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number);
 942        if (rc != OPAL_SUCCESS) {
 943                pe_err(pe, "OPAL error %ld setting up MVE %x\n",
 944                       rc, pe->mve_number);
 945                pe->mve_number = -1;
 946        } else {
 947                rc = opal_pci_set_mve_enable(phb->opal_id,
 948                                             pe->mve_number, OPAL_ENABLE_MVE);
 949                if (rc) {
 950                        pe_err(pe, "OPAL error %ld enabling MVE %x\n",
 951                               rc, pe->mve_number);
 952                        pe->mve_number = -1;
 953                }
 954        }
 955
 956out:
 957        return 0;
 958}
 959
 960#ifdef CONFIG_PCI_IOV
 961static int pnv_pci_vf_resource_shift(struct pci_dev *dev, int offset)
 962{
 963        struct pci_dn *pdn = pci_get_pdn(dev);
 964        int i;
 965        struct resource *res, res2;
 966        resource_size_t size;
 967        u16 num_vfs;
 968
 969        if (!dev->is_physfn)
 970                return -EINVAL;
 971
 972        /*
 973         * "offset" is in VFs.  The M64 windows are sized so that when they
 974         * are segmented, each segment is the same size as the IOV BAR.
 975         * Each segment is in a separate PE, and the high order bits of the
 976         * address are the PE number.  Therefore, each VF's BAR is in a
 977         * separate PE, and changing the IOV BAR start address changes the
 978         * range of PEs the VFs are in.
 979         */
 980        num_vfs = pdn->num_vfs;
 981        for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
 982                res = &dev->resource[i + PCI_IOV_RESOURCES];
 983                if (!res->flags || !res->parent)
 984                        continue;
 985
 986                /*
 987                 * The actual IOV BAR range is determined by the start address
 988                 * and the actual size for num_vfs VFs BAR.  This check is to
 989                 * make sure that after shifting, the range will not overlap
 990                 * with another device.
 991                 */
 992                size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
 993                res2.flags = res->flags;
 994                res2.start = res->start + (size * offset);
 995                res2.end = res2.start + (size * num_vfs) - 1;
 996
 997                if (res2.end > res->end) {
 998                        dev_err(&dev->dev, "VF BAR%d: %pR would extend past %pR (trying to enable %d VFs shifted by %d)\n",
 999                                i, &res2, res, num_vfs, offset);
1000                        return -EBUSY;
1001                }
1002        }
1003
1004        /*
1005         * Since M64 BAR shares segments among all possible 256 PEs,
1006         * we have to shift the beginning of PF IOV BAR to make it start from
1007         * the segment which belongs to the PE number assigned to the first VF.
1008         * This creates a "hole" in the /proc/iomem which could be used for
1009         * allocating other resources so we reserve this area below and
1010         * release when IOV is released.
1011         */
1012        for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
1013                res = &dev->resource[i + PCI_IOV_RESOURCES];
1014                if (!res->flags || !res->parent)
1015                        continue;
1016
1017                size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
1018                res2 = *res;
1019                res->start += size * offset;
1020
1021                dev_info(&dev->dev, "VF BAR%d: %pR shifted to %pR (%sabling %d VFs shifted by %d)\n",
1022                         i, &res2, res, (offset > 0) ? "En" : "Dis",
1023                         num_vfs, offset);
1024
1025                if (offset < 0) {
1026                        devm_release_resource(&dev->dev, &pdn->holes[i]);
1027                        memset(&pdn->holes[i], 0, sizeof(pdn->holes[i]));
1028                }
1029
1030                pci_update_resource(dev, i + PCI_IOV_RESOURCES);
1031
1032                if (offset > 0) {
1033                        pdn->holes[i].start = res2.start;
1034                        pdn->holes[i].end = res2.start + size * offset - 1;
1035                        pdn->holes[i].flags = IORESOURCE_BUS;
1036                        pdn->holes[i].name = "pnv_iov_reserved";
1037                        devm_request_resource(&dev->dev, res->parent,
1038                                        &pdn->holes[i]);
1039                }
1040        }
1041        return 0;
1042}
1043#endif /* CONFIG_PCI_IOV */
1044
1045static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
1046{
1047        struct pci_controller *hose = pci_bus_to_host(dev->bus);
1048        struct pnv_phb *phb = hose->private_data;
1049        struct pci_dn *pdn = pci_get_pdn(dev);
1050        struct pnv_ioda_pe *pe;
1051
1052        if (!pdn) {
1053                pr_err("%s: Device tree node not associated properly\n",
1054                           pci_name(dev));
1055                return NULL;
1056        }
1057        if (pdn->pe_number != IODA_INVALID_PE)
1058                return NULL;
1059
1060        pe = pnv_ioda_alloc_pe(phb);
1061        if (!pe) {
1062                pr_warn("%s: Not enough PE# available, disabling device\n",
1063                        pci_name(dev));
1064                return NULL;
1065        }
1066
1067        /* NOTE: We get only one ref to the pci_dev for the pdn, not for the
1068         * pointer in the PE data structure, both should be destroyed at the
1069         * same time. However, this needs to be looked at more closely again
1070         * once we actually start removing things (Hotplug, SR-IOV, ...)
1071         *
1072         * At some point we want to remove the PDN completely anyways
1073         */
1074        pci_dev_get(dev);
1075        pdn->pe_number = pe->pe_number;
1076        pe->flags = PNV_IODA_PE_DEV;
1077        pe->pdev = dev;
1078        pe->pbus = NULL;
1079        pe->mve_number = -1;
1080        pe->rid = dev->bus->number << 8 | pdn->devfn;
1081
1082        pe_info(pe, "Associated device to PE\n");
1083
1084        if (pnv_ioda_configure_pe(phb, pe)) {
1085                /* XXX What do we do here ? */
1086                pnv_ioda_free_pe(pe);
1087                pdn->pe_number = IODA_INVALID_PE;
1088                pe->pdev = NULL;
1089                pci_dev_put(dev);
1090                return NULL;
1091        }
1092
1093        /* Put PE to the list */
1094        list_add_tail(&pe->list, &phb->ioda.pe_list);
1095
1096        return pe;
1097}
1098
1099static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe)
1100{
1101        struct pci_dev *dev;
1102
1103        list_for_each_entry(dev, &bus->devices, bus_list) {
1104                struct pci_dn *pdn = pci_get_pdn(dev);
1105
1106                if (pdn == NULL) {
1107                        pr_warn("%s: No device node associated with device !\n",
1108                                pci_name(dev));
1109                        continue;
1110                }
1111
1112                /*
1113                 * In partial hotplug case, the PCI device might be still
1114                 * associated with the PE and needn't attach it to the PE
1115                 * again.
1116                 */
1117                if (pdn->pe_number != IODA_INVALID_PE)
1118                        continue;
1119
1120                pe->device_count++;
1121                pdn->pe_number = pe->pe_number;
1122                if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1123                        pnv_ioda_setup_same_PE(dev->subordinate, pe);
1124        }
1125}
1126
1127/*
1128 * There're 2 types of PCI bus sensitive PEs: One that is compromised of
1129 * single PCI bus. Another one that contains the primary PCI bus and its
1130 * subordinate PCI devices and buses. The second type of PE is normally
1131 * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
1132 */
1133static struct pnv_ioda_pe *pnv_ioda_setup_bus_PE(struct pci_bus *bus, bool all)
1134{
1135        struct pci_controller *hose = pci_bus_to_host(bus);
1136        struct pnv_phb *phb = hose->private_data;
1137        struct pnv_ioda_pe *pe = NULL;
1138        unsigned int pe_num;
1139
1140        /*
1141         * In partial hotplug case, the PE instance might be still alive.
1142         * We should reuse it instead of allocating a new one.
1143         */
1144        pe_num = phb->ioda.pe_rmap[bus->number << 8];
1145        if (pe_num != IODA_INVALID_PE) {
1146                pe = &phb->ioda.pe_array[pe_num];
1147                pnv_ioda_setup_same_PE(bus, pe);
1148                return NULL;
1149        }
1150
1151        /* PE number for root bus should have been reserved */
1152        if (pci_is_root_bus(bus) &&
1153            phb->ioda.root_pe_idx != IODA_INVALID_PE)
1154                pe = &phb->ioda.pe_array[phb->ioda.root_pe_idx];
1155
1156        /* Check if PE is determined by M64 */
1157        if (!pe)
1158                pe = pnv_ioda_pick_m64_pe(bus, all);
1159
1160        /* The PE number isn't pinned by M64 */
1161        if (!pe)
1162                pe = pnv_ioda_alloc_pe(phb);
1163
1164        if (!pe) {
1165                pr_warn("%s: Not enough PE# available for PCI bus %04x:%02x\n",
1166                        __func__, pci_domain_nr(bus), bus->number);
1167                return NULL;
1168        }
1169
1170        pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
1171        pe->pbus = bus;
1172        pe->pdev = NULL;
1173        pe->mve_number = -1;
1174        pe->rid = bus->busn_res.start << 8;
1175
1176        if (all)
1177                pe_info(pe, "Secondary bus %d..%d associated with PE#%x\n",
1178                        bus->busn_res.start, bus->busn_res.end, pe->pe_number);
1179        else
1180                pe_info(pe, "Secondary bus %d associated with PE#%x\n",
1181                        bus->busn_res.start, pe->pe_number);
1182
1183        if (pnv_ioda_configure_pe(phb, pe)) {
1184                /* XXX What do we do here ? */
1185                pnv_ioda_free_pe(pe);
1186                pe->pbus = NULL;
1187                return NULL;
1188        }
1189
1190        /* Associate it with all child devices */
1191        pnv_ioda_setup_same_PE(bus, pe);
1192
1193        /* Put PE to the list */
1194        list_add_tail(&pe->list, &phb->ioda.pe_list);
1195
1196        return pe;
1197}
1198
1199static struct pnv_ioda_pe *pnv_ioda_setup_npu_PE(struct pci_dev *npu_pdev)
1200{
1201        int pe_num, found_pe = false, rc;
1202        long rid;
1203        struct pnv_ioda_pe *pe;
1204        struct pci_dev *gpu_pdev;
1205        struct pci_dn *npu_pdn;
1206        struct pci_controller *hose = pci_bus_to_host(npu_pdev->bus);
1207        struct pnv_phb *phb = hose->private_data;
1208
1209        /*
1210         * Due to a hardware errata PE#0 on the NPU is reserved for
1211         * error handling. This means we only have three PEs remaining
1212         * which need to be assigned to four links, implying some
1213         * links must share PEs.
1214         *
1215         * To achieve this we assign PEs such that NPUs linking the
1216         * same GPU get assigned the same PE.
1217         */
1218        gpu_pdev = pnv_pci_get_gpu_dev(npu_pdev);
1219        for (pe_num = 0; pe_num < phb->ioda.total_pe_num; pe_num++) {
1220                pe = &phb->ioda.pe_array[pe_num];
1221                if (!pe->pdev)
1222                        continue;
1223
1224                if (pnv_pci_get_gpu_dev(pe->pdev) == gpu_pdev) {
1225                        /*
1226                         * This device has the same peer GPU so should
1227                         * be assigned the same PE as the existing
1228                         * peer NPU.
1229                         */
1230                        dev_info(&npu_pdev->dev,
1231                                "Associating to existing PE %x\n", pe_num);
1232                        pci_dev_get(npu_pdev);
1233                        npu_pdn = pci_get_pdn(npu_pdev);
1234                        rid = npu_pdev->bus->number << 8 | npu_pdn->devfn;
1235                        npu_pdn->pe_number = pe_num;
1236                        phb->ioda.pe_rmap[rid] = pe->pe_number;
1237
1238                        /* Map the PE to this link */
1239                        rc = opal_pci_set_pe(phb->opal_id, pe_num, rid,
1240                                        OpalPciBusAll,
1241                                        OPAL_COMPARE_RID_DEVICE_NUMBER,
1242                                        OPAL_COMPARE_RID_FUNCTION_NUMBER,
1243                                        OPAL_MAP_PE);
1244                        WARN_ON(rc != OPAL_SUCCESS);
1245                        found_pe = true;
1246                        break;
1247                }
1248        }
1249
1250        if (!found_pe)
1251                /*
1252                 * Could not find an existing PE so allocate a new
1253                 * one.
