linux/arch/x86/kernel/cpu/mce/amd.c
<<
>>
Prefs
   1/*
   2 *  (c) 2005-2016 Advanced Micro Devices, Inc.
   3 *  Your use of this code is subject to the terms and conditions of the
   4 *  GNU general public license version 2. See "COPYING" or
   5 *  http://www.gnu.org/licenses/gpl.html
   6 *
   7 *  Written by Jacob Shin - AMD, Inc.
   8 *  Maintained by: Borislav Petkov <bp@alien8.de>
   9 *
  10 *  All MC4_MISCi registers are shared between cores on a node.
  11 */
  12#include <linux/interrupt.h>
  13#include <linux/notifier.h>
  14#include <linux/kobject.h>
  15#include <linux/percpu.h>
  16#include <linux/errno.h>
  17#include <linux/sched.h>
  18#include <linux/sysfs.h>
  19#include <linux/slab.h>
  20#include <linux/init.h>
  21#include <linux/cpu.h>
  22#include <linux/smp.h>
  23#include <linux/string.h>
  24
  25#include <asm/amd_nb.h>
  26#include <asm/traps.h>
  27#include <asm/apic.h>
  28#include <asm/mce.h>
  29#include <asm/msr.h>
  30#include <asm/trace/irq_vectors.h>
  31
  32#include "internal.h"
  33
  34#define NR_BLOCKS         5
  35#define THRESHOLD_MAX     0xFFF
  36#define INT_TYPE_APIC     0x00020000
  37#define MASK_VALID_HI     0x80000000
  38#define MASK_CNTP_HI      0x40000000
  39#define MASK_LOCKED_HI    0x20000000
  40#define MASK_LVTOFF_HI    0x00F00000
  41#define MASK_COUNT_EN_HI  0x00080000
  42#define MASK_INT_TYPE_HI  0x00060000
  43#define MASK_OVERFLOW_HI  0x00010000
  44#define MASK_ERR_COUNT_HI 0x00000FFF
  45#define MASK_BLKPTR_LO    0xFF000000
  46#define MCG_XBLK_ADDR     0xC0000400
  47
  48/* Deferred error settings */
  49#define MSR_CU_DEF_ERR          0xC0000410
  50#define MASK_DEF_LVTOFF         0x000000F0
  51#define MASK_DEF_INT_TYPE       0x00000006
  52#define DEF_LVT_OFF             0x2
  53#define DEF_INT_TYPE_APIC       0x2
  54
  55/* Scalable MCA: */
  56
  57/* Threshold LVT offset is at MSR0xC0000410[15:12] */
  58#define SMCA_THR_LVT_OFF        0xF000
  59
  60static bool thresholding_irq_en;
  61
  62static const char * const th_names[] = {
  63        "load_store",
  64        "insn_fetch",
  65        "combined_unit",
  66        "decode_unit",
  67        "northbridge",
  68        "execution_unit",
  69};
  70
  71static const char * const smca_umc_block_names[] = {
  72        "dram_ecc",
  73        "misc_umc"
  74};
  75
  76struct smca_bank_name {
  77        const char *name;       /* Short name for sysfs */
  78        const char *long_name;  /* Long name for pretty-printing */
  79};
  80
  81static struct smca_bank_name smca_names[] = {
  82        [SMCA_LS]       = { "load_store",       "Load Store Unit" },
  83        [SMCA_IF]       = { "insn_fetch",       "Instruction Fetch Unit" },
  84        [SMCA_L2_CACHE] = { "l2_cache",         "L2 Cache" },
  85        [SMCA_DE]       = { "decode_unit",      "Decode Unit" },
  86        [SMCA_RESERVED] = { "reserved",         "Reserved" },
  87        [SMCA_EX]       = { "execution_unit",   "Execution Unit" },
  88        [SMCA_FP]       = { "floating_point",   "Floating Point Unit" },
  89        [SMCA_L3_CACHE] = { "l3_cache",         "L3 Cache" },
  90        [SMCA_CS]       = { "coherent_slave",   "Coherent Slave" },
  91        [SMCA_PIE]      = { "pie",              "Power, Interrupts, etc." },
  92        [SMCA_UMC]      = { "umc",              "Unified Memory Controller" },
  93        [SMCA_PB]       = { "param_block",      "Parameter Block" },
  94        [SMCA_PSP]      = { "psp",              "Platform Security Processor" },
  95        [SMCA_SMU]      = { "smu",              "System Management Unit" },
  96};
  97
  98static u32 smca_bank_addrs[MAX_NR_BANKS][NR_BLOCKS] __ro_after_init =
  99{
 100        [0 ... MAX_NR_BANKS - 1] = { [0 ... NR_BLOCKS - 1] = -1 }
 101};
 102
 103static const char *smca_get_name(enum smca_bank_types t)
 104{
 105        if (t >= N_SMCA_BANK_TYPES)
 106                return NULL;
 107
 108        return smca_names[t].name;
 109}
 110
 111const char *smca_get_long_name(enum smca_bank_types t)
 112{
 113        if (t >= N_SMCA_BANK_TYPES)
 114                return NULL;
 115
 116        return smca_names[t].long_name;
 117}
 118EXPORT_SYMBOL_GPL(smca_get_long_name);
 119
 120static enum smca_bank_types smca_get_bank_type(unsigned int bank)
 121{
 122        struct smca_bank *b;
 123
 124        if (bank >= MAX_NR_BANKS)
 125                return N_SMCA_BANK_TYPES;
 126
 127        b = &smca_banks[bank];
 128        if (!b->hwid)
 129                return N_SMCA_BANK_TYPES;
 130
 131        return b->hwid->bank_type;
 132}
 133
 134static struct smca_hwid smca_hwid_mcatypes[] = {
 135        /* { bank_type, hwid_mcatype, xec_bitmap } */
 136
 137        /* Reserved type */
 138        { SMCA_RESERVED, HWID_MCATYPE(0x00, 0x0), 0x0 },
 139
 140        /* ZN Core (HWID=0xB0) MCA types */
 141        { SMCA_LS,       HWID_MCATYPE(0xB0, 0x0), 0x1FFFEF },
 142        { SMCA_IF,       HWID_MCATYPE(0xB0, 0x1), 0x3FFF },
 143        { SMCA_L2_CACHE, HWID_MCATYPE(0xB0, 0x2), 0xF },
 144        { SMCA_DE,       HWID_MCATYPE(0xB0, 0x3), 0x1FF },
 145        /* HWID 0xB0 MCATYPE 0x4 is Reserved */
 146        { SMCA_EX,       HWID_MCATYPE(0xB0, 0x5), 0x7FF },
 147        { SMCA_FP,       HWID_MCATYPE(0xB0, 0x6), 0x7F },
 148        { SMCA_L3_CACHE, HWID_MCATYPE(0xB0, 0x7), 0xFF },
 149
 150        /* Data Fabric MCA types */
 151        { SMCA_CS,       HWID_MCATYPE(0x2E, 0x0), 0x1FF },
 152        { SMCA_PIE,      HWID_MCATYPE(0x2E, 0x1), 0xF },
 153
 154        /* Unified Memory Controller MCA type */
 155        { SMCA_UMC,      HWID_MCATYPE(0x96, 0x0), 0x3F },
 156
 157        /* Parameter Block MCA type */
 158        { SMCA_PB,       HWID_MCATYPE(0x05, 0x0), 0x1 },
 159
 160        /* Platform Security Processor MCA type */
 161        { SMCA_PSP,      HWID_MCATYPE(0xFF, 0x0), 0x1 },
 162
 163        /* System Management Unit MCA type */
 164        { SMCA_SMU,      HWID_MCATYPE(0x01, 0x0), 0x1 },
 165};
 166
 167struct smca_bank smca_banks[MAX_NR_BANKS];
 168EXPORT_SYMBOL_GPL(smca_banks);
 169
 170/*
 171 * In SMCA enabled processors, we can have multiple banks for a given IP type.
