linux/drivers/char/rtc.c
<<
>>
Prefs
   1/*
   2 *      Real Time Clock interface for Linux
   3 *
   4 *      Copyright (C) 1996 Paul Gortmaker
   5 *
   6 *      This driver allows use of the real time clock (built into
   7 *      nearly all computers) from user space. It exports the /dev/rtc
   8 *      interface supporting various ioctl() and also the
   9 *      /proc/driver/rtc pseudo-file for status information.
  10 *
  11 *      The ioctls can be used to set the interrupt behaviour and
  12 *      generation rate from the RTC via IRQ 8. Then the /dev/rtc
  13 *      interface can be used to make use of these timer interrupts,
  14 *      be they interval or alarm based.
  15 *
  16 *      The /dev/rtc interface will block on reads until an interrupt
  17 *      has been received. If a RTC interrupt has already happened,
  18 *      it will output an unsigned long and then block. The output value
  19 *      contains the interrupt status in the low byte and the number of
  20 *      interrupts since the last read in the remaining high bytes. The
  21 *      /dev/rtc interface can also be used with the select(2) call.
  22 *
  23 *      This program is free software; you can redistribute it and/or
  24 *      modify it under the terms of the GNU General Public License
  25 *      as published by the Free Software Foundation; either version
  26 *      2 of the License, or (at your option) any later version.
  27 *
  28 *      Based on other minimal char device drivers, like Alan's
  29 *      watchdog, Ted's random, etc. etc.
  30 *
  31 *      1.07    Paul Gortmaker.
  32 *      1.08    Miquel van Smoorenburg: disallow certain things on the
  33 *              DEC Alpha as the CMOS clock is also used for other things.
  34 *      1.09    Nikita Schmidt: epoch support and some Alpha cleanup.
  35 *      1.09a   Pete Zaitcev: Sun SPARC
  36 *      1.09b   Jeff Garzik: Modularize, init cleanup
  37 *      1.09c   Jeff Garzik: SMP cleanup
  38 *      1.10    Paul Barton-Davis: add support for async I/O
  39 *      1.10a   Andrea Arcangeli: Alpha updates
  40 *      1.10b   Andrew Morton: SMP lock fix
  41 *      1.10c   Cesar Barros: SMP locking fixes and cleanup
  42 *      1.10d   Paul Gortmaker: delete paranoia check in rtc_exit
  43 *      1.10e   Maciej W. Rozycki: Handle DECstation's year weirdness.
  44 *      1.11    Takashi Iwai: Kernel access functions
  45 *                            rtc_register/rtc_unregister/rtc_control
  46 *      1.11a   Daniele Bellucci: Audit create_proc_read_entry in rtc_init
  47 *      1.12    Venkatesh Pallipadi: Hooks for emulating rtc on HPET base-timer
  48 *              CONFIG_HPET_EMULATE_RTC
  49 *      1.12a   Maciej W. Rozycki: Handle memory-mapped chips properly.
  50 *      1.12ac  Alan Cox: Allow read access to the day of week register
  51 *      1.12b   David John: Remove calls to the BKL.
  52 */
  53
  54#define RTC_VERSION             "1.12b"
  55
  56/*
  57 *      Note that *all* calls to CMOS_READ and CMOS_WRITE are done with
  58 *      interrupts disabled. Due to the index-port/data-port (0x70/0x71)
  59 *      design of the RTC, we don't want two different things trying to
  60 *      get to it at once. (e.g. the periodic 11 min sync from
  61 *      kernel/time/ntp.c vs. this driver.)
