linux/arch/x86/mm/pat.c
<<
>>
Prefs
   1/*
   2 * Handle caching attributes in page tables (PAT)
   3 *
   4 * Authors: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
   5 *          Suresh B Siddha <suresh.b.siddha@intel.com>
   6 *
   7 * Loosely based on earlier PAT patchset from Eric Biederman and Andi Kleen.
   8 */
   9
  10#include <linux/seq_file.h>
  11#include <linux/memblock.h>
  12#include <linux/debugfs.h>
  13#include <linux/ioport.h>
  14#include <linux/kernel.h>
  15#include <linux/pfn_t.h>
  16#include <linux/slab.h>
  17#include <linux/mm.h>
  18#include <linux/fs.h>
  19#include <linux/rbtree.h>
  20
  21#include <asm/cacheflush.h>
  22#include <asm/processor.h>
  23#include <asm/tlbflush.h>
  24#include <asm/x86_init.h>
  25#include <asm/pgtable.h>
  26#include <asm/fcntl.h>
  27#include <asm/e820/api.h>
  28#include <asm/mtrr.h>
  29#include <asm/page.h>
  30#include <asm/msr.h>
  31#include <asm/pat.h>
  32#include <asm/io.h>
  33
  34#include "pat_internal.h"
  35#include "mm_internal.h"
  36
  37#undef pr_fmt
  38#define pr_fmt(fmt) "" fmt
  39
  40static bool __read_mostly boot_cpu_done;
  41static bool __read_mostly pat_disabled = !IS_ENABLED(CONFIG_X86_PAT);
  42static bool __read_mostly pat_initialized;
  43static bool __read_mostly init_cm_done;
  44
  45void pat_disable(const char *reason)
  46{
  47        if (pat_disabled)
  48                return;
  49
  50        if (boot_cpu_done) {
  51                WARN_ONCE(1, "x86/PAT: PAT cannot be disabled after initialization\n");
  52                return;
  53        }
  54
  55        pat_disabled = true;
  56        pr_info("x86/PAT: %s\n", reason);
  57}
  58
  59static int __init nopat(char *str)
  60{
  61        pat_disable("PAT support disabled.");
  62        return 0;
  63}
  64early_param("nopat", nopat);
  65
  66bool pat_enabled(void)
  67{
  68        return pat_initialized;
  69}
  70EXPORT_SYMBOL_GPL(pat_enabled);
  71
  72int pat_debug_enable;
  73
  74static int __init pat_debug_setup(char *str)
  75{
  76        pat_debug_enable = 1;
  77        return 0;
  78}
  79__setup("debugpat", pat_debug_setup);
  80
  81#ifdef CONFIG_X86_PAT
  82/*
  83 * X86 PAT uses page flags arch_1 and uncached together to keep track of
  84 * memory type of pages that have backing page struct.
  85 *
  86 * X86 PAT supports 4 different memory types:
  87 *  - _PAGE_CACHE_MODE_WB
  88 *  - _PAGE_CACHE_MODE_WC
  89 *  - _PAGE_CACHE_MODE_UC_MINUS
  90 *  - _PAGE_CACHE_MODE_WT
  91 *
  92 * _PAGE_CACHE_MODE_WB is the default type.
  93 */
  94
  95#define _PGMT_WB                0
  96#define _PGMT_WC                (1UL << PG_arch_1)
  97#define _PGMT_UC_MINUS          (1UL << PG_uncached)
  98#define _PGMT_WT                (1UL << PG_uncached | 1UL << PG_arch_1)
  99#define _PGMT_MASK              (1UL << PG_uncached | 1UL << PG_arch_1)
 100#define _PGMT_CLEAR_MASK        (~_PGMT_MASK)
 101
 102static inline enum page_cache_mode get_page_memtype(struct page *pg)
 103{
 104        unsigned long pg_flags = pg->flags & _PGMT_MASK;
 105
 106        if (pg_flags == _PGMT_WB)
 107                return _PAGE_CACHE_MODE_WB;
 108        else if (pg_flags == _PGMT_WC)
 109                return _PAGE_CACHE_MODE_WC;
 110        else if (pg_flags == _PGMT_UC_MINUS)
 111                return _PAGE_CACHE_MODE_UC_MINUS;
 112        else
 113                return _PAGE_CACHE_MODE_WT;
 114}
 115
 116static inline void set_page_memtype(struct page *pg,
 117                                    enum page_cache_mode memtype)
 118{
 119        unsigned long memtype_flags;
 120        unsigned long old_flags;
 121        unsigned long new_flags;
 122
 123        switch (memtype) {
 124        case _PAGE_CACHE_MODE_WC:
 125                memtype_flags = _PGMT_WC;
 126                break;
 127        case _PAGE_CACHE_MODE_UC_MINUS:
 128                memtype_flags = _PGMT_UC_MINUS;
 129                break;
 130        case _PAGE_CACHE_MODE_WT:
 131                memtype_flags = _PGMT_WT;
 132                break;
 133        case _PAGE_CACHE_MODE_WB:
 134        default:
 135                memtype_flags = _PGMT_WB;
 136                break;
 137        }
 138
 139        do {
 140                old_flags = pg->flags;
 141                new_flags = (old_flags & _PGMT_CLEAR_MASK) | memtype_flags;
 142        } while (cmpxchg(&pg->flags, old_flags, new_flags) != old_flags);
 143}
 144#else
 145static inline enum page_cache_mode get_page_memtype(struct page *pg)
 146{
 147        return -1;
 148}
 149static inline void set_page_memtype(struct page *pg,
 150                                    enum page_cache_mode memtype)
 151{
 152}
 153#endif
 154
 155enum {
 156        PAT_UC = 0,             /* uncached */
 157        PAT_WC = 1,             /* Write combining */
 158        PAT_WT = 4,             /* Write Through */
 159        PAT_WP = 5,             /* Write Protected */