 172 * So to define a unique name for each bank, we use a temp c-string to append
 173 * the MCA_IPID[InstanceId] to type's name in get_name().
 174 *
 175 * InstanceId is 32 bits which is 8 characters. Make sure MAX_MCATYPE_NAME_LEN
 176 * is greater than 8 plus 1 (for underscore) plus length of longest type name.
 177 */
 178#define MAX_MCATYPE_NAME_LEN    30
 179static char buf_mcatype[MAX_MCATYPE_NAME_LEN];
 180
 181static DEFINE_PER_CPU(struct threshold_bank **, threshold_banks);
 182static DEFINE_PER_CPU(unsigned int, bank_map);  /* see which banks are on */
 183
 184static void amd_threshold_interrupt(void);
 185static void amd_deferred_error_interrupt(void);
 186
 187static void default_deferred_error_interrupt(void)
 188{
 189        pr_err("Unexpected deferred interrupt at vector %x\n", DEFERRED_ERROR_VECTOR);
 190}
 191void (*deferred_error_int_vector)(void) = default_deferred_error_interrupt;
 192
 193static void smca_configure(unsigned int bank, unsigned int cpu)
 194{
 195        unsigned int i, hwid_mcatype;
 196        struct smca_hwid *s_hwid;
 197        u32 high, low;
 198        u32 smca_config = MSR_AMD64_SMCA_MCx_CONFIG(bank);
 199
 200        /* Set appropriate bits in MCA_CONFIG */
 201        if (!rdmsr_safe(smca_config, &low, &high)) {
 202                /*
 203                 * OS is required to set the MCAX bit to acknowledge that it is
 204                 * now using the new MSR ranges and new registers under each
 205                 * bank. It also means that the OS will configure deferred
 206                 * errors in the new MCx_CONFIG register. If the bit is not set,
 207                 * uncorrectable errors will cause a system panic.
 208                 *
 209                 * MCA_CONFIG[MCAX] is bit 32 (0 in the high portion of the MSR.)
 210                 */
 211                high |= BIT(0);
 212
 213                /*
 214                 * SMCA sets the Deferred Error Interrupt type per bank.
 215                 *
 216                 * MCA_CONFIG[DeferredIntTypeSupported] is bit 5, and tells us
 217                 * if the DeferredIntType bit field is available.
 218                 *
 219                 * MCA_CONFIG[DeferredIntType] is bits [38:37] ([6:5] in the
 220                 * high portion of the MSR). OS should set this to 0x1 to enable
 221                 * APIC based interrupt. First, check that no interrupt has been
 222                 * set.
 223                 */
 224                if ((low & BIT(5)) && !((high >> 5) & 0x3))
 225                        high |= BIT(5);
 226
 227                wrmsr(smca_config, low, high);
 228        }
 229
 230        /* Return early if this bank was already initialized. */
 231        if (smca_banks[bank].hwid)
 232                return;
 233
 234        if (rdmsr_safe_on_cpu(cpu, MSR_AMD64_SMCA_MCx_IPID(bank), &low, &high)) {
 235                pr_warn("Failed to read MCA_IPID for bank %d\n", bank);
 236                return;
 237        }
 238
 239        hwid_mcatype = HWID_MCATYPE(high & MCI_IPID_HWID,
 240                                    (high & MCI_IPID_MCATYPE) >> 16);
 241
 242        for (i = 0; i < ARRAY_SIZE(smca_hwid_mcatypes); i++) {
 243                s_hwid = &smca_hwid_mcatypes[i];
 244                if (hwid_mcatype == s_hwid->hwid_mcatype) {
 245                        smca_banks[bank].hwid = s_hwid;
 246                        smca_banks[bank].id = low;
 247                        smca_banks[bank].sysfs_id = s_hwid->count++;
 248                        break;
 249                }
 250        }
 251}
 252
 253struct thresh_restart {
 254        struct threshold_block  *b;
 255        int                     reset;
 256        int                     set_lvt_off;
 257        int                     lvt_off;
 258        u16                     old_limit;
 259};
 260
 261static inline bool is_shared_bank(int bank)
 262{
 263        /*
 264         * Scalable MCA provides for only one core to have access to the MSRs of
 265         * a shared bank.
 266         */
 267        if (mce_flags.smca)
 268                return false;
 269
 270        /* Bank 4 is for northbridge reporting and is thus shared */
 271        return (bank == 4);
 272}
 273
 274static const char *bank4_names(const struct threshold_block *b)
 275{
 276        switch (b->address) {
 277        /* MSR4_MISC0 */
 278        case 0x00000413:
 279                return "dram";
 280
 281        case 0xc0000408:
 282                return "ht_links";
 283
 284        case 0xc0000409:
 285                return "l3_cache";
 286
 287        default:
 288                WARN(1, "Funny MSR: 0x%08x\n", b->address);
 289                return "";
 290        }
 291};
 292
 293
 294static bool lvt_interrupt_supported(unsigned int bank, u32 msr_high_bits)
 295{
 296        /*
 297         * bank 4 supports APIC LVT interrupts implicitly since forever.
