linux/arch/x86/kernel/setup.c
<<
>>
Prefs
   1/*
   2 *  Copyright (C) 1995  Linus Torvalds
   3 *
   4 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
   5 *
   6 *  Memory region support
   7 *      David Parsons <orc@pell.chi.il.us>, July-August 1999
   8 *
   9 *  Added E820 sanitization routine (removes overlapping memory regions);
  10 *  Brian Moyle <bmoyle@mvista.com>, February 2001
  11 *
  12 * Moved CPU detection code to cpu/${cpu}.c
  13 *    Patrick Mochel <mochel@osdl.org>, March 2002
  14 *
  15 *  Provisions for empty E820 memory regions (reported by certain BIOSes).
  16 *  Alex Achenbach <xela@slit.de>, December 2002.
  17 *
  18 */
  19
  20/*
  21 * This file handles the architecture-dependent parts of initialization
  22 */
  23
  24#include <linux/sched.h>
  25#include <linux/mm.h>
  26#include <linux/mmzone.h>
  27#include <linux/screen_info.h>
  28#include <linux/ioport.h>
  29#include <linux/acpi.h>
  30#include <linux/sfi.h>
  31#include <linux/apm_bios.h>
  32#include <linux/initrd.h>
  33#include <linux/memblock.h>
  34#include <linux/seq_file.h>
  35#include <linux/console.h>
  36#include <linux/root_dev.h>
  37#include <linux/highmem.h>
  38#include <linux/export.h>
  39#include <linux/efi.h>
  40#include <linux/init.h>
  41#include <linux/edd.h>
  42#include <linux/iscsi_ibft.h>
  43#include <linux/nodemask.h>
  44#include <linux/kexec.h>
  45#include <linux/dmi.h>
  46#include <linux/pfn.h>
  47#include <linux/pci.h>
  48#include <asm/pci-direct.h>
  49#include <linux/init_ohci1394_dma.h>
  50#include <linux/kvm_para.h>
  51#include <linux/dma-contiguous.h>
  52#include <xen/xen.h>
  53#include <uapi/linux/mount.h>
  54
  55#include <linux/errno.h>
  56#include <linux/kernel.h>
  57#include <linux/stddef.h>
  58#include <linux/unistd.h>
  59#include <linux/ptrace.h>
  60#include <linux/user.h>
  61#include <linux/delay.h>
  62
  63#include <linux/kallsyms.h>
  64#include <linux/cpufreq.h>
  65#include <linux/dma-mapping.h>
  66#include <linux/ctype.h>
  67#include <linux/uaccess.h>
  68
  69#include <linux/percpu.h>
  70#include <linux/crash_dump.h>
  71#include <linux/tboot.h>
  72#include <linux/jiffies.h>
  73#include <linux/mem_encrypt.h>
  74
  75#include <linux/usb/xhci-dbgp.h>
  76#include <video/edid.h>
  77
  78#include <asm/mtrr.h>
  79#include <asm/apic.h>
  80#include <asm/realmode.h>
  81#include <asm/e820/api.h>
  82#include <asm/mpspec.h>
  83#include <asm/setup.h>
  84#include <asm/efi.h>
  85#include <asm/timer.h>
  86#include <asm/i8259.h>
  87#include <asm/sections.h>
  88#include <asm/io_apic.h>
  89#include <asm/ist.h>
  90#include <asm/setup_arch.h>
  91#include <asm/bios_ebda.h>
  92#include <asm/cacheflush.h>
  93#include <asm/processor.h>
  94#include <asm/bugs.h>
  95#include <asm/kasan.h>
  96
  97#include <asm/vsyscall.h>
  98#include <asm/cpu.h>
  99#include <asm/desc.h>
 100#include <asm/dma.h>
 101#include <asm/iommu.h>
 102#include <asm/gart.h>
 103#include <asm/mmu_context.h>
 104#include <asm/proto.h>
 105
 106#include <asm/paravirt.h>
 107#include <asm/hypervisor.h>
 108#include <asm/olpc_ofw.h>
 109
 110#include <asm/percpu.h>
 111#include <asm/topology.h>
 112#include <asm/apicdef.h>
 113#include <asm/amd_nb.h>
 114#include <asm/mce.h>
 115#include <asm/alternative.h>
 116#include <asm/prom.h>
 117#include <asm/microcode.h>
 118#include <asm/kaslr.h>
 119#include <asm/unwind.h>
 120
 121/*
 122 * max_low_pfn_mapped: highest direct mapped pfn under 4GB
 123 * max_pfn_mapped:     highest direct mapped pfn over 4GB
 124 *
 125 * The direct mapping only covers E820_TYPE_RAM regions, so the ranges and gaps are
 126 * represented by pfn_mapped
 127 */
 128unsigned long max_low_pfn_mapped;
 129unsigned long max_pfn_mapped;
 130
 131#ifdef CONFIG_DMI
 132RESERVE_BRK(dmi_alloc, 65536);
 133#endif
 134
 135
 136static __initdata unsigned long _brk_start = (unsigned long)__brk_base;
 137unsigned long _brk_end = (unsigned long)__brk_base;
 138
 139struct boot_params boot_params;
 140
 141/*
 142 * Machine setup..