  62 */
  63
  64#include <linux/interrupt.h>
  65#include <linux/module.h>
  66#include <linux/kernel.h>
  67#include <linux/types.h>
  68#include <linux/miscdevice.h>
  69#include <linux/ioport.h>
  70#include <linux/fcntl.h>
  71#include <linux/mc146818rtc.h>
  72#include <linux/init.h>
  73#include <linux/poll.h>
  74#include <linux/proc_fs.h>
  75#include <linux/seq_file.h>
  76#include <linux/spinlock.h>
  77#include <linux/sched/signal.h>
  78#include <linux/sysctl.h>
  79#include <linux/wait.h>
  80#include <linux/bcd.h>
  81#include <linux/delay.h>
  82#include <linux/uaccess.h>
  83#include <linux/ratelimit.h>
  84
  85#include <asm/current.h>
  86
  87#ifdef CONFIG_X86
  88#include <asm/hpet.h>
  89#endif
  90
  91#ifdef CONFIG_SPARC32
  92#include <linux/of.h>
  93#include <linux/of_device.h>
  94#include <asm/io.h>
  95
  96static unsigned long rtc_port;
  97static int rtc_irq;
  98#endif
  99
 100#ifdef  CONFIG_HPET_EMULATE_RTC
 101#undef  RTC_IRQ
 102#endif
 103
 104#ifdef RTC_IRQ
 105static int rtc_has_irq = 1;
 106#endif
 107
 108#ifndef CONFIG_HPET_EMULATE_RTC
 109#define is_hpet_enabled()                       0
 110#define hpet_set_alarm_time(hrs, min, sec)      0
 111#define hpet_set_periodic_freq(arg)             0
 112#define hpet_mask_rtc_irq_bit(arg)              0
 113#define hpet_set_rtc_irq_bit(arg)               0
 114#define hpet_rtc_timer_init()                   do { } while (0)
 115#define hpet_rtc_dropped_irq()                  0
 116#define hpet_register_irq_handler(h)            ({ 0; })
 117#define hpet_unregister_irq_handler(h)          ({ 0; })
 118#ifdef RTC_IRQ
 119static irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
 120{
 121        return 0;
 122}
 123#endif
 124#endif
 125
 126/*
 127 *      We sponge a minor off of the misc major. No need slurping
 128 *      up another valuable major dev number for this. If you add
 129 *      an ioctl, make sure you don't conflict with SPARC's RTC
 130 *      ioctls.
 131 */
 132
 133static struct fasync_struct *rtc_async_queue;
 134
 135static DECLARE_WAIT_QUEUE_HEAD(rtc_wait);
 136
 137#ifdef RTC_IRQ
 138static void rtc_dropped_irq(struct timer_list *unused);
 139
 140static DEFINE_TIMER(rtc_irq_timer, rtc_dropped_irq);
 141#endif
 142
 143static ssize_t rtc_read(struct file *file, char __user *buf,
 144                        size_t count, loff_t *ppos);
 145
 146static long rtc_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 147static void rtc_get_rtc_time(struct rtc_time *rtc_tm);
 148
 149#ifdef RTC_IRQ
 150static __poll_t rtc_poll(struct file *file, poll_table *wait);
 151#endif
 152
 153static void get_rtc_alm_time(struct rtc_time *alm_tm);
 154#ifdef RTC_IRQ
 155static void set_rtc_irq_bit_locked(unsigned char bit);
 156static void mask_rtc_irq_bit_locked(unsigned char bit);
 157
 158static inline void set_rtc_irq_bit(unsigned char bit)
 159{
 160        spin_lock_irq(&rtc_lock);
 161        set_rtc_irq_bit_locked(bit);
 162        spin_unlock_irq(&rtc_lock);
 163}
 164
 165static void mask_rtc_irq_bit(unsigned char bit)
 166{
 167        spin_lock_irq(&rtc_lock);
 168        mask_rtc_irq_bit_locked(bit);
 169        spin_unlock_irq(&rtc_lock);
 170}
 171#endif
 172
 173#ifdef CONFIG_PROC_FS
 174static int rtc_proc_show(struct seq_file *seq, void *v);
 175#endif
 176
 177/*
 178 *      Bits in rtc_status. (6 bits of room for future expansion)
 179 */
 180
 181#define RTC_IS_OPEN             0x01    /* means /dev/rtc is in use     */
 182#define RTC_TIMER_ON            0x02    /* missed irq timer active      */
 183
 184/*
 185 * rtc_status is never changed by rtc_interrupt, and ioctl/open/close is
 186 * protected by the spin lock rtc_lock. However, ioctl can still disable the
 187 * timer in rtc_status and then with del_timer after the interrupt has read
 188 * rtc_status but before mod_timer is called, which would then reenable the
 189 * timer (but you would need to have an awful timing before you'd trip on it)
 190 */
 191static unsigned long rtc_status;        /* bitmapped status byte.       */
 192static unsigned long rtc_freq;          /* Current periodic IRQ rate    */
 193static unsigned long rtc_irq_data;      /* our output to the world      */
 194static unsigned long rtc_max_user_freq = 64; /* > this, need CAP_SYS_RESOURCE */
 195
 196/*
 197 *      If this driver ever becomes modularised, it will be really nice
 198 *      to make the epoch retain its value across module reload...
