linux/arch/x86/mm/pageattr.c
<<
>>
Prefs
   1/*
   2 * Copyright 2002 Andi Kleen, SuSE Labs.
   3 * Thanks to Ben LaHaise for precious feedback.
   4 */
   5#include <linux/highmem.h>
   6#include <linux/memblock.h>
   7#include <linux/sched.h>
   8#include <linux/mm.h>
   9#include <linux/interrupt.h>
  10#include <linux/seq_file.h>
  11#include <linux/debugfs.h>
  12#include <linux/pfn.h>
  13#include <linux/percpu.h>
  14#include <linux/gfp.h>
  15#include <linux/pci.h>
  16#include <linux/vmalloc.h>
  17
  18#include <asm/e820/api.h>
  19#include <asm/processor.h>
  20#include <asm/tlbflush.h>
  21#include <asm/sections.h>
  22#include <asm/setup.h>
  23#include <linux/uaccess.h>
  24#include <asm/pgalloc.h>
  25#include <asm/proto.h>
  26#include <asm/pat.h>
  27#include <asm/set_memory.h>
  28
  29#include "mm_internal.h"
  30
  31/*
  32 * The current flushing context - we pass it instead of 5 arguments:
  33 */
  34struct cpa_data {
  35        unsigned long   *vaddr;
  36        pgd_t           *pgd;
  37        pgprot_t        mask_set;
  38        pgprot_t        mask_clr;
  39        unsigned long   numpages;
  40        unsigned long   curpage;
  41        unsigned long   pfn;
  42        unsigned int    flags;
  43        unsigned int    force_split             : 1,
  44                        force_static_prot       : 1;
  45        struct page     **pages;
  46};
  47
  48enum cpa_warn {
  49        CPA_CONFLICT,
  50        CPA_PROTECT,
  51        CPA_DETECT,
  52};
  53
  54static const int cpa_warn_level = CPA_PROTECT;
  55
  56/*
  57 * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
  58 * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
  59 * entries change the page attribute in parallel to some other cpu
  60 * splitting a large page entry along with changing the attribute.
  61 */
  62static DEFINE_SPINLOCK(cpa_lock);
  63
  64#define CPA_FLUSHTLB 1
  65#define CPA_ARRAY 2
  66#define CPA_PAGES_ARRAY 4
  67#define CPA_NO_CHECK_ALIAS 8 /* Do not search for aliases */
  68
  69#ifdef CONFIG_PROC_FS
  70static unsigned long direct_pages_count[PG_LEVEL_NUM];
  71
  72void update_page_count(int level, unsigned long pages)
  73{
  74        /* Protect against CPA */
  75        spin_lock(&pgd_lock);
  76        direct_pages_count[level] += pages;
  77        spin_unlock(&pgd_lock);
  78}
  79
  80static void split_page_count(int level)
  81{
  82        if (direct_pages_count[level] == 0)
  83                return;
  84
  85        direct_pages_count[level]--;
  86        direct_pages_count[level - 1] += PTRS_PER_PTE;
  87}
  88
  89void arch_report_meminfo(struct seq_file *m)
  90{
  91        seq_printf(m, "DirectMap4k:    %8lu kB\n",
  92                        direct_pages_count[PG_LEVEL_4K] << 2);
  93#if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
  94        seq_printf(m, "DirectMap2M:    %8lu kB\n",
  95                        direct_pages_count[PG_LEVEL_2M] << 11);
  96#else
  97        seq_printf(m, "DirectMap4M:    %8lu kB\n",
  98                        direct_pages_count[PG_LEVEL_2M] << 12);
  99#endif
 100        if (direct_gbpages)
 101                seq_printf(m, "DirectMap1G:    %8lu kB\n",
 102                        direct_pages_count[PG_LEVEL_1G] << 20);
 103}
 104#else
 105static inline void split_page_count(int level) { }
 106#endif
 107
 108#ifdef CONFIG_X86_CPA_STATISTICS
 109
 110static unsigned long cpa_1g_checked;
 111static unsigned long cpa_1g_sameprot;
 112static unsigned long cpa_1g_preserved;
 113static unsigned long cpa_2m_checked;
 114static unsigned long cpa_2m_sameprot;
 115static unsigned long cpa_2m_preserved;
 116static unsigned long cpa_4k_install;
 117
 118static inline void cpa_inc_1g_checked(void)
 119{
 120        cpa_1g_checked++;
 121}
 122
 123static inline void cpa_inc_2m_checked(void)
 124{
 125        cpa_2m_checked++;
 126}
 127
 128static inline void cpa_inc_4k_install(void)
 129{
 130        cpa_4k_install++;
 131}
 132
 133static inline void cpa_inc_lp_sameprot(int level)
 134{
 135        if (level == PG_LEVEL_1G)
 136                cpa_1g_sameprot++;
 137        else
 138                cpa_2m_sameprot++;
 139}
 140
 141static inline void cpa_inc_lp_preserved(int level)
 142{
 143        if (level == PG_LEVEL_1G)
 144                cpa_1g_preserved++;
 145        else
 146                cpa_2m_preserved++;
 147}
 148
 149static int cpastats_show(struct seq_file *m, void *p)
 150{
 151        seq_printf(m, "1G pages checked:     %16lu\n", cpa_1g_checked);
 152        seq_printf(m, "1G pages sameprot:    %16lu\n", cpa_1g_sameprot);
 153        seq_printf(m, "1G pages preserved:   %16lu\n", cpa_1g_preserved);
 154        seq_printf(m, "2M pages checked:     %16lu\n", cpa_2m_checked);
 155        seq_printf(m, "2M pages sameprot:    %16lu\n", cpa_2m_sameprot);
 156        seq_printf(m, "2M pages preserved:   %16lu\n", cpa_2m_preserved);
 157        seq_printf(m, "4K pages set-checked: %16lu\n", cpa_4k_install);
 158        return 0;
 159}
 160
 161static int cpastats_open(struct inode *inode, struct file *file)
 162{
 163        return single_open(file, cpastats_show, NULL);
 164}
 165
 166static const struct file_operations cpastats_fops = {
 167        .open           = cpastats_open,
 168        .read           = seq_read,
 169        .llseek         = seq_lseek,
 170        .release        = single_release,
 171};
 172
 173static int __init cpa_stats_init(void)
 174{
 175        debugfs_create_file("cpa_stats", S_IRUSR, arch_debugfs_dir, NULL,
 176                            &cpastats_fops);
 177        return 0;
 178}
 179late_initcall(cpa_stats_init);
 180#else
 181static inline void cpa_inc_1g_checked(void) { }
 182static inline void cpa_inc_2m_checked(void) { }
 183static inline void cpa_inc_4k_install(void) { }
 184static inline void cpa_inc_lp_sameprot(int level) { }
 185static inline void cpa_inc_lp_preserved(int level) { }
 186#endif
 187
 188
 189static inline int
 190within(unsigned long addr, unsigned long start, unsigned long end)
 191{
 192        return addr >= start && addr < end;
 193}
 194
 195static inline int
 196within_inclusive(unsigned long addr, unsigned long start, unsigned long end)
 197{
 198        return addr >= start && addr <= end;
 199}
 200
 201#ifdef CONFIG_X86_64
 202
 203static inline unsigned long highmap_start_pfn(void)
 204{
 205        return __pa_symbol(_text) >> PAGE_SHIFT;
 206}
 207
 208static inline unsigned long highmap_end_pfn(void)
 209{
 210        /* Do not reference physical address outside the kernel. */
 211        return __pa_symbol(roundup(_brk_end, PMD_SIZE) - 1) >> PAGE_SHIFT;
 212}
 213
 214static bool __cpa_pfn_in_highmap(unsigned long pfn)
 215{
 216        /*
 217         * Kernel text has an alias mapping at a high address, known
 218         * here as "highmap".
 219         */
 220        return within_inclusive(pfn, highmap_start_pfn(), highmap_end_pfn());
 221}
 222
 223#else
 224
 225static bool __cpa_pfn_in_highmap(unsigned long pfn)
 226{
 227        /* There is no highmap on 32-bit */
 228        return false;
 229}
 230
 231#endif
 232
 233/*
 234 * See set_mce_nospec().
 235 *
 236 * Machine check recovery code needs to change cache mode of poisoned pages to
 237 * UC to avoid speculative access logging another error. But passing the
 238 * address of the 1:1 mapping to set_memory_uc() is a fine way to encourage a
 239 * speculative access. So we cheat and flip the top bit of the address. This
 240 * works fine for the code that updates the page tables. But at the end of the
 241 * process we need to flush the TLB and cache and the non-canonical address
 242 * causes a #GP fault when used by the INVLPG and CLFLUSH instructions.
 243 *
 244 * But in the common case we already have a canonical address. This code
 245 * will fix the top bit if needed and is a no-op otherwise.
 246 */
 247static inline unsigned long fix_addr(unsigned long addr)
 248{
 249#ifdef CONFIG_X86_64
 250        return (long)(addr << 1) >> 1;
 251#else
 252        return addr;
 253#endif
 254}
 255
 256static unsigned long __cpa_addr(struct cpa_data *cpa, unsigned long idx)
 257{
 258        if (cpa->flags & CPA_PAGES_ARRAY) {
 259                struct page *page = cpa->pages[idx];
 260
 261                if (unlikely(PageHighMem(page)))
 262                        return 0;
 263
 264                return (unsigned long)page_address(page);
 265        }
 266
 267        if (cpa->flags & CPA_ARRAY)
 268                return cpa->vaddr[idx];
 269
 270        return *cpa->vaddr + idx * PAGE_SIZE;
 271}
 272
 273/*
 274 * Flushing functions
 275 */
 276
 277static void clflush_cache_range_opt(void *vaddr, unsigned int size)
 278{
 279        const unsigned long clflush_size = boot_cpu_data.x86_clflush_size;
 280        void *p = (void *)((unsigned long)vaddr & ~(clflush_size - 1));
 281        void *vend = vaddr + size;
 282
 283        if (p >= vend)
 284                return;
 285
 286        for (; p < vend; p += clflush_size)
 287                clflushopt(p);
 288}
 289
 290/**
 291 * clflush_cache_range - flush a cache range with clflush
 292 * @vaddr:      virtual start address
 293 * @size:       number of bytes to flush
 294 *
 295 * CLFLUSHOPT is an unordered instruction which needs fencing with MFENCE or
 296 * SFENCE to avoid ordering issues.