 160        PAT_WB = 6,             /* Write Back (default) */
 161        PAT_UC_MINUS = 7,       /* UC, but can be overridden by MTRR */
 162};
 163
 164#define CM(c) (_PAGE_CACHE_MODE_ ## c)
 165
 166static enum page_cache_mode pat_get_cache_mode(unsigned pat_val, char *msg)
 167{
 168        enum page_cache_mode cache;
 169        char *cache_mode;
 170
 171        switch (pat_val) {
 172        case PAT_UC:       cache = CM(UC);       cache_mode = "UC  "; break;
 173        case PAT_WC:       cache = CM(WC);       cache_mode = "WC  "; break;
 174        case PAT_WT:       cache = CM(WT);       cache_mode = "WT  "; break;
 175        case PAT_WP:       cache = CM(WP);       cache_mode = "WP  "; break;
 176        case PAT_WB:       cache = CM(WB);       cache_mode = "WB  "; break;
 177        case PAT_UC_MINUS: cache = CM(UC_MINUS); cache_mode = "UC- "; break;
 178        default:           cache = CM(WB);       cache_mode = "WB  "; break;
 179        }
 180
 181        memcpy(msg, cache_mode, 4);
 182
 183        return cache;
 184}
 185
 186#undef CM
 187
 188/*
 189 * Update the cache mode to pgprot translation tables according to PAT
 190 * configuration.
 191 * Using lower indices is preferred, so we start with highest index.
 192 */
 193static void __init_cache_modes(u64 pat)
 194{
 195        enum page_cache_mode cache;
 196        char pat_msg[33];
 197        int i;
 198
 199        pat_msg[32] = 0;
 200        for (i = 7; i >= 0; i--) {
 201                cache = pat_get_cache_mode((pat >> (i * 8)) & 7,
 202                                           pat_msg + 4 * i);
 203                update_cache_mode_entry(i, cache);
 204        }
 205        pr_info("x86/PAT: Configuration [0-7]: %s\n", pat_msg);
 206
 207        init_cm_done = true;
 208}
 209
 210#define PAT(x, y)       ((u64)PAT_ ## y << ((x)*8))
 211
 212static void pat_bsp_init(u64 pat)
 213{
 214        u64 tmp_pat;
 215
 216        if (!boot_cpu_has(X86_FEATURE_PAT)) {
 217                pat_disable("PAT not supported by CPU.");
 218                return;
 219        }
 220
 221        rdmsrl(MSR_IA32_CR_PAT, tmp_pat);
 222        if (!tmp_pat) {
 223                pat_disable("PAT MSR is 0, disabled.");
 224                return;
 225        }
 226
 227        wrmsrl(MSR_IA32_CR_PAT, pat);
 228        pat_initialized = true;
 229
 230        __init_cache_modes(pat);
 231}
 232
 233static void pat_ap_init(u64 pat)
 234{
 235        if (!boot_cpu_has(X86_FEATURE_PAT)) {
 236                /*
 237                 * If this happens we are on a secondary CPU, but switched to
 238                 * PAT on the boot CPU. We have no way to undo PAT.
 239                 */
 240                panic("x86/PAT: PAT enabled, but not supported by secondary CPU\n");
 241        }
 242
 243        wrmsrl(MSR_IA32_CR_PAT, pat);
 244}
 245
 246void init_cache_modes(void)
 247{
 248        u64 pat = 0;
 249
 250        if (init_cm_done)
 251                return;
 252
 253        if (boot_cpu_has(X86_FEATURE_PAT)) {
 254                /*
 255                 * CPU supports PAT. Set PAT table to be consistent with
 256                 * PAT MSR. This case supports "nopat" boot option, and
 257                 * virtual machine environments which support PAT without
 258                 * MTRRs. In specific, Xen has unique setup to PAT MSR.
 259                 *
 260                 * If PAT MSR returns 0, it is considered invalid and emulates
 261                 * as No PAT.
 262                 */
 263                rdmsrl(MSR_IA32_CR_PAT, pat);
 264        }
 265
 266        if (!pat) {
 267                /*
 268                 * No PAT. Emulate the PAT table that corresponds to the two
 269                 * cache bits, PWT (Write Through) and PCD (Cache Disable).
 270                 * This setup is also the same as the BIOS default setup.
 271                 *
 272                 * PTE encoding:
 273                 *
 274                 *       PCD
 275                 *       |PWT  PAT
 276                 *       ||    slot
 277                 *       00    0    WB : _PAGE_CACHE_MODE_WB
 278                 *       01    1    WT : _PAGE_CACHE_MODE_WT
 279                 *       10    2    UC-: _PAGE_CACHE_MODE_UC_MINUS
 280                 *       11    3    UC : _PAGE_CACHE_MODE_UC
 281                 *
 282                 * NOTE: When WC or WP is used, it is redirected to UC- per
 283                 * the default setup in __cachemode2pte_tbl[].
 284                 */
 285                pat = PAT(0, WB) | PAT(1, WT) | PAT(2, UC_MINUS) | PAT(3, UC) |
 286                      PAT(4, WB) | PAT(5, WT) | PAT(6, UC_MINUS) | PAT(7, UC);
 287        }
 288
 289        __init_cache_modes(pat);
 290}
 291
 292/**
 293 * pat_init - Initialize PAT MSR and PAT table
 294 *
 295 * This function initializes PAT MSR and PAT table with an OS-defined value
 296 * to enable additional cache attributes, WC, WT and WP.