 298         */
 299        if (bank == 4)
 300                return true;
 301
 302        /*
 303         * IntP: interrupt present; if this bit is set, the thresholding
 304         * bank can generate APIC LVT interrupts
 305         */
 306        return msr_high_bits & BIT(28);
 307}
 308
 309static int lvt_off_valid(struct threshold_block *b, int apic, u32 lo, u32 hi)
 310{
 311        int msr = (hi & MASK_LVTOFF_HI) >> 20;
 312
 313        if (apic < 0) {
 314                pr_err(FW_BUG "cpu %d, failed to setup threshold interrupt "
 315                       "for bank %d, block %d (MSR%08X=0x%x%08x)\n", b->cpu,
 316                       b->bank, b->block, b->address, hi, lo);
 317                return 0;
 318        }
 319
 320        if (apic != msr) {
 321                /*
 322                 * On SMCA CPUs, LVT offset is programmed at a different MSR, and
 323                 * the BIOS provides the value. The original field where LVT offset
 324                 * was set is reserved. Return early here:
 325                 */
 326                if (mce_flags.smca)
 327                        return 0;
 328
 329                pr_err(FW_BUG "cpu %d, invalid threshold interrupt offset %d "
 330                       "for bank %d, block %d (MSR%08X=0x%x%08x)\n",
 331                       b->cpu, apic, b->bank, b->block, b->address, hi, lo);
 332                return 0;
 333        }
 334
 335        return 1;
 336};
 337
 338/* Reprogram MCx_MISC MSR behind this threshold bank. */
 339static void threshold_restart_bank(void *_tr)
 340{
 341        struct thresh_restart *tr = _tr;
 342        u32 hi, lo;
 343
 344        rdmsr(tr->b->address, lo, hi);
 345
 346        if (tr->b->threshold_limit < (hi & THRESHOLD_MAX))
 347                tr->reset = 1;  /* limit cannot be lower than err count */
 348
 349        if (tr->reset) {                /* reset err count and overflow bit */
 350                hi =
 351                    (hi & ~(MASK_ERR_COUNT_HI | MASK_OVERFLOW_HI)) |
 352                    (THRESHOLD_MAX - tr->b->threshold_limit);
 353        } else if (tr->old_limit) {     /* change limit w/o reset */
 354                int new_count = (hi & THRESHOLD_MAX) +
 355                    (tr->old_limit - tr->b->threshold_limit);
 356
 357                hi = (hi & ~MASK_ERR_COUNT_HI) |
 358                    (new_count & THRESHOLD_MAX);
 359        }
 360
 361        /* clear IntType */
 362        hi &= ~MASK_INT_TYPE_HI;
 363
 364        if (!tr->b->interrupt_capable)
 365                goto done;
 366
 367        if (tr->set_lvt_off) {
 368                if (lvt_off_valid(tr->b, tr->lvt_off, lo, hi)) {
 369                        /* set new lvt offset */
 370                        hi &= ~MASK_LVTOFF_HI;
 371                        hi |= tr->lvt_off << 20;
 372                }
 373        }
 374
 375        if (tr->b->interrupt_enable)
 376                hi |= INT_TYPE_APIC;
 377
 378 done:
 379
 380        hi |= MASK_COUNT_EN_HI;
 381        wrmsr(tr->b->address, lo, hi);
 382}
 383
 384static void mce_threshold_block_init(struct threshold_block *b, int offset)
 385{
 386        struct thresh_restart tr = {
 387                .b                      = b,
 388                .set_lvt_off            = 1,
 389                .lvt_off                = offset,
 390        };
 391
 392        b->threshold_limit              = THRESHOLD_MAX;
 393        threshold_restart_bank(&tr);
 394};
 395
 396static int setup_APIC_mce_threshold(int reserved, int new)
 397{
 398        if (reserved < 0 && !setup_APIC_eilvt(new, THRESHOLD_APIC_VECTOR,
 399                                              APIC_EILVT_MSG_FIX, 0))
 400                return new;
 401
 402        return reserved;
 403}
 404
 405static int setup_APIC_deferred_error(int reserved, int new)
 406{
 407        if (reserved < 0 && !setup_APIC_eilvt(new, DEFERRED_ERROR_VECTOR,
 408                                              APIC_EILVT_MSG_FIX, 0))
 409                return new;
 410
 411        return reserved;
 412}
 413
 414static void deferred_error_interrupt_enable(struct cpuinfo_x86 *c)
 415{
 416        u32 low = 0, high = 0;
 417        int def_offset = -1, def_new;
 418
 419        if (rdmsr_safe(MSR_CU_DEF_ERR, &low, &high))
 420                return;
 421
 422        def_new = (low & MASK_DEF_LVTOFF) >> 4;
 423        if (!(low & MASK_DEF_LVTOFF)) {
 424                pr_err(FW_BUG "Your BIOS is not setting up LVT offset 0x2 for deferred error IRQs correctly.\n");
 425                def_new = DEF_LVT_OFF;
 426                low = (low & ~MASK_DEF_LVTOFF) | (DEF_LVT_OFF << 4);
 427        }
 428
 429        def_offset = setup_APIC_deferred_error(def_offset, def_new);
 430        if ((def_offset == def_new) &&
 431            (deferred_error_int_vector != amd_deferred_error_interrupt))
 432                deferred_error_int_vector = amd_deferred_error_interrupt;
 433
 434        if (!mce_flags.smca)
 435                low = (low & ~MASK_DEF_INT_TYPE) | DEF_INT_TYPE_APIC;
 436
 437        wrmsr(MSR_CU_DEF_ERR, low, high);
 438}
 439
 440static u32 smca_get_block_address(unsigned int bank, unsigned int block)
 441{
 442        u32 low, high;
 443        u32 addr = 0;
 444
 445        if (smca_get_bank_type(bank) == SMCA_RESERVED)
 446                return addr;
 447
 448        if (!block)
 449                return MSR_AMD64_SMCA_MCx_MISC(bank);
 450
 451        /* Check our cache first: */
 452        if (smca_bank_addrs[bank][block] != -1)
 453                return smca_bank_addrs[bank][block];
 454
 455        /*
 456         * For SMCA enabled processors, BLKPTR field of the first MISC register
 457         * (MCx_MISC0) indicates presence of additional MISC regs set (MISC1-4).