 297 */
 298void clflush_cache_range(void *vaddr, unsigned int size)
 299{
 300        mb();
 301        clflush_cache_range_opt(vaddr, size);
 302        mb();
 303}
 304EXPORT_SYMBOL_GPL(clflush_cache_range);
 305
 306void arch_invalidate_pmem(void *addr, size_t size)
 307{
 308        clflush_cache_range(addr, size);
 309}
 310EXPORT_SYMBOL_GPL(arch_invalidate_pmem);
 311
 312static void __cpa_flush_all(void *arg)
 313{
 314        unsigned long cache = (unsigned long)arg;
 315
 316        /*
 317         * Flush all to work around Errata in early athlons regarding
 318         * large page flushing.
 319         */
 320        __flush_tlb_all();
 321
 322        if (cache && boot_cpu_data.x86 >= 4)
 323                wbinvd();
 324}
 325
 326static void cpa_flush_all(unsigned long cache)
 327{
 328        BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
 329
 330        on_each_cpu(__cpa_flush_all, (void *) cache, 1);
 331}
 332
 333void __cpa_flush_tlb(void *data)
 334{
 335        struct cpa_data *cpa = data;
 336        unsigned int i;
 337
 338        for (i = 0; i < cpa->numpages; i++)
 339                __flush_tlb_one_kernel(fix_addr(__cpa_addr(cpa, i)));
 340}
 341
 342static void cpa_flush(struct cpa_data *data, int cache)
 343{
 344        struct cpa_data *cpa = data;
 345        unsigned int i;
 346
 347        BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
 348
 349        if (cache && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
 350                cpa_flush_all(cache);
 351                return;
 352        }
 353
 354        if (cpa->numpages <= tlb_single_page_flush_ceiling)
 355                on_each_cpu(__cpa_flush_tlb, cpa, 1);
 356        else
 357                flush_tlb_all();
 358
 359        if (!cache)
 360                return;
 361
 362        mb();
 363        for (i = 0; i < cpa->numpages; i++) {
 364                unsigned long addr = __cpa_addr(cpa, i);
 365                unsigned int level;
 366
 367                pte_t *pte = lookup_address(addr, &level);
 368
 369                /*
 370                 * Only flush present addresses:
 371                 */
 372                if (pte && (pte_val(*pte) & _PAGE_PRESENT))
 373                        clflush_cache_range_opt((void *)fix_addr(addr), PAGE_SIZE);
 374        }
 375        mb();
 376}
 377
 378static bool overlaps(unsigned long r1_start, unsigned long r1_end,
 379                     unsigned long r2_start, unsigned long r2_end)
 380{
 381        return (r1_start <= r2_end && r1_end >= r2_start) ||
 382                (r2_start <= r1_end && r2_end >= r1_start);
 383}
 384
 385#ifdef CONFIG_PCI_BIOS
 386/*
 387 * The BIOS area between 640k and 1Mb needs to be executable for PCI BIOS
 388 * based config access (CONFIG_PCI_GOBIOS) support.
 389 */
 390#define BIOS_PFN        PFN_DOWN(BIOS_BEGIN)
 391#define BIOS_PFN_END    PFN_DOWN(BIOS_END - 1)
 392
 393static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn)
 394{
 395        if (pcibios_enabled && overlaps(spfn, epfn, BIOS_PFN, BIOS_PFN_END))
 396                return _PAGE_NX;
 397        return 0;
 398}
 399#else
 400static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn)
 401{
 402        return 0;
 403}
 404#endif
 405
 406/*
 407 * The .rodata section needs to be read-only. Using the pfn catches all
 408 * aliases.  This also includes __ro_after_init, so do not enforce until
 409 * kernel_set_to_readonly is true.
 410 */
 411static pgprotval_t protect_rodata(unsigned long spfn, unsigned long epfn)
 412{
 413        unsigned long epfn_ro, spfn_ro = PFN_DOWN(__pa_symbol(__start_rodata));
 414
 415        /*
 416         * Note: __end_rodata is at page aligned and not inclusive, so
 417         * subtract 1 to get the last enforced PFN in the rodata area.
 418         */
 419        epfn_ro = PFN_DOWN(__pa_symbol(__end_rodata)) - 1;
 420
 421        if (kernel_set_to_readonly && overlaps(spfn, epfn, spfn_ro, epfn_ro))
 422                return _PAGE_RW;
 423        return 0;
 424}
 425
 426/*
 427 * Protect kernel text against becoming non executable by forbidding
 428 * _PAGE_NX.  This protects only the high kernel mapping (_text -> _etext)
 429 * out of which the kernel actually executes.  Do not protect the low
 430 * mapping.
 431 *
 432 * This does not cover __inittext since that is gone after boot.
 433 */
 434static pgprotval_t protect_kernel_text(unsigned long start, unsigned long end)
 435{
 436        unsigned long t_end = (unsigned long)_etext - 1;
 437        unsigned long t_start = (unsigned long)_text;
 438
 439        if (overlaps(start, end, t_start, t_end))
 440                return _PAGE_NX;
 441        return 0;
 442}
 443
 444#if defined(CONFIG_X86_64)
 445/*
 446 * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
 447 * kernel text mappings for the large page aligned text, rodata sections
 448 * will be always read-only. For the kernel identity mappings covering the
 449 * holes caused by this alignment can be anything that user asks.
 450 *
 451 * This will preserve the large page mappings for kernel text/data at no
 452 * extra cost.
 453 */
 454static pgprotval_t protect_kernel_text_ro(unsigned long start,
 455                                          unsigned long end)
 456{
 457        unsigned long t_end = (unsigned long)__end_rodata_hpage_align - 1;
 458        unsigned long t_start = (unsigned long)_text;
 459        unsigned int level;
 460
 461        if (!kernel_set_to_readonly || !overlaps(start, end, t_start, t_end))
 462                return 0;
 463        /*
 464         * Don't enforce the !RW mapping for the kernel text mapping, if
 465         * the current mapping is already using small page mapping.  No
 466         * need to work hard to preserve large page mappings in this case.
 467         *
 468         * This also fixes the Linux Xen paravirt guest boot failure caused
 469         * by unexpected read-only mappings for kernel identity
 470         * mappings. In this paravirt guest case, the kernel text mapping
 471         * and the kernel identity mapping share the same page-table pages,
 472         * so the protections for kernel text and identity mappings have to
 473         * be the same.
 474         */
 475        if (lookup_address(start, &level) && (level != PG_LEVEL_4K))
 476                return _PAGE_RW;
 477        return 0;
 478}
 479#else
 480static pgprotval_t protect_kernel_text_ro(unsigned long start,
 481                                          unsigned long end)
 482{
 483        return 0;
 484}
 485#endif
 486
 487static inline bool conflicts(pgprot_t prot, pgprotval_t val)
 488{
 489        return (pgprot_val(prot) & ~val) != pgprot_val(prot);
 490}
 491
 492static inline void check_conflict(int warnlvl, pgprot_t prot, pgprotval_t val,
 493                                  unsigned long start, unsigned long end,
 494                                  unsigned long pfn, const char *txt)
 495{
 496        static const char *lvltxt[] = {
 497                [CPA_CONFLICT]  = "conflict",
 498                [CPA_PROTECT]   = "protect",
 499                [CPA_DETECT]    = "detect",
 500        };
 501
 502        if (warnlvl > cpa_warn_level || !conflicts(prot, val))
 503                return;
 504
 505        pr_warn("CPA %8s %10s: 0x%016lx - 0x%016lx PFN %lx req %016llx prevent %016llx\n",
 506                lvltxt[warnlvl], txt, start, end, pfn, (unsigned long long)pgprot_val(prot),
 507                (unsigned long long)val);
 508}
 509
 510/*
 511 * Certain areas of memory on x86 require very specific protection flags,
 512 * for example the BIOS area or kernel text. Callers don't always get this
 513 * right (again, ioremap() on BIOS memory is not uncommon) so this function
 514 * checks and fixes these known static required protection bits.
 515 */
 516static inline pgprot_t static_protections(pgprot_t prot, unsigned long start,
 517                                          unsigned long pfn, unsigned long npg,
 518                                          int warnlvl)
 519{
 520        pgprotval_t forbidden, res;
 521        unsigned long end;
 522
 523        /*
 524         * There is no point in checking RW/NX conflicts when the requested
 525         * mapping is setting the page !PRESENT.
 526         */
 527        if (!(pgprot_val(prot) & _PAGE_PRESENT))
 528                return prot;
 529
 530        /* Operate on the virtual address */
 531        end = start + npg * PAGE_SIZE - 1;
 532
 533        res = protect_kernel_text(start, end);
 534        check_conflict(warnlvl, prot, res, start, end, pfn, "Text NX");
 535        forbidden = res;
 536
 537        res = protect_kernel_text_ro(start, end);
 538        check_conflict(warnlvl, prot, res, start, end, pfn, "Text RO");
 539        forbidden |= res;
 540
 541        /* Check the PFN directly */
 542        res = protect_pci_bios(pfn, pfn + npg - 1);
 543        check_conflict(warnlvl, prot, res, start, end, pfn, "PCIBIOS NX");
 544        forbidden |= res;
 545
 546        res = protect_rodata(pfn, pfn + npg - 1);
 547        check_conflict(warnlvl, prot, res, start, end, pfn, "Rodata RO");
 548        forbidden |= res;
 549
 550        return __pgprot(pgprot_val(prot) & ~forbidden);
 551}
 552
 553/*
 554 * Lookup the page table entry for a virtual address in a specific pgd.
 555 * Return a pointer to the entry and the level of the mapping.