 143 */
 144static struct resource data_resource = {
 145        .name   = "Kernel data",
 146        .start  = 0,
 147        .end    = 0,
 148        .flags  = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
 149};
 150
 151static struct resource code_resource = {
 152        .name   = "Kernel code",
 153        .start  = 0,
 154        .end    = 0,
 155        .flags  = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
 156};
 157
 158static struct resource bss_resource = {
 159        .name   = "Kernel bss",
 160        .start  = 0,
 161        .end    = 0,
 162        .flags  = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
 163};
 164
 165
 166#ifdef CONFIG_X86_32
 167/* cpu data as detected by the assembly code in head_32.S */
 168struct cpuinfo_x86 new_cpu_data;
 169
 170/* common cpu data for all cpus */
 171struct cpuinfo_x86 boot_cpu_data __read_mostly;
 172EXPORT_SYMBOL(boot_cpu_data);
 173
 174unsigned int def_to_bigsmp;
 175
 176/* for MCA, but anyone else can use it if they want */
 177unsigned int machine_id;
 178unsigned int machine_submodel_id;
 179unsigned int BIOS_revision;
 180
 181struct apm_info apm_info;
 182EXPORT_SYMBOL(apm_info);
 183
 184#if defined(CONFIG_X86_SPEEDSTEP_SMI) || \
 185        defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE)
 186struct ist_info ist_info;
 187EXPORT_SYMBOL(ist_info);
 188#else
 189struct ist_info ist_info;
 190#endif
 191
 192#else
 193struct cpuinfo_x86 boot_cpu_data __read_mostly;
 194EXPORT_SYMBOL(boot_cpu_data);
 195#endif
 196
 197
 198#if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64)
 199__visible unsigned long mmu_cr4_features __ro_after_init;
 200#else
 201__visible unsigned long mmu_cr4_features __ro_after_init = X86_CR4_PAE;
 202#endif
 203
 204/* Boot loader ID and version as integers, for the benefit of proc_dointvec */
 205int bootloader_type, bootloader_version;
 206
 207/*
 208 * Setup options
 209 */
 210struct screen_info screen_info;
 211EXPORT_SYMBOL(screen_info);
 212struct edid_info edid_info;
 213EXPORT_SYMBOL_GPL(edid_info);
 214
 215extern int root_mountflags;
 216
 217unsigned long saved_video_mode;
 218
 219#define RAMDISK_IMAGE_START_MASK        0x07FF
 220#define RAMDISK_PROMPT_FLAG             0x8000
 221#define RAMDISK_LOAD_FLAG               0x4000
 222
 223static char __initdata command_line[COMMAND_LINE_SIZE];
 224#ifdef CONFIG_CMDLINE_BOOL
 225static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
 226#endif
 227
 228#if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
 229struct edd edd;
 230#ifdef CONFIG_EDD_MODULE
 231EXPORT_SYMBOL(edd);
 232#endif
 233/**
 234 * copy_edd() - Copy the BIOS EDD information
 235 *              from boot_params into a safe place.
 236 *
 237 */
 238static inline void __init copy_edd(void)
 239{
 240     memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
 241            sizeof(edd.mbr_signature));
 242     memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
 243     edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
 244     edd.edd_info_nr = boot_params.eddbuf_entries;
 245}
 246#else
 247static inline void __init copy_edd(void)
 248{
 249}
 250#endif
 251
 252void * __init extend_brk(size_t size, size_t align)
 253{
 254        size_t mask = align - 1;
 255        void *ret;
 256
 257        BUG_ON(_brk_start == 0);
 258        BUG_ON(align & mask);
 259
 260        _brk_end = (_brk_end + mask) & ~mask;
 261        BUG_ON((char *)(_brk_end + size) > __brk_limit);
 262
 263        ret = (void *)_brk_end;
 264        _brk_end += size;
 265
 266        memset(ret, 0, size);
 267
 268        return ret;
 269}
 270
 271#ifdef CONFIG_X86_32
 272static void __init cleanup_highmap(void)
 273{
 274}
 275#endif
 276
 277static void __init reserve_brk(void)
 278{
 279        if (_brk_end > _brk_start)
 280                memblock_reserve(__pa_symbol(_brk_start),
 281                                 _brk_end - _brk_start);
 282
 283        /* Mark brk area as locked down and no longer taking any
 284           new allocations */
 285        _brk_start = 0;
 286}
 287
 288u64 relocated_ramdisk;
 289
 290#ifdef CONFIG_BLK_DEV_INITRD
 291
 292static u64 __init get_ramdisk_image(void)
 293{
 294        u64 ramdisk_image = boot_params.hdr.ramdisk_image;
 295
 296        ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32;
 297
 298        return ramdisk_image;
 299}
 300static u64 __init get_ramdisk_size(void)
 301{
 302        u64 ramdisk_size = boot_params.hdr.ramdisk_size;
 303
 304        ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32;
 305
 306        return ramdisk_size;
 307}
 308
 309static void __init relocate_initrd(void)
 310{
 311        /* Assume only end is not page aligned */
 312        u64 ramdisk_image = get_ramdisk_image();
 313        u64 ramdisk_size  = get_ramdisk_size();
 314        u64 area_size     = PAGE_ALIGN(ramdisk_size);
 315
 316        /* We need to move the initrd down into directly mapped mem */
 317        relocated_ramdisk = memblock_find_in_range(0, PFN_PHYS(max_pfn_mapped),
 318                                                   area_size, PAGE_SIZE);
 319
 320        if (!relocated_ramdisk)
 321                panic("Cannot find place for new RAMDISK of size %lld\n",
 322                      ramdisk_size);
 323
 324        /* Note: this includes all the mem currently occupied by
 325           the initrd, we rely on that fact to keep the data intact. */
 326        memblock_reserve(relocated_ramdisk, area_size);
 327        initrd_start = relocated_ramdisk + PAGE_OFFSET;
 328        initrd_end   = initrd_start + ramdisk_size;
 329        printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n",
 330               relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