1254                 */
1255                return pnv_ioda_setup_dev_PE(npu_pdev);
1256        else
1257                return pe;
1258}
1259
1260static void pnv_ioda_setup_npu_PEs(struct pci_bus *bus)
1261{
1262        struct pci_dev *pdev;
1263
1264        list_for_each_entry(pdev, &bus->devices, bus_list)
1265                pnv_ioda_setup_npu_PE(pdev);
1266}
1267
1268static void pnv_pci_ioda_setup_PEs(void)
1269{
1270        struct pci_controller *hose;
1271        struct pnv_phb *phb;
1272        struct pci_bus *bus;
1273        struct pci_dev *pdev;
1274        struct pnv_ioda_pe *pe;
1275
1276        list_for_each_entry(hose, &hose_list, list_node) {
1277                phb = hose->private_data;
1278                if (phb->type == PNV_PHB_NPU_NVLINK) {
1279                        /* PE#0 is needed for error reporting */
1280                        pnv_ioda_reserve_pe(phb, 0);
1281                        pnv_ioda_setup_npu_PEs(hose->bus);
1282                        if (phb->model == PNV_PHB_MODEL_NPU2)
1283                                WARN_ON_ONCE(pnv_npu2_init(hose));
1284                }
1285                if (phb->type == PNV_PHB_NPU_OCAPI) {
1286                        bus = hose->bus;
1287                        list_for_each_entry(pdev, &bus->devices, bus_list)
1288                                pnv_ioda_setup_dev_PE(pdev);
1289                }
1290        }
1291        list_for_each_entry(hose, &hose_list, list_node) {
1292                phb = hose->private_data;
1293                if (phb->type != PNV_PHB_IODA2)
1294                        continue;
1295
1296                list_for_each_entry(pe, &phb->ioda.pe_list, list)
1297                        pnv_npu2_map_lpar(pe, MSR_DR | MSR_PR | MSR_HV);
1298        }
1299}
1300
1301#ifdef CONFIG_PCI_IOV
1302static int pnv_pci_vf_release_m64(struct pci_dev *pdev, u16 num_vfs)
1303{
1304        struct pci_bus        *bus;
1305        struct pci_controller *hose;
1306        struct pnv_phb        *phb;
1307        struct pci_dn         *pdn;
1308        int                    i, j;
1309        int                    m64_bars;
1310
1311        bus = pdev->bus;
1312        hose = pci_bus_to_host(bus);
1313        phb = hose->private_data;
1314        pdn = pci_get_pdn(pdev);
1315
1316        if (pdn->m64_single_mode)
1317                m64_bars = num_vfs;
1318        else
1319                m64_bars = 1;
1320
1321        for (i = 0; i < PCI_SRIOV_NUM_BARS; i++)
1322                for (j = 0; j < m64_bars; j++) {
1323                        if (pdn->m64_map[j][i] == IODA_INVALID_M64)
1324                                continue;
1325                        opal_pci_phb_mmio_enable(phb->opal_id,
1326                                OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 0);
1327                        clear_bit(pdn->m64_map[j][i], &phb->ioda.m64_bar_alloc);
1328                        pdn->m64_map[j][i] = IODA_INVALID_M64;
1329                }
1330
1331        kfree(pdn->m64_map);
1332        return 0;
1333}
1334
1335static int pnv_pci_vf_assign_m64(struct pci_dev *pdev, u16 num_vfs)
1336{
1337        struct pci_bus        *bus;
1338        struct pci_controller *hose;
1339        struct pnv_phb        *phb;
1340        struct pci_dn         *pdn;
1341        unsigned int           win;
1342        struct resource       *res;
1343        int                    i, j;
1344        int64_t                rc;
1345        int                    total_vfs;
1346        resource_size_t        size, start;
1347        int                    pe_num;
1348        int                    m64_bars;
1349
1350        bus = pdev->bus;
1351        hose = pci_bus_to_host(bus);
1352        phb = hose->private_data;
1353        pdn = pci_get_pdn(pdev);
1354        total_vfs = pci_sriov_get_totalvfs(pdev);
1355
1356        if (pdn->m64_single_mode)
1357                m64_bars = num_vfs;
1358        else
1359                m64_bars = 1;
1360
1361        pdn->m64_map = kmalloc_array(m64_bars,
1362                                     sizeof(*pdn->m64_map),
1363                                     GFP_KERNEL);
1364        if (!pdn->m64_map)
1365                return -ENOMEM;
1366        /* Initialize the m64_map to IODA_INVALID_M64 */
1367        for (i = 0; i < m64_bars ; i++)
1368                for (j = 0; j < PCI_SRIOV_NUM_BARS; j++)
1369                        pdn->m64_map[i][j] = IODA_INVALID_M64;
1370
1371
1372        for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
1373                res = &pdev->resource[i + PCI_IOV_RESOURCES];
1374                if (!res->flags || !res->parent)
1375                        continue;
1376
1377                for (j = 0; j < m64_bars; j++) {
1378                        do {
1379                                win = find_next_zero_bit(&phb->ioda.m64_bar_alloc,
1380                                                phb->ioda.m64_bar_idx + 1, 0);
1381
1382                                if (win >= phb->ioda.m64_bar_idx + 1)
1383                                        goto m64_failed;
1384                        } while (test_and_set_bit(win, &phb->ioda.m64_bar_alloc));
1385
1386                        pdn->m64_map[j][i] = win;
1387
1388                        if (pdn->m64_single_mode) {
1389                                size = pci_iov_resource_size(pdev,
1390                                                        PCI_IOV_RESOURCES + i);
1391                                start = res->start + size * j;
1392                        } else {
1393                                size = resource_size(res);
1394                                start = res->start;
1395                        }
1396
1397                        /* Map the M64 here */
1398                        if (pdn->m64_single_mode) {
1399                                pe_num = pdn->pe_num_map[j];
1400                                rc = opal_pci_map_pe_mmio_window(phb->opal_id,
1401                                                pe_num, OPAL_M64_WINDOW_TYPE,
1402                                                pdn->m64_map[j][i], 0);
1403                        }
1404
1405                        rc = opal_pci_set_phb_mem_window(phb->opal_id,
1406                                                 OPAL_M64_WINDOW_TYPE,
1407                                                 pdn->m64_map[j][i],
1408                                                 start,
1409                                                 0, /* unused */
1410                                                 size);
1411
1412
1413                        if (rc != OPAL_SUCCESS) {
1414                                dev_err(&pdev->dev, "Failed to map M64 window #%d: %lld\n",
1415                                        win, rc);
1416                                goto m64_failed;
1417                        }
1418
1419                        if (pdn->m64_single_mode)
1420                                rc = opal_pci_phb_mmio_enable(phb->opal_id,
1421                                     OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 2);
1422                        else
1423                                rc = opal_pci_phb_mmio_enable(phb->opal_id,
1424                                     OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 1);
1425
1426                        if (rc != OPAL_SUCCESS) {
1427                                dev_err(&pdev->dev, "Failed to enable M64 window #%d: %llx\n",
1428                                        win, rc);
1429                                goto m64_failed;
1430                        }
1431                }
1432        }
1433        return 0;
1434
1435m64_failed:
1436        pnv_pci_vf_release_m64(pdev, num_vfs);
1437        return -EBUSY;
1438}
1439
1440static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
1441                int num);
1442
1443static void pnv_pci_ioda2_release_dma_pe(struct pci_dev *dev, struct pnv_ioda_pe *pe)
1444{
1445        struct iommu_table    *tbl;
1446        int64_t               rc;
1447
1448        tbl = pe->table_group.tables[0];
1449        rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
1450        if (rc)
1451                pe_warn(pe, "OPAL error %ld release DMA window\n", rc);
1452
1453        pnv_pci_ioda2_set_bypass(pe, false);
1454        if (pe->table_group.group) {
1455                iommu_group_put(pe->table_group.group);
1456                BUG_ON(pe->table_group.group);
1457        }
1458        iommu_tce_table_put(tbl);
1459}
1460
1461static void pnv_ioda_release_vf_PE(struct pci_dev *pdev)
1462{
1463        struct pci_bus        *bus;
1464        struct pci_controller *hose;
1465        struct pnv_phb        *phb;
1466        struct pnv_ioda_pe    *pe, *pe_n;
1467        struct pci_dn         *pdn;
1468
1469        bus = pdev->bus;
1470        hose = pci_bus_to_host(bus);
1471        phb = hose->private_data;
1472        pdn = pci_get_pdn(pdev);
1473
1474        if (!pdev->is_physfn)
1475                return;
1476
1477        list_for_each_entry_safe(pe, pe_n, &phb->ioda.pe_list, list) {
1478                if (pe->parent_dev != pdev)
1479                        continue;
1480
1481                pnv_pci_ioda2_release_dma_pe(pdev, pe);
1482
1483                /* Remove from list */
1484                mutex_lock(&phb->ioda.pe_list_mutex);
1485                list_del(&pe->list);
1486                mutex_unlock(&phb->ioda.pe_list_mutex);
1487
1488                pnv_ioda_deconfigure_pe(phb, pe);
1489
1490                pnv_ioda_free_pe(pe);
1491        }
1492}
1493
1494void pnv_pci_sriov_disable(struct pci_dev *pdev)
1495{
1496        struct pci_bus        *bus;
1497        struct pci_controller *hose;
1498        struct pnv_phb        *phb;
1499        struct pnv_ioda_pe    *pe;
1500        struct pci_dn         *pdn;
1501        u16                    num_vfs, i;
1502
1503        bus = pdev->bus;
1504        hose = pci_bus_to_host(bus);
1505        phb = hose->private_data;
1506        pdn = pci_get_pdn(pdev);
1507        num_vfs = pdn->num_vfs;
1508
1509        /* Release VF PEs */
1510        pnv_ioda_release_vf_PE(pdev);
1511
1512        if (phb->type == PNV_PHB_IODA2) {
1513                if (!pdn->m64_single_mode)
1514                        pnv_pci_vf_resource_shift(pdev, -*pdn->pe_num_map);
1515
1516                /* Release M64 windows */
1517                pnv_pci_vf_release_m64(pdev, num_vfs);
1518
1519                /* Release PE numbers */
1520                if (pdn->m64_single_mode) {
1521                        for (i = 0; i < num_vfs; i++) {
1522                                if (pdn->pe_num_map[i] == IODA_INVALID_PE)
1523                                        continue;
1524
1525                                pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
1526                                pnv_ioda_free_pe(pe);
1527                        }
1528                } else
1529                        bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1530                /* Releasing pe_num_map */
1531                kfree(pdn->pe_num_map);
1532        }
1533}
1534
1535static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
1536                                       struct pnv_ioda_pe *pe);
1537#ifdef CONFIG_IOMMU_API
1538static void pnv_ioda_setup_bus_iommu_group(struct pnv_ioda_pe *pe,
1539                struct iommu_table_group *table_group, struct pci_bus *bus);
1540
1541#endif
1542static void pnv_ioda_setup_vf_PE(struct pci_dev *pdev, u16 num_vfs)
1543{
1544        struct pci_bus        *bus;
1545        struct pci_controller *hose;
1546        struct pnv_phb        *phb;
1547        struct pnv_ioda_pe    *pe;
1548        int                    pe_num;
1549        u16                    vf_index;
1550        struct pci_dn         *pdn;
1551
1552        bus = pdev->bus;
1553        hose = pci_bus_to_host(bus);
1554        phb = hose->private_data;
1555        pdn = pci_get_pdn(pdev);
1556
1557        if (!pdev->is_physfn)
1558                return;
1559
1560        /* Reserve PE for each VF */
1561        for (vf_index = 0; vf_index < num_vfs; vf_index++) {
1562                if (pdn->m64_single_mode)
1563                        pe_num = pdn->pe_num_map[vf_index];
1564                else
1565                        pe_num = *pdn->pe_num_map + vf_index;
1566
1567                pe = &phb->ioda.pe_array[pe_num];
1568                pe->pe_number = pe_num;
1569                pe->phb = phb;
1570                pe->flags = PNV_IODA_PE_VF;
1571                pe->pbus = NULL;
1572                pe->parent_dev = pdev;
1573                pe->mve_number = -1;
1574                pe->rid = (pci_iov_virtfn_bus(pdev, vf_index) << 8) |
1575                           pci_iov_virtfn_devfn(pdev, vf_index);
1576
1577                pe_info(pe, "VF %04d:%02d:%02d.%d associated with PE#%x\n",
1578                        hose->global_number, pdev->bus->number,
1579                        PCI_SLOT(pci_iov_virtfn_devfn(pdev, vf_index)),
1580                        PCI_FUNC(pci_iov_virtfn_devfn(pdev, vf_index)), pe_num);
1581
1582                if (pnv_ioda_configure_pe(phb, pe)) {
1583                        /* XXX What do we do here ? */
1584                        pnv_ioda_free_pe(pe);
1585                        pe->pdev = NULL;
1586                        continue;
1587                }
1588
1589                /* Put PE to the list */
1590                mutex_lock(&phb->ioda.pe_list_mutex);
1591                list_add_tail(&pe->list, &phb->ioda.pe_list);
1592                mutex_unlock(&phb->ioda.pe_list_mutex);
1593
1594                pnv_pci_ioda2_setup_dma_pe(phb, pe);
1595#ifdef CONFIG_IOMMU_API
1596                iommu_register_group(&pe->table_group,
1597                                pe->phb->hose->global_number, pe->pe_number);
1598                pnv_ioda_setup_bus_iommu_group(pe, &pe->table_group, NULL);
1599#endif
1600        }
1601}
1602
1603int pnv_pci_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1604{
1605        struct pci_bus        *bus;
1606        struct pci_controller *hose;
1607        struct pnv_phb        *phb;
1608        struct pnv_ioda_pe    *pe;
1609        struct pci_dn         *pdn;
1610        int                    ret;
1611        u16                    i;
1612
1613        bus = pdev->bus;
1614        hose = pci_bus_to_host(bus);
1615        phb = hose->private_data;
1616        pdn = pci_get_pdn(pdev);
1617
1618        if (phb->type == PNV_PHB_IODA2) {
1619                if (!pdn->vfs_expanded) {
1620                        dev_info(&pdev->dev, "don't support this SRIOV device"
1621                                " with non 64bit-prefetchable IOV BAR\n");
1622                        return -ENOSPC;
1623                }
1624
1625                /*
1626                 * When M64 BARs functions in Single PE mode, the number of VFs
1627                 * could be enabled must be less than the number of M64 BARs.
1628                 */
1629                if (pdn->m64_single_mode && num_vfs > phb->ioda.m64_bar_idx) {
1630                        dev_info(&pdev->dev, "Not enough M64 BAR for VFs\n");
1631                        return -EBUSY;
1632                }
1633
1634                /* Allocating pe_num_map */
1635                if (pdn->m64_single_mode)
1636                        pdn->pe_num_map = kmalloc_array(num_vfs,
1637                                                        sizeof(*pdn->pe_num_map),
1638                                                        GFP_KERNEL);
1639                else
1640                        pdn->pe_num_map = kmalloc(sizeof(*pdn->pe_num_map), GFP_KERNEL);
1641
1642                if (!pdn->pe_num_map)
1643                        return -ENOMEM;
1644
1645                if (pdn->m64_single_mode)
1646                        for (i = 0; i < num_vfs; i++)
1647                                pdn->pe_num_map[i] = IODA_INVALID_PE;
1648
1649                /* Calculate available PE for required VFs */
1650                if (pdn->m64_single_mode) {
1651                        for (i = 0; i < num_vfs; i++) {
1652                                pe = pnv_ioda_alloc_pe(phb);
1653                                if (!pe) {
1654                                        ret = -EBUSY;
1655                                        goto m64_failed;
1656                                }
1657
1658                                pdn->pe_num_map[i] = pe->pe_number;
1659                        }
1660                } else {
1661                        mutex_lock(&phb->ioda.pe_alloc_mutex);
1662                        *pdn->pe_num_map = bitmap_find_next_zero_area(
1663                                phb->ioda.pe_alloc, phb->ioda.total_pe_num,
1664                                0, num_vfs, 0);
1665                        if (*pdn->pe_num_map >= phb->ioda.total_pe_num) {
1666                                mutex_unlock(&phb->ioda.pe_alloc_mutex);
1667                                dev_info(&pdev->dev, "Failed to enable VF%d\n", num_vfs);
1668                                kfree(pdn->pe_num_map);
1669                                return -EBUSY;
1670                        }
1671                        bitmap_set(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1672                        mutex_unlock(&phb->ioda.pe_alloc_mutex);
1673                }
1674                pdn->num_vfs = num_vfs;
1675
1676                /* Assign M64 window accordingly */
1677                ret = pnv_pci_vf_assign_m64(pdev, num_vfs);
1678                if (ret) {
1679                        dev_info(&pdev->dev, "Not enough M64 window resources\n");
1680                        goto m64_failed;
1681                }
1682
1683                /*
1684                 * When using one M64 BAR to map one IOV BAR, we need to shift
1685                 * the IOV BAR according to the PE# allocated to the VFs.
1686                 * Otherwise, the PE# for the VF will conflict with others.