 458         */
 459        if (rdmsr_safe(MSR_AMD64_SMCA_MCx_CONFIG(bank), &low, &high))
 460                goto out;
 461
 462        if (!(low & MCI_CONFIG_MCAX))
 463                goto out;
 464
 465        if (!rdmsr_safe(MSR_AMD64_SMCA_MCx_MISC(bank), &low, &high) &&
 466            (low & MASK_BLKPTR_LO))
 467                addr = MSR_AMD64_SMCA_MCx_MISCy(bank, block - 1);
 468
 469out:
 470        smca_bank_addrs[bank][block] = addr;
 471        return addr;
 472}
 473
 474static u32 get_block_address(u32 current_addr, u32 low, u32 high,
 475                             unsigned int bank, unsigned int block)
 476{
 477        u32 addr = 0, offset = 0;
 478
 479        if ((bank >= mca_cfg.banks) || (block >= NR_BLOCKS))
 480                return addr;
 481
 482        if (mce_flags.smca)
 483                return smca_get_block_address(bank, block);
 484
 485        /* Fall back to method we used for older processors: */
 486        switch (block) {
 487        case 0:
 488                addr = msr_ops.misc(bank);
 489                break;
 490        case 1:
 491                offset = ((low & MASK_BLKPTR_LO) >> 21);
 492                if (offset)
 493                        addr = MCG_XBLK_ADDR + offset;
 494                break;
 495        default:
 496                addr = ++current_addr;
 497        }
 498        return addr;
 499}
 500
 501static int
 502prepare_threshold_block(unsigned int bank, unsigned int block, u32 addr,
 503                        int offset, u32 misc_high)
 504{
 505        unsigned int cpu = smp_processor_id();
 506        u32 smca_low, smca_high;
 507        struct threshold_block b;
 508        int new;
 509
 510        if (!block)
 511                per_cpu(bank_map, cpu) |= (1 << bank);
 512
 513        memset(&b, 0, sizeof(b));
 514        b.cpu                   = cpu;
 515        b.bank                  = bank;
 516        b.block                 = block;
 517        b.address               = addr;
 518        b.interrupt_capable     = lvt_interrupt_supported(bank, misc_high);
 519
 520        if (!b.interrupt_capable)
 521                goto done;
 522
 523        b.interrupt_enable = 1;
 524
 525        if (!mce_flags.smca) {
 526                new = (misc_high & MASK_LVTOFF_HI) >> 20;
 527                goto set_offset;
 528        }
 529
 530        /* Gather LVT offset for thresholding: */
 531        if (rdmsr_safe(MSR_CU_DEF_ERR, &smca_low, &smca_high))
 532                goto out;
 533
 534        new = (smca_low & SMCA_THR_LVT_OFF) >> 12;
 535
 536set_offset:
 537        offset = setup_APIC_mce_threshold(offset, new);
 538        if (offset == new)
 539                thresholding_irq_en = true;
 540
 541done:
 542        mce_threshold_block_init(&b, offset);
 543
 544out:
 545        return offset;
 546}
 547
 548/* cpu init entry point, called from mce.c with preempt off */
 549void mce_amd_feature_init(struct cpuinfo_x86 *c)
 550{
 551        u32 low = 0, high = 0, address = 0;
 552        unsigned int bank, block, cpu = smp_processor_id();
 553        int offset = -1;
 554
 555        for (bank = 0; bank < mca_cfg.banks; ++bank) {
 556                if (mce_flags.smca)
 557                        smca_configure(bank, cpu);
 558
 559                for (block = 0; block < NR_BLOCKS; ++block) {
 560                        address = get_block_address(address, low, high, bank, block);
 561                        if (!address)
 562                                break;
 563
 564                        if (rdmsr_safe(address, &low, &high))
 565                                break;
 566
 567                        if (!(high & MASK_VALID_HI))
 568                                continue;
 569
 570                        if (!(high & MASK_CNTP_HI)  ||
 571                             (high & MASK_LOCKED_HI))
 572                                continue;
 573
 574                        offset = prepare_threshold_block(bank, block, address, offset, high);
 575                }
 576        }
 577
 578        if (mce_flags.succor)
 579                deferred_error_interrupt_enable(c);
 580}
 581
 582int umc_normaddr_to_sysaddr(u64 norm_addr, u16 nid, u8 umc, u64 *sys_addr)
 583{
 584        u64 dram_base_addr, dram_limit_addr, dram_hole_base;
 585        /* We start from the normalized address */
 586        u64 ret_addr = norm_addr;
 587
 588        u32 tmp;
 589
 590        u8 die_id_shift, die_id_mask, socket_id_shift, socket_id_mask;
 591        u8 intlv_num_dies, intlv_num_chan, intlv_num_sockets;
 592        u8 intlv_addr_sel, intlv_addr_bit;
 593        u8 num_intlv_bits, hashed_bit;
 594        u8 lgcy_mmio_hole_en, base = 0;
 595        u8 cs_mask, cs_id = 0;
 596        bool hash_enabled = false;
 597
 598        /* Read D18F0x1B4 (DramOffset), check if base 1 is used. */
 599        if (amd_df_indirect_read(nid, 0, 0x1B4, umc, &tmp))
 600                goto out_err;
 601
 602        /* Remove HiAddrOffset from normalized address, if enabled: */
 603        if (tmp & BIT(0)) {
 604                u64 hi_addr_offset = (tmp & GENMASK_ULL(31, 20)) << 8;
 605
 606                if (norm_addr >= hi_addr_offset) {
 607                        ret_addr -= hi_addr_offset;
 608                        base = 1;
 609                }
 610        }
 611
 612        /* Read D18F0x110 (DramBaseAddress). */
 613        if (amd_df_indirect_read(nid, 0, 0x110 + (8 * base), umc, &tmp))
 614                goto out_err;
 615
 616        /* Check if address range is valid. */
 617        if (!(tmp & BIT(0))) {
 618                pr_err("%s: Invalid DramBaseAddress range: 0x%x.\n",
 619                        __func__, tmp);
 620                goto out_err;
 621        }
 622
 623        lgcy_mmio_hole_en = tmp & BIT(1);
 624        intlv_num_chan    = (tmp >> 4) & 0xF;
 625        intlv_addr_sel    = (tmp >> 8) & 0x7;
 626        dram_base_addr    = (tmp & GENMASK_ULL(31, 12)) << 16;
 627
 628        /* {0, 1, 2, 3} map to address bits {8, 9, 10, 11} respectively */
 629        if (intlv_addr_sel > 3) {
 630                pr_err("%s: Invalid interleave address select %d.\n",
 631                        __func__, intlv_addr_sel);
 632                goto out_err;
 633        }
 634
 635        /* Read D18F0x114 (DramLimitAddress). */
 636        if (amd_df_indirect_read(nid, 0, 0x114 + (8 * base), umc, &tmp))
 637                goto out_err;
 638
 639        intlv_num_sockets = (tmp >> 8) & 0x1;
 640        intlv_num_dies    = (tmp >> 10) & 0x3;
 641        dram_limit_addr   = ((tmp & GENMASK_ULL(31, 12)) << 16) | GENMASK_ULL(27, 0);
 642
 643        intlv_addr_bit = intlv_addr_sel + 8;
 644
 645        /* Re-use intlv_num_chan by setting it equal to log2(#channels) */
 646        switch (intlv_num_chan) {
 647        case 0: intlv_num_chan = 0; break;
 648        case 1: intlv_num_chan = 1; break;
 649        case 3: intlv_num_chan = 2; break;
 650        case 5: intlv_num_chan = 3; break;
 651        case 7: intlv_num_chan = 4; break;
 652
 653        case 8: intlv_num_chan = 1;
 654                hash_enabled = true;
 655                break;
 656        default:
 657                pr_err("%s: Invalid number of interleaved channels %d.\n",
 658                        __func__, intlv_num_chan);
 659                goto out_err;
 660        }
 661
 662        num_intlv_bits = intlv_num_chan;
 663
 664        if (intlv_num_dies > 2) {
 665                pr_err("%s: Invalid number of interleaved nodes/dies %d.\n",
 666                        __func__, intlv_num_dies);
 667                goto out_err;
 668        }
 669
 670        num_intlv_bits += intlv_num_dies;
 671
 672        /* Add a bit if sockets are interleaved. */
 673        num_intlv_bits += intlv_num_sockets;
 674
 675        /* Assert num_intlv_bits <= 4 */
 676        if (num_intlv_bits > 4) {
 677                pr_err("%s: Invalid interleave bits %d.\n",
 678                        __func__, num_intlv_bits);
 679                goto out_err;
 680        }
 681
 682        if (num_intlv_bits > 0) {
 683                u64 temp_addr_x, temp_addr_i, temp_addr_y;
 684                u8 die_id_bit, sock_id_bit, cs_fabric_id;
 685
 686                /*
 687                 * Read FabricBlockInstanceInformation3_CS[BlockFabricID].