 331
 332        copy_from_early_mem((void *)initrd_start, ramdisk_image, ramdisk_size);
 333
 334        printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to"
 335                " [mem %#010llx-%#010llx]\n",
 336                ramdisk_image, ramdisk_image + ramdisk_size - 1,
 337                relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
 338}
 339
 340static void __init early_reserve_initrd(void)
 341{
 342        /* Assume only end is not page aligned */
 343        u64 ramdisk_image = get_ramdisk_image();
 344        u64 ramdisk_size  = get_ramdisk_size();
 345        u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
 346
 347        if (!boot_params.hdr.type_of_loader ||
 348            !ramdisk_image || !ramdisk_size)
 349                return;         /* No initrd provided by bootloader */
 350
 351        memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image);
 352}
 353static void __init reserve_initrd(void)
 354{
 355        /* Assume only end is not page aligned */
 356        u64 ramdisk_image = get_ramdisk_image();
 357        u64 ramdisk_size  = get_ramdisk_size();
 358        u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
 359        u64 mapped_size;
 360
 361        if (!boot_params.hdr.type_of_loader ||
 362            !ramdisk_image || !ramdisk_size)
 363                return;         /* No initrd provided by bootloader */
 364
 365        initrd_start = 0;
 366
 367        mapped_size = memblock_mem_size(max_pfn_mapped);
 368        if (ramdisk_size >= (mapped_size>>1))
 369                panic("initrd too large to handle, "
 370                       "disabling initrd (%lld needed, %lld available)\n",
 371                       ramdisk_size, mapped_size>>1);
 372
 373        printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image,
 374                        ramdisk_end - 1);
 375
 376        if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image),
 377                                PFN_DOWN(ramdisk_end))) {
 378                /* All are mapped, easy case */
 379                initrd_start = ramdisk_image + PAGE_OFFSET;
 380                initrd_end = initrd_start + ramdisk_size;
 381                return;
 382        }
 383
 384        relocate_initrd();
 385
 386        memblock_free(ramdisk_image, ramdisk_end - ramdisk_image);
 387}
 388
 389#else
 390static void __init early_reserve_initrd(void)
 391{
 392}
 393static void __init reserve_initrd(void)
 394{
 395}
 396#endif /* CONFIG_BLK_DEV_INITRD */
 397
 398static void __init parse_setup_data(void)
 399{
 400        struct setup_data *data;
 401        u64 pa_data, pa_next;
 402
 403        pa_data = boot_params.hdr.setup_data;
 404        while (pa_data) {
 405                u32 data_len, data_type;
 406
 407                data = early_memremap(pa_data, sizeof(*data));
 408                data_len = data->len + sizeof(struct setup_data);
 409                data_type = data->type;
 410                pa_next = data->next;
 411                early_memunmap(data, sizeof(*data));
 412
 413                switch (data_type) {
 414                case SETUP_E820_EXT:
 415                        e820__memory_setup_extended(pa_data, data_len);
 416                        break;
 417                case SETUP_DTB:
 418                        add_dtb(pa_data);
 419                        break;
 420                case SETUP_EFI:
 421                        parse_efi_setup(pa_data, data_len);
 422                        break;
 423                default:
 424                        break;
 425                }
 426                pa_data = pa_next;
 427        }
 428}
 429
 430static void __init memblock_x86_reserve_range_setup_data(void)
 431{
 432        struct setup_data *data;
 433        u64 pa_data;
 434
 435        pa_data = boot_params.hdr.setup_data;
 436        while (pa_data) {
 437                data = early_memremap(pa_data, sizeof(*data));
 438                memblock_reserve(pa_data, sizeof(*data) + data->len);
 439                pa_data = data->next;
 440                early_memunmap(data, sizeof(*data));
 441        }
 442}
 443
 444/*
 445 * --------- Crashkernel reservation ------------------------------
 446 */
 447
 448#ifdef CONFIG_KEXEC_CORE
 449
 450/* 16M alignment for crash kernel regions */
 451#define CRASH_ALIGN             (16 << 20)
 452
 453/*
 454 * Keep the crash kernel below this limit.  On 32 bits earlier kernels
 455 * would limit the kernel to the low 512 MiB due to mapping restrictions.
 456 * On 64bit, old kexec-tools need to under 896MiB.
 457 */
 458#ifdef CONFIG_X86_32
 459# define CRASH_ADDR_LOW_MAX     (512 << 20)
 460# define CRASH_ADDR_HIGH_MAX    (512 << 20)
 461#else
 462# define CRASH_ADDR_LOW_MAX     (896UL << 20)
 463# define CRASH_ADDR_HIGH_MAX    MAXMEM
 464#endif
 465
 466static int __init reserve_crashkernel_low(void)
 467{
 468#ifdef CONFIG_X86_64
 469        unsigned long long base, low_base = 0, low_size = 0;
 470        unsigned long total_low_mem;
 471        int ret;
 472
 473        total_low_mem = memblock_mem_size(1UL << (32 - PAGE_SHIFT));
 474
 475        /* crashkernel=Y,low */
 476        ret = parse_crashkernel_low(boot_command_line, total_low_mem, &low_size, &base);
 477        if (ret) {
 478                /*
 479                 * two parts from lib/swiotlb.c:
 480                 * -swiotlb size: user-specified with swiotlb= or default.
 481                 *
 482                 * -swiotlb overflow buffer: now hardcoded to 32k. We round it
 483                 * to 8M for other buffers that may need to stay low too. Also
 484                 * make sure we allocate enough extra low memory so that we
 485                 * don't run out of DMA buffers for 32-bit devices.