1687                 */
1688                if (!pdn->m64_single_mode) {
1689                        ret = pnv_pci_vf_resource_shift(pdev, *pdn->pe_num_map);
1690                        if (ret)
1691                                goto m64_failed;
1692                }
1693        }
1694
1695        /* Setup VF PEs */
1696        pnv_ioda_setup_vf_PE(pdev, num_vfs);
1697
1698        return 0;
1699
1700m64_failed:
1701        if (pdn->m64_single_mode) {
1702                for (i = 0; i < num_vfs; i++) {
1703                        if (pdn->pe_num_map[i] == IODA_INVALID_PE)
1704                                continue;
1705
1706                        pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
1707                        pnv_ioda_free_pe(pe);
1708                }
1709        } else
1710                bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1711
1712        /* Releasing pe_num_map */
1713        kfree(pdn->pe_num_map);
1714
1715        return ret;
1716}
1717
1718int pnv_pcibios_sriov_disable(struct pci_dev *pdev)
1719{
1720        pnv_pci_sriov_disable(pdev);
1721
1722        /* Release PCI data */
1723        remove_dev_pci_data(pdev);
1724        return 0;
1725}
1726
1727int pnv_pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1728{
1729        /* Allocate PCI data */
1730        add_dev_pci_data(pdev);
1731
1732        return pnv_pci_sriov_enable(pdev, num_vfs);
1733}
1734#endif /* CONFIG_PCI_IOV */
1735
1736static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev)
1737{
1738        struct pci_dn *pdn = pci_get_pdn(pdev);
1739        struct pnv_ioda_pe *pe;
1740
1741        /*
1742         * The function can be called while the PE#
1743         * hasn't been assigned. Do nothing for the
1744         * case.
1745         */
1746        if (!pdn || pdn->pe_number == IODA_INVALID_PE)
1747                return;
1748
1749        pe = &phb->ioda.pe_array[pdn->pe_number];
1750        WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
1751        set_dma_offset(&pdev->dev, pe->tce_bypass_base);
1752        set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]);
1753        /*
1754         * Note: iommu_add_device() will fail here as
1755         * for physical PE: the device is already added by now;
1756         * for virtual PE: sysfs entries are not ready yet and
1757         * tce_iommu_bus_notifier will add the device to a group later.
1758         */
1759}
1760
1761static bool pnv_pci_ioda_pe_single_vendor(struct pnv_ioda_pe *pe)
1762{
1763        unsigned short vendor = 0;
1764        struct pci_dev *pdev;
1765
1766        if (pe->device_count == 1)
1767                return true;
1768
1769        /* pe->pdev should be set if it's a single device, pe->pbus if not */
1770        if (!pe->pbus)
1771                return true;
1772
1773        list_for_each_entry(pdev, &pe->pbus->devices, bus_list) {
1774                if (!vendor) {
1775                        vendor = pdev->vendor;
1776                        continue;
1777                }
1778
1779                if (pdev->vendor != vendor)
1780                        return false;
1781        }
1782
1783        return true;
1784}
1785
1786/*
1787 * Reconfigure TVE#0 to be usable as 64-bit DMA space.
1788 *
1789 * The first 4GB of virtual memory for a PE is reserved for 32-bit accesses.
1790 * Devices can only access more than that if bit 59 of the PCI address is set
1791 * by hardware, which indicates TVE#1 should be used instead of TVE#0.
1792 * Many PCI devices are not capable of addressing that many bits, and as a
1793 * result are limited to the 4GB of virtual memory made available to 32-bit
1794 * devices in TVE#0.
1795 *
1796 * In order to work around this, reconfigure TVE#0 to be suitable for 64-bit
1797 * devices by configuring the virtual memory past the first 4GB inaccessible
1798 * by 64-bit DMAs.  This should only be used by devices that want more than
1799 * 4GB, and only on PEs that have no 32-bit devices.
1800 *
1801 * Currently this will only work on PHB3 (POWER8).
1802 */
1803static int pnv_pci_ioda_dma_64bit_bypass(struct pnv_ioda_pe *pe)
1804{
1805        u64 window_size, table_size, tce_count, addr;
1806        struct page *table_pages;
1807        u64 tce_order = 28; /* 256MB TCEs */
1808        __be64 *tces;
1809        s64 rc;
1810
1811        /*
1812         * Window size needs to be a power of two, but needs to account for
1813         * shifting memory by the 4GB offset required to skip 32bit space.
1814         */
1815        window_size = roundup_pow_of_two(memory_hotplug_max() + (1ULL << 32));
1816        tce_count = window_size >> tce_order;
1817        table_size = tce_count << 3;
1818
1819        if (table_size < PAGE_SIZE)
1820                table_size = PAGE_SIZE;
1821
1822        table_pages = alloc_pages_node(pe->phb->hose->node, GFP_KERNEL,
1823                                       get_order(table_size));
1824        if (!table_pages)
1825                goto err;
1826
1827        tces = page_address(table_pages);
1828        if (!tces)
1829                goto err;
1830
1831        memset(tces, 0, table_size);
1832
1833        for (addr = 0; addr < memory_hotplug_max(); addr += (1 << tce_order)) {
1834                tces[(addr + (1ULL << 32)) >> tce_order] =
1835                        cpu_to_be64(addr | TCE_PCI_READ | TCE_PCI_WRITE);
1836        }
1837
1838        rc = opal_pci_map_pe_dma_window(pe->phb->opal_id,
1839                                        pe->pe_number,
1840                                        /* reconfigure window 0 */
1841                                        (pe->pe_number << 1) + 0,
1842                                        1,
1843                                        __pa(tces),
1844                                        table_size,
1845                                        1 << tce_order);
1846        if (rc == OPAL_SUCCESS) {
1847                pe_info(pe, "Using 64-bit DMA iommu bypass (through TVE#0)\n");
1848                return 0;
1849        }
1850err:
1851        pe_err(pe, "Error configuring 64-bit DMA bypass\n");
1852        return -EIO;
1853}
1854
1855static int pnv_pci_ioda_dma_set_mask(struct pci_dev *pdev, u64 dma_mask)
1856{
1857        struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1858        struct pnv_phb *phb = hose->private_data;
1859        struct pci_dn *pdn = pci_get_pdn(pdev);
1860        struct pnv_ioda_pe *pe;
1861        uint64_t top;
1862        bool bypass = false;
1863        s64 rc;
1864
1865        if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1866                return -ENODEV;
1867
1868        pe = &phb->ioda.pe_array[pdn->pe_number];
1869        if (pe->tce_bypass_enabled) {
1870                top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
1871                bypass = (dma_mask >= top);
1872        }
1873
1874        if (bypass) {
1875                dev_info(&pdev->dev, "Using 64-bit DMA iommu bypass\n");
1876                set_dma_ops(&pdev->dev, &dma_nommu_ops);
1877        } else {
1878                /*
1879                 * If the device can't set the TCE bypass bit but still wants
1880                 * to access 4GB or more, on PHB3 we can reconfigure TVE#0 to
1881                 * bypass the 32-bit region and be usable for 64-bit DMAs.
1882                 * The device needs to be able to address all of this space.
1883                 */
1884                if (dma_mask >> 32 &&
1885                    dma_mask > (memory_hotplug_max() + (1ULL << 32)) &&
1886                    pnv_pci_ioda_pe_single_vendor(pe) &&
1887                    phb->model == PNV_PHB_MODEL_PHB3) {
1888                        /* Configure the bypass mode */
1889                        rc = pnv_pci_ioda_dma_64bit_bypass(pe);
1890                        if (rc)
1891                                return rc;
1892                        /* 4GB offset bypasses 32-bit space */
1893                        set_dma_offset(&pdev->dev, (1ULL << 32));
1894                        set_dma_ops(&pdev->dev, &dma_nommu_ops);
1895                } else if (dma_mask >> 32 && dma_mask != DMA_BIT_MASK(64)) {
1896                        /*
1897                         * Fail the request if a DMA mask between 32 and 64 bits
1898                         * was requested but couldn't be fulfilled. Ideally we
1899                         * would do this for 64-bits but historically we have
1900                         * always fallen back to 32-bits.
1901                         */
1902                        return -ENOMEM;
1903                } else {
1904                        dev_info(&pdev->dev, "Using 32-bit DMA via iommu\n");
1905                        set_dma_ops(&pdev->dev, &dma_iommu_ops);
1906                }
1907        }
1908        *pdev->dev.dma_mask = dma_mask;
1909
1910        /* Update peer npu devices */
1911        pnv_npu_try_dma_set_bypass(pdev, bypass);
1912
1913        return 0;
1914}
1915
1916static u64 pnv_pci_ioda_dma_get_required_mask(struct pci_dev *pdev)
1917{
1918        struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1919        struct pnv_phb *phb = hose->private_data;
1920        struct pci_dn *pdn = pci_get_pdn(pdev);
1921        struct pnv_ioda_pe *pe;
1922        u64 end, mask;
1923
1924        if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1925                return 0;
1926
1927        pe = &phb->ioda.pe_array[pdn->pe_number];
1928        if (!pe->tce_bypass_enabled)
1929                return __dma_get_required_mask(&pdev->dev);
1930
1931
1932        end = pe->tce_bypass_base + memblock_end_of_DRAM();
1933        mask = 1ULL << (fls64(end) - 1);
1934        mask += mask - 1;
1935
1936        return mask;
1937}
1938
1939static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe, struct pci_bus *bus)
1940{
1941        struct pci_dev *dev;
1942
1943        list_for_each_entry(dev, &bus->devices, bus_list) {
1944                set_iommu_table_base(&dev->dev, pe->table_group.tables[0]);
1945                set_dma_offset(&dev->dev, pe->tce_bypass_base);
1946
1947                if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1948                        pnv_ioda_setup_bus_dma(pe, dev->subordinate);
1949        }
1950}
1951
1952static inline __be64 __iomem *pnv_ioda_get_inval_reg(struct pnv_phb *phb,
1953                                                     bool real_mode)
1954{
1955        return real_mode ? (__be64 __iomem *)(phb->regs_phys + 0x210) :
1956                (phb->regs + 0x210);
1957}
1958
1959static void pnv_pci_p7ioc_tce_invalidate(struct iommu_table *tbl,
1960                unsigned long index, unsigned long npages, bool rm)
1961{
1962        struct iommu_table_group_link *tgl = list_first_entry_or_null(
1963                        &tbl->it_group_list, struct iommu_table_group_link,
1964                        next);
1965        struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1966                        struct pnv_ioda_pe, table_group);
1967        __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
1968        unsigned long start, end, inc;
1969
1970        start = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset);
1971        end = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset +
1972                        npages - 1);
1973
1974        /* p7ioc-style invalidation, 2 TCEs per write */
1975        start |= (1ull << 63);
1976        end |= (1ull << 63);
1977        inc = 16;
1978        end |= inc - 1; /* round up end to be different than start */
1979
1980        mb(); /* Ensure above stores are visible */
1981        while (start <= end) {
1982                if (rm)
1983                        __raw_rm_writeq_be(start, invalidate);
1984                else
1985                        __raw_writeq_be(start, invalidate);
1986
1987                start += inc;
1988        }
1989
1990        /*
1991         * The iommu layer will do another mb() for us on build()
1992         * and we don't care on free()
1993         */
1994}
1995
1996static int pnv_ioda1_tce_build(struct iommu_table *tbl, long index,
1997                long npages, unsigned long uaddr,
1998                enum dma_data_direction direction,
1999                unsigned long attrs)
2000{
2001        int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
2002                        attrs);
2003
2004        if (!ret)
2005                pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
2006
2007        return ret;
2008}
2009
2010#ifdef CONFIG_IOMMU_API
2011static int pnv_ioda1_tce_xchg(struct iommu_table *tbl, long index,
2012                unsigned long *hpa, enum dma_data_direction *direction)
2013{
2014        long ret = pnv_tce_xchg(tbl, index, hpa, direction, true);
2015
2016        if (!ret)
2017                pnv_pci_p7ioc_tce_invalidate(tbl, index, 1, false);
2018
2019        return ret;
2020}
2021
2022static int pnv_ioda1_tce_xchg_rm(struct iommu_table *tbl, long index,
2023                unsigned long *hpa, enum dma_data_direction *direction)
2024{
2025        long ret = pnv_tce_xchg(tbl, index, hpa, direction, false);
2026
2027        if (!ret)
2028                pnv_pci_p7ioc_tce_invalidate(tbl, index, 1, true);
2029
2030        return ret;
2031}
2032#endif
2033
2034static void pnv_ioda1_tce_free(struct iommu_table *tbl, long index,
2035                long npages)
2036{
2037        pnv_tce_free(tbl, index, npages);
2038
2039        pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
2040}
2041
2042static struct iommu_table_ops pnv_ioda1_iommu_ops = {
2043        .set = pnv_ioda1_tce_build,
2044#ifdef CONFIG_IOMMU_API
2045        .exchange = pnv_ioda1_tce_xchg,
2046        .exchange_rm = pnv_ioda1_tce_xchg_rm,
2047        .useraddrptr = pnv_tce_useraddrptr,
2048#endif
2049        .clear = pnv_ioda1_tce_free,
2050        .get = pnv_tce_get,
2051};
2052
2053#define PHB3_TCE_KILL_INVAL_ALL         PPC_BIT(0)
2054#define PHB3_TCE_KILL_INVAL_PE          PPC_BIT(1)
2055#define PHB3_TCE_KILL_INVAL_ONE         PPC_BIT(2)
2056
2057static void pnv_pci_phb3_tce_invalidate_entire(struct pnv_phb *phb, bool rm)
2058{
2059        __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(phb, rm);
2060        const unsigned long val = PHB3_TCE_KILL_INVAL_ALL;
2061
2062        mb(); /* Ensure previous TCE table stores are visible */
2063        if (rm)
2064                __raw_rm_writeq_be(val, invalidate);
2065        else
2066                __raw_writeq_be(val, invalidate);
2067}
2068
2069static inline void pnv_pci_phb3_tce_invalidate_pe(struct pnv_ioda_pe *pe)
2070{
2071        /* 01xb - invalidate TCEs that match the specified PE# */
2072        __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, false);
2073        unsigned long val = PHB3_TCE_KILL_INVAL_PE | (pe->pe_number & 0xFF);
2074
2075        mb(); /* Ensure above stores are visible */
2076        __raw_writeq_be(val, invalidate);
2077}
2078
2079static void pnv_pci_phb3_tce_invalidate(struct pnv_ioda_pe *pe, bool rm,
2080                                        unsigned shift, unsigned long index,
2081                                        unsigned long npages)
2082{
2083        __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
2084        unsigned long start, end, inc;
2085
2086        /* We'll invalidate DMA address in PE scope */
2087        start = PHB3_TCE_KILL_INVAL_ONE;
2088        start |= (pe->pe_number & 0xFF);
2089        end = start;
2090
2091        /* Figure out the start, end and step */
2092        start |= (index << shift);
2093        end |= ((index + npages - 1) << shift);
2094        inc = (0x1ull << shift);
2095        mb();
2096
2097        while (start <= end) {
2098                if (rm)
2099                        __raw_rm_writeq_be(start, invalidate);
2100                else
2101                        __raw_writeq_be(start, invalidate);
2102                start += inc;
2103        }
2104}
2105
2106static inline void pnv_pci_ioda2_tce_invalidate_pe(struct pnv_ioda_pe *pe)
2107{
2108        struct pnv_phb *phb = pe->phb;
2109
2110        if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
2111                pnv_pci_phb3_tce_invalidate_pe(pe);
2112        else
2113                opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL_PE,
2114                                  pe->pe_number, 0, 0, 0);
2115}
2116
2117static void pnv_pci_ioda2_tce_invalidate(struct iommu_table *tbl,
2118                unsigned long index, unsigned long npages, bool rm)
2119{
2120        struct iommu_table_group_link *tgl;
2121
2122        list_for_each_entry_lockless(tgl, &tbl->it_group_list, next) {
2123                struct pnv_ioda_pe *pe = container_of(tgl->table_group,
2124                                struct pnv_ioda_pe, table_group);
2125                struct pnv_phb *phb = pe->phb;
2126                unsigned int shift = tbl->it_page_shift;
2127
2128                /*
2129                 * NVLink1 can use the TCE kill register directly as
2130                 * it's the same as PHB3. NVLink2 is different and
2131                 * should go via the OPAL call.