 556 */
 557pte_t *lookup_address_in_pgd(pgd_t *pgd, unsigned long address,
 558                             unsigned int *level)
 559{
 560        p4d_t *p4d;
 561        pud_t *pud;
 562        pmd_t *pmd;
 563
 564        *level = PG_LEVEL_NONE;
 565
 566        if (pgd_none(*pgd))
 567                return NULL;
 568
 569        p4d = p4d_offset(pgd, address);
 570        if (p4d_none(*p4d))
 571                return NULL;
 572
 573        *level = PG_LEVEL_512G;
 574        if (p4d_large(*p4d) || !p4d_present(*p4d))
 575                return (pte_t *)p4d;
 576
 577        pud = pud_offset(p4d, address);
 578        if (pud_none(*pud))
 579                return NULL;
 580
 581        *level = PG_LEVEL_1G;
 582        if (pud_large(*pud) || !pud_present(*pud))
 583                return (pte_t *)pud;
 584
 585        pmd = pmd_offset(pud, address);
 586        if (pmd_none(*pmd))
 587                return NULL;
 588
 589        *level = PG_LEVEL_2M;
 590        if (pmd_large(*pmd) || !pmd_present(*pmd))
 591                return (pte_t *)pmd;
 592
 593        *level = PG_LEVEL_4K;
 594
 595        return pte_offset_kernel(pmd, address);
 596}
 597
 598/*
 599 * Lookup the page table entry for a virtual address. Return a pointer
 600 * to the entry and the level of the mapping.
 601 *
 602 * Note: We return pud and pmd either when the entry is marked large
 603 * or when the present bit is not set. Otherwise we would return a
 604 * pointer to a nonexisting mapping.
 605 */
 606pte_t *lookup_address(unsigned long address, unsigned int *level)
 607{
 608        return lookup_address_in_pgd(pgd_offset_k(address), address, level);
 609}
 610EXPORT_SYMBOL_GPL(lookup_address);
 611
 612static pte_t *_lookup_address_cpa(struct cpa_data *cpa, unsigned long address,
 613                                  unsigned int *level)
 614{
 615        if (cpa->pgd)
 616                return lookup_address_in_pgd(cpa->pgd + pgd_index(address),
 617                                               address, level);
 618
 619        return lookup_address(address, level);
 620}
 621
 622/*
 623 * Lookup the PMD entry for a virtual address. Return a pointer to the entry
 624 * or NULL if not present.
 625 */
 626pmd_t *lookup_pmd_address(unsigned long address)
 627{
 628        pgd_t *pgd;
 629        p4d_t *p4d;
 630        pud_t *pud;
 631
 632        pgd = pgd_offset_k(address);
 633        if (pgd_none(*pgd))
 634                return NULL;
 635
 636        p4d = p4d_offset(pgd, address);
 637        if (p4d_none(*p4d) || p4d_large(*p4d) || !p4d_present(*p4d))
 638                return NULL;
 639
 640        pud = pud_offset(p4d, address);
 641        if (pud_none(*pud) || pud_large(*pud) || !pud_present(*pud))
 642                return NULL;
 643
 644        return pmd_offset(pud, address);
 645}
 646
 647/*
 648 * This is necessary because __pa() does not work on some
 649 * kinds of memory, like vmalloc() or the alloc_remap()
 650 * areas on 32-bit NUMA systems.  The percpu areas can
 651 * end up in this kind of memory, for instance.
 652 *
 653 * This could be optimized, but it is only intended to be
 654 * used at inititalization time, and keeping it
 655 * unoptimized should increase the testing coverage for
 656 * the more obscure platforms.
 657 */
 658phys_addr_t slow_virt_to_phys(void *__virt_addr)
 659{
 660        unsigned long virt_addr = (unsigned long)__virt_addr;
 661        phys_addr_t phys_addr;
 662        unsigned long offset;
 663        enum pg_level level;
 664        pte_t *pte;
 665
 666        pte = lookup_address(virt_addr, &level);
 667        BUG_ON(!pte);
 668
 669        /*
 670         * pXX_pfn() returns unsigned long, which must be cast to phys_addr_t
 671         * before being left-shifted PAGE_SHIFT bits -- this trick is to
 672         * make 32-PAE kernel work correctly.
 673         */
 674        switch (level) {
 675        case PG_LEVEL_1G:
 676                phys_addr = (phys_addr_t)pud_pfn(*(pud_t *)pte) << PAGE_SHIFT;
 677                offset = virt_addr & ~PUD_PAGE_MASK;
 678                break;
 679        case PG_LEVEL_2M:
 680                phys_addr = (phys_addr_t)pmd_pfn(*(pmd_t *)pte) << PAGE_SHIFT;
 681                offset = virt_addr & ~PMD_PAGE_MASK;
 682                break;
 683        default:
 684                phys_addr = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
 685                offset = virt_addr & ~PAGE_MASK;
 686        }
 687
 688        return (phys_addr_t)(phys_addr | offset);
 689}
 690EXPORT_SYMBOL_GPL(slow_virt_to_phys);
 691
 692/*
 693 * Set the new pmd in all the pgds we know about:
 694 */
 695static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
 696{
 697        /* change init_mm */
 698        set_pte_atomic(kpte, pte);
 699#ifdef CONFIG_X86_32
 700        if (!SHARED_KERNEL_PMD) {
 701                struct page *page;
 702
 703                list_for_each_entry(page, &pgd_list, lru) {
 704                        pgd_t *pgd;
 705                        p4d_t *p4d;
 706                        pud_t *pud;
 707                        pmd_t *pmd;
 708
 709                        pgd = (pgd_t *)page_address(page) + pgd_index(address);
 710                        p4d = p4d_offset(pgd, address);
 711                        pud = pud_offset(p4d, address);
 712                        pmd = pmd_offset(pud, address);
 713                        set_pte_atomic((pte_t *)pmd, pte);
 714                }
 715        }
 716#endif
 717}
 718
 719static pgprot_t pgprot_clear_protnone_bits(pgprot_t prot)
 720{
 721        /*
 722         * _PAGE_GLOBAL means "global page" for present PTEs.
 723         * But, it is also used to indicate _PAGE_PROTNONE
 724         * for non-present PTEs.
 725         *
 726         * This ensures that a _PAGE_GLOBAL PTE going from
 727         * present to non-present is not confused as
 728         * _PAGE_PROTNONE.
 729         */
 730        if (!(pgprot_val(prot) & _PAGE_PRESENT))
 731                pgprot_val(prot) &= ~_PAGE_GLOBAL;
 732
 733        return prot;
 734}
 735
 736static int __should_split_large_page(pte_t *kpte, unsigned long address,
 737                                     struct cpa_data *cpa)
 738{
 739        unsigned long numpages, pmask, psize, lpaddr, pfn, old_pfn;
 740        pgprot_t old_prot, new_prot, req_prot, chk_prot;
 741        pte_t new_pte, old_pte, *tmp;
 742        enum pg_level level;
 743
 744        /*
 745         * Check for races, another CPU might have split this page
 746         * up already:
 747         */
 748        tmp = _lookup_address_cpa(cpa, address, &level);
 749        if (tmp != kpte)
 750                return 1;
 751
 752        switch (level) {
 753        case PG_LEVEL_2M:
 754                old_prot = pmd_pgprot(*(pmd_t *)kpte);
 755                old_pfn = pmd_pfn(*(pmd_t *)kpte);
 756                cpa_inc_2m_checked();
 757                break;
 758        case PG_LEVEL_1G:
 759                old_prot = pud_pgprot(*(pud_t *)kpte);
 760                old_pfn = pud_pfn(*(pud_t *)kpte);
 761                cpa_inc_1g_checked();
 762                break;
 763        default:
 764                return -EINVAL;
 765        }
 766
 767        psize = page_level_size(level);
 768        pmask = page_level_mask(level);
 769
 770        /*
 771         * Calculate the number of pages, which fit into this large
 772         * page starting at address:
 773         */
 774        lpaddr = (address + psize) & pmask;
 775        numpages = (lpaddr - address) >> PAGE_SHIFT;
 776        if (numpages < cpa->numpages)
 777                cpa->numpages = numpages;
 778
 779        /*
 780         * We are safe now. Check whether the new pgprot is the same:
 781         * Convert protection attributes to 4k-format, as cpa->mask* are set
 782         * up accordingly.
 783         */
 784        old_pte = *kpte;
 785        /* Clear PSE (aka _PAGE_PAT) and move PAT bit to correct position */
 786        req_prot = pgprot_large_2_4k(old_prot);
 787
 788        pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr);
 789        pgprot_val(req_prot) |= pgprot_val(cpa->mask_set);
 790
 791        /*
 792         * req_prot is in format of 4k pages. It must be converted to large
 793         * page format: the caching mode includes the PAT bit located at
 794         * different bit positions in the two formats.
 795         */
 796        req_prot = pgprot_4k_2_large(req_prot);
 797        req_prot = pgprot_clear_protnone_bits(req_prot);
 798        if (pgprot_val(req_prot) & _PAGE_PRESENT)
 799                pgprot_val(req_prot) |= _PAGE_PSE;
 800
 801        /*
 802         * old_pfn points to the large page base pfn. So we need to add the
 803         * offset of the virtual address:
 804         */
 805        pfn = old_pfn + ((address & (psize - 1)) >> PAGE_SHIFT);
 806        cpa->pfn = pfn;
 807
 808        /*
 809         * Calculate the large page base address and the number of 4K pages
 810         * in the large page
 811         */
 812        lpaddr = address & pmask;
 813        numpages = psize >> PAGE_SHIFT;
 814
 815        /*
 816         * Sanity check that the existing mapping is correct versus the static
 817         * protections. static_protections() guards against !PRESENT, so no
 818         * extra conditional required here.
 819         */
 820        chk_prot = static_protections(old_prot, lpaddr, old_pfn, numpages,
 821                                      CPA_CONFLICT);
 822
 823        if (WARN_ON_ONCE(pgprot_val(chk_prot) != pgprot_val(old_prot))) {
 824                /*
 825                 * Split the large page and tell the split code to
 826                 * enforce static protections.