 199 */
 200
 201static unsigned long epoch = 1900;      /* year corresponding to 0x00   */
 202
 203static const unsigned char days_in_mo[] =
 204{0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
 205
 206/*
 207 * Returns true if a clock update is in progress
 208 */
 209static inline unsigned char rtc_is_updating(void)
 210{
 211        unsigned long flags;
 212        unsigned char uip;
 213
 214        spin_lock_irqsave(&rtc_lock, flags);
 215        uip = (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);
 216        spin_unlock_irqrestore(&rtc_lock, flags);
 217        return uip;
 218}
 219
 220#ifdef RTC_IRQ
 221/*
 222 *      A very tiny interrupt handler. It runs with interrupts disabled,
 223 *      but there is possibility of conflicting with the set_rtc_mmss()
 224 *      call (the rtc irq and the timer irq can easily run at the same
 225 *      time in two different CPUs). So we need to serialize
 226 *      accesses to the chip with the rtc_lock spinlock that each
 227 *      architecture should implement in the timer code.
 228 *      (See ./arch/XXXX/kernel/time.c for the set_rtc_mmss() function.)
 229 */
 230
 231static irqreturn_t rtc_interrupt(int irq, void *dev_id)
 232{
 233        /*
 234         *      Can be an alarm interrupt, update complete interrupt,
 235         *      or a periodic interrupt. We store the status in the
 236         *      low byte and the number of interrupts received since
 237         *      the last read in the remainder of rtc_irq_data.
 238         */
 239
 240        spin_lock(&rtc_lock);
 241        rtc_irq_data += 0x100;
 242        rtc_irq_data &= ~0xff;
 243        if (is_hpet_enabled()) {
 244                /*
 245                 * In this case it is HPET RTC interrupt handler
 246                 * calling us, with the interrupt information
 247                 * passed as arg1, instead of irq.
 248                 */
 249                rtc_irq_data |= (unsigned long)irq & 0xF0;
 250        } else {
 251                rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0);
 252        }
 253
 254        if (rtc_status & RTC_TIMER_ON)
 255                mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100);
 256
 257        spin_unlock(&rtc_lock);
 258
 259        wake_up_interruptible(&rtc_wait);
 260
 261        kill_fasync(&rtc_async_queue, SIGIO, POLL_IN);
 262
 263        return IRQ_HANDLED;
 264}
 265#endif
 266
 267/*
 268 * sysctl-tuning infrastructure.
 269 */
 270static struct ctl_table rtc_table[] = {
 271        {
 272                .procname       = "max-user-freq",
 273                .data           = &rtc_max_user_freq,
 274                .maxlen         = sizeof(int),
 275                .mode           = 0644,
 276                .proc_handler   = proc_dointvec,
 277        },
 278        { }
 279};
 280
 281static struct ctl_table rtc_root[] = {
 282        {
 283                .procname       = "rtc",
 284                .mode           = 0555,
 285                .child          = rtc_table,
 286        },
 287        { }
 288};
 289
 290static struct ctl_table dev_root[] = {
 291        {
 292                .procname       = "dev",
 293                .mode           = 0555,
 294                .child          = rtc_root,
 295        },
 296        { }
 297};
 298
 299static struct ctl_table_header *sysctl_header;
 300
 301static int __init init_sysctl(void)
 302{
 303    sysctl_header = register_sysctl_table(dev_root);
 304    return 0;
 305}
 306
 307static void __exit cleanup_sysctl(void)
 308{
 309    unregister_sysctl_table(sysctl_header);
 310}
 311
 312/*
 313 *      Now all the various file operations that we export.