2132                 */
2133                if (phb->model == PNV_PHB_MODEL_NPU) {
2134                        /*
2135                         * The NVLink hardware does not support TCE kill
2136                         * per TCE entry so we have to invalidate
2137                         * the entire cache for it.
2138                         */
2139                        pnv_pci_phb3_tce_invalidate_entire(phb, rm);
2140                        continue;
2141                }
2142                if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
2143                        pnv_pci_phb3_tce_invalidate(pe, rm, shift,
2144                                                    index, npages);
2145                else
2146                        opal_pci_tce_kill(phb->opal_id,
2147                                          OPAL_PCI_TCE_KILL_PAGES,
2148                                          pe->pe_number, 1u << shift,
2149                                          index << shift, npages);
2150        }
2151}
2152
2153void pnv_pci_ioda2_tce_invalidate_entire(struct pnv_phb *phb, bool rm)
2154{
2155        if (phb->model == PNV_PHB_MODEL_NPU || phb->model == PNV_PHB_MODEL_PHB3)
2156                pnv_pci_phb3_tce_invalidate_entire(phb, rm);
2157        else
2158                opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL, 0, 0, 0, 0);
2159}
2160
2161static int pnv_ioda2_tce_build(struct iommu_table *tbl, long index,
2162                long npages, unsigned long uaddr,
2163                enum dma_data_direction direction,
2164                unsigned long attrs)
2165{
2166        int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
2167                        attrs);
2168
2169        if (!ret)
2170                pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
2171
2172        return ret;
2173}
2174
2175#ifdef CONFIG_IOMMU_API
2176static int pnv_ioda2_tce_xchg(struct iommu_table *tbl, long index,
2177                unsigned long *hpa, enum dma_data_direction *direction)
2178{
2179        long ret = pnv_tce_xchg(tbl, index, hpa, direction, true);
2180
2181        if (!ret)
2182                pnv_pci_ioda2_tce_invalidate(tbl, index, 1, false);
2183
2184        return ret;
2185}
2186
2187static int pnv_ioda2_tce_xchg_rm(struct iommu_table *tbl, long index,
2188                unsigned long *hpa, enum dma_data_direction *direction)
2189{
2190        long ret = pnv_tce_xchg(tbl, index, hpa, direction, false);
2191
2192        if (!ret)
2193                pnv_pci_ioda2_tce_invalidate(tbl, index, 1, true);
2194
2195        return ret;
2196}
2197#endif
2198
2199static void pnv_ioda2_tce_free(struct iommu_table *tbl, long index,
2200                long npages)
2201{
2202        pnv_tce_free(tbl, index, npages);
2203
2204        pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
2205}
2206
2207static struct iommu_table_ops pnv_ioda2_iommu_ops = {
2208        .set = pnv_ioda2_tce_build,
2209#ifdef CONFIG_IOMMU_API
2210        .exchange = pnv_ioda2_tce_xchg,
2211        .exchange_rm = pnv_ioda2_tce_xchg_rm,
2212        .useraddrptr = pnv_tce_useraddrptr,
2213#endif
2214        .clear = pnv_ioda2_tce_free,
2215        .get = pnv_tce_get,
2216        .free = pnv_pci_ioda2_table_free_pages,
2217};
2218
2219static int pnv_pci_ioda_dev_dma_weight(struct pci_dev *dev, void *data)
2220{
2221        unsigned int *weight = (unsigned int *)data;
2222
2223        /* This is quite simplistic. The "base" weight of a device
2224         * is 10. 0 means no DMA is to be accounted for it.
2225         */
2226        if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
2227                return 0;
2228
2229        if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
2230            dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
2231            dev->class == PCI_CLASS_SERIAL_USB_EHCI)
2232                *weight += 3;
2233        else if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
2234                *weight += 15;
2235        else
2236                *weight += 10;
2237
2238        return 0;
2239}
2240
2241static unsigned int pnv_pci_ioda_pe_dma_weight(struct pnv_ioda_pe *pe)
2242{
2243        unsigned int weight = 0;
2244
2245        /* SRIOV VF has same DMA32 weight as its PF */
2246#ifdef CONFIG_PCI_IOV
2247        if ((pe->flags & PNV_IODA_PE_VF) && pe->parent_dev) {
2248                pnv_pci_ioda_dev_dma_weight(pe->parent_dev, &weight);
2249                return weight;
2250        }
2251#endif
2252
2253        if ((pe->flags & PNV_IODA_PE_DEV) && pe->pdev) {
2254                pnv_pci_ioda_dev_dma_weight(pe->pdev, &weight);
2255        } else if ((pe->flags & PNV_IODA_PE_BUS) && pe->pbus) {
2256                struct pci_dev *pdev;
2257
2258                list_for_each_entry(pdev, &pe->pbus->devices, bus_list)
2259                        pnv_pci_ioda_dev_dma_weight(pdev, &weight);
2260        } else if ((pe->flags & PNV_IODA_PE_BUS_ALL) && pe->pbus) {
2261                pci_walk_bus(pe->pbus, pnv_pci_ioda_dev_dma_weight, &weight);
2262        }
2263
2264        return weight;
2265}
2266
2267static void pnv_pci_ioda1_setup_dma_pe(struct pnv_phb *phb,
2268                                       struct pnv_ioda_pe *pe)
2269{
2270
2271        struct page *tce_mem = NULL;
2272        struct iommu_table *tbl;
2273        unsigned int weight, total_weight = 0;
2274        unsigned int tce32_segsz, base, segs, avail, i;
2275        int64_t rc;
2276        void *addr;
2277
2278        /* XXX FIXME: Handle 64-bit only DMA devices */
2279        /* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
2280        /* XXX FIXME: Allocate multi-level tables on PHB3 */
2281        weight = pnv_pci_ioda_pe_dma_weight(pe);
2282        if (!weight)
2283                return;
2284
2285        pci_walk_bus(phb->hose->bus, pnv_pci_ioda_dev_dma_weight,
2286                     &total_weight);
2287        segs = (weight * phb->ioda.dma32_count) / total_weight;
2288        if (!segs)
2289                segs = 1;
2290
2291        /*
2292         * Allocate contiguous DMA32 segments. We begin with the expected
2293         * number of segments. With one more attempt, the number of DMA32
2294         * segments to be allocated is decreased by one until one segment
2295         * is allocated successfully.
2296         */
2297        do {
2298                for (base = 0; base <= phb->ioda.dma32_count - segs; base++) {
2299                        for (avail = 0, i = base; i < base + segs; i++) {
2300                                if (phb->ioda.dma32_segmap[i] ==
2301                                    IODA_INVALID_PE)
2302                                        avail++;
2303                        }
2304
2305                        if (avail == segs)
2306                                goto found;
2307                }
2308        } while (--segs);
2309
2310        if (!segs) {
2311                pe_warn(pe, "No available DMA32 segments\n");
2312                return;
2313        }
2314
2315found:
2316        tbl = pnv_pci_table_alloc(phb->hose->node);
2317        if (WARN_ON(!tbl))
2318                return;
2319
2320        iommu_register_group(&pe->table_group, phb->hose->global_number,
2321                        pe->pe_number);
2322        pnv_pci_link_table_and_group(phb->hose->node, 0, tbl, &pe->table_group);
2323
2324        /* Grab a 32-bit TCE table */
2325        pe_info(pe, "DMA weight %d (%d), assigned (%d) %d DMA32 segments\n",
2326                weight, total_weight, base, segs);
2327        pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
2328                base * PNV_IODA1_DMA32_SEGSIZE,
2329                (base + segs) * PNV_IODA1_DMA32_SEGSIZE - 1);
2330
2331        /* XXX Currently, we allocate one big contiguous table for the
2332         * TCEs. We only really need one chunk per 256M of TCE space
2333         * (ie per segment) but that's an optimization for later, it
2334         * requires some added smarts with our get/put_tce implementation
2335         *
2336         * Each TCE page is 4KB in size and each TCE entry occupies 8
2337         * bytes
2338         */
2339        tce32_segsz = PNV_IODA1_DMA32_SEGSIZE >> (IOMMU_PAGE_SHIFT_4K - 3);
2340        tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
2341                                   get_order(tce32_segsz * segs));
2342        if (!tce_mem) {
2343                pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
2344                goto fail;
2345        }
2346        addr = page_address(tce_mem);
2347        memset(addr, 0, tce32_segsz * segs);
2348
2349        /* Configure HW */
2350        for (i = 0; i < segs; i++) {
2351                rc = opal_pci_map_pe_dma_window(phb->opal_id,
2352                                              pe->pe_number,
2353                                              base + i, 1,
2354                                              __pa(addr) + tce32_segsz * i,
2355                                              tce32_segsz, IOMMU_PAGE_SIZE_4K);
2356                if (rc) {
2357                        pe_err(pe, " Failed to configure 32-bit TCE table,"
2358                               " err %ld\n", rc);
2359                        goto fail;
2360                }
2361        }
2362
2363        /* Setup DMA32 segment mapping */
2364        for (i = base; i < base + segs; i++)
2365                phb->ioda.dma32_segmap[i] = pe->pe_number;
2366
2367        /* Setup linux iommu table */
2368        pnv_pci_setup_iommu_table(tbl, addr, tce32_segsz * segs,
2369                                  base * PNV_IODA1_DMA32_SEGSIZE,
2370                                  IOMMU_PAGE_SHIFT_4K);
2371
2372        tbl->it_ops = &pnv_ioda1_iommu_ops;
2373        pe->table_group.tce32_start = tbl->it_offset << tbl->it_page_shift;
2374        pe->table_group.tce32_size = tbl->it_size << tbl->it_page_shift;
2375        iommu_init_table(tbl, phb->hose->node);
2376
2377        if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2378                pnv_ioda_setup_bus_dma(pe, pe->pbus);
2379
2380        return;
2381 fail:
2382        /* XXX Failure: Try to fallback to 64-bit only ? */
2383        if (tce_mem)
2384                __free_pages(tce_mem, get_order(tce32_segsz * segs));
2385        if (tbl) {
2386                pnv_pci_unlink_table_and_group(tbl, &pe->table_group);
2387                iommu_tce_table_put(tbl);
2388        }
2389}
2390
2391static long pnv_pci_ioda2_set_window(struct iommu_table_group *table_group,
2392                int num, struct iommu_table *tbl)
2393{
2394        struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2395                        table_group);
2396        struct pnv_phb *phb = pe->phb;
2397        int64_t rc;
2398        const unsigned long size = tbl->it_indirect_levels ?
2399                        tbl->it_level_size : tbl->it_size;
2400        const __u64 start_addr = tbl->it_offset << tbl->it_page_shift;
2401        const __u64 win_size = tbl->it_size << tbl->it_page_shift;
2402
2403        pe_info(pe, "Setting up window#%d %llx..%llx pg=%x\n", num,
2404                        start_addr, start_addr + win_size - 1,
2405                        IOMMU_PAGE_SIZE(tbl));
2406
2407        /*
2408         * Map TCE table through TVT. The TVE index is the PE number
2409         * shifted by 1 bit for 32-bits DMA space.
2410         */
2411        rc = opal_pci_map_pe_dma_window(phb->opal_id,
2412                        pe->pe_number,
2413                        (pe->pe_number << 1) + num,
2414                        tbl->it_indirect_levels + 1,
2415                        __pa(tbl->it_base),
2416                        size << 3,
2417                        IOMMU_PAGE_SIZE(tbl));
2418        if (rc) {
2419                pe_err(pe, "Failed to configure TCE table, err %ld\n", rc);
2420                return rc;
2421        }
2422
2423        pnv_pci_link_table_and_group(phb->hose->node, num,
2424                        tbl, &pe->table_group);
2425        pnv_pci_ioda2_tce_invalidate_pe(pe);
2426
2427        return 0;
2428}
2429
2430void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable)
2431{
2432        uint16_t window_id = (pe->pe_number << 1 ) + 1;
2433        int64_t rc;
2434
2435        pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
2436        if (enable) {
2437                phys_addr_t top = memblock_end_of_DRAM();
2438
2439                top = roundup_pow_of_two(top);
2440                rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2441                                                     pe->pe_number,
2442                                                     window_id,
2443                                                     pe->tce_bypass_base,
2444                                                     top);
2445        } else {
2446                rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2447                                                     pe->pe_number,
2448                                                     window_id,
2449                                                     pe->tce_bypass_base,
2450                                                     0);
2451        }
2452        if (rc)
2453                pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
2454        else
2455                pe->tce_bypass_enabled = enable;
2456}
2457
2458static long pnv_pci_ioda2_create_table(struct iommu_table_group *table_group,
2459                int num, __u32 page_shift, __u64 window_size, __u32 levels,
2460                bool alloc_userspace_copy, struct iommu_table **ptbl)
2461{
2462        struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2463                        table_group);
2464        int nid = pe->phb->hose->node;
2465        __u64 bus_offset = num ? pe->tce_bypass_base : table_group->tce32_start;
2466        long ret;
2467        struct iommu_table *tbl;
2468
2469        tbl = pnv_pci_table_alloc(nid);
2470        if (!tbl)
2471                return -ENOMEM;
2472
2473        tbl->it_ops = &pnv_ioda2_iommu_ops;
2474
2475        ret = pnv_pci_ioda2_table_alloc_pages(nid,
2476                        bus_offset, page_shift, window_size,
2477                        levels, alloc_userspace_copy, tbl);
2478        if (ret) {
2479                iommu_tce_table_put(tbl);
2480                return ret;
2481        }
2482
2483        *ptbl = tbl;
2484
2485        return 0;
2486}
2487
2488static long pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe *pe)
2489{
2490        struct iommu_table *tbl = NULL;
2491        long rc;
2492
2493        /*
2494         * crashkernel= specifies the kdump kernel's maximum memory at
2495         * some offset and there is no guaranteed the result is a power
2496         * of 2, which will cause errors later.