 827                 */
 828                cpa->force_static_prot = 1;
 829                return 1;
 830        }
 831
 832        /*
 833         * Optimization: If the requested pgprot is the same as the current
 834         * pgprot, then the large page can be preserved and no updates are
 835         * required independent of alignment and length of the requested
 836         * range. The above already established that the current pgprot is
 837         * correct, which in consequence makes the requested pgprot correct
 838         * as well if it is the same. The static protection scan below will
 839         * not come to a different conclusion.
 840         */
 841        if (pgprot_val(req_prot) == pgprot_val(old_prot)) {
 842                cpa_inc_lp_sameprot(level);
 843                return 0;
 844        }
 845
 846        /*
 847         * If the requested range does not cover the full page, split it up
 848         */
 849        if (address != lpaddr || cpa->numpages != numpages)
 850                return 1;
 851
 852        /*
 853         * Check whether the requested pgprot is conflicting with a static
 854         * protection requirement in the large page.
 855         */
 856        new_prot = static_protections(req_prot, lpaddr, old_pfn, numpages,
 857                                      CPA_DETECT);
 858
 859        /*
 860         * If there is a conflict, split the large page.
 861         *
 862         * There used to be a 4k wise evaluation trying really hard to
 863         * preserve the large pages, but experimentation has shown, that this
 864         * does not help at all. There might be corner cases which would
 865         * preserve one large page occasionally, but it's really not worth the
 866         * extra code and cycles for the common case.
 867         */
 868        if (pgprot_val(req_prot) != pgprot_val(new_prot))
 869                return 1;
 870
 871        /* All checks passed. Update the large page mapping. */
 872        new_pte = pfn_pte(old_pfn, new_prot);
 873        __set_pmd_pte(kpte, address, new_pte);
 874        cpa->flags |= CPA_FLUSHTLB;
 875        cpa_inc_lp_preserved(level);
 876        return 0;
 877}
 878
 879static int should_split_large_page(pte_t *kpte, unsigned long address,
 880                                   struct cpa_data *cpa)
 881{
 882        int do_split;
 883
 884        if (cpa->force_split)
 885                return 1;
 886
 887        spin_lock(&pgd_lock);
 888        do_split = __should_split_large_page(kpte, address, cpa);
 889        spin_unlock(&pgd_lock);
 890
 891        return do_split;
 892}
 893
 894static void split_set_pte(struct cpa_data *cpa, pte_t *pte, unsigned long pfn,
 895                          pgprot_t ref_prot, unsigned long address,
 896                          unsigned long size)
 897{
 898        unsigned int npg = PFN_DOWN(size);
 899        pgprot_t prot;
 900
 901        /*
 902         * If should_split_large_page() discovered an inconsistent mapping,
 903         * remove the invalid protection in the split mapping.
 904         */
 905        if (!cpa->force_static_prot)
 906                goto set;
 907
 908        prot = static_protections(ref_prot, address, pfn, npg, CPA_PROTECT);
 909
 910        if (pgprot_val(prot) == pgprot_val(ref_prot))
 911                goto set;
 912
 913        /*
 914         * If this is splitting a PMD, fix it up. PUD splits cannot be
 915         * fixed trivially as that would require to rescan the newly
 916         * installed PMD mappings after returning from split_large_page()
 917         * so an eventual further split can allocate the necessary PTE
 918         * pages. Warn for now and revisit it in case this actually
 919         * happens.
 920         */
 921        if (size == PAGE_SIZE)
 922                ref_prot = prot;
 923        else
 924                pr_warn_once("CPA: Cannot fixup static protections for PUD split\n");
 925set:
 926        set_pte(pte, pfn_pte(pfn, ref_prot));
 927}
 928
 929static int
 930__split_large_page(struct cpa_data *cpa, pte_t *kpte, unsigned long address,
 931                   struct page *base)
 932{
 933        unsigned long lpaddr, lpinc, ref_pfn, pfn, pfninc = 1;
 934        pte_t *pbase = (pte_t *)page_address(base);
 935        unsigned int i, level;
 936        pgprot_t ref_prot;
 937        pte_t *tmp;
 938
 939        spin_lock(&pgd_lock);
 940        /*
 941         * Check for races, another CPU might have split this page
 942         * up for us already:
 943         */
 944        tmp = _lookup_address_cpa(cpa, address, &level);
 945        if (tmp != kpte) {
 946                spin_unlock(&pgd_lock);
 947                return 1;
 948        }
 949
 950        paravirt_alloc_pte(&init_mm, page_to_pfn(base));
 951
 952        switch (level) {
 953        case PG_LEVEL_2M:
 954                ref_prot = pmd_pgprot(*(pmd_t *)kpte);
 955                /*
 956                 * Clear PSE (aka _PAGE_PAT) and move
 957                 * PAT bit to correct position.
 958                 */
 959                ref_prot = pgprot_large_2_4k(ref_prot);
 960                ref_pfn = pmd_pfn(*(pmd_t *)kpte);
 961                lpaddr = address & PMD_MASK;
 962                lpinc = PAGE_SIZE;
 963                break;
 964
 965        case PG_LEVEL_1G:
 966                ref_prot = pud_pgprot(*(pud_t *)kpte);
 967                ref_pfn = pud_pfn(*(pud_t *)kpte);
 968                pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
 969                lpaddr = address & PUD_MASK;
 970                lpinc = PMD_SIZE;
 971                /*
 972                 * Clear the PSE flags if the PRESENT flag is not set
 973                 * otherwise pmd_present/pmd_huge will return true
 974                 * even on a non present pmd.
 975                 */
 976                if (!(pgprot_val(ref_prot) & _PAGE_PRESENT))
 977                        pgprot_val(ref_prot) &= ~_PAGE_PSE;
 978                break;
 979
 980        default:
 981                spin_unlock(&pgd_lock);
 982                return 1;
 983        }
 984
 985        ref_prot = pgprot_clear_protnone_bits(ref_prot);
 986
 987        /*
 988         * Get the target pfn from the original entry:
 989         */
 990        pfn = ref_pfn;
 991        for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc, lpaddr += lpinc)
 992                split_set_pte(cpa, pbase + i, pfn, ref_prot, lpaddr, lpinc);
 993
 994        if (virt_addr_valid(address)) {
 995                unsigned long pfn = PFN_DOWN(__pa(address));
 996
 997                if (pfn_range_is_mapped(pfn, pfn + 1))
 998                        split_page_count(level);
 999        }
1000
1001        /*
1002         * Install the new, split up pagetable.
1003         *
1004         * We use the standard kernel pagetable protections for the new
1005         * pagetable protections, the actual ptes set above control the
1006         * primary protection behavior:
1007         */
1008        __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
1009
1010        /*
1011         * Do a global flush tlb after splitting the large page
1012         * and before we do the actual change page attribute in the PTE.
1013         *
1014         * Without this, we violate the TLB application note, that says:
1015         * "The TLBs may contain both ordinary and large-page
1016         *  translations for a 4-KByte range of linear addresses. This
1017         *  may occur if software modifies the paging structures so that
1018         *  the page size used for the address range changes. If the two
1019         *  translations differ with respect to page frame or attributes
1020         *  (e.g., permissions), processor behavior is undefined and may
1021         *  be implementation-specific."
1022         *
1023         * We do this global tlb flush inside the cpa_lock, so that we
1024         * don't allow any other cpu, with stale tlb entries change the
1025         * page attribute in parallel, that also falls into the
1026         * just split large page entry.
1027         */
1028        flush_tlb_all();
1029        spin_unlock(&pgd_lock);
1030
1031        return 0;
1032}
1033
1034static int split_large_page(struct cpa_data *cpa, pte_t *kpte,
1035                            unsigned long address)
1036{
1037        struct page *base;
1038
1039        if (!debug_pagealloc_enabled())
1040                spin_unlock(&cpa_lock);
1041        base = alloc_pages(GFP_KERNEL, 0);
1042        if (!debug_pagealloc_enabled())
1043                spin_lock(&cpa_lock);
1044        if (!base)
1045                return -ENOMEM;
1046
1047        if (__split_large_page(cpa, kpte, address, base))
1048                __free_page(base);
1049
1050        return 0;
1051}
1052
1053static bool try_to_free_pte_page(pte_t *pte)
1054{
1055        int i;
1056
1057        for (i = 0; i < PTRS_PER_PTE; i++)
1058                if (!pte_none(pte[i]))
1059                        return false;
1060
1061        free_page((unsigned long)pte);
1062        return true;
1063}
1064
1065static bool try_to_free_pmd_page(pmd_t *pmd)
1066{
1067        int i;
1068
1069        for (i = 0; i < PTRS_PER_PMD; i++)
1070                if (!pmd_none(pmd[i]))
1071                        return false;
1072
1073        free_page((unsigned long)pmd);
1074        return true;
1075}
1076
1077static bool unmap_pte_range(pmd_t *pmd, unsigned long start, unsigned long end)
1078{
1079        pte_t *pte = pte_offset_kernel(pmd, start);
1080
1081        while (start < end) {
1082                set_pte(pte, __pte(0));
1083
1084                start += PAGE_SIZE;
1085                pte++;
1086        }
1087
1088        if (try_to_free_pte_page((pte_t *)pmd_page_vaddr(*pmd))) {
1089                pmd_clear(pmd);
1090                return true;
1091        }
1092        return false;
1093}
1094
1095static void __unmap_pmd_range(pud_t *pud, pmd_t *pmd,
1096                              unsigned long start, unsigned long end)
1097{
1098        if (unmap_pte_range(pmd, start, end))
1099                if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
1100                        pud_clear(pud);
1101}
1102
1103static void unmap_pmd_range(pud_t *pud, unsigned long start, unsigned long end)
1104{
1105        pmd_t *pmd = pmd_offset(pud, start);
1106
1107        /*
1108         * Not on a 2MB page boundary?
1109         */
1110        if (start & (PMD_SIZE - 1)) {
1111                unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
1112                unsigned long pre_end = min_t(unsigned long, end, next_page);
1113
1114                __unmap_pmd_range(pud, pmd, start, pre_end);
1115
1116                start = pre_end;
1117                pmd++;
1118        }
1119
1120        /*
1121         * Try to unmap in 2M chunks.