 314 */
 315
 316static ssize_t rtc_read(struct file *file, char __user *buf,
 317                        size_t count, loff_t *ppos)
 318{
 319#ifndef RTC_IRQ
 320        return -EIO;
 321#else
 322        DECLARE_WAITQUEUE(wait, current);
 323        unsigned long data;
 324        ssize_t retval;
 325
 326        if (rtc_has_irq == 0)
 327                return -EIO;
 328
 329        /*
 330         * Historically this function used to assume that sizeof(unsigned long)
 331         * is the same in userspace and kernelspace.  This lead to problems
 332         * for configurations with multiple ABIs such a the MIPS o32 and 64
 333         * ABIs supported on the same kernel.  So now we support read of both
 334         * 4 and 8 bytes and assume that's the sizeof(unsigned long) in the
 335         * userspace ABI.
 336         */
 337        if (count != sizeof(unsigned int) && count !=  sizeof(unsigned long))
 338                return -EINVAL;
 339
 340        add_wait_queue(&rtc_wait, &wait);
 341
 342        do {
 343                /* First make it right. Then make it fast. Putting this whole
 344                 * block within the parentheses of a while would be too
 345                 * confusing. And no, xchg() is not the answer. */
 346
 347                __set_current_state(TASK_INTERRUPTIBLE);
 348
 349                spin_lock_irq(&rtc_lock);
 350                data = rtc_irq_data;
 351                rtc_irq_data = 0;
 352                spin_unlock_irq(&rtc_lock);
 353
 354                if (data != 0)
 355                        break;
 356
 357                if (file->f_flags & O_NONBLOCK) {
 358                        retval = -EAGAIN;
 359                        goto out;
 360                }
 361                if (signal_pending(current)) {
 362                        retval = -ERESTARTSYS;
 363                        goto out;
 364                }
 365                schedule();
 366        } while (1);
 367
 368        if (count == sizeof(unsigned int)) {
 369                retval = put_user(data,
 370                                  (unsigned int __user *)buf) ?: sizeof(int);
 371        } else {
 372                retval = put_user(data,
 373                                  (unsigned long __user *)buf) ?: sizeof(long);
 374        }
 375        if (!retval)
 376                retval = count;
 377 out:
 378        __set_current_state(TASK_RUNNING);
 379        remove_wait_queue(&rtc_wait, &wait);
 380
 381        return retval;
 382#endif
 383}
 384
 385static int rtc_do_ioctl(unsigned int cmd, unsigned long arg, int kernel)
 386{
 387        struct rtc_time wtime;
 388
 389#ifdef RTC_IRQ
 390        if (rtc_has_irq == 0) {
 391                switch (cmd) {
 392                case RTC_AIE_OFF:
 393                case RTC_AIE_ON:
 394                case RTC_PIE_OFF:
 395                case RTC_PIE_ON:
 396                case RTC_UIE_OFF:
 397                case RTC_UIE_ON:
 398                case RTC_IRQP_READ:
 399                case RTC_IRQP_SET:
 400                        return -EINVAL;
 401                }
 402        }
 403#endif
 404
 405        switch (cmd) {
 406#ifdef RTC_IRQ
 407        case RTC_AIE_OFF:       /* Mask alarm int. enab. bit    */
 408        {
 409                mask_rtc_irq_bit(RTC_AIE);
 410                return 0;
 411        }
 412        case RTC_AIE_ON:        /* Allow alarm interrupts.      */
 413        {
 414                set_rtc_irq_bit(RTC_AIE);
 415                return 0;
 416        }
 417        case RTC_PIE_OFF:       /* Mask periodic int. enab. bit */
 418        {
 419                /* can be called from isr via rtc_control() */
 420                unsigned long flags;
 421
 422                spin_lock_irqsave(&rtc_lock, flags);
 423                mask_rtc_irq_bit_locked(RTC_PIE);
 424                if (rtc_status & RTC_TIMER_ON) {
 425                        rtc_status &= ~RTC_TIMER_ON;
 426                        del_timer(&rtc_irq_timer);
 427                }
 428                spin_unlock_irqrestore(&rtc_lock, flags);
 429
 430                return 0;
 431        }
 432        case RTC_PIE_ON:        /* Allow periodic ints          */
 433        {
 434                /* can be called from isr via rtc_control() */
 435                unsigned long flags;
 436
 437                /*
 438                 * We don't really want Joe User enabling more
 439                 * than 64Hz of interrupts on a multi-user machine.