 297 *
 298 * This function must be called on all CPUs using the specific sequence of
 299 * operations defined in Intel SDM. mtrr_rendezvous_handler() provides this
 300 * procedure for PAT.
 301 */
 302void pat_init(void)
 303{
 304        u64 pat;
 305        struct cpuinfo_x86 *c = &boot_cpu_data;
 306
 307        if (pat_disabled)
 308                return;
 309
 310        if ((c->x86_vendor == X86_VENDOR_INTEL) &&
 311            (((c->x86 == 0x6) && (c->x86_model <= 0xd)) ||
 312             ((c->x86 == 0xf) && (c->x86_model <= 0x6)))) {
 313                /*
 314                 * PAT support with the lower four entries. Intel Pentium 2,
 315                 * 3, M, and 4 are affected by PAT errata, which makes the
 316                 * upper four entries unusable. To be on the safe side, we don't
 317                 * use those.
 318                 *
 319                 *  PTE encoding:
 320                 *      PAT
 321                 *      |PCD
 322                 *      ||PWT  PAT
 323                 *      |||    slot
 324                 *      000    0    WB : _PAGE_CACHE_MODE_WB
 325                 *      001    1    WC : _PAGE_CACHE_MODE_WC
 326                 *      010    2    UC-: _PAGE_CACHE_MODE_UC_MINUS
 327                 *      011    3    UC : _PAGE_CACHE_MODE_UC
 328                 * PAT bit unused
 329                 *
 330                 * NOTE: When WT or WP is used, it is redirected to UC- per
 331                 * the default setup in __cachemode2pte_tbl[].
 332                 */
 333                pat = PAT(0, WB) | PAT(1, WC) | PAT(2, UC_MINUS) | PAT(3, UC) |
 334                      PAT(4, WB) | PAT(5, WC) | PAT(6, UC_MINUS) | PAT(7, UC);
 335        } else {
 336                /*
 337                 * Full PAT support.  We put WT in slot 7 to improve
 338                 * robustness in the presence of errata that might cause
 339                 * the high PAT bit to be ignored.  This way, a buggy slot 7
 340                 * access will hit slot 3, and slot 3 is UC, so at worst
 341                 * we lose performance without causing a correctness issue.
 342                 * Pentium 4 erratum N46 is an example for such an erratum,
 343                 * although we try not to use PAT at all on affected CPUs.
 344                 *
 345                 *  PTE encoding:
 346                 *      PAT
 347                 *      |PCD
 348                 *      ||PWT  PAT
 349                 *      |||    slot
 350                 *      000    0    WB : _PAGE_CACHE_MODE_WB
 351                 *      001    1    WC : _PAGE_CACHE_MODE_WC
 352                 *      010    2    UC-: _PAGE_CACHE_MODE_UC_MINUS
 353                 *      011    3    UC : _PAGE_CACHE_MODE_UC
 354                 *      100    4    WB : Reserved
 355                 *      101    5    WP : _PAGE_CACHE_MODE_WP
 356                 *      110    6    UC-: Reserved
 357                 *      111    7    WT : _PAGE_CACHE_MODE_WT
 358                 *
 359                 * The reserved slots are unused, but mapped to their
 360                 * corresponding types in the presence of PAT errata.
 361                 */
 362                pat = PAT(0, WB) | PAT(1, WC) | PAT(2, UC_MINUS) | PAT(3, UC) |
 363                      PAT(4, WB) | PAT(5, WP) | PAT(6, UC_MINUS) | PAT(7, WT);
 364        }
 365
 366        if (!boot_cpu_done) {
 367                pat_bsp_init(pat);
 368                boot_cpu_done = true;
 369        } else {
 370                pat_ap_init(pat);
 371        }
 372}
 373
 374#undef PAT
 375
 376static DEFINE_SPINLOCK(memtype_lock);   /* protects memtype accesses */
 377
 378/*
 379 * Does intersection of PAT memory type and MTRR memory type and returns
 380 * the resulting memory type as PAT understands it.
 381 * (Type in pat and mtrr will not have same value)
 382 * The intersection is based on "Effective Memory Type" tables in IA-32
 383 * SDM vol 3a
 384 */
 385static unsigned long pat_x_mtrr_type(u64 start, u64 end,
 386                                     enum page_cache_mode req_type)
 387{
 388        /*
 389         * Look for MTRR hint to get the effective type in case where PAT
 390         * request is for WB.
 391         */
 392        if (req_type == _PAGE_CACHE_MODE_WB) {
 393                u8 mtrr_type, uniform;
 394
 395                mtrr_type = mtrr_type_lookup(start, end, &uniform);
 396                if (mtrr_type != MTRR_TYPE_WRBACK)
 397                        return _PAGE_CACHE_MODE_UC_MINUS;
 398
 399                return _PAGE_CACHE_MODE_WB;
 400        }
 401
 402        return req_type;
 403}
 404
 405struct pagerange_state {
 406        unsigned long           cur_pfn;
 407        int                     ram;
 408        int                     not_ram;
 409};
 410
 411static int
 412pagerange_is_ram_callback(unsigned long initial_pfn, unsigned long total_nr_pages, void *arg)
 413{
 414        struct pagerange_state *state = arg;
 415
 416        state->not_ram  |= initial_pfn > state->cur_pfn;
 417        state->ram      |= total_nr_pages > 0;
 418        state->cur_pfn   = initial_pfn + total_nr_pages;
 419
 420        return state->ram && state->not_ram;
 421}
 422
 423static int pat_pagerange_is_ram(resource_size_t start, resource_size_t end)
 424{
 425        int ret = 0;
 426        unsigned long start_pfn = start >> PAGE_SHIFT;
 427        unsigned long end_pfn = (end + PAGE_SIZE - 1) >> PAGE_SHIFT;
 428        struct pagerange_state state = {start_pfn, 0, 0};
 429
 430        /*
 431         * For legacy reasons, physical address range in the legacy ISA
 432         * region is tracked as non-RAM. This will allow users of
 433         * /dev/mem to map portions of legacy ISA region, even when
 434         * some of those portions are listed(or not even listed) with
 435         * different e820 types(RAM/reserved/..)