1122         */
1123        while (end - start >= PMD_SIZE) {
1124                if (pmd_large(*pmd))
1125                        pmd_clear(pmd);
1126                else
1127                        __unmap_pmd_range(pud, pmd, start, start + PMD_SIZE);
1128
1129                start += PMD_SIZE;
1130                pmd++;
1131        }
1132
1133        /*
1134         * 4K leftovers?
1135         */
1136        if (start < end)
1137                return __unmap_pmd_range(pud, pmd, start, end);
1138
1139        /*
1140         * Try again to free the PMD page if haven't succeeded above.
1141         */
1142        if (!pud_none(*pud))
1143                if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
1144                        pud_clear(pud);
1145}
1146
1147static void unmap_pud_range(p4d_t *p4d, unsigned long start, unsigned long end)
1148{
1149        pud_t *pud = pud_offset(p4d, start);
1150
1151        /*
1152         * Not on a GB page boundary?
1153         */
1154        if (start & (PUD_SIZE - 1)) {
1155                unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1156                unsigned long pre_end   = min_t(unsigned long, end, next_page);
1157
1158                unmap_pmd_range(pud, start, pre_end);
1159
1160                start = pre_end;
1161                pud++;
1162        }
1163
1164        /*
1165         * Try to unmap in 1G chunks?
1166         */
1167        while (end - start >= PUD_SIZE) {
1168
1169                if (pud_large(*pud))
1170                        pud_clear(pud);
1171                else
1172                        unmap_pmd_range(pud, start, start + PUD_SIZE);
1173
1174                start += PUD_SIZE;
1175                pud++;
1176        }
1177
1178        /*
1179         * 2M leftovers?
1180         */
1181        if (start < end)
1182                unmap_pmd_range(pud, start, end);
1183
1184        /*
1185         * No need to try to free the PUD page because we'll free it in
1186         * populate_pgd's error path
1187         */
1188}
1189
1190static int alloc_pte_page(pmd_t *pmd)
1191{
1192        pte_t *pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
1193        if (!pte)
1194                return -1;
1195
1196        set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
1197        return 0;
1198}
1199
1200static int alloc_pmd_page(pud_t *pud)
1201{
1202        pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
1203        if (!pmd)
1204                return -1;
1205
1206        set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
1207        return 0;
1208}
1209
1210static void populate_pte(struct cpa_data *cpa,
1211                         unsigned long start, unsigned long end,
1212                         unsigned num_pages, pmd_t *pmd, pgprot_t pgprot)
1213{
1214        pte_t *pte;
1215
1216        pte = pte_offset_kernel(pmd, start);
1217
1218        pgprot = pgprot_clear_protnone_bits(pgprot);
1219
1220        while (num_pages-- && start < end) {
1221                set_pte(pte, pfn_pte(cpa->pfn, pgprot));
1222
1223                start    += PAGE_SIZE;
1224                cpa->pfn++;
1225                pte++;
1226        }
1227}
1228
1229static long populate_pmd(struct cpa_data *cpa,
1230                         unsigned long start, unsigned long end,
1231                         unsigned num_pages, pud_t *pud, pgprot_t pgprot)
1232{
1233        long cur_pages = 0;
1234        pmd_t *pmd;
1235        pgprot_t pmd_pgprot;
1236
1237        /*
1238         * Not on a 2M boundary?
1239         */
1240        if (start & (PMD_SIZE - 1)) {
1241                unsigned long pre_end = start + (num_pages << PAGE_SHIFT);
1242                unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
1243
1244                pre_end   = min_t(unsigned long, pre_end, next_page);
1245                cur_pages = (pre_end - start) >> PAGE_SHIFT;
1246                cur_pages = min_t(unsigned int, num_pages, cur_pages);
1247
1248                /*
1249                 * Need a PTE page?
1250                 */
1251                pmd = pmd_offset(pud, start);
1252                if (pmd_none(*pmd))
1253                        if (alloc_pte_page(pmd))
1254                                return -1;
1255
1256                populate_pte(cpa, start, pre_end, cur_pages, pmd, pgprot);
1257
1258                start = pre_end;
1259        }
1260
1261        /*
1262         * We mapped them all?
1263         */
1264        if (num_pages == cur_pages)
1265                return cur_pages;
1266
1267        pmd_pgprot = pgprot_4k_2_large(pgprot);
1268
1269        while (end - start >= PMD_SIZE) {
1270
1271                /*
1272                 * We cannot use a 1G page so allocate a PMD page if needed.
1273                 */
1274                if (pud_none(*pud))
1275                        if (alloc_pmd_page(pud))
1276                                return -1;
1277
1278                pmd = pmd_offset(pud, start);
1279
1280                set_pmd(pmd, pmd_mkhuge(pfn_pmd(cpa->pfn,
1281                                        canon_pgprot(pmd_pgprot))));
1282
1283                start     += PMD_SIZE;
1284                cpa->pfn  += PMD_SIZE >> PAGE_SHIFT;
1285                cur_pages += PMD_SIZE >> PAGE_SHIFT;
1286        }
1287
1288        /*
1289         * Map trailing 4K pages.
1290         */
1291        if (start < end) {
1292                pmd = pmd_offset(pud, start);
1293                if (pmd_none(*pmd))
1294                        if (alloc_pte_page(pmd))
1295                                return -1;
1296
1297                populate_pte(cpa, start, end, num_pages - cur_pages,
1298                             pmd, pgprot);
1299        }
1300        return num_pages;
1301}
1302
1303static int populate_pud(struct cpa_data *cpa, unsigned long start, p4d_t *p4d,
1304                        pgprot_t pgprot)
1305{
1306        pud_t *pud;
1307        unsigned long end;
1308        long cur_pages = 0;
1309        pgprot_t pud_pgprot;
1310
1311        end = start + (cpa->numpages << PAGE_SHIFT);
1312
1313        /*
1314         * Not on a Gb page boundary? => map everything up to it with
1315         * smaller pages.
1316         */
1317        if (start & (PUD_SIZE - 1)) {
1318                unsigned long pre_end;
1319                unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1320
1321                pre_end   = min_t(unsigned long, end, next_page);
1322                cur_pages = (pre_end - start) >> PAGE_SHIFT;
1323                cur_pages = min_t(int, (int)cpa->numpages, cur_pages);
1324
1325                pud = pud_offset(p4d, start);
1326
1327                /*
1328                 * Need a PMD page?
1329                 */
1330                if (pud_none(*pud))
1331                        if (alloc_pmd_page(pud))
1332                                return -1;
1333
1334                cur_pages = populate_pmd(cpa, start, pre_end, cur_pages,
1335                                         pud, pgprot);
1336                if (cur_pages < 0)
1337                        return cur_pages;
1338
1339                start = pre_end;
1340        }
1341
1342        /* We mapped them all? */
1343        if (cpa->numpages == cur_pages)
1344                return cur_pages;
1345
1346        pud = pud_offset(p4d, start);
1347        pud_pgprot = pgprot_4k_2_large(pgprot);
1348
1349        /*
1350         * Map everything starting from the Gb boundary, possibly with 1G pages
1351         */
1352        while (boot_cpu_has(X86_FEATURE_GBPAGES) && end - start >= PUD_SIZE) {
1353                set_pud(pud, pud_mkhuge(pfn_pud(cpa->pfn,
1354                                   canon_pgprot(pud_pgprot))));
1355
1356                start     += PUD_SIZE;
1357                cpa->pfn  += PUD_SIZE >> PAGE_SHIFT;
1358                cur_pages += PUD_SIZE >> PAGE_SHIFT;
1359                pud++;
1360        }
1361
1362        /* Map trailing leftover */
1363        if (start < end) {
1364                long tmp;
1365
1366                pud = pud_offset(p4d, start);
1367                if (pud_none(*pud))
1368                        if (alloc_pmd_page(pud))
1369                                return -1;
1370
1371                tmp = populate_pmd(cpa, start, end, cpa->numpages - cur_pages,
1372                                   pud, pgprot);
1373                if (tmp < 0)
1374                        return cur_pages;
1375
1376                cur_pages += tmp;
1377        }
1378        return cur_pages;
1379}
1380
1381/*
1382 * Restrictions for kernel page table do not necessarily apply when mapping in
1383 * an alternate PGD.
1384 */
1385static int populate_pgd(struct cpa_data *cpa, unsigned long addr)
1386{
1387        pgprot_t pgprot = __pgprot(_KERNPG_TABLE);
1388        pud_t *pud = NULL;      /* shut up gcc */
1389        p4d_t *p4d;
1390        pgd_t *pgd_entry;
1391        long ret;
1392
1393        pgd_entry = cpa->pgd + pgd_index(addr);
1394
1395        if (pgd_none(*pgd_entry)) {
1396                p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
1397                if (!p4d)
1398                        return -1;
1399
1400                set_pgd(pgd_entry, __pgd(__pa(p4d) | _KERNPG_TABLE));
1401        }
1402
1403        /*
1404         * Allocate a PUD page and hand it down for mapping.
1405         */
1406        p4d = p4d_offset(pgd_entry, addr);
1407        if (p4d_none(*p4d)) {
1408                pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
1409                if (!pud)
1410                        return -1;
1411
1412                set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
1413        }
1414
1415        pgprot_val(pgprot) &= ~pgprot_val(cpa->mask_clr);
1416        pgprot_val(pgprot) |=  pgprot_val(cpa->mask_set);
1417
1418        ret = populate_pud(cpa, addr, p4d, pgprot);
1419        if (ret < 0) {
1420                /*
1421                 * Leave the PUD page in place in case some other CPU or thread
1422                 * already found it, but remove any useless entries we just
1423                 * added to it.
1424                 */
1425                unmap_pud_range(p4d, addr,
1426                                addr + (cpa->numpages << PAGE_SHIFT));
1427                return ret;
1428        }
1429
1430        cpa->numpages = ret;
1431        return 0;
1432}
1433
1434static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
1435                               int primary)
1436{
1437        if (cpa->pgd) {
1438                /*
1439                 * Right now, we only execute this code path when mapping
1440                 * the EFI virtual memory map regions, no other users
1441                 * provide a ->pgd value. This may change in the future.