 688                 * This is the fabric id for this coherent slave. Use
 689                 * umc/channel# as instance id of the coherent slave
 690                 * for FICAA.
 691                 */
 692                if (amd_df_indirect_read(nid, 0, 0x50, umc, &tmp))
 693                        goto out_err;
 694
 695                cs_fabric_id = (tmp >> 8) & 0xFF;
 696                die_id_bit   = 0;
 697
 698                /* If interleaved over more than 1 channel: */
 699                if (intlv_num_chan) {
 700                        die_id_bit = intlv_num_chan;
 701                        cs_mask    = (1 << die_id_bit) - 1;
 702                        cs_id      = cs_fabric_id & cs_mask;
 703                }
 704
 705                sock_id_bit = die_id_bit;
 706
 707                /* Read D18F1x208 (SystemFabricIdMask). */
 708                if (intlv_num_dies || intlv_num_sockets)
 709                        if (amd_df_indirect_read(nid, 1, 0x208, umc, &tmp))
 710                                goto out_err;
 711
 712                /* If interleaved over more than 1 die. */
 713                if (intlv_num_dies) {
 714                        sock_id_bit  = die_id_bit + intlv_num_dies;
 715                        die_id_shift = (tmp >> 24) & 0xF;
 716                        die_id_mask  = (tmp >> 8) & 0xFF;
 717
 718                        cs_id |= ((cs_fabric_id & die_id_mask) >> die_id_shift) << die_id_bit;
 719                }
 720
 721                /* If interleaved over more than 1 socket. */
 722                if (intlv_num_sockets) {
 723                        socket_id_shift = (tmp >> 28) & 0xF;
 724                        socket_id_mask  = (tmp >> 16) & 0xFF;
 725
 726                        cs_id |= ((cs_fabric_id & socket_id_mask) >> socket_id_shift) << sock_id_bit;
 727                }
 728
 729                /*
 730                 * The pre-interleaved address consists of XXXXXXIIIYYYYY
 731                 * where III is the ID for this CS, and XXXXXXYYYYY are the
 732                 * address bits from the post-interleaved address.
 733                 * "num_intlv_bits" has been calculated to tell us how many "I"
 734                 * bits there are. "intlv_addr_bit" tells us how many "Y" bits
 735                 * there are (where "I" starts).
 736                 */
 737                temp_addr_y = ret_addr & GENMASK_ULL(intlv_addr_bit-1, 0);
 738                temp_addr_i = (cs_id << intlv_addr_bit);
 739                temp_addr_x = (ret_addr & GENMASK_ULL(63, intlv_addr_bit)) << num_intlv_bits;
 740                ret_addr    = temp_addr_x | temp_addr_i | temp_addr_y;
 741        }
 742
 743        /* Add dram base address */
 744        ret_addr += dram_base_addr;
 745
 746        /* If legacy MMIO hole enabled */
 747        if (lgcy_mmio_hole_en) {
 748                if (amd_df_indirect_read(nid, 0, 0x104, umc, &tmp))
 749                        goto out_err;
 750
 751                dram_hole_base = tmp & GENMASK(31, 24);
 752                if (ret_addr >= dram_hole_base)
 753                        ret_addr += (BIT_ULL(32) - dram_hole_base);
 754        }
 755
 756        if (hash_enabled) {
 757                /* Save some parentheses and grab ls-bit at the end. */
 758                hashed_bit =    (ret_addr >> 12) ^
 759                                (ret_addr >> 18) ^
 760                                (ret_addr >> 21) ^
 761                                (ret_addr >> 30) ^
 762                                cs_id;
 763
 764                hashed_bit &= BIT(0);
 765
 766                if (hashed_bit != ((ret_addr >> intlv_addr_bit) & BIT(0)))
 767                        ret_addr ^= BIT(intlv_addr_bit);
 768        }
 769
 770        /* Is calculated system address is above DRAM limit address? */
 771        if (ret_addr > dram_limit_addr)
 772                goto out_err;
 773
 774        *sys_addr = ret_addr;
 775        return 0;
 776
 777out_err:
 778        return -EINVAL;
 779}
 780EXPORT_SYMBOL_GPL(umc_normaddr_to_sysaddr);
 781
 782bool amd_mce_is_memory_error(struct mce *m)
 783{
 784        /* ErrCodeExt[20:16] */
 785        u8 xec = (m->status >> 16) & 0x1f;
 786
 787        if (mce_flags.smca)
 788                return smca_get_bank_type(m->bank) == SMCA_UMC && xec == 0x0;
 789
 790        return m->bank == 4 && xec == 0x8;
 791}
 792
 793static void __log_error(unsigned int bank, u64 status, u64 addr, u64 misc)
 794{
 795        struct mce m;
 796
 797        mce_setup(&m);
 798
 799        m.status = status;
 800        m.misc   = misc;
 801        m.bank   = bank;
 802        m.tsc    = rdtsc();
 803
 804        if (m.status & MCI_STATUS_ADDRV) {
 805                m.addr = addr;
 806
 807                /*
 808                 * Extract [55:<lsb>] where lsb is the least significant
 809                 * *valid* bit of the address bits.
 810                 */
 811                if (mce_flags.smca) {
 812                        u8 lsb = (m.addr >> 56) & 0x3f;
 813
 814                        m.addr &= GENMASK_ULL(55, lsb);
 815                }
 816        }
 817
 818        if (mce_flags.smca) {
 819                rdmsrl(MSR_AMD64_SMCA_MCx_IPID(bank), m.ipid);
 820
 821                if (m.status & MCI_STATUS_SYNDV)
 822                        rdmsrl(MSR_AMD64_SMCA_MCx_SYND(bank), m.synd);
 823        }
 824
 825        mce_log(&m);
 826}
 827
 828asmlinkage __visible void __irq_entry smp_deferred_error_interrupt(struct pt_regs *regs)
 829{
 830        entering_irq();
 831        trace_deferred_error_apic_entry(DEFERRED_ERROR_VECTOR);
 832        inc_irq_stat(irq_deferred_error_count);
 833        deferred_error_int_vector();
 834        trace_deferred_error_apic_exit(DEFERRED_ERROR_VECTOR);
 835        exiting_ack_irq();
 836}
 837
 838/*
 839 * Returns true if the logged error is deferred. False, otherwise.