 440                 */
 441                if (!kernel && (rtc_freq > rtc_max_user_freq) &&
 442                                                (!capable(CAP_SYS_RESOURCE)))
 443                        return -EACCES;
 444
 445                spin_lock_irqsave(&rtc_lock, flags);
 446                if (!(rtc_status & RTC_TIMER_ON)) {
 447                        mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq +
 448                                        2*HZ/100);
 449                        rtc_status |= RTC_TIMER_ON;
 450                }
 451                set_rtc_irq_bit_locked(RTC_PIE);
 452                spin_unlock_irqrestore(&rtc_lock, flags);
 453
 454                return 0;
 455        }
 456        case RTC_UIE_OFF:       /* Mask ints from RTC updates.  */
 457        {
 458                mask_rtc_irq_bit(RTC_UIE);
 459                return 0;
 460        }
 461        case RTC_UIE_ON:        /* Allow ints for RTC updates.  */
 462        {
 463                set_rtc_irq_bit(RTC_UIE);
 464                return 0;
 465        }
 466#endif
 467        case RTC_ALM_READ:      /* Read the present alarm time */
 468        {
 469                /*
 470                 * This returns a struct rtc_time. Reading >= 0xc0
 471                 * means "don't care" or "match all". Only the tm_hour,
 472                 * tm_min, and tm_sec values are filled in.
 473                 */
 474                memset(&wtime, 0, sizeof(struct rtc_time));
 475                get_rtc_alm_time(&wtime);
 476                break;
 477        }
 478        case RTC_ALM_SET:       /* Store a time into the alarm */
 479        {
 480                /*
 481                 * This expects a struct rtc_time. Writing 0xff means
 482                 * "don't care" or "match all". Only the tm_hour,
 483                 * tm_min and tm_sec are used.
 484                 */
 485                unsigned char hrs, min, sec;
 486                struct rtc_time alm_tm;
 487
 488                if (copy_from_user(&alm_tm, (struct rtc_time __user *)arg,
 489                                   sizeof(struct rtc_time)))
 490                        return -EFAULT;
 491
 492                hrs = alm_tm.tm_hour;
 493                min = alm_tm.tm_min;
 494                sec = alm_tm.tm_sec;
 495
 496                spin_lock_irq(&rtc_lock);
 497                if (hpet_set_alarm_time(hrs, min, sec)) {
 498                        /*
 499                         * Fallthru and set alarm time in CMOS too,
 500                         * so that we will get proper value in RTC_ALM_READ
 501                         */
 502                }
 503                if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) ||
 504                                                        RTC_ALWAYS_BCD) {
 505                        if (sec < 60)
 506                                sec = bin2bcd(sec);
 507                        else
 508                                sec = 0xff;
 509
 510                        if (min < 60)
 511                                min = bin2bcd(min);
 512                        else
 513                                min = 0xff;
 514
 515                        if (hrs < 24)
 516                                hrs = bin2bcd(hrs);
 517                        else
 518                                hrs = 0xff;
 519                }
 520                CMOS_WRITE(hrs, RTC_HOURS_ALARM);
 521                CMOS_WRITE(min, RTC_MINUTES_ALARM);
 522                CMOS_WRITE(sec, RTC_SECONDS_ALARM);
 523                spin_unlock_irq(&rtc_lock);
 524
 525                return 0;
 526        }
 527        case RTC_RD_TIME:       /* Read the time/date from RTC  */
 528        {
 529                memset(&wtime, 0, sizeof(struct rtc_time));
 530                rtc_get_rtc_time(&wtime);
 531                break;
 532        }
 533        case RTC_SET_TIME:      /* Set the RTC */
 534        {
 535                struct rtc_time rtc_tm;
 536                unsigned char mon, day, hrs, min, sec, leap_yr;
 537                unsigned char save_control, save_freq_select;
 538                unsigned int yrs;