2497         */
2498        const u64 max_memory = __rounddown_pow_of_two(memory_hotplug_max());
2499
2500        /*
2501         * In memory constrained environments, e.g. kdump kernel, the
2502         * DMA window can be larger than available memory, which will
2503         * cause errors later.
2504         */
2505        const u64 window_size = min((u64)pe->table_group.tce32_size, max_memory);
2506
2507        rc = pnv_pci_ioda2_create_table(&pe->table_group, 0,
2508                        IOMMU_PAGE_SHIFT_4K,
2509                        window_size,
2510                        POWERNV_IOMMU_DEFAULT_LEVELS, false, &tbl);
2511        if (rc) {
2512                pe_err(pe, "Failed to create 32-bit TCE table, err %ld",
2513                                rc);
2514                return rc;
2515        }
2516
2517        iommu_init_table(tbl, pe->phb->hose->node);
2518
2519        rc = pnv_pci_ioda2_set_window(&pe->table_group, 0, tbl);
2520        if (rc) {
2521                pe_err(pe, "Failed to configure 32-bit TCE table, err %ld\n",
2522                                rc);
2523                iommu_tce_table_put(tbl);
2524                return rc;
2525        }
2526
2527        if (!pnv_iommu_bypass_disabled)
2528                pnv_pci_ioda2_set_bypass(pe, true);
2529
2530        return 0;
2531}
2532
2533#if defined(CONFIG_IOMMU_API) || defined(CONFIG_PCI_IOV)
2534static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
2535                int num)
2536{
2537        struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2538                        table_group);
2539        struct pnv_phb *phb = pe->phb;
2540        long ret;
2541
2542        pe_info(pe, "Removing DMA window #%d\n", num);
2543
2544        ret = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
2545                        (pe->pe_number << 1) + num,
2546                        0/* levels */, 0/* table address */,
2547                        0/* table size */, 0/* page size */);
2548        if (ret)
2549                pe_warn(pe, "Unmapping failed, ret = %ld\n", ret);
2550        else
2551                pnv_pci_ioda2_tce_invalidate_pe(pe);
2552
2553        pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
2554
2555        return ret;
2556}
2557#endif
2558
2559#ifdef CONFIG_IOMMU_API
2560unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift,
2561                __u64 window_size, __u32 levels)
2562{
2563        unsigned long bytes = 0;
2564        const unsigned window_shift = ilog2(window_size);
2565        unsigned entries_shift = window_shift - page_shift;
2566        unsigned table_shift = entries_shift + 3;
2567        unsigned long tce_table_size = max(0x1000UL, 1UL << table_shift);
2568        unsigned long direct_table_size;
2569
2570        if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS) ||
2571                        !is_power_of_2(window_size))
2572                return 0;
2573
2574        /* Calculate a direct table size from window_size and levels */
2575        entries_shift = (entries_shift + levels - 1) / levels;
2576        table_shift = entries_shift + 3;
2577        table_shift = max_t(unsigned, table_shift, PAGE_SHIFT);
2578        direct_table_size =  1UL << table_shift;
2579
2580        for ( ; levels; --levels) {
2581                bytes += _ALIGN_UP(tce_table_size, direct_table_size);
2582
2583                tce_table_size /= direct_table_size;
2584                tce_table_size <<= 3;
2585                tce_table_size = max_t(unsigned long,
2586                                tce_table_size, direct_table_size);
2587        }
2588
2589        return bytes + bytes; /* one for HW table, one for userspace copy */
2590}
2591
2592static long pnv_pci_ioda2_create_table_userspace(
2593                struct iommu_table_group *table_group,
2594                int num, __u32 page_shift, __u64 window_size, __u32 levels,
2595                struct iommu_table **ptbl)
2596{
2597        return pnv_pci_ioda2_create_table(table_group,
2598                        num, page_shift, window_size, levels, true, ptbl);
2599}
2600
2601static void pnv_ioda2_take_ownership(struct iommu_table_group *table_group)
2602{
2603        struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2604                                                table_group);
2605        /* Store @tbl as pnv_pci_ioda2_unset_window() resets it */
2606        struct iommu_table *tbl = pe->table_group.tables[0];
2607
2608        pnv_pci_ioda2_set_bypass(pe, false);
2609        pnv_pci_ioda2_unset_window(&pe->table_group, 0);
2610        if (pe->pbus)
2611                pnv_ioda_setup_bus_dma(pe, pe->pbus);
2612        iommu_tce_table_put(tbl);
2613}
2614
2615static void pnv_ioda2_release_ownership(struct iommu_table_group *table_group)
2616{
2617        struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2618                                                table_group);
2619
2620        pnv_pci_ioda2_setup_default_config(pe);
2621        if (pe->pbus)
2622                pnv_ioda_setup_bus_dma(pe, pe->pbus);
2623}
2624
2625static struct iommu_table_group_ops pnv_pci_ioda2_ops = {
2626        .get_table_size = pnv_pci_ioda2_get_table_size,
2627        .create_table = pnv_pci_ioda2_create_table_userspace,
2628        .set_window = pnv_pci_ioda2_set_window,
2629        .unset_window = pnv_pci_ioda2_unset_window,
2630        .take_ownership = pnv_ioda2_take_ownership,
2631        .release_ownership = pnv_ioda2_release_ownership,
2632};
2633
2634static void pnv_ioda_setup_bus_iommu_group_add_devices(struct pnv_ioda_pe *pe,
2635                struct iommu_table_group *table_group,
2636                struct pci_bus *bus)
2637{
2638        struct pci_dev *dev;
2639
2640        list_for_each_entry(dev, &bus->devices, bus_list) {
2641                iommu_add_device(table_group, &dev->dev);
2642
2643                if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
2644                        pnv_ioda_setup_bus_iommu_group_add_devices(pe,
2645                                        table_group, dev->subordinate);
2646        }
2647}
2648
2649static void pnv_ioda_setup_bus_iommu_group(struct pnv_ioda_pe *pe,
2650                struct iommu_table_group *table_group, struct pci_bus *bus)
2651{
2652
2653        if (pe->flags & PNV_IODA_PE_DEV)
2654                iommu_add_device(table_group, &pe->pdev->dev);
2655
2656        if ((pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)) || bus)
2657                pnv_ioda_setup_bus_iommu_group_add_devices(pe, table_group,
2658                                bus);
2659}
2660
2661static unsigned long pnv_ioda_parse_tce_sizes(struct pnv_phb *phb);
2662
2663static void pnv_pci_ioda_setup_iommu_api(void)
2664{
2665        struct pci_controller *hose;
2666        struct pnv_phb *phb;
2667        struct pnv_ioda_pe *pe;
2668
2669        /*
2670         * There are 4 types of PEs:
2671         * - PNV_IODA_PE_BUS: a downstream port with an adapter,
2672         *   created from pnv_pci_setup_bridge();
2673         * - PNV_IODA_PE_BUS_ALL: a PCI-PCIX bridge with devices behind it,
2674         *   created from pnv_pci_setup_bridge();
2675         * - PNV_IODA_PE_VF: a SRIOV virtual function,
2676         *   created from pnv_pcibios_sriov_enable();
2677         * - PNV_IODA_PE_DEV: an NPU or OCAPI device,
2678         *   created from pnv_pci_ioda_fixup().
2679         *
2680         * Normally a PE is represented by an IOMMU group, however for
2681         * devices with side channels the groups need to be more strict.
2682         */
2683        list_for_each_entry(hose, &hose_list, list_node) {
2684                phb = hose->private_data;
2685
2686                if (phb->type == PNV_PHB_NPU_NVLINK ||
2687                    phb->type == PNV_PHB_NPU_OCAPI)
2688                        continue;
2689
2690                list_for_each_entry(pe, &phb->ioda.pe_list, list) {
2691                        struct iommu_table_group *table_group;
2692
2693                        table_group = pnv_try_setup_npu_table_group(pe);
2694                        if (!table_group) {
2695                                if (!pnv_pci_ioda_pe_dma_weight(pe))
2696                                        continue;
2697
2698                                table_group = &pe->table_group;
2699                                iommu_register_group(&pe->table_group,
2700                                                pe->phb->hose->global_number,
2701                                                pe->pe_number);
2702                        }
2703                        pnv_ioda_setup_bus_iommu_group(pe, table_group,
2704                                        pe->pbus);
2705                }
2706        }
2707
2708        /*
2709         * Now we have all PHBs discovered, time to add NPU devices to
2710         * the corresponding IOMMU groups.
2711         */
2712        list_for_each_entry(hose, &hose_list, list_node) {
2713                unsigned long  pgsizes;
2714
2715                phb = hose->private_data;
2716
2717                if (phb->type != PNV_PHB_NPU_NVLINK)
2718                        continue;
2719
2720                pgsizes = pnv_ioda_parse_tce_sizes(phb);
2721                list_for_each_entry(pe, &phb->ioda.pe_list, list) {
2722                        /*
2723                         * IODA2 bridges get this set up from
2724                         * pci_controller_ops::setup_bridge but NPU bridges
2725                         * do not have this hook defined so we do it here.
2726                         */
2727                        pe->table_group.pgsizes = pgsizes;
2728                        pnv_npu_compound_attach(pe);
2729                }
2730        }
2731}
2732#else /* !CONFIG_IOMMU_API */
2733static void pnv_pci_ioda_setup_iommu_api(void) { };
2734#endif
2735
2736static unsigned long pnv_ioda_parse_tce_sizes(struct pnv_phb *phb)
2737{
2738        struct pci_controller *hose = phb->hose;
2739        struct device_node *dn = hose->dn;
2740        unsigned long mask = 0;
2741        int i, rc, count;
2742        u32 val;
2743
2744        count = of_property_count_u32_elems(dn, "ibm,supported-tce-sizes");
2745        if (count <= 0) {
2746                mask = SZ_4K | SZ_64K;
2747                /* Add 16M for POWER8 by default */
2748                if (cpu_has_feature(CPU_FTR_ARCH_207S) &&
2749                                !cpu_has_feature(CPU_FTR_ARCH_300))
2750                        mask |= SZ_16M | SZ_256M;
2751                return mask;
2752        }
2753
2754        for (i = 0; i < count; i++) {
2755                rc = of_property_read_u32_index(dn, "ibm,supported-tce-sizes",
2756                                                i, &val);
2757                if (rc == 0)
2758                        mask |= 1ULL << val;
2759        }
2760
2761        return mask;
2762}
2763
2764static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
2765                                       struct pnv_ioda_pe *pe)
2766{
2767        int64_t rc;
2768
2769        if (!pnv_pci_ioda_pe_dma_weight(pe))
2770                return;
2771
2772        /* TVE #1 is selected by PCI address bit 59 */
2773        pe->tce_bypass_base = 1ull << 59;
2774
2775        /* The PE will reserve all possible 32-bits space */
2776        pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
2777                phb->ioda.m32_pci_base);
2778
2779        /* Setup linux iommu table */
2780        pe->table_group.tce32_start = 0;
2781        pe->table_group.tce32_size = phb->ioda.m32_pci_base;
2782        pe->table_group.max_dynamic_windows_supported =
2783                        IOMMU_TABLE_GROUP_MAX_TABLES;
2784        pe->table_group.max_levels = POWERNV_IOMMU_MAX_LEVELS;
2785        pe->table_group.pgsizes = pnv_ioda_parse_tce_sizes(phb);
2786#ifdef CONFIG_IOMMU_API
2787        pe->table_group.ops = &pnv_pci_ioda2_ops;
2788#endif
2789
2790        rc = pnv_pci_ioda2_setup_default_config(pe);
2791        if (rc)
2792                return;
2793
2794        if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2795                pnv_ioda_setup_bus_dma(pe, pe->pbus);
2796}
2797
2798int64_t pnv_opal_pci_msi_eoi(struct irq_chip *chip, unsigned int hw_irq)
2799{
2800        struct pnv_phb *phb = container_of(chip, struct pnv_phb,
2801                                           ioda.irq_chip);
2802
2803        return opal_pci_msi_eoi(phb->opal_id, hw_irq);
2804}
2805
2806static void pnv_ioda2_msi_eoi(struct irq_data *d)
2807{
2808        int64_t rc;
2809        unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
2810        struct irq_chip *chip = irq_data_get_irq_chip(d);
2811
2812        rc = pnv_opal_pci_msi_eoi(chip, hw_irq);
2813        WARN_ON_ONCE(rc);
2814
2815        icp_native_eoi(d);
2816}
2817
2818
2819void pnv_set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq)
2820{
2821        struct irq_data *idata;
2822        struct irq_chip *ichip;
2823
2824        /* The MSI EOI OPAL call is only needed on PHB3 */
2825        if (phb->model != PNV_PHB_MODEL_PHB3)
2826                return;
2827
2828        if (!phb->ioda.irq_chip_init) {
2829                /*
2830                 * First time we setup an MSI IRQ, we need to setup the
2831                 * corresponding IRQ chip to route correctly.
2832                 */
2833                idata = irq_get_irq_data(virq);
2834                ichip = irq_data_get_irq_chip(idata);
2835                phb->ioda.irq_chip_init = 1;
2836                phb->ioda.irq_chip = *ichip;
2837                phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
2838        }
2839        irq_set_chip(virq, &phb->ioda.irq_chip);
2840}
2841
2842/*
2843 * Returns true iff chip is something that we could call
2844 * pnv_opal_pci_msi_eoi for.