1442                 */
1443                return populate_pgd(cpa, vaddr);
1444        }
1445
1446        /*
1447         * Ignore all non primary paths.
1448         */
1449        if (!primary) {
1450                cpa->numpages = 1;
1451                return 0;
1452        }
1453
1454        /*
1455         * Ignore the NULL PTE for kernel identity mapping, as it is expected
1456         * to have holes.
1457         * Also set numpages to '1' indicating that we processed cpa req for
1458         * one virtual address page and its pfn. TBD: numpages can be set based
1459         * on the initial value and the level returned by lookup_address().
1460         */
1461        if (within(vaddr, PAGE_OFFSET,
1462                   PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
1463                cpa->numpages = 1;
1464                cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
1465                return 0;
1466
1467        } else if (__cpa_pfn_in_highmap(cpa->pfn)) {
1468                /* Faults in the highmap are OK, so do not warn: */
1469                return -EFAULT;
1470        } else {
1471                WARN(1, KERN_WARNING "CPA: called for zero pte. "
1472                        "vaddr = %lx cpa->vaddr = %lx\n", vaddr,
1473                        *cpa->vaddr);
1474
1475                return -EFAULT;
1476        }
1477}
1478
1479static int __change_page_attr(struct cpa_data *cpa, int primary)
1480{
1481        unsigned long address;
1482        int do_split, err;
1483        unsigned int level;
1484        pte_t *kpte, old_pte;
1485
1486        address = __cpa_addr(cpa, cpa->curpage);
1487repeat:
1488        kpte = _lookup_address_cpa(cpa, address, &level);
1489        if (!kpte)
1490                return __cpa_process_fault(cpa, address, primary);
1491
1492        old_pte = *kpte;
1493        if (pte_none(old_pte))
1494                return __cpa_process_fault(cpa, address, primary);
1495
1496        if (level == PG_LEVEL_4K) {
1497                pte_t new_pte;
1498                pgprot_t new_prot = pte_pgprot(old_pte);
1499                unsigned long pfn = pte_pfn(old_pte);
1500
1501                pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
1502                pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
1503
1504                cpa_inc_4k_install();
1505                new_prot = static_protections(new_prot, address, pfn, 1,
1506                                              CPA_PROTECT);
1507
1508                new_prot = pgprot_clear_protnone_bits(new_prot);
1509
1510                /*
1511                 * We need to keep the pfn from the existing PTE,
1512                 * after all we're only going to change it's attributes
1513                 * not the memory it points to
1514                 */
1515                new_pte = pfn_pte(pfn, new_prot);
1516                cpa->pfn = pfn;
1517                /*
1518                 * Do we really change anything ?
1519                 */
1520                if (pte_val(old_pte) != pte_val(new_pte)) {
1521                        set_pte_atomic(kpte, new_pte);
1522                        cpa->flags |= CPA_FLUSHTLB;
1523                }
1524                cpa->numpages = 1;
1525                return 0;
1526        }
1527
1528        /*
1529         * Check, whether we can keep the large page intact
1530         * and just change the pte:
1531         */
1532        do_split = should_split_large_page(kpte, address, cpa);
1533        /*
1534         * When the range fits into the existing large page,
1535         * return. cp->numpages and cpa->tlbflush have been updated in
1536         * try_large_page:
1537         */
1538        if (do_split <= 0)
1539                return do_split;
1540
1541        /*
1542         * We have to split the large page:
1543         */
1544        err = split_large_page(cpa, kpte, address);
1545        if (!err)
1546                goto repeat;
1547
1548        return err;
1549}
1550
1551static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
1552
1553static int cpa_process_alias(struct cpa_data *cpa)
1554{
1555        struct cpa_data alias_cpa;
1556        unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
1557        unsigned long vaddr;
1558        int ret;
1559
1560        if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1))
1561                return 0;
1562
1563        /*
1564         * No need to redo, when the primary call touched the direct
1565         * mapping already:
1566         */
1567        vaddr = __cpa_addr(cpa, cpa->curpage);
1568        if (!(within(vaddr, PAGE_OFFSET,
1569                    PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
1570
1571                alias_cpa = *cpa;
1572                alias_cpa.vaddr = &laddr;
1573                alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1574                alias_cpa.curpage = 0;
1575
1576                ret = __change_page_attr_set_clr(&alias_cpa, 0);
1577                if (ret)
1578                        return ret;
1579        }
1580
1581#ifdef CONFIG_X86_64
1582        /*
1583         * If the primary call didn't touch the high mapping already
1584         * and the physical address is inside the kernel map, we need
1585         * to touch the high mapped kernel as well:
1586         */
1587        if (!within(vaddr, (unsigned long)_text, _brk_end) &&
1588            __cpa_pfn_in_highmap(cpa->pfn)) {
1589                unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
1590                                               __START_KERNEL_map - phys_base;
1591                alias_cpa = *cpa;
1592                alias_cpa.vaddr = &temp_cpa_vaddr;
1593                alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1594                alias_cpa.curpage = 0;
1595
1596                /*
1597                 * The high mapping range is imprecise, so ignore the
1598                 * return value.
1599                 */
1600                __change_page_attr_set_clr(&alias_cpa, 0);
1601        }
1602#endif
1603
1604        return 0;
1605}
1606
1607static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
1608{
1609        unsigned long numpages = cpa->numpages;
1610        unsigned long rempages = numpages;
1611        int ret = 0;
1612
1613        while (rempages) {
1614                /*
1615                 * Store the remaining nr of pages for the large page
1616                 * preservation check.
1617                 */
1618                cpa->numpages = rempages;
1619                /* for array changes, we can't use large page */
1620                if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
1621                        cpa->numpages = 1;
1622
1623                if (!debug_pagealloc_enabled())
1624                        spin_lock(&cpa_lock);
1625                ret = __change_page_attr(cpa, checkalias);
1626                if (!debug_pagealloc_enabled())
1627                        spin_unlock(&cpa_lock);
1628                if (ret)
1629                        goto out;
1630
1631                if (checkalias) {
1632                        ret = cpa_process_alias(cpa);
1633                        if (ret)
1634                                goto out;
1635                }
1636
1637                /*
1638                 * Adjust the number of pages with the result of the
1639                 * CPA operation. Either a large page has been
1640                 * preserved or a single page update happened.
1641                 */
1642                BUG_ON(cpa->numpages > rempages || !cpa->numpages);
1643                rempages -= cpa->numpages;
1644                cpa->curpage += cpa->numpages;
1645        }
1646
1647out:
1648        /* Restore the original numpages */
1649        cpa->numpages = numpages;
1650        return ret;
1651}
1652
1653static int change_page_attr_set_clr(unsigned long *addr, int numpages,
1654                                    pgprot_t mask_set, pgprot_t mask_clr,
1655                                    int force_split, int in_flag,
1656                                    struct page **pages)
1657{
1658        struct cpa_data cpa;
1659        int ret, cache, checkalias;
1660
1661        memset(&cpa, 0, sizeof(cpa));
1662
1663        /*
1664         * Check, if we are requested to set a not supported
1665         * feature.  Clearing non-supported features is OK.
1666         */
1667        mask_set = canon_pgprot(mask_set);
1668
1669        if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
1670                return 0;
1671
1672        /* Ensure we are PAGE_SIZE aligned */
1673        if (in_flag & CPA_ARRAY) {
1674                int i;
1675                for (i = 0; i < numpages; i++) {
1676                        if (addr[i] & ~PAGE_MASK) {
1677                                addr[i] &= PAGE_MASK;
1678                                WARN_ON_ONCE(1);
1679                        }
1680                }
1681        } else if (!(in_flag & CPA_PAGES_ARRAY)) {
1682                /*
1683                 * in_flag of CPA_PAGES_ARRAY implies it is aligned.
1684                 * No need to check in that case
1685                 */
1686                if (*addr & ~PAGE_MASK) {
1687                        *addr &= PAGE_MASK;
1688                        /*
1689                         * People should not be passing in unaligned addresses:
1690                         */
1691                        WARN_ON_ONCE(1);
1692                }
1693        }
1694
1695        /* Must avoid aliasing mappings in the highmem code */
1696        kmap_flush_unused();
1697
1698        vm_unmap_aliases();
1699
1700        cpa.vaddr = addr;
1701        cpa.pages = pages;
1702        cpa.numpages = numpages;
1703        cpa.mask_set = mask_set;
1704        cpa.mask_clr = mask_clr;
1705        cpa.flags = 0;
1706        cpa.curpage = 0;
1707        cpa.force_split = force_split;
1708
1709        if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
1710                cpa.flags |= in_flag;
1711
1712        /* No alias checking for _NX bit modifications */
1713        checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
1714        /* Has caller explicitly disabled alias checking? */
1715        if (in_flag & CPA_NO_CHECK_ALIAS)
1716                checkalias = 0;
1717
1718        ret = __change_page_attr_set_clr(&cpa, checkalias);
1719
1720        /*
1721         * Check whether we really changed something:
1722         */
1723        if (!(cpa.flags & CPA_FLUSHTLB))
1724                goto out;
1725
1726        /*
1727         * No need to flush, when we did not set any of the caching
1728         * attributes:
1729         */
1730        cache = !!pgprot2cachemode(mask_set);
1731
1732        /*
1733         * On error; flush everything to be sure.
1734         */
1735        if (ret) {
1736                cpa_flush_all(cache);
1737                goto out;
1738        }
1739
1740        cpa_flush(&cpa, cache);
1741out:
1742        return ret;
1743}
1744
1745static inline int change_page_attr_set(unsigned long *addr, int numpages,
1746                                       pgprot_t mask, int array)
1747{
1748        return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
1749                (array ? CPA_ARRAY : 0), NULL);
1750}
1751
1752static inline int change_page_attr_clear(unsigned long *addr, int numpages,
1753                                         pgprot_t mask, int array)
1754{
1755        return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
1756                (array ? CPA_ARRAY : 0), NULL);
1757}
1758
1759static inline int cpa_set_pages_array(struct page **pages, int numpages,
1760                                       pgprot_t mask)
1761{
1762        return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
1763                CPA_PAGES_ARRAY, pages);
1764}
1765
1766static inline int cpa_clear_pages_array(struct page **pages, int numpages,
1767                                         pgprot_t mask)
1768{
1769        return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
1770                CPA_PAGES_ARRAY, pages);
1771}
1772
1773int _set_memory_uc(unsigned long addr, int numpages)
1774{
1775        /*
1776         * for now UC MINUS. see comments in ioremap_nocache()
1777         * If you really need strong UC use ioremap_uc(), but note
1778         * that you cannot override IO areas with set_memory_*() as
1779         * these helpers cannot work with IO memory.
