1
2
3
4
5
6
7#include <linux/export.h>
8#include <linux/slab.h>
9#include <linux/kernel.h>
10#include <linux/cpumask.h>
11#include <linux/spinlock.h>
12#include <asm/cpudata.h>
13#include "cpumap.h"
14
15
16enum {
17 CPUINFO_LVL_ROOT = 0,
18 CPUINFO_LVL_NODE,
19 CPUINFO_LVL_CORE,
20 CPUINFO_LVL_PROC,
21 CPUINFO_LVL_MAX,
22};
23
24enum {
25 ROVER_NO_OP = 0,
26
27 ROVER_INC_ON_VISIT = 1 << 0,
28
29 ROVER_INC_PARENT_ON_LOOP = 1 << 1,
30};
31
32struct cpuinfo_node {
33 int id;
34 int level;
35 int num_cpus;
36 int parent_index;
37 int child_start;
38 int child_end;
39 int rover;
40};
41
42struct cpuinfo_level {
43 int start_index;
44 int end_index;
45 int num_nodes;
46};
47
48struct cpuinfo_tree {
49 int total_nodes;
50
51
52 struct cpuinfo_level level[CPUINFO_LVL_MAX];
53 struct cpuinfo_node nodes[0];
54};
55
56
57static struct cpuinfo_tree *cpuinfo_tree;
58
59static u16 cpu_distribution_map[NR_CPUS];
60static DEFINE_SPINLOCK(cpu_map_lock);
61
62
63
64static const int niagara_iterate_method[] = {
65 [CPUINFO_LVL_ROOT] = ROVER_NO_OP,
66
67
68
69
70
71
72 [CPUINFO_LVL_NODE] = ROVER_INC_ON_VISIT|ROVER_INC_PARENT_ON_LOOP,
73
74
75
76
77
78
79 [CPUINFO_LVL_CORE] = ROVER_INC_ON_VISIT,
80
81
82 [CPUINFO_LVL_PROC] = ROVER_INC_ON_VISIT,
83};
84
85
86
87
88static const int generic_iterate_method[] = {
89 [CPUINFO_LVL_ROOT] = ROVER_INC_ON_VISIT,
90 [CPUINFO_LVL_NODE] = ROVER_NO_OP,
91 [CPUINFO_LVL_CORE] = ROVER_INC_PARENT_ON_LOOP,
92 [CPUINFO_LVL_PROC] = ROVER_INC_ON_VISIT|ROVER_INC_PARENT_ON_LOOP,
93};
94
95
96static int cpuinfo_id(int cpu, int level)
97{
98 int id;
99
100 switch (level) {
101 case CPUINFO_LVL_ROOT:
102 id = 0;
103 break;
104 case CPUINFO_LVL_NODE:
105 id = cpu_to_node(cpu);
106 break;
107 case CPUINFO_LVL_CORE:
108 id = cpu_data(cpu).core_id;
109 break;
110 case CPUINFO_LVL_PROC:
111 id = cpu_data(cpu).proc_id;
112 break;
113 default:
114 id = -EINVAL;
115 }
116 return id;
117}
118
119
120
121
122
123
124static int enumerate_cpuinfo_nodes(struct cpuinfo_level *tree_level)
125{
126 int prev_id[CPUINFO_LVL_MAX];
127 int i, n, num_nodes;
128
129 for (i = CPUINFO_LVL_ROOT; i < CPUINFO_LVL_MAX; i++) {
130 struct cpuinfo_level *lv = &tree_level[i];
131
132 prev_id[i] = -1;
133 lv->start_index = lv->end_index = lv->num_nodes = 0;
134 }
135
136 num_nodes = 1;
137
138 for (i = 0; i < num_possible_cpus(); i++) {
139 if (!cpu_online(i))
140 continue;
141
142 n = cpuinfo_id(i, CPUINFO_LVL_NODE);
143 if (n > prev_id[CPUINFO_LVL_NODE]) {
144 tree_level[CPUINFO_LVL_NODE].num_nodes++;
145 prev_id[CPUINFO_LVL_NODE] = n;
146 num_nodes++;
147 }
148 n = cpuinfo_id(i, CPUINFO_LVL_CORE);
149 if (n > prev_id[CPUINFO_LVL_CORE]) {
150 tree_level[CPUINFO_LVL_CORE].num_nodes++;
151 prev_id[CPUINFO_LVL_CORE] = n;
152 num_nodes++;
153 }
154 n = cpuinfo_id(i, CPUINFO_LVL_PROC);
155 if (n > prev_id[CPUINFO_LVL_PROC]) {
156 tree_level[CPUINFO_LVL_PROC].num_nodes++;
157 prev_id[CPUINFO_LVL_PROC] = n;
158 num_nodes++;
159 }
160 }
161
162 tree_level[CPUINFO_LVL_ROOT].num_nodes = 1;
163
164 n = tree_level[CPUINFO_LVL_NODE].num_nodes;
165 tree_level[CPUINFO_LVL_NODE].start_index = 1;
166 tree_level[CPUINFO_LVL_NODE].end_index = n;
167
168 n++;
169 tree_level[CPUINFO_LVL_CORE].start_index = n;