2845 */
2846bool is_pnv_opal_msi(struct irq_chip *chip)
2847{
2848        return chip->irq_eoi == pnv_ioda2_msi_eoi;
2849}
2850EXPORT_SYMBOL_GPL(is_pnv_opal_msi);
2851
2852static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
2853                                  unsigned int hwirq, unsigned int virq,
2854                                  unsigned int is_64, struct msi_msg *msg)
2855{
2856        struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
2857        unsigned int xive_num = hwirq - phb->msi_base;
2858        __be32 data;
2859        int rc;
2860
2861        /* No PE assigned ? bail out ... no MSI for you ! */
2862        if (pe == NULL)
2863                return -ENXIO;
2864
2865        /* Check if we have an MVE */
2866        if (pe->mve_number < 0)
2867                return -ENXIO;
2868
2869        /* Force 32-bit MSI on some broken devices */
2870        if (dev->no_64bit_msi)
2871                is_64 = 0;
2872
2873        /* Assign XIVE to PE */
2874        rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
2875        if (rc) {
2876                pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
2877                        pci_name(dev), rc, xive_num);
2878                return -EIO;
2879        }
2880
2881        if (is_64) {
2882                __be64 addr64;
2883
2884                rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
2885                                     &addr64, &data);
2886                if (rc) {
2887                        pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
2888                                pci_name(dev), rc);
2889                        return -EIO;
2890                }
2891                msg->address_hi = be64_to_cpu(addr64) >> 32;
2892                msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
2893        } else {
2894                __be32 addr32;
2895
2896                rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
2897                                     &addr32, &data);
2898                if (rc) {
2899                        pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
2900                                pci_name(dev), rc);
2901                        return -EIO;
2902                }
2903                msg->address_hi = 0;
2904                msg->address_lo = be32_to_cpu(addr32);
2905        }
2906        msg->data = be32_to_cpu(data);
2907
2908        pnv_set_msi_irq_chip(phb, virq);
2909
2910        pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
2911                 " address=%x_%08x data=%x PE# %x\n",
2912                 pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
2913                 msg->address_hi, msg->address_lo, data, pe->pe_number);
2914
2915        return 0;
2916}
2917
2918static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
2919{
2920        unsigned int count;
2921        const __be32 *prop = of_get_property(phb->hose->dn,
2922                                             "ibm,opal-msi-ranges", NULL);
2923        if (!prop) {
2924                /* BML Fallback */
2925                prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
2926        }
2927        if (!prop)
2928                return;
2929
2930        phb->msi_base = be32_to_cpup(prop);
2931        count = be32_to_cpup(prop + 1);
2932        if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
2933                pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
2934                       phb->hose->global_number);
2935                return;
2936        }
2937
2938        phb->msi_setup = pnv_pci_ioda_msi_setup;
2939        phb->msi32_support = 1;
2940        pr_info("  Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
2941                count, phb->msi_base);
2942}
2943
2944#ifdef CONFIG_PCI_IOV
2945static void pnv_pci_ioda_fixup_iov_resources(struct pci_dev *pdev)
2946{
2947        struct pci_controller *hose = pci_bus_to_host(pdev->bus);
2948        struct pnv_phb *phb = hose->private_data;
2949        const resource_size_t gate = phb->ioda.m64_segsize >> 2;
2950        struct resource *res;
2951        int i;
2952        resource_size_t size, total_vf_bar_sz;
2953        struct pci_dn *pdn;
2954        int mul, total_vfs;
2955
2956        if (!pdev->is_physfn || pci_dev_is_added(pdev))
2957                return;
2958
2959        pdn = pci_get_pdn(pdev);
2960        pdn->vfs_expanded = 0;
2961        pdn->m64_single_mode = false;
2962
2963        total_vfs = pci_sriov_get_totalvfs(pdev);
2964        mul = phb->ioda.total_pe_num;
2965        total_vf_bar_sz = 0;
2966
2967        for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2968                res = &pdev->resource[i + PCI_IOV_RESOURCES];
2969                if (!res->flags || res->parent)
2970                        continue;
2971                if (!pnv_pci_is_m64_flags(res->flags)) {
2972                        dev_warn(&pdev->dev, "Don't support SR-IOV with"
2973                                        " non M64 VF BAR%d: %pR. \n",
2974                                 i, res);
2975                        goto truncate_iov;
2976                }
2977
2978                total_vf_bar_sz += pci_iov_resource_size(pdev,
2979                                i + PCI_IOV_RESOURCES);
2980
2981                /*
2982                 * If bigger than quarter of M64 segment size, just round up
2983                 * power of two.
2984                 *
2985                 * Generally, one M64 BAR maps one IOV BAR. To avoid conflict
2986                 * with other devices, IOV BAR size is expanded to be
2987                 * (total_pe * VF_BAR_size).  When VF_BAR_size is half of M64
2988                 * segment size , the expanded size would equal to half of the
2989                 * whole M64 space size, which will exhaust the M64 Space and
2990                 * limit the system flexibility.  This is a design decision to
2991                 * set the boundary to quarter of the M64 segment size.
2992                 */
2993                if (total_vf_bar_sz > gate) {
2994                        mul = roundup_pow_of_two(total_vfs);
2995                        dev_info(&pdev->dev,
2996                                "VF BAR Total IOV size %llx > %llx, roundup to %d VFs\n",
2997                                total_vf_bar_sz, gate, mul);
2998                        pdn->m64_single_mode = true;
2999                        break;
3000                }
3001        }
3002
3003        for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
3004                res = &pdev->resource[i + PCI_IOV_RESOURCES];
3005                if (!res->flags || res->parent)
3006                        continue;
3007
3008                size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES);
3009                /*
3010                 * On PHB3, the minimum size alignment of M64 BAR in single
3011                 * mode is 32MB.
3012                 */
3013                if (pdn->m64_single_mode && (size < SZ_32M))
3014                        goto truncate_iov;
3015                dev_dbg(&pdev->dev, " Fixing VF BAR%d: %pR to\n", i, res);
3016                res->end = res->start + size * mul - 1;
3017                dev_dbg(&pdev->dev, "                       %pR\n", res);
3018                dev_info(&pdev->dev, "VF BAR%d: %pR (expanded to %d VFs for PE alignment)",
3019                         i, res, mul);
3020        }
3021        pdn->vfs_expanded = mul;
3022
3023        return;
3024
3025truncate_iov:
3026        /* To save MMIO space, IOV BAR is truncated. */
3027        for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
3028                res = &pdev->resource[i + PCI_IOV_RESOURCES];
3029                res->flags = 0;
3030                res->end = res->start - 1;
3031        }
3032}
3033#endif /* CONFIG_PCI_IOV */
3034
3035static void pnv_ioda_setup_pe_res(struct pnv_ioda_pe *pe,
3036                                  struct resource *res)
3037{
3038        struct pnv_phb *phb = pe->phb;
3039        struct pci_bus_region region;
3040        int index;
3041        int64_t rc;
3042
3043        if (!res || !res->flags || res->start > res->end)
3044                return;
3045
3046        if (res->flags & IORESOURCE_IO) {
3047                region.start = res->start - phb->ioda.io_pci_base;
3048                region.end   = res->end - phb->ioda.io_pci_base;
3049                index = region.start / phb->ioda.io_segsize;
3050
3051                while (index < phb->ioda.total_pe_num &&
3052                       region.start <= region.end) {
3053                        phb->ioda.io_segmap[index] = pe->pe_number;
3054                        rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3055                                pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
3056                        if (rc != OPAL_SUCCESS) {
3057                                pr_err("%s: Error %lld mapping IO segment#%d to PE#%x\n",
3058                                       __func__, rc, index, pe->pe_number);
3059                                break;
3060                        }
3061
3062                        region.start += phb->ioda.io_segsize;
3063                        index++;
3064                }
3065        } else if ((res->flags & IORESOURCE_MEM) &&
3066                   !pnv_pci_is_m64(phb, res)) {
3067                region.start = res->start -
3068                               phb->hose->mem_offset[0] -
3069                               phb->ioda.m32_pci_base;
3070                region.end   = res->end -
3071                               phb->hose->mem_offset[0] -
3072                               phb->ioda.m32_pci_base;
3073                index = region.start / phb->ioda.m32_segsize;
3074
3075                while (index < phb->ioda.total_pe_num &&
3076                       region.start <= region.end) {
3077                        phb->ioda.m32_segmap[index] = pe->pe_number;
3078                        rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3079                                pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
3080                        if (rc != OPAL_SUCCESS) {
3081                                pr_err("%s: Error %lld mapping M32 segment#%d to PE#%x",
3082                                       __func__, rc, index, pe->pe_number);
3083                                break;
3084                        }
3085
3086                        region.start += phb->ioda.m32_segsize;
3087                        index++;
3088                }
3089        }
3090}
3091
3092/*
3093 * This function is supposed to be called on basis of PE from top
3094 * to bottom style. So the the I/O or MMIO segment assigned to
3095 * parent PE could be overridden by its child PEs if necessary.
3096 */
3097static void pnv_ioda_setup_pe_seg(struct pnv_ioda_pe *pe)
3098{
3099        struct pci_dev *pdev;
3100        int i;
3101
3102        /*
3103         * NOTE: We only care PCI bus based PE for now. For PCI
3104         * device based PE, for example SRIOV sensitive VF should
3105         * be figured out later.
3106         */
3107        BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
3108
3109        list_for_each_entry(pdev, &pe->pbus->devices, bus_list) {
3110                for (i = 0; i <= PCI_ROM_RESOURCE; i++)
3111                        pnv_ioda_setup_pe_res(pe, &pdev->resource[i]);
3112
3113                /*
3114                 * If the PE contains all subordinate PCI buses, the
3115                 * windows of the child bridges should be mapped to
3116                 * the PE as well.
3117                 */
3118                if (!(pe->flags & PNV_IODA_PE_BUS_ALL) || !pci_is_bridge(pdev))
3119                        continue;
3120                for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++)
3121                        pnv_ioda_setup_pe_res(pe,
3122                                &pdev->resource[PCI_BRIDGE_RESOURCES + i]);
3123        }
3124}
3125
3126#ifdef CONFIG_DEBUG_FS
3127static int pnv_pci_diag_data_set(void *data, u64 val)
3128{
3129        struct pci_controller *hose;
3130        struct pnv_phb *phb;
3131        s64 ret;
3132
3133        if (val != 1ULL)
3134                return -EINVAL;
3135
3136        hose = (struct pci_controller *)data;
3137        if (!hose || !hose->private_data)
3138                return -ENODEV;
3139
3140        phb = hose->private_data;
3141
3142        /* Retrieve the diag data from firmware */
3143        ret = opal_pci_get_phb_diag_data2(phb->opal_id, phb->diag_data,
3144                                          phb->diag_data_size);
3145        if (ret != OPAL_SUCCESS)
3146                return -EIO;
3147
3148        /* Print the diag data to the kernel log */
3149        pnv_pci_dump_phb_diag_data(phb->hose, phb->diag_data);
3150        return 0;
3151}
3152
3153DEFINE_SIMPLE_ATTRIBUTE(pnv_pci_diag_data_fops, NULL,
3154                        pnv_pci_diag_data_set, "%llu\n");
3155
3156#endif /* CONFIG_DEBUG_FS */
3157
3158static void pnv_pci_ioda_create_dbgfs(void)
3159{
3160#ifdef CONFIG_DEBUG_FS
3161        struct pci_controller *hose, *tmp;
3162        struct pnv_phb *phb;
3163        char name[16];
3164
3165        list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
3166                phb = hose->private_data;
3167
3168                /* Notify initialization of PHB done */
3169                phb->initialized = 1;
3170
3171                sprintf(name, "PCI%04x", hose->global_number);
3172                phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root);
3173                if (!phb->dbgfs) {
3174                        pr_warn("%s: Error on creating debugfs on PHB#%x\n",
3175                                __func__, hose->global_number);
3176                        continue;
3177                }
3178
3179                debugfs_create_file("dump_diag_regs", 0200, phb->dbgfs, hose,
3180                                    &pnv_pci_diag_data_fops);
3181        }
3182#endif /* CONFIG_DEBUG_FS */
3183}
3184
3185static void pnv_pci_enable_bridge(struct pci_bus *bus)
3186{
3187        struct pci_dev *dev = bus->self;
3188        struct pci_bus *child;
3189
3190        /* Empty bus ? bail */
3191        if (list_empty(&bus->devices))
3192                return;
3193
3194        /*
3195         * If there's a bridge associated with that bus enable it. This works
3196         * around races in the generic code if the enabling is done during
3197         * parallel probing. This can be removed once those races have been
3198         * fixed.
3199         */
3200        if (dev) {
3201                int rc = pci_enable_device(dev);
3202                if (rc)
3203                        pci_err(dev, "Error enabling bridge (%d)\n", rc);
3204                pci_set_master(dev);
3205        }
3206
3207        /* Perform the same to child busses */
3208        list_for_each_entry(child, &bus->children, node)
3209                pnv_pci_enable_bridge(child);
3210}
3211
3212static void pnv_pci_enable_bridges(void)
3213{
3214        struct pci_controller *hose;
3215
3216        list_for_each_entry(hose, &hose_list, list_node)
3217                pnv_pci_enable_bridge(hose->bus);
3218}
3219
3220static void pnv_pci_ioda_fixup(void)
3221{
3222        pnv_pci_ioda_setup_PEs();
3223        pnv_pci_ioda_setup_iommu_api();
3224        pnv_pci_ioda_create_dbgfs();
3225
3226        pnv_pci_enable_bridges();
3227
3228#ifdef CONFIG_EEH
3229        pnv_eeh_post_init();
3230#endif
3231}
3232
3233/*
3234 * Returns the alignment for I/O or memory windows for P2P
3235 * bridges. That actually depends on how PEs are segmented.
3236 * For now, we return I/O or M32 segment size for PE sensitive
3237 * P2P bridges. Otherwise, the default values (4KiB for I/O,
3238 * 1MiB for memory) will be returned.
3239 *
3240 * The current PCI bus might be put into one PE, which was
3241 * create against the parent PCI bridge. For that case, we
3242 * needn't enlarge the alignment so that we can save some
3243 * resources.
3244 */
3245static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
3246                                                unsigned long type)
3247{
3248        struct pci_dev *bridge;
3249        struct pci_controller *hose = pci_bus_to_host(bus);
3250        struct pnv_phb *phb = hose->private_data;
3251        int num_pci_bridges = 0;
3252
3253        bridge = bus->self;
3254        while (bridge) {
3255                if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
3256                        num_pci_bridges++;
3257                        if (num_pci_bridges >= 2)
3258                                return 1;
3259                }
3260
3261                bridge = bridge->bus->self;
3262        }
3263
3264        /*
3265         * We fall back to M32 if M64 isn't supported. We enforce the M64
3266         * alignment for any 64-bit resource, PCIe doesn't care and
3267         * bridges only do 64-bit prefetchable anyway.
3268         */
3269        if (phb->ioda.m64_segsize && pnv_pci_is_m64_flags(type))
3270                return phb->ioda.m64_segsize;
3271        if (type & IORESOURCE_MEM)
3272                return phb->ioda.m32_segsize;
3273
3274        return phb->ioda.io_segsize;
3275}
3276
3277/*
3278 * We are updating root port or the upstream port of the
3279 * bridge behind the root port with PHB's windows in order
3280 * to accommodate the changes on required resources during
3281 * PCI (slot) hotplug, which is connected to either root
3282 * port or the downstream ports of PCIe switch behind the
3283 * root port.