 486                 */
 487                low_size = max(swiotlb_size_or_default() + (8UL << 20), 256UL << 20);
 488        } else {
 489                /* passed with crashkernel=0,low ? */
 490                if (!low_size)
 491                        return 0;
 492        }
 493
 494        low_base = memblock_find_in_range(0, 1ULL << 32, low_size, CRASH_ALIGN);
 495        if (!low_base) {
 496                pr_err("Cannot reserve %ldMB crashkernel low memory, please try smaller size.\n",
 497                       (unsigned long)(low_size >> 20));
 498                return -ENOMEM;
 499        }
 500
 501        ret = memblock_reserve(low_base, low_size);
 502        if (ret) {
 503                pr_err("%s: Error reserving crashkernel low memblock.\n", __func__);
 504                return ret;
 505        }
 506
 507        pr_info("Reserving %ldMB of low memory at %ldMB for crashkernel (System low RAM: %ldMB)\n",
 508                (unsigned long)(low_size >> 20),
 509                (unsigned long)(low_base >> 20),
 510                (unsigned long)(total_low_mem >> 20));
 511
 512        crashk_low_res.start = low_base;
 513        crashk_low_res.end   = low_base + low_size - 1;
 514        insert_resource(&iomem_resource, &crashk_low_res);
 515#endif
 516        return 0;
 517}
 518
 519static void __init reserve_crashkernel(void)
 520{
 521        unsigned long long crash_size, crash_base, total_mem;
 522        bool high = false;
 523        int ret;
 524
 525        total_mem = memblock_phys_mem_size();
 526
 527        /* crashkernel=XM */
 528        ret = parse_crashkernel(boot_command_line, total_mem, &crash_size, &crash_base);
 529        if (ret != 0 || crash_size <= 0) {
 530                /* crashkernel=X,high */
 531                ret = parse_crashkernel_high(boot_command_line, total_mem,
 532                                             &crash_size, &crash_base);
 533                if (ret != 0 || crash_size <= 0)
 534                        return;
 535                high = true;
 536        }
 537
 538        if (xen_pv_domain()) {
 539                pr_info("Ignoring crashkernel for a Xen PV domain\n");
 540                return;
 541        }
 542
 543        /* 0 means: find the address automatically */
 544        if (crash_base <= 0) {
 545                /*
 546                 * Set CRASH_ADDR_LOW_MAX upper bound for crash memory,
 547                 * as old kexec-tools loads bzImage below that, unless
 548                 * "crashkernel=size[KMG],high" is specified.
 549                 */
 550                crash_base = memblock_find_in_range(CRASH_ALIGN,
 551                                                    high ? CRASH_ADDR_HIGH_MAX
 552                                                         : CRASH_ADDR_LOW_MAX,
 553                                                    crash_size, CRASH_ALIGN);
 554                if (!crash_base) {
 555                        pr_info("crashkernel reservation failed - No suitable area found.\n");
 556                        return;
 557                }
 558
 559        } else {
 560                unsigned long long start;
 561
 562                start = memblock_find_in_range(crash_base,
 563                                               crash_base + crash_size,
 564                                               crash_size, 1 << 20);
 565                if (start != crash_base) {
 566                        pr_info("crashkernel reservation failed - memory is in use.\n");
 567                        return;
 568                }
 569        }
 570        ret = memblock_reserve(crash_base, crash_size);
 571        if (ret) {
 572                pr_err("%s: Error reserving crashkernel memblock.\n", __func__);
 573                return;
 574        }
 575
 576        if (crash_base >= (1ULL << 32) && reserve_crashkernel_low()) {
 577                memblock_free(crash_base, crash_size);
 578                return;
 579        }
 580
 581        pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
 582                (unsigned long)(crash_size >> 20),
 583                (unsigned long)(crash_base >> 20),
 584                (unsigned long)(total_mem >> 20));
 585
 586        crashk_res.start = crash_base;
 587        crashk_res.end   = crash_base + crash_size - 1;
 588        insert_resource(&iomem_resource, &crashk_res);
 589}
 590#else
 591static void __init reserve_crashkernel(void)
 592{
 593}
 594#endif
 595
 596static struct resource standard_io_resources[] = {
 597        { .name = "dma1", .start = 0x00, .end = 0x1f,
 598                .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 599        { .name = "pic1", .start = 0x20, .end = 0x21,
 600                .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 601        { .name = "timer0", .start = 0x40, .end = 0x43,
 602                .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 603        { .name = "timer1", .start = 0x50, .end = 0x53,
 604                .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 605        { .name = "keyboard", .start = 0x60, .end = 0x60,
 606                .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 607        { .name = "keyboard", .start = 0x64, .end = 0x64,
 608                .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 609        { .name = "dma page reg", .start = 0x80, .end = 0x8f,
 610                .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 611        { .name = "pic2", .start = 0xa0, .end = 0xa1,
 612                .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 613        { .name = "dma2", .start = 0xc0, .end = 0xdf,
 614                .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 615        { .name = "fpu", .start = 0xf0, .end = 0xff,
 616                .flags = IORESOURCE_BUSY | IORESOURCE_IO }
 617};
 618
 619void __init reserve_standard_io_resources(void)
 620{
 621        int i;
 622
 623        /* request I/O space for devices used on all i[345]86 PCs */
 624        for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
 625                request_resource(&ioport_resource, &standard_io_resources[i]);
 626
 627}
 628
 629static __init void reserve_ibft_region(void)
 630{
 631        unsigned long addr, size = 0;
 632
 633        addr = find_ibft_region(&size);
 634
 635        if (size)
 636                memblock_reserve(addr, size);
 637}
 638
 639static bool __init snb_gfx_workaround_needed(void)
 640{
 641#ifdef CONFIG_PCI
 642        int i;
 643        u16 vendor, devid;
 644        static const __initconst u16 snb_ids[] = {
 645                0x0102,
 646                0x0112,
 647                0x0122,
 648                0x0106,
 649                0x0116,
 650                0x0126,
 651                0x010a,
 652        };
 653
 654        /* Assume no if something weird is going on with PCI */
 655        if (!early_pci_allowed())
 656                return false;
 657
 658        vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID);
 659        if (vendor != 0x8086)
 660                return false;
 661
 662        devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID);
 663        for (i = 0; i < ARRAY_SIZE(snb_ids); i++)
 664                if (devid == snb_ids[i])
 665                        return true;
 666#endif
 667
 668        return false;
 669}
 670
 671/*
 672 * Sandy Bridge graphics has trouble with certain ranges, exclude
 673 * them from allocation.