 436         */
 437        if (start_pfn < ISA_END_ADDRESS >> PAGE_SHIFT)
 438                start_pfn = ISA_END_ADDRESS >> PAGE_SHIFT;
 439
 440        if (start_pfn < end_pfn) {
 441                ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn,
 442                                &state, pagerange_is_ram_callback);
 443        }
 444
 445        return (ret > 0) ? -1 : (state.ram ? 1 : 0);
 446}
 447
 448/*
 449 * For RAM pages, we use page flags to mark the pages with appropriate type.
 450 * The page flags are limited to four types, WB (default), WC, WT and UC-.
 451 * WP request fails with -EINVAL, and UC gets redirected to UC-.  Setting
 452 * a new memory type is only allowed for a page mapped with the default WB
 453 * type.
 454 *
 455 * Here we do two passes:
 456 * - Find the memtype of all the pages in the range, look for any conflicts.
 457 * - In case of no conflicts, set the new memtype for pages in the range.
 458 */
 459static int reserve_ram_pages_type(u64 start, u64 end,
 460                                  enum page_cache_mode req_type,
 461                                  enum page_cache_mode *new_type)
 462{
 463        struct page *page;
 464        u64 pfn;
 465
 466        if (req_type == _PAGE_CACHE_MODE_WP) {
 467                if (new_type)
 468                        *new_type = _PAGE_CACHE_MODE_UC_MINUS;
 469                return -EINVAL;
 470        }
 471
 472        if (req_type == _PAGE_CACHE_MODE_UC) {
 473                /* We do not support strong UC */
 474                WARN_ON_ONCE(1);
 475                req_type = _PAGE_CACHE_MODE_UC_MINUS;
 476        }
 477
 478        for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
 479                enum page_cache_mode type;
 480
 481                page = pfn_to_page(pfn);
 482                type = get_page_memtype(page);
 483                if (type != _PAGE_CACHE_MODE_WB) {
 484                        pr_info("x86/PAT: reserve_ram_pages_type failed [mem %#010Lx-%#010Lx], track 0x%x, req 0x%x\n",
 485                                start, end - 1, type, req_type);
 486                        if (new_type)
 487                                *new_type = type;
 488
 489                        return -EBUSY;
 490                }
 491        }
 492
 493        if (new_type)
 494                *new_type = req_type;
 495
 496        for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
 497                page = pfn_to_page(pfn);
 498                set_page_memtype(page, req_type);
 499        }
 500        return 0;
 501}
 502
 503static int free_ram_pages_type(u64 start, u64 end)
 504{
 505        struct page *page;
 506        u64 pfn;
 507
 508        for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
 509                page = pfn_to_page(pfn);
 510                set_page_memtype(page, _PAGE_CACHE_MODE_WB);
 511        }
 512        return 0;
 513}
 514
 515static u64 sanitize_phys(u64 address)
 516{
 517        /*
 518         * When changing the memtype for pages containing poison allow
 519         * for a "decoy" virtual address (bit 63 clear) passed to
 520         * set_memory_X(). __pa() on a "decoy" address results in a
 521         * physical address with bit 63 set.
 522         *
 523         * Decoy addresses are not present for 32-bit builds, see
 524         * set_mce_nospec().
 525         */
 526        if (IS_ENABLED(CONFIG_X86_64))
 527                return address & __PHYSICAL_MASK;
 528        return address;
 529}
 530
 531/*
 532 * req_type typically has one of the:
 533 * - _PAGE_CACHE_MODE_WB
 534 * - _PAGE_CACHE_MODE_WC
 535 * - _PAGE_CACHE_MODE_UC_MINUS
 536 * - _PAGE_CACHE_MODE_UC
 537 * - _PAGE_CACHE_MODE_WT
 538 *
 539 * If new_type is NULL, function will return an error if it cannot reserve the
 540 * region with req_type. If new_type is non-NULL, function will return
 541 * available type in new_type in case of no error. In case of any error
 542 * it will return a negative return value.
 543 */
 544int reserve_memtype(u64 start, u64 end, enum page_cache_mode req_type,
 545                    enum page_cache_mode *new_type)
 546{
 547        struct memtype *new;
 548        enum page_cache_mode actual_type;
 549        int is_range_ram;
 550        int err = 0;
 551
 552        start = sanitize_phys(start);
 553        end = sanitize_phys(end);
 554        if (start >= end) {
 555                WARN(1, "%s failed: [mem %#010Lx-%#010Lx], req %s\n", __func__,
 556                                start, end - 1, cattr_name(req_type));
 557                return -EINVAL;
 558        }
 559
 560        if (!pat_enabled()) {
 561                /* This is identical to page table setting without PAT */
 562                if (new_type)
 563                        *new_type = req_type;
 564                return 0;
 565        }
 566
 567        /* Low ISA region is always mapped WB in page table. No need to track */
 568        if (x86_platform.is_untracked_pat_range(start, end)) {
 569                if (new_type)
 570                        *new_type = _PAGE_CACHE_MODE_WB;
 571                return 0;
 572        }
 573
 574        /*
 575         * Call mtrr_lookup to get the type hint. This is an
 576         * optimization for /dev/mem mmap'ers into WB memory (BIOS
 577         * tools and ACPI tools). Use WB request for WB memory and use
 578         * UC_MINUS otherwise.