 840 */
 841static inline bool
 842_log_error_bank(unsigned int bank, u32 msr_stat, u32 msr_addr, u64 misc)
 843{
 844        u64 status, addr = 0;
 845
 846        rdmsrl(msr_stat, status);
 847        if (!(status & MCI_STATUS_VAL))
 848                return false;
 849
 850        if (status & MCI_STATUS_ADDRV)
 851                rdmsrl(msr_addr, addr);
 852
 853        __log_error(bank, status, addr, misc);
 854
 855        wrmsrl(msr_stat, 0);
 856
 857        return status & MCI_STATUS_DEFERRED;
 858}
 859
 860/*
 861 * We have three scenarios for checking for Deferred errors:
 862 *
 863 * 1) Non-SMCA systems check MCA_STATUS and log error if found.
 864 * 2) SMCA systems check MCA_STATUS. If error is found then log it and also
 865 *    clear MCA_DESTAT.
 866 * 3) SMCA systems check MCA_DESTAT, if error was not found in MCA_STATUS, and
 867 *    log it.
 868 */
 869static void log_error_deferred(unsigned int bank)
 870{
 871        bool defrd;
 872
 873        defrd = _log_error_bank(bank, msr_ops.status(bank),
 874                                        msr_ops.addr(bank), 0);
 875
 876        if (!mce_flags.smca)
 877                return;
 878
 879        /* Clear MCA_DESTAT if we logged the deferred error from MCA_STATUS. */
 880        if (defrd) {
 881                wrmsrl(MSR_AMD64_SMCA_MCx_DESTAT(bank), 0);
 882                return;
 883        }
 884
 885        /*
 886         * Only deferred errors are logged in MCA_DE{STAT,ADDR} so just check
 887         * for a valid error.
 888         */
 889        _log_error_bank(bank, MSR_AMD64_SMCA_MCx_DESTAT(bank),
 890                              MSR_AMD64_SMCA_MCx_DEADDR(bank), 0);
 891}
 892
 893/* APIC interrupt handler for deferred errors */
 894static void amd_deferred_error_interrupt(void)
 895{
 896        unsigned int bank;
 897
 898        for (bank = 0; bank < mca_cfg.banks; ++bank)
 899                log_error_deferred(bank);
 900}
 901
 902static void log_error_thresholding(unsigned int bank, u64 misc)
 903{
 904        _log_error_bank(bank, msr_ops.status(bank), msr_ops.addr(bank), misc);
 905}
 906
 907static void log_and_reset_block(struct threshold_block *block)
 908{
 909        struct thresh_restart tr;
 910        u32 low = 0, high = 0;
 911
 912        if (!block)
 913                return;
 914
 915        if (rdmsr_safe(block->address, &low, &high))
 916                return;
 917
 918        if (!(high & MASK_OVERFLOW_HI))
 919                return;
 920
 921        /* Log the MCE which caused the threshold event. */
 922        log_error_thresholding(block->bank, ((u64)high << 32) | low);
 923
 924        /* Reset threshold block after logging error. */
 925        memset(&tr, 0, sizeof(tr));
 926        tr.b = block;
 927        threshold_restart_bank(&tr);
 928}
 929
 930/*
 931 * Threshold interrupt handler will service THRESHOLD_APIC_VECTOR. The interrupt
 932 * goes off when error_count reaches threshold_limit.
 933 */
 934static void amd_threshold_interrupt(void)
 935{
 936        struct threshold_block *first_block = NULL, *block = NULL, *tmp = NULL;
 937        unsigned int bank, cpu = smp_processor_id();
 938
 939        for (bank = 0; bank < mca_cfg.banks; ++bank) {
 940                if (!(per_cpu(bank_map, cpu) & (1 << bank)))
 941                        continue;
 942
 943                first_block = per_cpu(threshold_banks, cpu)[bank]->blocks;
 944                if (!first_block)
 945                        continue;
 946
 947                /*
 948                 * The first block is also the head of the list. Check it first
 949                 * before iterating over the rest.
 950                 */
 951                log_and_reset_block(first_block);
 952                list_for_each_entry_safe(block, tmp, &first_block->miscj, miscj)
 953                        log_and_reset_block(block);
 954        }
 955}
 956
 957/*
 958 * Sysfs Interface
 959 */
 960
 961struct threshold_attr {
 962        struct attribute attr;
 963        ssize_t (*show) (struct threshold_block *, char *);
 964        ssize_t (*store) (struct threshold_block *, const char *, size_t count);
 965};
 966
 967#define SHOW_FIELDS(name)                                               \
 968static ssize_t show_ ## name(struct threshold_block *b, char *buf)      \
 969{                                                                       \
 970        return sprintf(buf, "%lu\n", (unsigned long) b->name);          \
 971}
 972SHOW_FIELDS(interrupt_enable)
 973SHOW_FIELDS(threshold_limit)
 974
 975static ssize_t
 976store_interrupt_enable(struct threshold_block *b, const char *buf, size_t size)
 977{
 978        struct thresh_restart tr;
 979        unsigned long new;
 980
 981        if (!b->interrupt_capable)
 982                return -EINVAL;
 983
 984        if (kstrtoul(buf, 0, &new) < 0)
 985                return -EINVAL;
 986
 987        b->interrupt_enable = !!new;
 988
 989        memset(&tr, 0, sizeof(tr));
 990        tr.b            = b;
 991
 992        smp_call_function_single(b->cpu, threshold_restart_bank, &tr, 1);
 993
 994        return size;
 995}
 996
 997static ssize_t
 998store_threshold_limit(struct threshold_block *b, const char *buf, size_t size)
 999{
1000        struct thresh_restart tr;
1001        unsigned long new;
1002
1003        if (kstrtoul(buf, 0, &new) < 0)
1004                return -EINVAL;
1005
1006        if (new > THRESHOLD_MAX)
1007                new = THRESHOLD_MAX;
1008        if (new < 1)
1009                new = 1;
1010
1011        memset(&tr, 0, sizeof(tr));
1012        tr.old_limit = b->threshold_limit;
1013        b->threshold_limit = new;
1014        tr.b = b;
1015
1016        smp_call_function_single(b->cpu, threshold_restart_bank, &tr, 1);
1017
1018        return size;
1019}
1020
1021static ssize_t show_error_count(struct threshold_block *b, char *buf)
1022{
1023        u32 lo, hi;
1024
1025        rdmsr_on_cpu(b->cpu, b->address, &lo, &hi);
1026
1027        return sprintf(buf, "%u\n", ((hi & THRESHOLD_MAX) -
1028                                     (THRESHOLD_MAX - b->threshold_limit)));
1029}
1030
1031static struct threshold_attr error_count = {
1032        .attr = {.name = __stringify(error_count), .mode = 0444 },
1033        .show = show_error_count,
1034};
1035
1036#define RW_ATTR(val)                                                    \
1037static struct threshold_attr val = {                                    \
1038        .attr   = {.name = __stringify(val), .mode = 0644 },            \
1039        .show   = show_## val,                                          \