 674 */
 675static void __init trim_snb_memory(void)
 676{
 677        static const __initconst unsigned long bad_pages[] = {
 678                0x20050000,
 679                0x20110000,
 680                0x20130000,
 681                0x20138000,
 682                0x40004000,
 683        };
 684        int i;
 685
 686        if (!snb_gfx_workaround_needed())
 687                return;
 688
 689        printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n");
 690
 691        /*
 692         * Reserve all memory below the 1 MB mark that has not
 693         * already been reserved.
 694         */
 695        memblock_reserve(0, 1<<20);
 696        
 697        for (i = 0; i < ARRAY_SIZE(bad_pages); i++) {
 698                if (memblock_reserve(bad_pages[i], PAGE_SIZE))
 699                        printk(KERN_WARNING "failed to reserve 0x%08lx\n",
 700                               bad_pages[i]);
 701        }
 702}
 703
 704/*
 705 * Here we put platform-specific memory range workarounds, i.e.
 706 * memory known to be corrupt or otherwise in need to be reserved on
 707 * specific platforms.
 708 *
 709 * If this gets used more widely it could use a real dispatch mechanism.
 710 */
 711static void __init trim_platform_memory_ranges(void)
 712{
 713        trim_snb_memory();
 714}
 715
 716static void __init trim_bios_range(void)
 717{
 718        /*
 719         * A special case is the first 4Kb of memory;
 720         * This is a BIOS owned area, not kernel ram, but generally
 721         * not listed as such in the E820 table.
 722         *
 723         * This typically reserves additional memory (64KiB by default)
 724         * since some BIOSes are known to corrupt low memory.  See the
 725         * Kconfig help text for X86_RESERVE_LOW.
 726         */
 727        e820__range_update(0, PAGE_SIZE, E820_TYPE_RAM, E820_TYPE_RESERVED);
 728
 729        /*
 730         * special case: Some BIOSen report the PC BIOS
 731         * area (640->1Mb) as ram even though it is not.
 732         * take them out.
 733         */
 734        e820__range_remove(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_TYPE_RAM, 1);
 735
 736        e820__update_table(e820_table);
 737}
 738
 739/* called before trim_bios_range() to spare extra sanitize */
 740static void __init e820_add_kernel_range(void)
 741{
 742        u64 start = __pa_symbol(_text);
 743        u64 size = __pa_symbol(_end) - start;
 744
 745        /*
 746         * Complain if .text .data and .bss are not marked as E820_TYPE_RAM and
 747         * attempt to fix it by adding the range. We may have a confused BIOS,
 748         * or the user may have used memmap=exactmap or memmap=xxM$yyM to
 749         * exclude kernel range. If we really are running on top non-RAM,
 750         * we will crash later anyways.
 751         */
 752        if (e820__mapped_all(start, start + size, E820_TYPE_RAM))
 753                return;
 754
 755        pr_warn(".text .data .bss are not marked as E820_TYPE_RAM!\n");
 756        e820__range_remove(start, size, E820_TYPE_RAM, 0);
 757        e820__range_add(start, size, E820_TYPE_RAM);
 758}
 759
 760static unsigned reserve_low = CONFIG_X86_RESERVE_LOW << 10;
 761
 762static int __init parse_reservelow(char *p)
 763{
 764        unsigned long long size;
 765
 766        if (!p)
 767                return -EINVAL;
 768
 769        size = memparse(p, &p);
 770
 771        if (size < 4096)
 772                size = 4096;
 773
 774        if (size > 640*1024)
 775                size = 640*1024;
 776
 777        reserve_low = size;
 778
 779        return 0;
 780}
 781
 782early_param("reservelow", parse_reservelow);
 783
 784static void __init trim_low_memory_range(void)
 785{
 786        memblock_reserve(0, ALIGN(reserve_low, PAGE_SIZE));
 787}
 788        
 789/*
 790 * Dump out kernel offset information on panic.
 791 */
 792static int
 793dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p)
 794{
 795        if (kaslr_enabled()) {
 796                pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n",
 797                         kaslr_offset(),
 798                         __START_KERNEL,
 799                         __START_KERNEL_map,
 800                         MODULES_VADDR-1);
 801        } else {
 802                pr_emerg("Kernel Offset: disabled\n");
 803        }
 804
 805        return 0;
 806}
 807
 808/*
 809 * Determine if we were loaded by an EFI loader.  If so, then we have also been
 810 * passed the efi memmap, systab, etc., so we should use these data structures
 811 * for initialization.  Note, the efi init code path is determined by the
 812 * global efi_enabled. This allows the same kernel image to be used on existing
 813 * systems (with a traditional BIOS) as well as on EFI systems.