 579         */
 580        actual_type = pat_x_mtrr_type(start, end, req_type);
 581
 582        if (new_type)
 583                *new_type = actual_type;
 584
 585        is_range_ram = pat_pagerange_is_ram(start, end);
 586        if (is_range_ram == 1) {
 587
 588                err = reserve_ram_pages_type(start, end, req_type, new_type);
 589
 590                return err;
 591        } else if (is_range_ram < 0) {
 592                return -EINVAL;
 593        }
 594
 595        new  = kzalloc(sizeof(struct memtype), GFP_KERNEL);
 596        if (!new)
 597                return -ENOMEM;
 598
 599        new->start      = start;
 600        new->end        = end;
 601        new->type       = actual_type;
 602
 603        spin_lock(&memtype_lock);
 604
 605        err = rbt_memtype_check_insert(new, new_type);
 606        if (err) {
 607                pr_info("x86/PAT: reserve_memtype failed [mem %#010Lx-%#010Lx], track %s, req %s\n",
 608                        start, end - 1,
 609                        cattr_name(new->type), cattr_name(req_type));
 610                kfree(new);
 611                spin_unlock(&memtype_lock);
 612
 613                return err;
 614        }
 615
 616        spin_unlock(&memtype_lock);
 617
 618        dprintk("reserve_memtype added [mem %#010Lx-%#010Lx], track %s, req %s, ret %s\n",
 619                start, end - 1, cattr_name(new->type), cattr_name(req_type),
 620                new_type ? cattr_name(*new_type) : "-");
 621
 622        return err;
 623}
 624
 625int free_memtype(u64 start, u64 end)
 626{
 627        int err = -EINVAL;
 628        int is_range_ram;
 629        struct memtype *entry;
 630
 631        if (!pat_enabled())
 632                return 0;
 633
 634        start = sanitize_phys(start);
 635        end = sanitize_phys(end);
 636
 637        /* Low ISA region is always mapped WB. No need to track */
 638        if (x86_platform.is_untracked_pat_range(start, end))
 639                return 0;
 640
 641        is_range_ram = pat_pagerange_is_ram(start, end);
 642        if (is_range_ram == 1) {
 643
 644                err = free_ram_pages_type(start, end);
 645
 646                return err;
 647        } else if (is_range_ram < 0) {
 648                return -EINVAL;
 649        }
 650
 651        spin_lock(&memtype_lock);
 652        entry = rbt_memtype_erase(start, end);
 653        spin_unlock(&memtype_lock);
 654
 655        if (IS_ERR(entry)) {
 656                pr_info("x86/PAT: %s:%d freeing invalid memtype [mem %#010Lx-%#010Lx]\n",
 657                        current->comm, current->pid, start, end - 1);
 658                return -EINVAL;
 659        }
 660
 661        kfree(entry);
 662
 663        dprintk("free_memtype request [mem %#010Lx-%#010Lx]\n", start, end - 1);
 664
 665        return 0;
 666}
 667
 668
 669/**
 670 * lookup_memtype - Looksup the memory type for a physical address
 671 * @paddr: physical address of which memory type needs to be looked up
 672 *
 673 * Only to be called when PAT is enabled
 674 *
 675 * Returns _PAGE_CACHE_MODE_WB, _PAGE_CACHE_MODE_WC, _PAGE_CACHE_MODE_UC_MINUS
 676 * or _PAGE_CACHE_MODE_WT.
 677 */
 678static enum page_cache_mode lookup_memtype(u64 paddr)
 679{
 680        enum page_cache_mode rettype = _PAGE_CACHE_MODE_WB;
 681        struct memtype *entry;
 682
 683        if (x86_platform.is_untracked_pat_range(paddr, paddr + PAGE_SIZE))
 684                return rettype;
 685
 686        if (pat_pagerange_is_ram(paddr, paddr + PAGE_SIZE)) {
 687                struct page *page;
 688
 689                page = pfn_to_page(paddr >> PAGE_SHIFT);
 690                return get_page_memtype(page);
 691        }
 692
 693        spin_lock(&memtype_lock);
 694
 695        entry = rbt_memtype_lookup(paddr);
 696        if (entry != NULL)
 697                rettype = entry->type;
 698        else
 699                rettype = _PAGE_CACHE_MODE_UC_MINUS;
 700
 701        spin_unlock(&memtype_lock);
 702        return rettype;
 703}
 704
 705/**
 706 * pat_pfn_immune_to_uc_mtrr - Check whether the PAT memory type
 707 * of @pfn cannot be overridden by UC MTRR memory type.
 708 *
 709 * Only to be called when PAT is enabled.
 710 *
 711 * Returns true, if the PAT memory type of @pfn is UC, UC-, or WC.
 712 * Returns false in other cases.