1780         */
1781        return change_page_attr_set(&addr, numpages,
1782                                    cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1783                                    0);
1784}
1785
1786int set_memory_uc(unsigned long addr, int numpages)
1787{
1788        int ret;
1789
1790        /*
1791         * for now UC MINUS. see comments in ioremap_nocache()
1792         */
1793        ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1794                              _PAGE_CACHE_MODE_UC_MINUS, NULL);
1795        if (ret)
1796                goto out_err;
1797
1798        ret = _set_memory_uc(addr, numpages);
1799        if (ret)
1800                goto out_free;
1801
1802        return 0;
1803
1804out_free:
1805        free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1806out_err:
1807        return ret;
1808}
1809EXPORT_SYMBOL(set_memory_uc);
1810
1811static int _set_memory_array(unsigned long *addr, int numpages,
1812                enum page_cache_mode new_type)
1813{
1814        enum page_cache_mode set_type;
1815        int i, j;
1816        int ret;
1817
1818        for (i = 0; i < numpages; i++) {
1819                ret = reserve_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE,
1820                                        new_type, NULL);
1821                if (ret)
1822                        goto out_free;
1823        }
1824
1825        /* If WC, set to UC- first and then WC */
1826        set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
1827                                _PAGE_CACHE_MODE_UC_MINUS : new_type;
1828
1829        ret = change_page_attr_set(addr, numpages,
1830                                   cachemode2pgprot(set_type), 1);
1831
1832        if (!ret && new_type == _PAGE_CACHE_MODE_WC)
1833                ret = change_page_attr_set_clr(addr, numpages,
1834                                               cachemode2pgprot(
1835                                                _PAGE_CACHE_MODE_WC),
1836                                               __pgprot(_PAGE_CACHE_MASK),
1837                                               0, CPA_ARRAY, NULL);
1838        if (ret)
1839                goto out_free;
1840
1841        return 0;
1842
1843out_free:
1844        for (j = 0; j < i; j++)
1845                free_memtype(__pa(addr[j]), __pa(addr[j]) + PAGE_SIZE);
1846
1847        return ret;
1848}
1849
1850int set_memory_array_uc(unsigned long *addr, int numpages)
1851{
1852        return _set_memory_array(addr, numpages, _PAGE_CACHE_MODE_UC_MINUS);
1853}
1854EXPORT_SYMBOL(set_memory_array_uc);
1855
1856int set_memory_array_wc(unsigned long *addr, int numpages)
1857{
1858        return _set_memory_array(addr, numpages, _PAGE_CACHE_MODE_WC);
1859}
1860EXPORT_SYMBOL(set_memory_array_wc);
1861
1862int set_memory_array_wt(unsigned long *addr, int numpages)
1863{
1864        return _set_memory_array(addr, numpages, _PAGE_CACHE_MODE_WT);
1865}
1866EXPORT_SYMBOL_GPL(set_memory_array_wt);
1867
1868int _set_memory_wc(unsigned long addr, int numpages)
1869{
1870        int ret;
1871
1872        ret = change_page_attr_set(&addr, numpages,
1873                                   cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1874                                   0);
1875        if (!ret) {
1876                ret = change_page_attr_set_clr(&addr, numpages,
1877                                               cachemode2pgprot(_PAGE_CACHE_MODE_WC),
1878                                               __pgprot(_PAGE_CACHE_MASK),
1879                                               0, 0, NULL);
1880        }
1881        return ret;
1882}
1883
1884int set_memory_wc(unsigned long addr, int numpages)
1885{
1886        int ret;
1887
1888        ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1889                _PAGE_CACHE_MODE_WC, NULL);
1890        if (ret)
1891                return ret;
1892
1893        ret = _set_memory_wc(addr, numpages);
1894        if (ret)
1895                free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1896
1897        return ret;
1898}
1899EXPORT_SYMBOL(set_memory_wc);
1900
1901int _set_memory_wt(unsigned long addr, int numpages)
1902{
1903        return change_page_attr_set(&addr, numpages,
1904                                    cachemode2pgprot(_PAGE_CACHE_MODE_WT), 0);
1905}
1906
1907int set_memory_wt(unsigned long addr, int numpages)
1908{
1909        int ret;
1910
1911        ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1912                              _PAGE_CACHE_MODE_WT, NULL);
1913        if (ret)
1914                return ret;
1915
1916        ret = _set_memory_wt(addr, numpages);
1917        if (ret)
1918                free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1919
1920        return ret;
1921}
1922EXPORT_SYMBOL_GPL(set_memory_wt);
1923
1924int _set_memory_wb(unsigned long addr, int numpages)
1925{
1926        /* WB cache mode is hard wired to all cache attribute bits being 0 */
1927        return change_page_attr_clear(&addr, numpages,
1928                                      __pgprot(_PAGE_CACHE_MASK), 0);
1929}
1930
1931int set_memory_wb(unsigned long addr, int numpages)
1932{
1933        int ret;
1934
1935        ret = _set_memory_wb(addr, numpages);
1936        if (ret)
1937                return ret;
1938
1939        free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1940        return 0;
1941}
1942EXPORT_SYMBOL(set_memory_wb);
1943
1944int set_memory_array_wb(unsigned long *addr, int numpages)
1945{
1946        int i;
1947        int ret;
1948
1949        /* WB cache mode is hard wired to all cache attribute bits being 0 */
1950        ret = change_page_attr_clear(addr, numpages,
1951                                      __pgprot(_PAGE_CACHE_MASK), 1);
1952        if (ret)
1953                return ret;
1954
1955        for (i = 0; i < numpages; i++)
1956                free_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE);
1957
1958        return 0;
1959}
1960EXPORT_SYMBOL(set_memory_array_wb);
1961
1962int set_memory_x(unsigned long addr, int numpages)
1963{
1964        if (!(__supported_pte_mask & _PAGE_NX))
1965                return 0;
1966
1967        return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
1968}
1969EXPORT_SYMBOL(set_memory_x);
1970
1971int set_memory_nx(unsigned long addr, int numpages)
1972{
1973        if (!(__supported_pte_mask & _PAGE_NX))
1974                return 0;
1975
1976        return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
1977}
1978EXPORT_SYMBOL(set_memory_nx);
1979
1980int set_memory_ro(unsigned long addr, int numpages)
1981{
1982        return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
1983}
1984
1985int set_memory_rw(unsigned long addr, int numpages)
1986{
1987        return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
1988}
1989
1990int set_memory_np(unsigned long addr, int numpages)
1991{
1992        return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
1993}
1994
1995int set_memory_np_noalias(unsigned long addr, int numpages)
1996{
1997        int cpa_flags = CPA_NO_CHECK_ALIAS;
1998
1999        return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
2000                                        __pgprot(_PAGE_PRESENT), 0,
2001                                        cpa_flags, NULL);
2002}
2003
2004int set_memory_4k(unsigned long addr, int numpages)
2005{
2006        return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
2007                                        __pgprot(0), 1, 0, NULL);
2008}
2009
2010int set_memory_nonglobal(unsigned long addr, int numpages)
2011{
2012        return change_page_attr_clear(&addr, numpages,
2013                                      __pgprot(_PAGE_GLOBAL), 0);
2014}
2015
2016int set_memory_global(unsigned long addr, int numpages)
2017{
2018        return change_page_attr_set(&addr, numpages,
2019                                    __pgprot(_PAGE_GLOBAL), 0);
2020}
2021
2022static int __set_memory_enc_dec(unsigned long addr, int numpages, bool enc)
2023{
2024        struct cpa_data cpa;
2025        int ret;
2026
2027        /* Nothing to do if memory encryption is not active */
2028        if (!mem_encrypt_active())
2029                return 0;
2030
2031        /* Should not be working on unaligned addresses */
2032        if (WARN_ONCE(addr & ~PAGE_MASK, "misaligned address: %#lx\n", addr))
2033                addr &= PAGE_MASK;
2034
2035        memset(&cpa, 0, sizeof(cpa));
2036        cpa.vaddr = &addr;
2037        cpa.numpages = numpages;
2038        cpa.mask_set = enc ? __pgprot(_PAGE_ENC) : __pgprot(0);
2039        cpa.mask_clr = enc ? __pgprot(0) : __pgprot(_PAGE_ENC);
2040        cpa.pgd = init_mm.pgd;
2041
2042        /* Must avoid aliasing mappings in the highmem code */
2043        kmap_flush_unused();
2044        vm_unmap_aliases();
2045
2046        /*
2047         * Before changing the encryption attribute, we need to flush caches.
2048         */
2049        cpa_flush(&cpa, 1);
2050
2051        ret = __change_page_attr_set_clr(&cpa, 1);
2052
2053        /*
2054         * After changing the encryption attribute, we need to flush TLBs again
2055         * in case any speculative TLB caching occurred (but no need to flush
2056         * caches again).  We could just use cpa_flush_all(), but in case TLB
2057         * flushing gets optimized in the cpa_flush() path use the same logic
2058         * as above.