170 n += tree_level[CPUINFO_LVL_CORE].num_nodes;
171 tree_level[CPUINFO_LVL_CORE].end_index = n - 1;
172
173 tree_level[CPUINFO_LVL_PROC].start_index = n;
174 n += tree_level[CPUINFO_LVL_PROC].num_nodes;
175 tree_level[CPUINFO_LVL_PROC].end_index = n - 1;
176
177 return num_nodes;
178}
179
180
181
182
183
184
185static struct cpuinfo_tree *build_cpuinfo_tree(void)
186{
187 struct cpuinfo_tree *new_tree;
188 struct cpuinfo_node *node;
189 struct cpuinfo_level tmp_level[CPUINFO_LVL_MAX];
190 int num_cpus[CPUINFO_LVL_MAX];
191 int level_rover[CPUINFO_LVL_MAX];
192 int prev_id[CPUINFO_LVL_MAX];
193 int n, id, cpu, prev_cpu, last_cpu, level;
194
195 n = enumerate_cpuinfo_nodes(tmp_level);
196
197 new_tree = kzalloc(sizeof(struct cpuinfo_tree) +
198 (sizeof(struct cpuinfo_node) * n), GFP_ATOMIC);
199 if (!new_tree)
200 return NULL;
201
202 new_tree->total_nodes = n;
203 memcpy(&new_tree->level, tmp_level, sizeof(tmp_level));
204
205 prev_cpu = cpu = cpumask_first(cpu_online_mask);
206
207
208 for (level = CPUINFO_LVL_PROC; level >= CPUINFO_LVL_ROOT; level--) {
209 n = new_tree->level[level].start_index;
210
211 level_rover[level] = n;
212 node = &new_tree->nodes[n];
213
214 id = cpuinfo_id(cpu, level);
215 if (unlikely(id < 0)) {
216 kfree(new_tree);
217 return NULL;
218 }
219 node->id = id;
220 node->level = level;
221 node->num_cpus = 1;
222
223 node->parent_index = (level > CPUINFO_LVL_ROOT)
224 ? new_tree->level[level - 1].start_index : -1;
225
226 node->child_start = node->child_end = node->rover =
227 (level == CPUINFO_LVL_PROC)
228 ? cpu : new_tree->level[level + 1].start_index;
229
230 prev_id[level] = node->id;
231 num_cpus[level] = 1;
232 }
233
234 for (last_cpu = (num_possible_cpus() - 1); last_cpu >= 0; last_cpu--) {
235 if (cpu_online(last_cpu))
236 break;
237 }
238
239 while (++cpu <= last_cpu) {
240 if (!cpu_online(cpu))
241 continue;
242
243 for (level = CPUINFO_LVL_PROC; level >= CPUINFO_LVL_ROOT;
244 level--) {
245 id = cpuinfo_id(cpu, level);
246 if (unlikely(id < 0)) {
247 kfree(new_tree);
248 return NULL;
249 }
250
251 if ((id != prev_id[level]) || (cpu == last_cpu)) {
252 prev_id[level] = id;
253 node = &new_tree->nodes[level_rover[level]];
254 node->num_cpus = num_cpus[level];
255 num_cpus[level] = 1;
256
257 if (cpu == last_cpu)
258 node->num_cpus++;
259
260
261 if (level == CPUINFO_LVL_ROOT)
262 node->parent_index = -1;
263 else
264 node->parent_index =
265 level_rover[level - 1];
266
267 if (level == CPUINFO_LVL_PROC) {
268 node->child_end =
269 (cpu == last_cpu) ? cpu : prev_cpu;
270 } else {
271 node->child_end =
272 level_rover[level + 1] - 1;
273 }
274
275
276 n = ++level_rover[level];
277 if (n <= new_tree->level[level].end_index) {
278 node = &new_tree->nodes[n];
279 node->id = id;
280 node->level = level;
281
282
283 node->child_start = node->child_end =
284 node->rover =
285 (level == CPUINFO_LVL_PROC)
286 ? cpu : level_rover[level + 1];
287 }
288 } else
289 num_cpus[level]++;
290 }
291 prev_cpu = cpu;
292 }
293
294 return new_tree;
295}
296
297static void increment_rover(struct cpuinfo_tree *t, int node_index,
298 int root_index, const int *rover_inc_table)
299{
300 struct cpuinfo_node *node = &t->nodes[node_index];