1040        .store  = store_## val,                                         \
1041};
1042
1043RW_ATTR(interrupt_enable);
1044RW_ATTR(threshold_limit);
1045
1046static struct attribute *default_attrs[] = {
1047        &threshold_limit.attr,
1048        &error_count.attr,
1049        NULL,   /* possibly interrupt_enable if supported, see below */
1050        NULL,
1051};
1052
1053#define to_block(k)     container_of(k, struct threshold_block, kobj)
1054#define to_attr(a)      container_of(a, struct threshold_attr, attr)
1055
1056static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
1057{
1058        struct threshold_block *b = to_block(kobj);
1059        struct threshold_attr *a = to_attr(attr);
1060        ssize_t ret;
1061
1062        ret = a->show ? a->show(b, buf) : -EIO;
1063
1064        return ret;
1065}
1066
1067static ssize_t store(struct kobject *kobj, struct attribute *attr,
1068                     const char *buf, size_t count)
1069{
1070        struct threshold_block *b = to_block(kobj);
1071        struct threshold_attr *a = to_attr(attr);
1072        ssize_t ret;
1073
1074        ret = a->store ? a->store(b, buf, count) : -EIO;
1075
1076        return ret;
1077}
1078
1079static const struct sysfs_ops threshold_ops = {
1080        .show                   = show,
1081        .store                  = store,
1082};
1083
1084static struct kobj_type threshold_ktype = {
1085        .sysfs_ops              = &threshold_ops,
1086        .default_attrs          = default_attrs,
1087};
1088
1089static const char *get_name(unsigned int bank, struct threshold_block *b)
1090{
1091        enum smca_bank_types bank_type;
1092
1093        if (!mce_flags.smca) {
1094                if (b && bank == 4)
1095                        return bank4_names(b);
1096
1097                return th_names[bank];
1098        }
1099
1100        bank_type = smca_get_bank_type(bank);
1101        if (bank_type >= N_SMCA_BANK_TYPES)
1102                return NULL;
1103
1104        if (b && bank_type == SMCA_UMC) {
1105                if (b->block < ARRAY_SIZE(smca_umc_block_names))
1106                        return smca_umc_block_names[b->block];
1107                return NULL;
1108        }
1109
1110        if (smca_banks[bank].hwid->count == 1)
1111                return smca_get_name(bank_type);
1112
1113        snprintf(buf_mcatype, MAX_MCATYPE_NAME_LEN,
1114                 "%s_%x", smca_get_name(bank_type),
1115                          smca_banks[bank].sysfs_id);
1116        return buf_mcatype;
1117}
1118
1119static int allocate_threshold_blocks(unsigned int cpu, unsigned int bank,
1120                                     unsigned int block, u32 address)
1121{
1122        struct threshold_block *b = NULL;
1123        u32 low, high;
1124        int err;
1125
1126        if ((bank >= mca_cfg.banks) || (block >= NR_BLOCKS))
1127                return 0;
1128
1129        if (rdmsr_safe_on_cpu(cpu, address, &low, &high))
1130                return 0;
1131
1132        if (!(high & MASK_VALID_HI)) {
1133                if (block)
1134                        goto recurse;
1135                else
1136                        return 0;
1137        }
1138
1139        if (!(high & MASK_CNTP_HI)  ||
1140             (high & MASK_LOCKED_HI))
1141                goto recurse;
1142
1143        b = kzalloc(sizeof(struct threshold_block), GFP_KERNEL);
1144        if (!b)
1145                return -ENOMEM;
1146
1147        b->block                = block;
1148        b->bank                 = bank;
1149        b->cpu                  = cpu;
1150        b->address              = address;
1151        b->interrupt_enable     = 0;
1152        b->interrupt_capable    = lvt_interrupt_supported(bank, high);
1153        b->threshold_limit      = THRESHOLD_MAX;
1154
1155        if (b->interrupt_capable) {
1156                threshold_ktype.default_attrs[2] = &interrupt_enable.attr;
1157                b->interrupt_enable = 1;
1158        } else {
1159                threshold_ktype.default_attrs[2] = NULL;
1160        }
1161
1162        INIT_LIST_HEAD(&b->miscj);
1163
1164        if (per_cpu(threshold_banks, cpu)[bank]->blocks) {
1165                list_add(&b->miscj,
1166                         &per_cpu(threshold_banks, cpu)[bank]->blocks->miscj);
1167        } else {
1168                per_cpu(threshold_banks, cpu)[bank]->blocks = b;
1169        }
1170
1171        err = kobject_init_and_add(&b->kobj, &threshold_ktype,
1172                                   per_cpu(threshold_banks, cpu)[bank]->kobj,
1173                                   get_name(bank, b));
1174        if (err)
1175                goto out_free;
1176recurse:
1177        address = get_block_address(address, low, high, bank, ++block);
1178        if (!address)
1179                return 0;
1180
1181        err = allocate_threshold_blocks(cpu, bank, block, address);
1182        if (err)
1183                goto out_free;
1184
1185        if (b)
1186                kobject_uevent(&b->kobj, KOBJ_ADD);
1187
1188        return err;
1189
1190out_free:
1191        if (b) {
1192                kobject_put(&b->kobj);
1193                list_del(&b->miscj);
1194                kfree(b);
1195        }
1196        return err;
1197}
1198
1199static int __threshold_add_blocks(struct threshold_bank *b)
1200{
1201        struct list_head *head = &b->blocks->miscj;
1202        struct threshold_block *pos = NULL;
1203        struct threshold_block *tmp = NULL;
1204        int err = 0;
1205
1206        err = kobject_add(&b->blocks->kobj, b->kobj, b->blocks->kobj.name);
1207        if (err)
1208                return err;
1209
1210        list_for_each_entry_safe(pos, tmp, head, miscj) {
1211
1212                err = kobject_add(&pos->kobj, b->kobj, pos->kobj.name);
1213                if (err) {
1214                        list_for_each_entry_safe_reverse(pos, tmp, head, miscj)
1215                                kobject_del(&pos->kobj);
1216
1217                        return err;
1218                }
1219        }
1220        return err;
1221}
1222
1223static int threshold_create_bank(unsigned int cpu, unsigned int bank)
1224{
1225        struct device *dev = per_cpu(mce_device, cpu);
1226        struct amd_northbridge *nb = NULL;
1227        struct threshold_bank *b = NULL;
1228        const char *name = get_name(bank, NULL);
1229        int err = 0;
1230
1231        if (!dev)
1232                return -ENODEV;
1233
1234        if (is_shared_bank(bank)) {
1235                nb = node_to_amd_nb(amd_get_nb_id(cpu));
1236
1237                /* threshold descriptor already initialized on this node? */