 814 */
 815/*
 816 * setup_arch - architecture-specific boot-time initializations
 817 *
 818 * Note: On x86_64, fixmaps are ready for use even before this is called.
 819 */
 820
 821void __init setup_arch(char **cmdline_p)
 822{
 823        memblock_reserve(__pa_symbol(_text),
 824                         (unsigned long)__bss_stop - (unsigned long)_text);
 825
 826        /*
 827         * Make sure page 0 is always reserved because on systems with
 828         * L1TF its contents can be leaked to user processes.
 829         */
 830        memblock_reserve(0, PAGE_SIZE);
 831
 832        early_reserve_initrd();
 833
 834        /*
 835         * At this point everything still needed from the boot loader
 836         * or BIOS or kernel text should be early reserved or marked not
 837         * RAM in e820. All other memory is free game.
 838         */
 839
 840#ifdef CONFIG_X86_32
 841        memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data));
 842
 843        /*
 844         * copy kernel address range established so far and switch
 845         * to the proper swapper page table
 846         */
 847        clone_pgd_range(swapper_pg_dir     + KERNEL_PGD_BOUNDARY,
 848                        initial_page_table + KERNEL_PGD_BOUNDARY,
 849                        KERNEL_PGD_PTRS);
 850
 851        load_cr3(swapper_pg_dir);
 852        /*
 853         * Note: Quark X1000 CPUs advertise PGE incorrectly and require
 854         * a cr3 based tlb flush, so the following __flush_tlb_all()
 855         * will not flush anything because the cpu quirk which clears
 856         * X86_FEATURE_PGE has not been invoked yet. Though due to the
 857         * load_cr3() above the TLB has been flushed already. The
 858         * quirk is invoked before subsequent calls to __flush_tlb_all()
 859         * so proper operation is guaranteed.
 860         */
 861        __flush_tlb_all();
 862#else
 863        printk(KERN_INFO "Command line: %s\n", boot_command_line);
 864        boot_cpu_data.x86_phys_bits = MAX_PHYSMEM_BITS;
 865#endif
 866
 867        /*
 868         * If we have OLPC OFW, we might end up relocating the fixmap due to
 869         * reserve_top(), so do this before touching the ioremap area.
 870         */
 871        olpc_ofw_detect();
 872
 873        idt_setup_early_traps();
 874        early_cpu_init();
 875        arch_init_ideal_nops();
 876        jump_label_init();
 877        early_ioremap_init();
 878
 879        setup_olpc_ofw_pgd();
 880
 881        ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
 882        screen_info = boot_params.screen_info;
 883        edid_info = boot_params.edid_info;
 884#ifdef CONFIG_X86_32
 885        apm_info.bios = boot_params.apm_bios_info;
 886        ist_info = boot_params.ist_info;
 887#endif
 888        saved_video_mode = boot_params.hdr.vid_mode;
 889        bootloader_type = boot_params.hdr.type_of_loader;
 890        if ((bootloader_type >> 4) == 0xe) {
 891                bootloader_type &= 0xf;
 892                bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4;
 893        }
 894        bootloader_version  = bootloader_type & 0xf;
 895        bootloader_version |= boot_params.hdr.ext_loader_ver << 4;
 896
 897#ifdef CONFIG_BLK_DEV_RAM
 898        rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
 899        rd_prompt = ((boot_params.hdr.ram_size & RAMDISK_PROMPT_FLAG) != 0);
 900        rd_doload = ((boot_params.hdr.ram_size & RAMDISK_LOAD_FLAG) != 0);
 901#endif
 902#ifdef CONFIG_EFI
 903        if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
 904                     EFI32_LOADER_SIGNATURE, 4)) {
 905                set_bit(EFI_BOOT, &efi.flags);
 906        } else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
 907                     EFI64_LOADER_SIGNATURE, 4)) {
 908                set_bit(EFI_BOOT, &efi.flags);
 909                set_bit(EFI_64BIT, &efi.flags);
 910        }
 911#endif
 912
 913        x86_init.oem.arch_setup();
 914
 915        iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1;
 916        e820__memory_setup();
 917        parse_setup_data();
 918
 919        copy_edd();
 920
 921        if (!boot_params.hdr.root_flags)
 922                root_mountflags &= ~MS_RDONLY;
 923        init_mm.start_code = (unsigned long) _text;
 924        init_mm.end_code = (unsigned long) _etext;
 925        init_mm.end_data = (unsigned long) _edata;
 926        init_mm.brk = _brk_end;
 927
 928        mpx_mm_init(&init_mm);
 929
 930        code_resource.start = __pa_symbol(_text);
 931        code_resource.end = __pa_symbol(_etext)-1;
 932        data_resource.start = __pa_symbol(_etext);
 933        data_resource.end = __pa_symbol(_edata)-1;
 934        bss_resource.start = __pa_symbol(__bss_start);
 935        bss_resource.end = __pa_symbol(__bss_stop)-1;
 936
 937#ifdef CONFIG_CMDLINE_BOOL
 938#ifdef CONFIG_CMDLINE_OVERRIDE
 939        strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
 940#else
 941        if (builtin_cmdline[0]) {
 942                /* append boot loader cmdline to builtin */
 943                strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE);
 944                strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE);
 945                strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
 946        }
 947#endif
 948#endif
 949
 950        strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
 951        *cmdline_p = command_line;
 952
 953        /*
 954         * x86_configure_nx() is called before parse_early_param() to detect
 955         * whether hardware doesn't support NX (so that the early EHCI debug
 956         * console setup can safely call set_fixmap()). It may then be called
 957         * again from within noexec_setup() during parsing early parameters
 958         * to honor the respective command line option.