301 int top_level, level;
302
303 top_level = t->nodes[root_index].level;
304 for (level = node->level; level >= top_level; level--) {
305 node->rover++;
306 if (node->rover <= node->child_end)
307 return;
308
309 node->rover = node->child_start;
310
311 if ((level == top_level) ||
312 !(rover_inc_table[level] & ROVER_INC_PARENT_ON_LOOP))
313 return;
314
315 node = &t->nodes[node->parent_index];
316 }
317}
318
319static int iterate_cpu(struct cpuinfo_tree *t, unsigned int root_index)
320{
321 const int *rover_inc_table;
322 int level, new_index, index = root_index;
323
324 switch (sun4v_chip_type) {
325 case SUN4V_CHIP_NIAGARA1:
326 case SUN4V_CHIP_NIAGARA2:
327 case SUN4V_CHIP_NIAGARA3:
328 case SUN4V_CHIP_NIAGARA4:
329 case SUN4V_CHIP_NIAGARA5:
330 case SUN4V_CHIP_SPARC_M6:
331 case SUN4V_CHIP_SPARC_M7:
332 case SUN4V_CHIP_SPARC_M8:
333 case SUN4V_CHIP_SPARC_SN:
334 case SUN4V_CHIP_SPARC64X:
335 rover_inc_table = niagara_iterate_method;
336 break;
337 default:
338 rover_inc_table = generic_iterate_method;
339 }
340
341 for (level = t->nodes[root_index].level; level < CPUINFO_LVL_MAX;
342 level++) {
343 new_index = t->nodes[index].rover;
344 if (rover_inc_table[level] & ROVER_INC_ON_VISIT)
345 increment_rover(t, index, root_index, rover_inc_table);
346
347 index = new_index;
348 }
349 return index;
350}
351
352static void _cpu_map_rebuild(void)
353{
354 int i;
355
356 if (cpuinfo_tree) {
357 kfree(cpuinfo_tree);
358 cpuinfo_tree = NULL;
359 }
360
361 cpuinfo_tree = build_cpuinfo_tree();
362 if (!cpuinfo_tree)
363 return;
364
365
366
367
368
369 for (i = 0; i < cpuinfo_tree->nodes[0].num_cpus; i++)
370 cpu_distribution_map[i] = iterate_cpu(cpuinfo_tree, 0);
371}
372
373
374
375
376static int simple_map_to_cpu(unsigned int index)
377{
378 int i, end, cpu_rover;
379
380 cpu_rover = 0;
381 end = index % num_online_cpus();
382 for (i = 0; i < num_possible_cpus(); i++) {
383 if (cpu_online(cpu_rover)) {
384 if (cpu_rover >= end)
385 return cpu_rover;
386
387 cpu_rover++;
388 }
389 }
390
391
392 return cpumask_first(cpu_online_mask);
393}
394
395static int _map_to_cpu(unsigned int index)
396{
397 struct cpuinfo_node *root_node;
398
399 if (unlikely(!cpuinfo_tree)) {
400 _cpu_map_rebuild();
401 if (!cpuinfo_tree)
402 return simple_map_to_cpu(index);
403 }
404
405 root_node = &cpuinfo_tree->nodes[0];
406#ifdef CONFIG_HOTPLUG_CPU
407 if (unlikely(root_node->num_cpus != num_online_cpus())) {
408 _cpu_map_rebuild();
409 if (!cpuinfo_tree)
410 return simple_map_to_cpu(index);
411 }
412#endif
413 return cpu_distribution_map[index % root_node->num_cpus];
414}
415
416int map_to_cpu(unsigned int index)
417{
418 int mapped_cpu;
419 unsigned long flag;
420
421 spin_lock_irqsave(&cpu_map_lock, flag);
422 mapped_cpu = _map_to_cpu(index);
423
424#ifdef CONFIG_HOTPLUG_CPU
425 while (unlikely(!cpu_online(mapped_cpu)))
426 mapped_cpu = _map_to_cpu(index);
427#endif
428 spin_unlock_irqrestore(&cpu_map_lock, flag);
429 return mapped_cpu;
430}
431EXPORT_SYMBOL(map_to_cpu);
432
433void cpu_map_rebuild(void)
434{
435 unsigned long flag;
436
437 spin_lock_irqsave(&cpu_map_lock, flag);
438 _cpu_map_rebuild();
439 spin_unlock_irqrestore(&cpu_map_lock, flag);
440}
441