1238                if (nb && nb->bank4) {
1239                        /* yes, use it */
1240                        b = nb->bank4;
1241                        err = kobject_add(b->kobj, &dev->kobj, name);
1242                        if (err)
1243                                goto out;
1244
1245                        per_cpu(threshold_banks, cpu)[bank] = b;
1246                        refcount_inc(&b->cpus);
1247
1248                        err = __threshold_add_blocks(b);
1249
1250                        goto out;
1251                }
1252        }
1253
1254        b = kzalloc(sizeof(struct threshold_bank), GFP_KERNEL);
1255        if (!b) {
1256                err = -ENOMEM;
1257                goto out;
1258        }
1259
1260        b->kobj = kobject_create_and_add(name, &dev->kobj);
1261        if (!b->kobj) {
1262                err = -EINVAL;
1263                goto out_free;
1264        }
1265
1266        per_cpu(threshold_banks, cpu)[bank] = b;
1267
1268        if (is_shared_bank(bank)) {
1269                refcount_set(&b->cpus, 1);
1270
1271                /* nb is already initialized, see above */
1272                if (nb) {
1273                        WARN_ON(nb->bank4);
1274                        nb->bank4 = b;
1275                }
1276        }
1277
1278        err = allocate_threshold_blocks(cpu, bank, 0, msr_ops.misc(bank));
1279        if (!err)
1280                goto out;
1281
1282 out_free:
1283        kfree(b);
1284
1285 out:
1286        return err;
1287}
1288
1289static void deallocate_threshold_block(unsigned int cpu,
1290                                                 unsigned int bank)
1291{
1292        struct threshold_block *pos = NULL;
1293        struct threshold_block *tmp = NULL;
1294        struct threshold_bank *head = per_cpu(threshold_banks, cpu)[bank];
1295
1296        if (!head)
1297                return;
1298
1299        list_for_each_entry_safe(pos, tmp, &head->blocks->miscj, miscj) {
1300                kobject_put(&pos->kobj);
1301                list_del(&pos->miscj);
1302                kfree(pos);
1303        }
1304
1305        kfree(per_cpu(threshold_banks, cpu)[bank]->blocks);
1306        per_cpu(threshold_banks, cpu)[bank]->blocks = NULL;
1307}
1308
1309static void __threshold_remove_blocks(struct threshold_bank *b)
1310{
1311        struct threshold_block *pos = NULL;
1312        struct threshold_block *tmp = NULL;
1313
1314        kobject_del(b->kobj);
1315
1316        list_for_each_entry_safe(pos, tmp, &b->blocks->miscj, miscj)
1317                kobject_del(&pos->kobj);
1318}
1319
1320static void threshold_remove_bank(unsigned int cpu, int bank)
1321{
1322        struct amd_northbridge *nb;
1323        struct threshold_bank *b;
1324
1325        b = per_cpu(threshold_banks, cpu)[bank];
1326        if (!b)
1327                return;
1328
1329        if (!b->blocks)
1330                goto free_out;
1331
1332        if (is_shared_bank(bank)) {
1333                if (!refcount_dec_and_test(&b->cpus)) {
1334                        __threshold_remove_blocks(b);
1335                        per_cpu(threshold_banks, cpu)[bank] = NULL;
1336                        return;
1337                } else {
1338                        /*
1339                         * the last CPU on this node using the shared bank is
1340                         * going away, remove that bank now.
1341                         */
1342                        nb = node_to_amd_nb(amd_get_nb_id(cpu));
1343                        nb->bank4 = NULL;
1344                }
1345        }
1346
1347        deallocate_threshold_block(cpu, bank);
1348
1349free_out:
1350        kobject_del(b->kobj);
1351        kobject_put(b->kobj);
1352        kfree(b);
1353        per_cpu(threshold_banks, cpu)[bank] = NULL;
1354}
1355
1356int mce_threshold_remove_device(unsigned int cpu)
1357{
1358        unsigned int bank;
1359
1360        for (bank = 0; bank < mca_cfg.banks; ++bank) {
1361                if (!(per_cpu(bank_map, cpu) & (1 << bank)))
1362                        continue;
1363                threshold_remove_bank(cpu, bank);
1364        }
1365        kfree(per_cpu(threshold_banks, cpu));
1366        per_cpu(threshold_banks, cpu) = NULL;
1367        return 0;
1368}
1369
1370/* create dir/files for all valid threshold banks */
1371int mce_threshold_create_device(unsigned int cpu)
1372{
1373        unsigned int bank;
1374        struct threshold_bank **bp;
1375        int err = 0;
1376
1377        bp = per_cpu(threshold_banks, cpu);
1378        if (bp)
1379                return 0;
1380
1381        bp = kcalloc(mca_cfg.banks, sizeof(struct threshold_bank *),
1382                     GFP_KERNEL);
1383        if (!bp)
1384                return -ENOMEM;
1385
1386        per_cpu(threshold_banks, cpu) = bp;
1387
1388        for (bank = 0; bank < mca_cfg.banks; ++bank) {
1389                if (!(per_cpu(bank_map, cpu) & (1 << bank)))
1390                        continue;
1391                err = threshold_create_bank(cpu, bank);
1392                if (err)
1393                        goto err;
1394        }
1395        return err;
1396err:
1397        mce_threshold_remove_device(cpu);
1398        return err;
1399}
1400
1401static __init int threshold_init_device(void)
1402{
1403        unsigned lcpu = 0;
1404
1405        /* to hit CPUs online before the notifier is up */
1406        for_each_online_cpu(lcpu) {
1407                int err = mce_threshold_create_device(lcpu);
1408
1409                if (err)
1410                        return err;
1411        }
1412
1413        if (thresholding_irq_en)
1414                mce_threshold_vector = amd_threshold_interrupt;
1415
1416        return 0;
1417}
1418/*
1419 * there are 3 funcs which need to be _initcalled in a logic sequence:
1420 * 1. xen_late_init_mcelog
1421 * 2. mcheck_init_device
1422 * 3. threshold_init_device
1423 *
1424 * xen_late_init_mcelog must register xen_mce_chrdev_device before
1425 * native mce_chrdev_device registration if running under xen platform;
1426 *
1427 * mcheck_init_device should be inited before threshold_init_device to
1428 * initialize mce_device, otherwise a NULL ptr dereference will cause panic.
1429 *
1430 * so we use following _initcalls
1431 * 1. device_initcall(xen_late_init_mcelog);
1432 * 2. device_initcall_sync(mcheck_init_device);
1433 * 3. late_initcall(threshold_init_device);
1434 *
1435 * when running under xen, the initcall order is 1,2,3;
1436 * on baremetal, we skip 1 and we do only 2 and 3.
1437 */
1438late_initcall(threshold_init_device);
1439