2059         */
2060        cpa_flush(&cpa, 0);
2061
2062        return ret;
2063}
2064
2065int set_memory_encrypted(unsigned long addr, int numpages)
2066{
2067        return __set_memory_enc_dec(addr, numpages, true);
2068}
2069EXPORT_SYMBOL_GPL(set_memory_encrypted);
2070
2071int set_memory_decrypted(unsigned long addr, int numpages)
2072{
2073        return __set_memory_enc_dec(addr, numpages, false);
2074}
2075EXPORT_SYMBOL_GPL(set_memory_decrypted);
2076
2077int set_pages_uc(struct page *page, int numpages)
2078{
2079        unsigned long addr = (unsigned long)page_address(page);
2080
2081        return set_memory_uc(addr, numpages);
2082}
2083EXPORT_SYMBOL(set_pages_uc);
2084
2085static int _set_pages_array(struct page **pages, int numpages,
2086                enum page_cache_mode new_type)
2087{
2088        unsigned long start;
2089        unsigned long end;
2090        enum page_cache_mode set_type;
2091        int i;
2092        int free_idx;
2093        int ret;
2094
2095        for (i = 0; i < numpages; i++) {
2096                if (PageHighMem(pages[i]))
2097                        continue;
2098                start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2099                end = start + PAGE_SIZE;
2100                if (reserve_memtype(start, end, new_type, NULL))
2101                        goto err_out;
2102        }
2103
2104        /* If WC, set to UC- first and then WC */
2105        set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
2106                                _PAGE_CACHE_MODE_UC_MINUS : new_type;
2107
2108        ret = cpa_set_pages_array(pages, numpages,
2109                                  cachemode2pgprot(set_type));
2110        if (!ret && new_type == _PAGE_CACHE_MODE_WC)
2111                ret = change_page_attr_set_clr(NULL, numpages,
2112                                               cachemode2pgprot(
2113                                                _PAGE_CACHE_MODE_WC),
2114                                               __pgprot(_PAGE_CACHE_MASK),
2115                                               0, CPA_PAGES_ARRAY, pages);
2116        if (ret)
2117                goto err_out;
2118        return 0; /* Success */
2119err_out:
2120        free_idx = i;
2121        for (i = 0; i < free_idx; i++) {
2122                if (PageHighMem(pages[i]))
2123                        continue;
2124                start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2125                end = start + PAGE_SIZE;
2126                free_memtype(start, end);
2127        }
2128        return -EINVAL;
2129}
2130
2131int set_pages_array_uc(struct page **pages, int numpages)
2132{
2133        return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_UC_MINUS);
2134}
2135EXPORT_SYMBOL(set_pages_array_uc);
2136
2137int set_pages_array_wc(struct page **pages, int numpages)
2138{
2139        return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_WC);
2140}
2141EXPORT_SYMBOL(set_pages_array_wc);
2142
2143int set_pages_array_wt(struct page **pages, int numpages)
2144{
2145        return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_WT);
2146}
2147EXPORT_SYMBOL_GPL(set_pages_array_wt);
2148
2149int set_pages_wb(struct page *page, int numpages)
2150{
2151        unsigned long addr = (unsigned long)page_address(page);
2152
2153        return set_memory_wb(addr, numpages);
2154}
2155EXPORT_SYMBOL(set_pages_wb);
2156
2157int set_pages_array_wb(struct page **pages, int numpages)
2158{
2159        int retval;
2160        unsigned long start;
2161        unsigned long end;
2162        int i;
2163
2164        /* WB cache mode is hard wired to all cache attribute bits being 0 */
2165        retval = cpa_clear_pages_array(pages, numpages,
2166                        __pgprot(_PAGE_CACHE_MASK));
2167        if (retval)
2168                return retval;
2169
2170        for (i = 0; i < numpages; i++) {
2171                if (PageHighMem(pages[i]))
2172                        continue;
2173                start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2174                end = start + PAGE_SIZE;
2175                free_memtype(start, end);
2176        }
2177
2178        return 0;
2179}
2180EXPORT_SYMBOL(set_pages_array_wb);
2181
2182int set_pages_x(struct page *page, int numpages)
2183{
2184        unsigned long addr = (unsigned long)page_address(page);
2185
2186        return set_memory_x(addr, numpages);
2187}
2188EXPORT_SYMBOL(set_pages_x);
2189
2190int set_pages_nx(struct page *page, int numpages)
2191{
2192        unsigned long addr = (unsigned long)page_address(page);
2193
2194        return set_memory_nx(addr, numpages);
2195}
2196EXPORT_SYMBOL(set_pages_nx);
2197
2198int set_pages_ro(struct page *page, int numpages)
2199{
2200        unsigned long addr = (unsigned long)page_address(page);
2201
2202        return set_memory_ro(addr, numpages);
2203}
2204
2205int set_pages_rw(struct page *page, int numpages)
2206{
2207        unsigned long addr = (unsigned long)page_address(page);
2208
2209        return set_memory_rw(addr, numpages);
2210}
2211
2212#ifdef CONFIG_DEBUG_PAGEALLOC
2213
2214static int __set_pages_p(struct page *page, int numpages)
2215{
2216        unsigned long tempaddr = (unsigned long) page_address(page);
2217        struct cpa_data cpa = { .vaddr = &tempaddr,
2218                                .pgd = NULL,
2219                                .numpages = numpages,
2220                                .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2221                                .mask_clr = __pgprot(0),
2222                                .flags = 0};
2223
2224        /*
2225         * No alias checking needed for setting present flag. otherwise,
2226         * we may need to break large pages for 64-bit kernel text
2227         * mappings (this adds to complexity if we want to do this from
2228         * atomic context especially). Let's keep it simple!
2229         */
2230        return __change_page_attr_set_clr(&cpa, 0);
2231}
2232
2233static int __set_pages_np(struct page *page, int numpages)
2234{
2235        unsigned long tempaddr = (unsigned long) page_address(page);
2236        struct cpa_data cpa = { .vaddr = &tempaddr,
2237                                .pgd = NULL,
2238                                .numpages = numpages,
2239                                .mask_set = __pgprot(0),
2240                                .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2241                                .flags = 0};
2242
2243        /*
2244         * No alias checking needed for setting not present flag. otherwise,
2245         * we may need to break large pages for 64-bit kernel text
2246         * mappings (this adds to complexity if we want to do this from
2247         * atomic context especially). Let's keep it simple!
2248         */
2249        return __change_page_attr_set_clr(&cpa, 0);
2250}
2251
2252void __kernel_map_pages(struct page *page, int numpages, int enable)
2253{
2254        if (PageHighMem(page))
2255                return;
2256        if (!enable) {
2257                debug_check_no_locks_freed(page_address(page),
2258                                           numpages * PAGE_SIZE);
2259        }
2260
2261        /*
2262         * The return value is ignored as the calls cannot fail.
2263         * Large pages for identity mappings are not used at boot time
2264         * and hence no memory allocations during large page split.
2265         */
2266        if (enable)
2267                __set_pages_p(page, numpages);
2268        else
2269                __set_pages_np(page, numpages);
2270
2271        /*
2272         * We should perform an IPI and flush all tlbs,
2273         * but that can deadlock->flush only current cpu.
2274         * Preemption needs to be disabled around __flush_tlb_all() due to
2275         * CR3 reload in __native_flush_tlb().
2276         */
2277        preempt_disable();
2278        __flush_tlb_all();
2279        preempt_enable();
2280
2281        arch_flush_lazy_mmu_mode();
2282}
2283
2284#ifdef CONFIG_HIBERNATION
2285
2286bool kernel_page_present(struct page *page)
2287{
2288        unsigned int level;
2289        pte_t *pte;
2290
2291        if (PageHighMem(page))
2292                return false;
2293
2294        pte = lookup_address((unsigned long)page_address(page), &level);
2295        return (pte_val(*pte) & _PAGE_PRESENT);
2296}
2297
2298#endif /* CONFIG_HIBERNATION */
2299
2300#endif /* CONFIG_DEBUG_PAGEALLOC */
2301
2302int __init kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address,
2303                                   unsigned numpages, unsigned long page_flags)
2304{
2305        int retval = -EINVAL;
2306
2307        struct cpa_data cpa = {
2308                .vaddr = &address,
2309                .pfn = pfn,
2310                .pgd = pgd,
2311                .numpages = numpages,
2312                .mask_set = __pgprot(0),
2313                .mask_clr = __pgprot(0),
2314                .flags = 0,
2315        };
2316
2317        WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP");
2318
2319        if (!(__supported_pte_mask & _PAGE_NX))
2320                goto out;
2321
2322        if (!(page_flags & _PAGE_NX))
2323                cpa.mask_clr = __pgprot(_PAGE_NX);
2324
2325        if (!(page_flags & _PAGE_RW))
2326                cpa.mask_clr = __pgprot(_PAGE_RW);
2327
2328        if (!(page_flags & _PAGE_ENC))
2329                cpa.mask_clr = pgprot_encrypted(cpa.mask_clr);
2330
2331        cpa.mask_set = __pgprot(_PAGE_PRESENT | page_flags);
2332
2333        retval = __change_page_attr_set_clr(&cpa, 0);
2334        __flush_tlb_all();
2335
2336out:
2337        return retval;
2338}
2339
2340/*
2341 * __flush_tlb_all() flushes mappings only on current CPU and hence this
2342 * function shouldn't be used in an SMP environment. Presently, it's used only
2343 * during boot (way before smp_init()) by EFI subsystem and hence is ok.
2344 */
2345int __init kernel_unmap_pages_in_pgd(pgd_t *pgd, unsigned long address,
2346                                     unsigned long numpages)
2347{
2348        int retval;
2349
2350        /*
2351         * The typical sequence for unmapping is to find a pte through
2352         * lookup_address_in_pgd() (ideally, it should never return NULL because
2353         * the address is already mapped) and change it's protections. As pfn is
2354         * the *target* of a mapping, it's not useful while unmapping.
2355         */
2356        struct cpa_data cpa = {
2357                .vaddr          = &address,
2358                .pfn            = 0,
2359                .pgd            = pgd,
2360                .numpages       = numpages,
2361                .mask_set       = __pgprot(0),
2362                .mask_clr       = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2363                .flags          = 0,
2364        };
2365
2366        WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP");
2367
2368        retval = __change_page_attr_set_clr(&cpa, 0);
2369        __flush_tlb_all();
2370
2371        return retval;
2372}
2373
2374/*
2375 * The testcases use internal knowledge of the implementation that shouldn't
2376 * be exposed to the rest of the kernel. Include these directly here.
2377 */
2378#ifdef CONFIG_CPA_DEBUG
2379#include "pageattr-test.c"
2380#endif
2381