 713 */
 714bool pat_pfn_immune_to_uc_mtrr(unsigned long pfn)
 715{
 716        enum page_cache_mode cm = lookup_memtype(PFN_PHYS(pfn));
 717
 718        return cm == _PAGE_CACHE_MODE_UC ||
 719               cm == _PAGE_CACHE_MODE_UC_MINUS ||
 720               cm == _PAGE_CACHE_MODE_WC;
 721}
 722EXPORT_SYMBOL_GPL(pat_pfn_immune_to_uc_mtrr);
 723
 724/**
 725 * io_reserve_memtype - Request a memory type mapping for a region of memory
 726 * @start: start (physical address) of the region
 727 * @end: end (physical address) of the region
 728 * @type: A pointer to memtype, with requested type. On success, requested
 729 * or any other compatible type that was available for the region is returned
 730 *
 731 * On success, returns 0
 732 * On failure, returns non-zero
 733 */
 734int io_reserve_memtype(resource_size_t start, resource_size_t end,
 735                        enum page_cache_mode *type)
 736{
 737        resource_size_t size = end - start;
 738        enum page_cache_mode req_type = *type;
 739        enum page_cache_mode new_type;
 740        int ret;
 741
 742        WARN_ON_ONCE(iomem_map_sanity_check(start, size));
 743
 744        ret = reserve_memtype(start, end, req_type, &new_type);
 745        if (ret)
 746                goto out_err;
 747
 748        if (!is_new_memtype_allowed(start, size, req_type, new_type))
 749                goto out_free;
 750
 751        if (kernel_map_sync_memtype(start, size, new_type) < 0)
 752                goto out_free;
 753
 754        *type = new_type;
 755        return 0;
 756
 757out_free:
 758        free_memtype(start, end);
 759        ret = -EBUSY;
 760out_err:
 761        return ret;
 762}
 763
 764/**
 765 * io_free_memtype - Release a memory type mapping for a region of memory
 766 * @start: start (physical address) of the region
 767 * @end: end (physical address) of the region
 768 */
 769void io_free_memtype(resource_size_t start, resource_size_t end)
 770{
 771        free_memtype(start, end);
 772}
 773
 774int arch_io_reserve_memtype_wc(resource_size_t start, resource_size_t size)
 775{
 776        enum page_cache_mode type = _PAGE_CACHE_MODE_WC;
 777
 778        return io_reserve_memtype(start, start + size, &type);
 779}
 780EXPORT_SYMBOL(arch_io_reserve_memtype_wc);
 781
 782void arch_io_free_memtype_wc(resource_size_t start, resource_size_t size)
 783{
 784        io_free_memtype(start, start + size);
 785}
 786EXPORT_SYMBOL(arch_io_free_memtype_wc);
 787
 788pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
 789                                unsigned long size, pgprot_t vma_prot)
 790{
 791        if (!phys_mem_access_encrypted(pfn << PAGE_SHIFT, size))
 792                vma_prot = pgprot_decrypted(vma_prot);
 793
 794        return vma_prot;
 795}
 796
 797#ifdef CONFIG_STRICT_DEVMEM
 798/* This check is done in drivers/char/mem.c in case of STRICT_DEVMEM */
 799static inline int range_is_allowed(unsigned long pfn, unsigned long size)
 800{
 801        return 1;
 802}
 803#else
 804/* This check is needed to avoid cache aliasing when PAT is enabled */
 805static inline int range_is_allowed(unsigned long pfn, unsigned long size)
 806{
 807        u64 from = ((u64)pfn) << PAGE_SHIFT;
 808        u64 to = from + size;
 809        u64 cursor = from;
 810
 811        if (!pat_enabled())
 812                return 1;
 813
 814        while (cursor < to) {
 815                if (!devmem_is_allowed(pfn))
 816                        return 0;
 817                cursor += PAGE_SIZE;
 818                pfn++;
 819        }
 820        return 1;
 821}
 822#endif /* CONFIG_STRICT_DEVMEM */
 823
 824int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
 825                                unsigned long size, pgprot_t *vma_prot)
 826{
 827        enum page_cache_mode pcm = _PAGE_CACHE_MODE_WB;
 828
 829        if (!range_is_allowed(pfn, size))
 830                return 0;
 831
 832        if (file->f_flags & O_DSYNC)
 833                pcm = _PAGE_CACHE_MODE_UC_MINUS;
 834
 835        *vma_prot = __pgprot((pgprot_val(*vma_prot) & ~_PAGE_CACHE_MASK) |
 836                             cachemode2protval(pcm));
 837        return 1;
 838}
 839
 840/*
 841 * Change the memory type for the physial address range in kernel identity
 842 * mapping space if that range is a part of identity map.
 843 */
 844int kernel_map_sync_memtype(u64 base, unsigned long size,
 845                            enum page_cache_mode pcm)
 846{
 847        unsigned long id_sz;
 848
 849        if (base > __pa(high_memory-1))
 850                return 0;
 851
 852        /*
 853         * some areas in the middle of the kernel identity range
 854         * are not mapped, like the PCI space.
 855         */
 856        if (!page_is_ram(base >> PAGE_SHIFT))
 857                return 0;
 858
 859        id_sz = (__pa(high_memory-1) <= base + size) ?
 860                                __pa(high_memory) - base :
 861                                size;
 862
 863        if (ioremap_change_attr((unsigned long)__va(base), id_sz, pcm) < 0) {
 864                pr_info("x86/PAT: %s:%d ioremap_change_attr failed %s for [mem %#010Lx-%#010Lx]\n",
 865                        current->comm, current->pid,
 866                        cattr_name(pcm),
 867                        base, (unsigned long long)(base + size-1));
 868                return -EINVAL;
 869        }
 870        return 0;
 871}
 872
 873/*
 874 * Internal interface to reserve a range of physical memory with prot.