 959         */
 960        x86_configure_nx();
 961
 962        parse_early_param();
 963
 964        if (efi_enabled(EFI_BOOT))
 965                efi_memblock_x86_reserve_range();
 966#ifdef CONFIG_MEMORY_HOTPLUG
 967        /*
 968         * Memory used by the kernel cannot be hot-removed because Linux
 969         * cannot migrate the kernel pages. When memory hotplug is
 970         * enabled, we should prevent memblock from allocating memory
 971         * for the kernel.
 972         *
 973         * ACPI SRAT records all hotpluggable memory ranges. But before
 974         * SRAT is parsed, we don't know about it.
 975         *
 976         * The kernel image is loaded into memory at very early time. We
 977         * cannot prevent this anyway. So on NUMA system, we set any
 978         * node the kernel resides in as un-hotpluggable.
 979         *
 980         * Since on modern servers, one node could have double-digit
 981         * gigabytes memory, we can assume the memory around the kernel
 982         * image is also un-hotpluggable. So before SRAT is parsed, just
 983         * allocate memory near the kernel image to try the best to keep
 984         * the kernel away from hotpluggable memory.
 985         */
 986        if (movable_node_is_enabled())
 987                memblock_set_bottom_up(true);
 988#endif
 989
 990        x86_report_nx();
 991
 992        /* after early param, so could get panic from serial */
 993        memblock_x86_reserve_range_setup_data();
 994
 995        if (acpi_mps_check()) {
 996#ifdef CONFIG_X86_LOCAL_APIC
 997                disable_apic = 1;
 998#endif
 999                setup_clear_cpu_cap(X86_FEATURE_APIC);
1000        }
1001
1002        e820__reserve_setup_data();
1003        e820__finish_early_params();
1004
1005        if (efi_enabled(EFI_BOOT))
1006                efi_init();
1007
1008        dmi_scan_machine();
1009        dmi_memdev_walk();
1010        dmi_set_dump_stack_arch_desc();
1011
1012        /*
1013         * VMware detection requires dmi to be available, so this
1014         * needs to be done after dmi_scan_machine(), for the boot CPU.
1015         */
1016        init_hypervisor_platform();
1017
1018        tsc_early_init();
1019        x86_init.resources.probe_roms();
1020
1021        /* after parse_early_param, so could debug it */
1022        insert_resource(&iomem_resource, &code_resource);
1023        insert_resource(&iomem_resource, &data_resource);
1024        insert_resource(&iomem_resource, &bss_resource);
1025
1026        e820_add_kernel_range();
1027        trim_bios_range();
1028#ifdef CONFIG_X86_32
1029        if (ppro_with_ram_bug()) {
1030                e820__range_update(0x70000000ULL, 0x40000ULL, E820_TYPE_RAM,
1031                                  E820_TYPE_RESERVED);
1032                e820__update_table(e820_table);
1033                printk(KERN_INFO "fixed physical RAM map:\n");
1034                e820__print_table("bad_ppro");
1035        }
1036#else
1037        early_gart_iommu_check();
1038#endif
1039
1040        /*
1041         * partially used pages are not usable - thus
1042         * we are rounding upwards:
1043         */
1044        max_pfn = e820__end_of_ram_pfn();
1045
1046        /* update e820 for memory not covered by WB MTRRs */
1047        mtrr_bp_init();
1048        if (mtrr_trim_uncached_memory(max_pfn))
1049                max_pfn = e820__end_of_ram_pfn();
1050
1051        max_possible_pfn = max_pfn;
1052
1053        /*
1054         * This call is required when the CPU does not support PAT. If
1055         * mtrr_bp_init() invoked it already via pat_init() the call has no
1056         * effect.
1057         */
1058        init_cache_modes();
1059
1060        /*
1061         * Define random base addresses for memory sections after max_pfn is
1062         * defined and before each memory section base is used.
1063         */
1064        kernel_randomize_memory();
1065
1066#ifdef CONFIG_X86_32
1067        /* max_low_pfn get updated here */
1068        find_low_pfn_range();
1069#else
1070        check_x2apic();
1071
1072        /* How many end-of-memory variables you have, grandma! */
1073        /* need this before calling reserve_initrd */
1074        if (max_pfn > (1UL<<(32 - PAGE_SHIFT)))
1075                max_low_pfn = e820__end_of_low_ram_pfn();
1076        else
1077                max_low_pfn = max_pfn;
1078
1079        high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
1080#endif
1081
1082        /*
1083         * Find and reserve possible boot-time SMP configuration:
1084         */
1085        find_smp_config();
1086
1087        reserve_ibft_region();
1088
1089        early_alloc_pgt_buf();
1090
1091        /*
1092         * Need to conclude brk, before e820__memblock_setup()
1093         *  it could use memblock_find_in_range, could overlap with
1094         *  brk area.
1095         */
1096        reserve_brk();
1097
1098        cleanup_highmap();
1099
1100        memblock_set_current_limit(ISA_END_ADDRESS);
1101        e820__memblock_setup();
1102
1103        reserve_bios_regions();
1104
1105        if (efi_enabled(EFI_MEMMAP)) {
1106                efi_fake_memmap();
1107                efi_find_mirror();
1108                efi_esrt_init();
1109
1110                /*
1111                 * The EFI specification says that boot service code won't be
1112                 * called after ExitBootServices(). This is, in fact, a lie.