 539#ifdef CONFIG_MACH_DECSTATION
 540                unsigned int real_yrs;
 541#endif
 542
 543                if (!capable(CAP_SYS_TIME))
 544                        return -EACCES;
 545
 546                if (copy_from_user(&rtc_tm, (struct rtc_time __user *)arg,
 547                                   sizeof(struct rtc_time)))
 548                        return -EFAULT;
 549
 550                yrs = rtc_tm.tm_year + 1900;
 551                mon = rtc_tm.tm_mon + 1;   /* tm_mon starts at zero */
 552                day = rtc_tm.tm_mday;
 553                hrs = rtc_tm.tm_hour;
 554                min = rtc_tm.tm_min;
 555                sec = rtc_tm.tm_sec;
 556
 557                if (yrs < 1970)
 558                        return -EINVAL;
 559
 560                leap_yr = ((!(yrs % 4) && (yrs % 100)) || !(yrs % 400));
 561
 562                if ((mon > 12) || (day == 0))
 563                        return -EINVAL;
 564
 565                if (day > (days_in_mo[mon] + ((mon == 2) && leap_yr)))
 566                        return -EINVAL;
 567
 568                if ((hrs >= 24) || (min >= 60) || (sec >= 60))
 569                        return -EINVAL;
 570
 571                yrs -= epoch;
 572                if (yrs > 255)          /* They are unsigned */
 573                        return -EINVAL;
 574
 575                spin_lock_irq(&rtc_lock);
 576#ifdef CONFIG_MACH_DECSTATION
 577                real_yrs = yrs;
 578                yrs = 72;
 579
 580                /*
 581                 * We want to keep the year set to 73 until March
 582                 * for non-leap years, so that Feb, 29th is handled
 583                 * correctly.
 584                 */
 585                if (!leap_yr && mon < 3) {
 586                        real_yrs--;
 587                        yrs = 73;
 588                }
 589#endif
 590                /* These limits and adjustments are independent of
 591                 * whether the chip is in binary mode or not.
 592                 */
 593                if (yrs > 169) {
 594                        spin_unlock_irq(&rtc_lock);
 595                        return -EINVAL;
 596                }
 597                if (yrs >= 100)
 598                        yrs -= 100;
 599
 600                if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY)
 601                    || RTC_ALWAYS_BCD) {
 602                        sec = bin2bcd(sec);
 603                        min = bin2bcd(min);
 604                        hrs = bin2bcd(hrs);
 605                        day = bin2bcd(day);
 606                        mon = bin2bcd(mon);
 607                        yrs = bin2bcd(yrs);
 608                }
 609
 610                save_control = CMOS_READ(RTC_CONTROL);
 611                CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
 612                save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
 613                CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
 614
 615#ifdef CONFIG_MACH_DECSTATION
 616                CMOS_WRITE(real_yrs, RTC_DEC_YEAR);
 617#endif
 618                CMOS_WRITE(yrs, RTC_YEAR);
 619                CMOS_WRITE(mon, RTC_MONTH);
 620                CMOS_WRITE(day, RTC_DAY_OF_MONTH);
 621                CMOS_WRITE(hrs, RTC_HOURS);
 622                CMOS_WRITE(min, RTC_MINUTES);
 623                CMOS_WRITE(sec, RTC_SECONDS);
 624
 625                CMOS_WRITE(save_control, RTC_CONTROL);
 626                CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
 627
 628                spin_unlock_irq(&rtc_lock);
 629                return 0;
 630        }
 631#ifdef RTC_IRQ
 632        case RTC_IRQP_READ:     /* Read the periodic IRQ rate.  */
 633        {
 634                return put_user(rtc_freq, (unsigned long __user *)arg);
 635        }
 636        case RTC_IRQP_SET:      /* Set periodic IRQ rate.       */
 637        {
 638                int tmp = 0;
 639                unsigned char val;
 640                /* can be called from isr via rtc_control() */
 641                unsigned long flags;
 642
 643                /*
 644                 * The max we can do is 8192Hz.