 875 * Reserved non RAM regions only and after successful reserve_memtype,
 876 * this func also keeps identity mapping (if any) in sync with this new prot.
 877 */
 878static int reserve_pfn_range(u64 paddr, unsigned long size, pgprot_t *vma_prot,
 879                                int strict_prot)
 880{
 881        int is_ram = 0;
 882        int ret;
 883        enum page_cache_mode want_pcm = pgprot2cachemode(*vma_prot);
 884        enum page_cache_mode pcm = want_pcm;
 885
 886        is_ram = pat_pagerange_is_ram(paddr, paddr + size);
 887
 888        /*
 889         * reserve_pfn_range() for RAM pages. We do not refcount to keep
 890         * track of number of mappings of RAM pages. We can assert that
 891         * the type requested matches the type of first page in the range.
 892         */
 893        if (is_ram) {
 894                if (!pat_enabled())
 895                        return 0;
 896
 897                pcm = lookup_memtype(paddr);
 898                if (want_pcm != pcm) {
 899                        pr_warn("x86/PAT: %s:%d map pfn RAM range req %s for [mem %#010Lx-%#010Lx], got %s\n",
 900                                current->comm, current->pid,
 901                                cattr_name(want_pcm),
 902                                (unsigned long long)paddr,
 903                                (unsigned long long)(paddr + size - 1),
 904                                cattr_name(pcm));
 905                        *vma_prot = __pgprot((pgprot_val(*vma_prot) &
 906                                             (~_PAGE_CACHE_MASK)) |
 907                                             cachemode2protval(pcm));
 908                }
 909                return 0;
 910        }
 911
 912        ret = reserve_memtype(paddr, paddr + size, want_pcm, &pcm);
 913        if (ret)
 914                return ret;
 915
 916        if (pcm != want_pcm) {
 917                if (strict_prot ||
 918                    !is_new_memtype_allowed(paddr, size, want_pcm, pcm)) {
 919                        free_memtype(paddr, paddr + size);
 920                        pr_err("x86/PAT: %s:%d map pfn expected mapping type %s for [mem %#010Lx-%#010Lx], got %s\n",
 921                               current->comm, current->pid,
 922                               cattr_name(want_pcm),
 923                               (unsigned long long)paddr,
 924                               (unsigned long long)(paddr + size - 1),
 925                               cattr_name(pcm));
 926                        return -EINVAL;
 927                }
 928                /*
 929                 * We allow returning different type than the one requested in
 930                 * non strict case.
 931                 */
 932                *vma_prot = __pgprot((pgprot_val(*vma_prot) &
 933                                      (~_PAGE_CACHE_MASK)) |
 934                                     cachemode2protval(pcm));
 935        }
 936
 937        if (kernel_map_sync_memtype(paddr, size, pcm) < 0) {
 938                free_memtype(paddr, paddr + size);
 939                return -EINVAL;
 940        }
 941        return 0;
 942}
 943
 944/*
 945 * Internal interface to free a range of physical memory.
 946 * Frees non RAM regions only.
 947 */
 948static void free_pfn_range(u64 paddr, unsigned long size)
 949{
 950        int is_ram;
 951
 952        is_ram = pat_pagerange_is_ram(paddr, paddr + size);
 953        if (is_ram == 0)
 954                free_memtype(paddr, paddr + size);
 955}
 956
 957/*
 958 * track_pfn_copy is called when vma that is covering the pfnmap gets
 959 * copied through copy_page_range().
 960 *
 961 * If the vma has a linear pfn mapping for the entire range, we get the prot
 962 * from pte and reserve the entire vma range with single reserve_pfn_range call.
 963 */
 964int track_pfn_copy(struct vm_area_struct *vma)
 965{
 966        resource_size_t paddr;
 967        unsigned long prot;
 968        unsigned long vma_size = vma->vm_end - vma->vm_start;
 969        pgprot_t pgprot;
 970
 971        if (vma->vm_flags & VM_PAT) {
 972                /*
 973                 * reserve the whole chunk covered by vma. We need the
 974                 * starting address and protection from pte.
 975                 */
 976                if (follow_phys(vma, vma->vm_start, 0, &prot, &paddr)) {
 977                        WARN_ON_ONCE(1);
 978                        return -EINVAL;
 979                }
 980                pgprot = __pgprot(prot);
 981                return reserve_pfn_range(paddr, vma_size, &pgprot, 1);
 982        }
 983
 984        return 0;
 985}
 986
 987/*
 988 * prot is passed in as a parameter for the new mapping. If the vma has
 989 * a linear pfn mapping for the entire range, or no vma is provided,
 990 * reserve the entire pfn + size range with single reserve_pfn_range
 991 * call.
 992 */
 993int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
 994                    unsigned long pfn, unsigned long addr, unsigned long size)
 995{
 996        resource_size_t paddr = (resource_size_t)pfn << PAGE_SHIFT;
 997        enum page_cache_mode pcm;
 998
 999        /* reserve the whole chunk starting from paddr */
1000        if (!vma || (addr == vma->vm_start
1001                                && size == (vma->vm_end - vma->vm_start))) {
1002                int ret;
1003
1004                ret = reserve_pfn_range(paddr, size, prot, 0);
1005                if (ret == 0 && vma)
1006                        vma->vm_flags |= VM_PAT;
1007                return ret;
1008        }
1009
1010        if (!pat_enabled())
1011                return 0;
1012
1013        /*
1014         * For anything smaller than the vma size we set prot based on the
1015         * lookup.