1113                 */
1114                efi_reserve_boot_services();
1115        }
1116
1117        /* preallocate 4k for mptable mpc */
1118        e820__memblock_alloc_reserved_mpc_new();
1119
1120#ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION
1121        setup_bios_corruption_check();
1122#endif
1123
1124#ifdef CONFIG_X86_32
1125        printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n",
1126                        (max_pfn_mapped<<PAGE_SHIFT) - 1);
1127#endif
1128
1129        reserve_real_mode();
1130
1131        trim_platform_memory_ranges();
1132        trim_low_memory_range();
1133
1134        init_mem_mapping();
1135
1136        idt_setup_early_pf();
1137
1138        /*
1139         * Update mmu_cr4_features (and, indirectly, trampoline_cr4_features)
1140         * with the current CR4 value.  This may not be necessary, but
1141         * auditing all the early-boot CR4 manipulation would be needed to
1142         * rule it out.
1143         *
1144         * Mask off features that don't work outside long mode (just
1145         * PCIDE for now).
1146         */
1147        mmu_cr4_features = __read_cr4() & ~X86_CR4_PCIDE;
1148
1149        memblock_set_current_limit(get_max_mapped());
1150
1151        /*
1152         * NOTE: On x86-32, only from this point on, fixmaps are ready for use.
1153         */
1154
1155#ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
1156        if (init_ohci1394_dma_early)
1157                init_ohci1394_dma_on_all_controllers();
1158#endif
1159        /* Allocate bigger log buffer */
1160        setup_log_buf(1);
1161
1162        if (efi_enabled(EFI_BOOT)) {
1163                switch (boot_params.secure_boot) {
1164                case efi_secureboot_mode_disabled:
1165                        pr_info("Secure boot disabled\n");
1166                        break;
1167                case efi_secureboot_mode_enabled:
1168                        pr_info("Secure boot enabled\n");
1169                        break;
1170                default:
1171                        pr_info("Secure boot could not be determined\n");
1172                        break;
1173                }
1174        }
1175
1176        reserve_initrd();
1177
1178        acpi_table_upgrade();
1179
1180        vsmp_init();
1181
1182        io_delay_init();
1183
1184        early_platform_quirks();
1185
1186        /*
1187         * Parse the ACPI tables for possible boot-time SMP configuration.
1188         */
1189        acpi_boot_table_init();
1190
1191        early_acpi_boot_init();
1192
1193        initmem_init();
1194        dma_contiguous_reserve(max_pfn_mapped << PAGE_SHIFT);
1195
1196        /*
1197         * Reserve memory for crash kernel after SRAT is parsed so that it
1198         * won't consume hotpluggable memory.
1199         */
1200        reserve_crashkernel();
1201
1202        memblock_find_dma_reserve();
1203
1204        if (!early_xdbc_setup_hardware())
1205                early_xdbc_register_console();
1206
1207        x86_init.paging.pagetable_init();
1208
1209        kasan_init();
1210
1211        /*
1212         * Sync back kernel address range.
1213         *
1214         * FIXME: Can the later sync in setup_cpu_entry_areas() replace
1215         * this call?
1216         */
1217        sync_initial_page_table();
1218
1219        tboot_probe();
1220
1221        map_vsyscall();
1222
1223        generic_apic_probe();
1224
1225        early_quirks();
1226
1227        /*
1228         * Read APIC and some other early information from ACPI tables.
1229         */
1230        acpi_boot_init();
1231        sfi_init();
1232        x86_dtb_init();
1233
1234        /*
1235         * get boot-time SMP configuration:
1236         */
1237        get_smp_config();
1238
1239        /*
1240         * Systems w/o ACPI and mptables might not have it mapped the local
1241         * APIC yet, but prefill_possible_map() might need to access it.
1242         */
1243        init_apic_mappings();
1244
1245        prefill_possible_map();
1246
1247        init_cpu_to_node();
1248
1249        io_apic_init_mappings();
1250
1251        x86_init.hyper.guest_late_init();
1252
1253        e820__reserve_resources();
1254        e820__register_nosave_regions(max_pfn);
1255
1256        x86_init.resources.reserve_resources();
1257
1258        e820__setup_pci_gap();
1259
1260#ifdef CONFIG_VT
1261#if defined(CONFIG_VGA_CONSOLE)
1262        if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
1263                conswitchp = &vga_con;
1264#elif defined(CONFIG_DUMMY_CONSOLE)
1265        conswitchp = &dummy_con;
1266#endif
1267#endif
1268        x86_init.oem.banner();
1269
1270        x86_init.timers.wallclock_init();
1271
1272        mcheck_init();
1273
1274        register_refined_jiffies(CLOCK_TICK_RATE);
1275
1276#ifdef CONFIG_EFI
1277        if (efi_enabled(EFI_BOOT))
1278                efi_apply_memmap_quirks();
1279#endif
1280
1281        unwind_init();
1282}
1283
1284#ifdef CONFIG_X86_32
1285
1286static struct resource video_ram_resource = {
1287        .name   = "Video RAM area",
1288        .start  = 0xa0000,
1289        .end    = 0xbffff,
1290        .flags  = IORESOURCE_BUSY | IORESOURCE_MEM
1291};
1292
1293void __init i386_reserve_resources(void)
1294{
1295        request_resource(&iomem_resource, &video_ram_resource);
1296        reserve_standard_io_resources();
1297}
1298
1299#endif /* CONFIG_X86_32 */
1300
1301static struct notifier_block kernel_offset_notifier = {
1302        .notifier_call = dump_kernel_offset
1303};
1304
1305static int __init register_kernel_offset_dumper(void)
1306{
1307        atomic_notifier_chain_register(&panic_notifier_list,
1308                                        &kernel_offset_notifier);
1309        return 0;
1310}
1311__initcall(register_kernel_offset_dumper);
1312