3284 */
3285static void pnv_pci_fixup_bridge_resources(struct pci_bus *bus,
3286                                           unsigned long type)
3287{
3288        struct pci_controller *hose = pci_bus_to_host(bus);
3289        struct pnv_phb *phb = hose->private_data;
3290        struct pci_dev *bridge = bus->self;
3291        struct resource *r, *w;
3292        bool msi_region = false;
3293        int i;
3294
3295        /* Check if we need apply fixup to the bridge's windows */
3296        if (!pci_is_root_bus(bridge->bus) &&
3297            !pci_is_root_bus(bridge->bus->self->bus))
3298                return;
3299
3300        /* Fixup the resources */
3301        for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) {
3302                r = &bridge->resource[PCI_BRIDGE_RESOURCES + i];
3303                if (!r->flags || !r->parent)
3304                        continue;
3305
3306                w = NULL;
3307                if (r->flags & type & IORESOURCE_IO)
3308                        w = &hose->io_resource;
3309                else if (pnv_pci_is_m64(phb, r) &&
3310                         (type & IORESOURCE_PREFETCH) &&
3311                         phb->ioda.m64_segsize)
3312                        w = &hose->mem_resources[1];
3313                else if (r->flags & type & IORESOURCE_MEM) {
3314                        w = &hose->mem_resources[0];
3315                        msi_region = true;
3316                }
3317
3318                r->start = w->start;
3319                r->end = w->end;
3320
3321                /* The 64KB 32-bits MSI region shouldn't be included in
3322                 * the 32-bits bridge window. Otherwise, we can see strange
3323                 * issues. One of them is EEH error observed on Garrison.
3324                 *
3325                 * Exclude top 1MB region which is the minimal alignment of
3326                 * 32-bits bridge window.
3327                 */
3328                if (msi_region) {
3329                        r->end += 0x10000;
3330                        r->end -= 0x100000;
3331                }
3332        }
3333}
3334
3335static void pnv_pci_setup_bridge(struct pci_bus *bus, unsigned long type)
3336{
3337        struct pci_controller *hose = pci_bus_to_host(bus);
3338        struct pnv_phb *phb = hose->private_data;
3339        struct pci_dev *bridge = bus->self;
3340        struct pnv_ioda_pe *pe;
3341        bool all = (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE);
3342
3343        /* Extend bridge's windows if necessary */
3344        pnv_pci_fixup_bridge_resources(bus, type);
3345
3346        /* The PE for root bus should be realized before any one else */
3347        if (!phb->ioda.root_pe_populated) {
3348                pe = pnv_ioda_setup_bus_PE(phb->hose->bus, false);
3349                if (pe) {
3350                        phb->ioda.root_pe_idx = pe->pe_number;
3351                        phb->ioda.root_pe_populated = true;
3352                }
3353        }
3354
3355        /* Don't assign PE to PCI bus, which doesn't have subordinate devices */
3356        if (list_empty(&bus->devices))
3357                return;
3358
3359        /* Reserve PEs according to used M64 resources */
3360        pnv_ioda_reserve_m64_pe(bus, NULL, all);
3361
3362        /*
3363         * Assign PE. We might run here because of partial hotplug.
3364         * For the case, we just pick up the existing PE and should
3365         * not allocate resources again.
3366         */
3367        pe = pnv_ioda_setup_bus_PE(bus, all);
3368        if (!pe)
3369                return;
3370
3371        pnv_ioda_setup_pe_seg(pe);
3372        switch (phb->type) {
3373        case PNV_PHB_IODA1:
3374                pnv_pci_ioda1_setup_dma_pe(phb, pe);
3375                break;
3376        case PNV_PHB_IODA2:
3377                pnv_pci_ioda2_setup_dma_pe(phb, pe);
3378                break;
3379        default:
3380                pr_warn("%s: No DMA for PHB#%x (type %d)\n",
3381                        __func__, phb->hose->global_number, phb->type);
3382        }
3383}
3384
3385static resource_size_t pnv_pci_default_alignment(void)
3386{
3387        return PAGE_SIZE;
3388}
3389
3390#ifdef CONFIG_PCI_IOV
3391static resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev,
3392                                                      int resno)
3393{
3394        struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3395        struct pnv_phb *phb = hose->private_data;
3396        struct pci_dn *pdn = pci_get_pdn(pdev);
3397        resource_size_t align;
3398
3399        /*
3400         * On PowerNV platform, IOV BAR is mapped by M64 BAR to enable the
3401         * SR-IOV. While from hardware perspective, the range mapped by M64
3402         * BAR should be size aligned.
3403         *
3404         * When IOV BAR is mapped with M64 BAR in Single PE mode, the extra
3405         * powernv-specific hardware restriction is gone. But if just use the
3406         * VF BAR size as the alignment, PF BAR / VF BAR may be allocated with
3407         * in one segment of M64 #15, which introduces the PE conflict between
3408         * PF and VF. Based on this, the minimum alignment of an IOV BAR is
3409         * m64_segsize.
3410         *
3411         * This function returns the total IOV BAR size if M64 BAR is in
3412         * Shared PE mode or just VF BAR size if not.
3413         * If the M64 BAR is in Single PE mode, return the VF BAR size or
3414         * M64 segment size if IOV BAR size is less.
3415         */
3416        align = pci_iov_resource_size(pdev, resno);
3417        if (!pdn->vfs_expanded)
3418                return align;
3419        if (pdn->m64_single_mode)
3420                return max(align, (resource_size_t)phb->ioda.m64_segsize);
3421
3422        return pdn->vfs_expanded * align;
3423}
3424#endif /* CONFIG_PCI_IOV */
3425
3426/* Prevent enabling devices for which we couldn't properly
3427 * assign a PE
3428 */
3429static bool pnv_pci_enable_device_hook(struct pci_dev *dev)
3430{
3431        struct pci_controller *hose = pci_bus_to_host(dev->bus);
3432        struct pnv_phb *phb = hose->private_data;
3433        struct pci_dn *pdn;
3434
3435        /* The function is probably called while the PEs have
3436         * not be created yet. For example, resource reassignment
3437         * during PCI probe period. We just skip the check if
3438         * PEs isn't ready.
3439         */
3440        if (!phb->initialized)
3441                return true;
3442
3443        pdn = pci_get_pdn(dev);
3444        if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3445                return false;
3446
3447        return true;
3448}
3449
3450static long pnv_pci_ioda1_unset_window(struct iommu_table_group *table_group,
3451                                       int num)
3452{
3453        struct pnv_ioda_pe *pe = container_of(table_group,
3454                                              struct pnv_ioda_pe, table_group);
3455        struct pnv_phb *phb = pe->phb;
3456        unsigned int idx;
3457        long rc;
3458
3459        pe_info(pe, "Removing DMA window #%d\n", num);
3460        for (idx = 0; idx < phb->ioda.dma32_count; idx++) {
3461                if (phb->ioda.dma32_segmap[idx] != pe->pe_number)
3462                        continue;
3463
3464                rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
3465                                                idx, 0, 0ul, 0ul, 0ul);
3466                if (rc != OPAL_SUCCESS) {
3467                        pe_warn(pe, "Failure %ld unmapping DMA32 segment#%d\n",
3468                                rc, idx);
3469                        return rc;
3470                }
3471
3472                phb->ioda.dma32_segmap[idx] = IODA_INVALID_PE;
3473        }
3474
3475        pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
3476        return OPAL_SUCCESS;
3477}
3478
3479static void pnv_pci_ioda1_release_pe_dma(struct pnv_ioda_pe *pe)
3480{
3481        unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe);
3482        struct iommu_table *tbl = pe->table_group.tables[0];
3483        int64_t rc;
3484
3485        if (!weight)
3486                return;
3487
3488        rc = pnv_pci_ioda1_unset_window(&pe->table_group, 0);
3489        if (rc != OPAL_SUCCESS)
3490                return;
3491
3492        pnv_pci_p7ioc_tce_invalidate(tbl, tbl->it_offset, tbl->it_size, false);
3493        if (pe->table_group.group) {
3494                iommu_group_put(pe->table_group.group);
3495                WARN_ON(pe->table_group.group);
3496        }
3497
3498        free_pages(tbl->it_base, get_order(tbl->it_size << 3));
3499        iommu_tce_table_put(tbl);
3500}
3501
3502static void pnv_pci_ioda2_release_pe_dma(struct pnv_ioda_pe *pe)
3503{
3504        struct iommu_table *tbl = pe->table_group.tables[0];
3505        unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe);
3506#ifdef CONFIG_IOMMU_API
3507        int64_t rc;
3508#endif
3509
3510        if (!weight)
3511                return;
3512
3513#ifdef CONFIG_IOMMU_API
3514        rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
3515        if (rc)
3516                pe_warn(pe, "OPAL error %ld release DMA window\n", rc);
3517#endif
3518
3519        pnv_pci_ioda2_set_bypass(pe, false);
3520        if (pe->table_group.group) {
3521                iommu_group_put(pe->table_group.group);
3522                WARN_ON(pe->table_group.group);
3523        }
3524
3525        iommu_tce_table_put(tbl);
3526}
3527
3528static void pnv_ioda_free_pe_seg(struct pnv_ioda_pe *pe,
3529                                 unsigned short win,
3530                                 unsigned int *map)
3531{
3532        struct pnv_phb *phb = pe->phb;
3533        int idx;
3534        int64_t rc;
3535
3536        for (idx = 0; idx < phb->ioda.total_pe_num; idx++) {
3537                if (map[idx] != pe->pe_number)
3538                        continue;
3539
3540                if (win == OPAL_M64_WINDOW_TYPE)
3541                        rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3542                                        phb->ioda.reserved_pe_idx, win,
3543                                        idx / PNV_IODA1_M64_SEGS,
3544                                        idx % PNV_IODA1_M64_SEGS);
3545                else
3546                        rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3547                                        phb->ioda.reserved_pe_idx, win, 0, idx);
3548
3549                if (rc != OPAL_SUCCESS)
3550                        pe_warn(pe, "Error %ld unmapping (%d) segment#%d\n",
3551                                rc, win, idx);
3552
3553                map[idx] = IODA_INVALID_PE;
3554        }
3555}
3556
3557static void pnv_ioda_release_pe_seg(struct pnv_ioda_pe *pe)
3558{
3559        struct pnv_phb *phb = pe->phb;
3560
3561        if (phb->type == PNV_PHB_IODA1) {
3562                pnv_ioda_free_pe_seg(pe, OPAL_IO_WINDOW_TYPE,
3563                                     phb->ioda.io_segmap);
3564                pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
3565                                     phb->ioda.m32_segmap);
3566                pnv_ioda_free_pe_seg(pe, OPAL_M64_WINDOW_TYPE,
3567                                     phb->ioda.m64_segmap);
3568        } else if (phb->type == PNV_PHB_IODA2) {
3569                pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
3570                                     phb->ioda.m32_segmap);
3571        }
3572}
3573
3574static void pnv_ioda_release_pe(struct pnv_ioda_pe *pe)
3575{
3576        struct pnv_phb *phb = pe->phb;
3577        struct pnv_ioda_pe *slave, *tmp;
3578
3579        list_del(&pe->list);
3580        switch (phb->type) {
3581        case PNV_PHB_IODA1:
3582                pnv_pci_ioda1_release_pe_dma(pe);
3583                break;
3584        case PNV_PHB_IODA2:
3585                pnv_pci_ioda2_release_pe_dma(pe);
3586                break;
3587        default:
3588                WARN_ON(1);
3589        }
3590
3591        pnv_ioda_release_pe_seg(pe);
3592        pnv_ioda_deconfigure_pe(pe->phb, pe);
3593
3594        /* Release slave PEs in the compound PE */
3595        if (pe->flags & PNV_IODA_PE_MASTER) {
3596                list_for_each_entry_safe(slave, tmp, &pe->slaves, list) {
3597                        list_del(&slave->list);
3598                        pnv_ioda_free_pe(slave);
3599                }
3600        }
3601
3602        /*
3603         * The PE for root bus can be removed because of hotplug in EEH
3604         * recovery for fenced PHB error. We need to mark the PE dead so
3605         * that it can be populated again in PCI hot add path. The PE
3606         * shouldn't be destroyed as it's the global reserved resource.
3607         */
3608        if (phb->ioda.root_pe_populated &&
3609            phb->ioda.root_pe_idx == pe->pe_number)
3610                phb->ioda.root_pe_populated = false;
3611        else
3612                pnv_ioda_free_pe(pe);
3613}
3614
3615static void pnv_pci_release_device(struct pci_dev *pdev)
3616{
3617        struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3618        struct pnv_phb *phb = hose->private_data;
3619        struct pci_dn *pdn = pci_get_pdn(pdev);
3620        struct pnv_ioda_pe *pe;
3621
3622        if (pdev->is_virtfn)
3623                return;
3624
3625        if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3626                return;
3627
3628        /*
3629         * PCI hotplug can happen as part of EEH error recovery. The @pdn
3630         * isn't removed and added afterwards in this scenario. We should
3631         * set the PE number in @pdn to an invalid one. Otherwise, the PE's
3632         * device count is decreased on removing devices while failing to
3633         * be increased on adding devices. It leads to unbalanced PE's device
3634         * count and eventually make normal PCI hotplug path broken.