 645                 */
 646                if ((arg < 2) || (arg > 8192))
 647                        return -EINVAL;
 648                /*
 649                 * We don't really want Joe User generating more
 650                 * than 64Hz of interrupts on a multi-user machine.
 651                 */
 652                if (!kernel && (arg > rtc_max_user_freq) &&
 653                                        !capable(CAP_SYS_RESOURCE))
 654                        return -EACCES;
 655
 656                while (arg > (1<<tmp))
 657                        tmp++;
 658
 659                /*
 660                 * Check that the input was really a power of 2.
 661                 */
 662                if (arg != (1<<tmp))
 663                        return -EINVAL;
 664
 665                rtc_freq = arg;
 666
 667                spin_lock_irqsave(&rtc_lock, flags);
 668                if (hpet_set_periodic_freq(arg)) {
 669                        spin_unlock_irqrestore(&rtc_lock, flags);
 670                        return 0;
 671                }
 672
 673                val = CMOS_READ(RTC_FREQ_SELECT) & 0xf0;
 674                val |= (16 - tmp);
 675                CMOS_WRITE(val, RTC_FREQ_SELECT);
 676                spin_unlock_irqrestore(&rtc_lock, flags);
 677                return 0;
 678        }
 679#endif
 680        case RTC_EPOCH_READ:    /* Read the epoch.      */
 681        {
 682                return put_user(epoch, (unsigned long __user *)arg);
 683        }
 684        case RTC_EPOCH_SET:     /* Set the epoch.       */
 685        {
 686                /*
 687                 * There were no RTC clocks before 1900.
 688                 */
 689                if (arg < 1900)
 690                        return -EINVAL;
 691
 692                if (!capable(CAP_SYS_TIME))
 693                        return -EACCES;
 694
 695                epoch = arg;
 696                return 0;
 697        }
 698        default:
 699                return -ENOTTY;
 700        }
 701        return copy_to_user((void __user *)arg,
 702                            &wtime, sizeof wtime) ? -EFAULT : 0;
 703}
 704
 705static long rtc_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
 706{
 707        long ret;
 708        ret = rtc_do_ioctl(cmd, arg, 0);
 709        return ret;
 710}
 711
 712/*
 713 *      We enforce only one user at a time here with the open/close.
 714 *      Also clear the previous interrupt data on an open, and clean
 715 *      up things on a close.
 716 */
 717static int rtc_open(struct inode *inode, struct file *file)
 718{
 719        spin_lock_irq(&rtc_lock);
 720
 721        if (rtc_status & RTC_IS_OPEN)
 722                goto out_busy;
 723
 724        rtc_status |= RTC_IS_OPEN;
 725
 726        rtc_irq_data = 0;
 727        spin_unlock_irq(&rtc_lock);
 728        return 0;
 729
 730out_busy:
 731        spin_unlock_irq(&rtc_lock);
 732        return -EBUSY;
 733}
 734
 735static int rtc_fasync(int fd, struct file *filp, int on)
 736{
 737        return fasync_helper(fd, filp, on, &rtc_async_queue);
 738}
 739
 740static int rtc_release(struct inode *inode, struct file *file)
 741{
 742#ifdef RTC_IRQ
 743        unsigned char tmp;
 744
 745        if (rtc_has_irq == 0)
 746                goto no_irq;
 747
 748        /*
 749         * Turn off all interrupts once the device is no longer
 750         * in use, and clear the data.