1016         */
1017        pcm = lookup_memtype(paddr);
1018
1019        /* Check memtype for the remaining pages */
1020        while (size > PAGE_SIZE) {
1021                size -= PAGE_SIZE;
1022                paddr += PAGE_SIZE;
1023                if (pcm != lookup_memtype(paddr))
1024                        return -EINVAL;
1025        }
1026
1027        *prot = __pgprot((pgprot_val(*prot) & (~_PAGE_CACHE_MASK)) |
1028                         cachemode2protval(pcm));
1029
1030        return 0;
1031}
1032
1033void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, pfn_t pfn)
1034{
1035        enum page_cache_mode pcm;
1036
1037        if (!pat_enabled())
1038                return;
1039
1040        /* Set prot based on lookup */
1041        pcm = lookup_memtype(pfn_t_to_phys(pfn));
1042        *prot = __pgprot((pgprot_val(*prot) & (~_PAGE_CACHE_MASK)) |
1043                         cachemode2protval(pcm));
1044}
1045
1046/*
1047 * untrack_pfn is called while unmapping a pfnmap for a region.
1048 * untrack can be called for a specific region indicated by pfn and size or
1049 * can be for the entire vma (in which case pfn, size are zero).
1050 */
1051void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
1052                 unsigned long size)
1053{
1054        resource_size_t paddr;
1055        unsigned long prot;
1056
1057        if (vma && !(vma->vm_flags & VM_PAT))
1058                return;
1059
1060        /* free the chunk starting from pfn or the whole chunk */
1061        paddr = (resource_size_t)pfn << PAGE_SHIFT;
1062        if (!paddr && !size) {
1063                if (follow_phys(vma, vma->vm_start, 0, &prot, &paddr)) {
1064                        WARN_ON_ONCE(1);
1065                        return;
1066                }
1067
1068                size = vma->vm_end - vma->vm_start;
1069        }
1070        free_pfn_range(paddr, size);
1071        if (vma)
1072                vma->vm_flags &= ~VM_PAT;
1073}
1074
1075/*
1076 * untrack_pfn_moved is called, while mremapping a pfnmap for a new region,
1077 * with the old vma after its pfnmap page table has been removed.  The new
1078 * vma has a new pfnmap to the same pfn & cache type with VM_PAT set.
1079 */
1080void untrack_pfn_moved(struct vm_area_struct *vma)
1081{
1082        vma->vm_flags &= ~VM_PAT;
1083}
1084
1085pgprot_t pgprot_writecombine(pgprot_t prot)
1086{
1087        return __pgprot(pgprot_val(prot) |
1088                                cachemode2protval(_PAGE_CACHE_MODE_WC));
1089}
1090EXPORT_SYMBOL_GPL(pgprot_writecombine);
1091
1092pgprot_t pgprot_writethrough(pgprot_t prot)
1093{
1094        return __pgprot(pgprot_val(prot) |
1095                                cachemode2protval(_PAGE_CACHE_MODE_WT));
1096}
1097EXPORT_SYMBOL_GPL(pgprot_writethrough);
1098
1099#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_X86_PAT)
1100
1101static struct memtype *memtype_get_idx(loff_t pos)
1102{
1103        struct memtype *print_entry;
1104        int ret;
1105
1106        print_entry  = kzalloc(sizeof(struct memtype), GFP_KERNEL);
1107        if (!print_entry)
1108                return NULL;
1109
1110        spin_lock(&memtype_lock);
1111        ret = rbt_memtype_copy_nth_element(print_entry, pos);
1112        spin_unlock(&memtype_lock);
1113
1114        if (!ret) {
1115                return print_entry;
1116        } else {
1117                kfree(print_entry);
1118                return NULL;
1119        }
1120}
1121
1122static void *memtype_seq_start(struct seq_file *seq, loff_t *pos)
1123{
1124        if (*pos == 0) {
1125                ++*pos;
1126                seq_puts(seq, "PAT memtype list:\n");
1127        }
1128
1129        return memtype_get_idx(*pos);
1130}
1131
1132static void *memtype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1133{
1134        ++*pos;
1135        return memtype_get_idx(*pos);
1136}
1137
1138static void memtype_seq_stop(struct seq_file *seq, void *v)
1139{
1140}
1141
1142static int memtype_seq_show(struct seq_file *seq, void *v)
1143{
1144        struct memtype *print_entry = (struct memtype *)v;
1145
1146        seq_printf(seq, "%s @ 0x%Lx-0x%Lx\n", cattr_name(print_entry->type),
1147                        print_entry->start, print_entry->end);
1148        kfree(print_entry);
1149
1150        return 0;
1151}
1152
1153static const struct seq_operations memtype_seq_ops = {
1154        .start = memtype_seq_start,
1155        .next  = memtype_seq_next,
1156        .stop  = memtype_seq_stop,
1157        .show  = memtype_seq_show,
1158};
1159
1160static int memtype_seq_open(struct inode *inode, struct file *file)
1161{
1162        return seq_open(file, &memtype_seq_ops);
1163}
1164
1165static const struct file_operations memtype_fops = {
1166        .open    = memtype_seq_open,
1167        .read    = seq_read,
1168        .llseek  = seq_lseek,
1169        .release = seq_release,
1170};
1171
1172static int __init pat_memtype_list_init(void)
1173{
1174        if (pat_enabled()) {
1175                debugfs_create_file("pat_memtype_list", S_IRUSR,
1176                                    arch_debugfs_dir, NULL, &memtype_fops);
1177        }
1178        return 0;
1179}
1180
1181late_initcall(pat_memtype_list_init);
1182
1183#endif /* CONFIG_DEBUG_FS && CONFIG_X86_PAT */
1184