3635         */
3636        pe = &phb->ioda.pe_array[pdn->pe_number];
3637        pdn->pe_number = IODA_INVALID_PE;
3638
3639        WARN_ON(--pe->device_count < 0);
3640        if (pe->device_count == 0)
3641                pnv_ioda_release_pe(pe);
3642}
3643
3644static void pnv_npu_disable_device(struct pci_dev *pdev)
3645{
3646        struct eeh_dev *edev = pci_dev_to_eeh_dev(pdev);
3647        struct eeh_pe *eehpe = edev ? edev->pe : NULL;
3648
3649        if (eehpe && eeh_ops && eeh_ops->reset)
3650                eeh_ops->reset(eehpe, EEH_RESET_HOT);
3651}
3652
3653static void pnv_pci_ioda_shutdown(struct pci_controller *hose)
3654{
3655        struct pnv_phb *phb = hose->private_data;
3656
3657        opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE,
3658                       OPAL_ASSERT_RESET);
3659}
3660
3661static const struct pci_controller_ops pnv_pci_ioda_controller_ops = {
3662        .dma_dev_setup          = pnv_pci_dma_dev_setup,
3663        .dma_bus_setup          = pnv_pci_dma_bus_setup,
3664        .setup_msi_irqs         = pnv_setup_msi_irqs,
3665        .teardown_msi_irqs      = pnv_teardown_msi_irqs,
3666        .enable_device_hook     = pnv_pci_enable_device_hook,
3667        .release_device         = pnv_pci_release_device,
3668        .window_alignment       = pnv_pci_window_alignment,
3669        .setup_bridge           = pnv_pci_setup_bridge,
3670        .reset_secondary_bus    = pnv_pci_reset_secondary_bus,
3671        .dma_set_mask           = pnv_pci_ioda_dma_set_mask,
3672        .dma_get_required_mask  = pnv_pci_ioda_dma_get_required_mask,
3673        .shutdown               = pnv_pci_ioda_shutdown,
3674};
3675
3676static int pnv_npu_dma_set_mask(struct pci_dev *npdev, u64 dma_mask)
3677{
3678        dev_err_once(&npdev->dev,
3679                        "%s operation unsupported for NVLink devices\n",
3680                        __func__);
3681        return -EPERM;
3682}
3683
3684static const struct pci_controller_ops pnv_npu_ioda_controller_ops = {
3685        .dma_dev_setup          = pnv_pci_dma_dev_setup,
3686        .setup_msi_irqs         = pnv_setup_msi_irqs,
3687        .teardown_msi_irqs      = pnv_teardown_msi_irqs,
3688        .enable_device_hook     = pnv_pci_enable_device_hook,
3689        .window_alignment       = pnv_pci_window_alignment,
3690        .reset_secondary_bus    = pnv_pci_reset_secondary_bus,
3691        .dma_set_mask           = pnv_npu_dma_set_mask,
3692        .shutdown               = pnv_pci_ioda_shutdown,
3693        .disable_device         = pnv_npu_disable_device,
3694};
3695
3696static const struct pci_controller_ops pnv_npu_ocapi_ioda_controller_ops = {
3697        .enable_device_hook     = pnv_pci_enable_device_hook,
3698        .window_alignment       = pnv_pci_window_alignment,
3699        .reset_secondary_bus    = pnv_pci_reset_secondary_bus,
3700        .shutdown               = pnv_pci_ioda_shutdown,
3701};
3702
3703static void __init pnv_pci_init_ioda_phb(struct device_node *np,
3704                                         u64 hub_id, int ioda_type)
3705{
3706        struct pci_controller *hose;
3707        struct pnv_phb *phb;
3708        unsigned long size, m64map_off, m32map_off, pemap_off;
3709        unsigned long iomap_off = 0, dma32map_off = 0;
3710        struct resource r;
3711        const __be64 *prop64;
3712        const __be32 *prop32;
3713        int len;
3714        unsigned int segno;
3715        u64 phb_id;
3716        void *aux;
3717        long rc;
3718
3719        if (!of_device_is_available(np))
3720                return;
3721
3722        pr_info("Initializing %s PHB (%pOF)\n", pnv_phb_names[ioda_type], np);
3723
3724        prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
3725        if (!prop64) {
3726                pr_err("  Missing \"ibm,opal-phbid\" property !\n");
3727                return;
3728        }
3729        phb_id = be64_to_cpup(prop64);
3730        pr_debug("  PHB-ID  : 0x%016llx\n", phb_id);
3731
3732        phb = memblock_alloc(sizeof(*phb), SMP_CACHE_BYTES);
3733
3734        /* Allocate PCI controller */
3735        phb->hose = hose = pcibios_alloc_controller(np);
3736        if (!phb->hose) {
3737                pr_err("  Can't allocate PCI controller for %pOF\n",
3738                       np);
3739                memblock_free(__pa(phb), sizeof(struct pnv_phb));
3740                return;
3741        }
3742
3743        spin_lock_init(&phb->lock);
3744        prop32 = of_get_property(np, "bus-range", &len);
3745        if (prop32 && len == 8) {
3746                hose->first_busno = be32_to_cpu(prop32[0]);
3747                hose->last_busno = be32_to_cpu(prop32[1]);
3748        } else {
3749                pr_warn("  Broken <bus-range> on %pOF\n", np);
3750                hose->first_busno = 0;
3751                hose->last_busno = 0xff;
3752        }
3753        hose->private_data = phb;
3754        phb->hub_id = hub_id;
3755        phb->opal_id = phb_id;
3756        phb->type = ioda_type;
3757        mutex_init(&phb->ioda.pe_alloc_mutex);
3758
3759        /* Detect specific models for error handling */
3760        if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
3761                phb->model = PNV_PHB_MODEL_P7IOC;
3762        else if (of_device_is_compatible(np, "ibm,power8-pciex"))
3763                phb->model = PNV_PHB_MODEL_PHB3;
3764        else if (of_device_is_compatible(np, "ibm,power8-npu-pciex"))
3765                phb->model = PNV_PHB_MODEL_NPU;
3766        else if (of_device_is_compatible(np, "ibm,power9-npu-pciex"))
3767                phb->model = PNV_PHB_MODEL_NPU2;
3768        else
3769                phb->model = PNV_PHB_MODEL_UNKNOWN;
3770
3771        /* Initialize diagnostic data buffer */
3772        prop32 = of_get_property(np, "ibm,phb-diag-data-size", NULL);
3773        if (prop32)
3774                phb->diag_data_size = be32_to_cpup(prop32);
3775        else
3776                phb->diag_data_size = PNV_PCI_DIAG_BUF_SIZE;
3777
3778        phb->diag_data = memblock_alloc(phb->diag_data_size, SMP_CACHE_BYTES);
3779
3780        /* Parse 32-bit and IO ranges (if any) */
3781        pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
3782
3783        /* Get registers */
3784        if (!of_address_to_resource(np, 0, &r)) {
3785                phb->regs_phys = r.start;
3786                phb->regs = ioremap(r.start, resource_size(&r));
3787                if (phb->regs == NULL)
3788                        pr_err("  Failed to map registers !\n");
3789        }
3790
3791        /* Initialize more IODA stuff */
3792        phb->ioda.total_pe_num = 1;
3793        prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
3794        if (prop32)
3795                phb->ioda.total_pe_num = be32_to_cpup(prop32);
3796        prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
3797        if (prop32)
3798                phb->ioda.reserved_pe_idx = be32_to_cpup(prop32);
3799
3800        /* Invalidate RID to PE# mapping */
3801        for (segno = 0; segno < ARRAY_SIZE(phb->ioda.pe_rmap); segno++)
3802                phb->ioda.pe_rmap[segno] = IODA_INVALID_PE;
3803
3804        /* Parse 64-bit MMIO range */
3805        pnv_ioda_parse_m64_window(phb);
3806
3807        phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
3808        /* FW Has already off top 64k of M32 space (MSI space) */
3809        phb->ioda.m32_size += 0x10000;
3810
3811        phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe_num;
3812        phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
3813        phb->ioda.io_size = hose->pci_io_size;
3814        phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe_num;
3815        phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
3816
3817        /* Calculate how many 32-bit TCE segments we have */
3818        phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3819                                PNV_IODA1_DMA32_SEGSIZE;
3820
3821        /* Allocate aux data & arrays. We don't have IO ports on PHB3 */
3822        size = _ALIGN_UP(max_t(unsigned, phb->ioda.total_pe_num, 8) / 8,
3823                        sizeof(unsigned long));
3824        m64map_off = size;
3825        size += phb->ioda.total_pe_num * sizeof(phb->ioda.m64_segmap[0]);
3826        m32map_off = size;
3827        size += phb->ioda.total_pe_num * sizeof(phb->ioda.m32_segmap[0]);
3828        if (phb->type == PNV_PHB_IODA1) {
3829                iomap_off = size;
3830                size += phb->ioda.total_pe_num * sizeof(phb->ioda.io_segmap[0]);
3831                dma32map_off = size;
3832                size += phb->ioda.dma32_count *
3833                        sizeof(phb->ioda.dma32_segmap[0]);
3834        }
3835        pemap_off = size;
3836        size += phb->ioda.total_pe_num * sizeof(struct pnv_ioda_pe);
3837        aux = memblock_alloc(size, SMP_CACHE_BYTES);
3838        phb->ioda.pe_alloc = aux;
3839        phb->ioda.m64_segmap = aux + m64map_off;
3840        phb->ioda.m32_segmap = aux + m32map_off;
3841        for (segno = 0; segno < phb->ioda.total_pe_num; segno++) {
3842                phb->ioda.m64_segmap[segno] = IODA_INVALID_PE;
3843                phb->ioda.m32_segmap[segno] = IODA_INVALID_PE;
3844        }
3845        if (phb->type == PNV_PHB_IODA1) {
3846                phb->ioda.io_segmap = aux + iomap_off;
3847                for (segno = 0; segno < phb->ioda.total_pe_num; segno++)
3848                        phb->ioda.io_segmap[segno] = IODA_INVALID_PE;
3849
3850                phb->ioda.dma32_segmap = aux + dma32map_off;
3851                for (segno = 0; segno < phb->ioda.dma32_count; segno++)
3852                        phb->ioda.dma32_segmap[segno] = IODA_INVALID_PE;
3853        }
3854        phb->ioda.pe_array = aux + pemap_off;
3855
3856        /*
3857         * Choose PE number for root bus, which shouldn't have
3858         * M64 resources consumed by its child devices. To pick
3859         * the PE number adjacent to the reserved one if possible.
3860         */
3861        pnv_ioda_reserve_pe(phb, phb->ioda.reserved_pe_idx);
3862        if (phb->ioda.reserved_pe_idx == 0) {
3863                phb->ioda.root_pe_idx = 1;
3864                pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
3865        } else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) {
3866                phb->ioda.root_pe_idx = phb->ioda.reserved_pe_idx - 1;
3867                pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
3868        } else {
3869                phb->ioda.root_pe_idx = IODA_INVALID_PE;
3870        }
3871
3872        INIT_LIST_HEAD(&phb->ioda.pe_list);
3873        mutex_init(&phb->ioda.pe_list_mutex);
3874
3875        /* Calculate how many 32-bit TCE segments we have */
3876        phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3877                                PNV_IODA1_DMA32_SEGSIZE;
3878
3879#if 0 /* We should really do that ... */
3880        rc = opal_pci_set_phb_mem_window(opal->phb_id,
3881                                         window_type,
3882                                         window_num,
3883                                         starting_real_address,
3884                                         starting_pci_address,
3885                                         segment_size);
3886#endif
3887
3888        pr_info("  %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n",
3889                phb->ioda.total_pe_num, phb->ioda.reserved_pe_idx,
3890                phb->ioda.m32_size, phb->ioda.m32_segsize);
3891        if (phb->ioda.m64_size)
3892                pr_info("                 M64: 0x%lx [segment=0x%lx]\n",
3893                        phb->ioda.m64_size, phb->ioda.m64_segsize);
3894        if (phb->ioda.io_size)
3895                pr_info("                  IO: 0x%x [segment=0x%x]\n",
3896                        phb->ioda.io_size, phb->ioda.io_segsize);
3897
3898
3899        phb->hose->ops = &pnv_pci_ops;
3900        phb->get_pe_state = pnv_ioda_get_pe_state;
3901        phb->freeze_pe = pnv_ioda_freeze_pe;
3902        phb->unfreeze_pe = pnv_ioda_unfreeze_pe;
3903
3904        /* Setup MSI support */
3905        pnv_pci_init_ioda_msis(phb);
3906
3907        /*
3908         * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
3909         * to let the PCI core do resource assignment. It's supposed
3910         * that the PCI core will do correct I/O and MMIO alignment
3911         * for the P2P bridge bars so that each PCI bus (excluding
3912         * the child P2P bridges) can form individual PE.
3913         */
3914        ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
3915
3916        switch (phb->type) {
3917        case PNV_PHB_NPU_NVLINK:
3918                hose->controller_ops = pnv_npu_ioda_controller_ops;
3919                break;
3920        case PNV_PHB_NPU_OCAPI:
3921                hose->controller_ops = pnv_npu_ocapi_ioda_controller_ops;
3922                break;
3923        default:
3924                phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup;
3925                hose->controller_ops = pnv_pci_ioda_controller_ops;
3926        }
3927
3928        ppc_md.pcibios_default_alignment = pnv_pci_default_alignment;
3929
3930#ifdef CONFIG_PCI_IOV
3931        ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov_resources;
3932        ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment;
3933        ppc_md.pcibios_sriov_enable = pnv_pcibios_sriov_enable;
3934        ppc_md.pcibios_sriov_disable = pnv_pcibios_sriov_disable;
3935#endif
3936
3937        pci_add_flags(PCI_REASSIGN_ALL_RSRC);
3938
3939        /* Reset IODA tables to a clean state */
3940        rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET);
3941        if (rc)
3942                pr_warn("  OPAL Error %ld performing IODA table reset !\n", rc);
3943
3944        /*
3945         * If we're running in kdump kernel, the previous kernel never
3946         * shutdown PCI devices correctly. We already got IODA table
3947         * cleaned out. So we have to issue PHB reset to stop all PCI
3948         * transactions from previous kernel. The ppc_pci_reset_phbs
3949         * kernel parameter will force this reset too.
3950         */
3951        if (is_kdump_kernel() || pci_reset_phbs) {
3952                pr_info("  Issue PHB reset ...\n");
3953                pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
3954                pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE);
3955        }
3956
3957        /* Remove M64 resource if we can't configure it successfully */
3958        if (!phb->init_m64 || phb->init_m64(phb))
3959                hose->mem_resources[1].flags = 0;
3960}
3961
3962void __init pnv_pci_init_ioda2_phb(struct device_node *np)
3963{
3964        pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
3965}
3966
3967void __init pnv_pci_init_npu_phb(struct device_node *np)
3968{
3969        pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU_NVLINK);
3970}
3971
3972void __init pnv_pci_init_npu2_opencapi_phb(struct device_node *np)
3973{
3974        pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU_OCAPI);
3975}
3976
3977static void pnv_npu2_opencapi_cfg_size_fixup(struct pci_dev *dev)
3978{
3979        struct pci_controller *hose = pci_bus_to_host(dev->bus);
3980        struct pnv_phb *phb = hose->private_data;
3981
3982        if (!machine_is(powernv))
3983                return;
3984
3985        if (phb->type == PNV_PHB_NPU_OCAPI)
3986                dev->cfg_size = PCI_CFG_SPACE_EXP_SIZE;
3987}
3988DECLARE_PCI_FIXUP_EARLY(PCI_ANY_ID, PCI_ANY_ID, pnv_npu2_opencapi_cfg_size_fixup);
3989
3990void __init pnv_pci_init_ioda_hub(struct device_node *np)
3991{
3992        struct device_node *phbn;
3993        const __be64 *prop64;
3994        u64 hub_id;
3995
3996        pr_info("Probing IODA IO-Hub %pOF\n", np);
3997
3998        prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
3999        if (!prop64) {
4000                pr_err(" Missing \"ibm,opal-hubid\" property !\n");
4001                return;
4002        }
4003        hub_id = be64_to_cpup(prop64);
4004        pr_devel(" HUB-ID : 0x%016llx\n", hub_id);
4005
4006        /* Count child PHBs */
4007        for_each_child_of_node(np, phbn) {
4008                /* Look for IODA1 PHBs */
4009                if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
4010                        pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1);
4011        }
4012}
4013