 751         */
 752
 753        spin_lock_irq(&rtc_lock);
 754        if (!hpet_mask_rtc_irq_bit(RTC_PIE | RTC_AIE | RTC_UIE)) {
 755                tmp = CMOS_READ(RTC_CONTROL);
 756                tmp &=  ~RTC_PIE;
 757                tmp &=  ~RTC_AIE;
 758                tmp &=  ~RTC_UIE;
 759                CMOS_WRITE(tmp, RTC_CONTROL);
 760                CMOS_READ(RTC_INTR_FLAGS);
 761        }
 762        if (rtc_status & RTC_TIMER_ON) {
 763                rtc_status &= ~RTC_TIMER_ON;
 764                del_timer(&rtc_irq_timer);
 765        }
 766        spin_unlock_irq(&rtc_lock);
 767
 768no_irq:
 769#endif
 770
 771        spin_lock_irq(&rtc_lock);
 772        rtc_irq_data = 0;
 773        rtc_status &= ~RTC_IS_OPEN;
 774        spin_unlock_irq(&rtc_lock);
 775
 776        return 0;
 777}
 778
 779#ifdef RTC_IRQ
 780static __poll_t rtc_poll(struct file *file, poll_table *wait)
 781{
 782        unsigned long l;
 783
 784        if (rtc_has_irq == 0)
 785                return 0;
 786
 787        poll_wait(file, &rtc_wait, wait);
 788
 789        spin_lock_irq(&rtc_lock);
 790        l = rtc_irq_data;
 791        spin_unlock_irq(&rtc_lock);
 792
 793        if (l != 0)
 794                return EPOLLIN | EPOLLRDNORM;
 795        return 0;
 796}
 797#endif
 798
 799/*
 800 *      The various file operations we support.
 801 */
 802
 803static const struct file_operations rtc_fops = {
 804        .owner          = THIS_MODULE,
 805        .llseek         = no_llseek,
 806        .read           = rtc_read,
 807#ifdef RTC_IRQ
 808        .poll           = rtc_poll,
 809#endif
 810        .unlocked_ioctl = rtc_ioctl,
 811        .open           = rtc_open,
 812        .release        = rtc_release,
 813        .fasync         = rtc_fasync,
 814};
 815
 816static struct miscdevice rtc_dev = {
 817        .minor          = RTC_MINOR,
 818        .name           = "rtc",
 819        .fops           = &rtc_fops,
 820};
 821
 822static resource_size_t rtc_size;
 823
 824static struct resource * __init rtc_request_region(resource_size_t size)
 825{
 826        struct resource *r;
 827
 828        if (RTC_IOMAPPED)
 829                r = request_region(RTC_PORT(0), size, "rtc");
 830        else
 831                r = request_mem_region(RTC_PORT(0), size, "rtc");
 832
 833        if (r)
 834                rtc_size = size;
 835
 836        return r;
 837}
 838
 839static void rtc_release_region(void)
 840{
 841        if (RTC_IOMAPPED)
 842                release_region(RTC_PORT(0), rtc_size);
 843        else
 844                release_mem_region(RTC_PORT(0), rtc_size);
 845}
 846
 847static int __init rtc_init(void)
 848{
 849#ifdef CONFIG_PROC_FS
 850        struct proc_dir_entry *ent;
 851#endif
 852#if defined(__alpha__) || defined(__mips__)
 853        unsigned int year, ctrl;
 854        char *guess = NULL;
 855#endif
 856#ifdef CONFIG_SPARC32
 857        struct device_node *ebus_dp;
 858        struct platform_device *op;
 859#else
 860        void *r;
 861#ifdef RTC_IRQ
 862        irq_handler_t rtc_int_handler_ptr;
 863#endif
 864#endif
 865
 866#ifdef CONFIG_SPARC32
 867        for_each_node_by_name(ebus_dp, "ebus") {
 868                struct device_node *dp;
 869                for_each_child_of_node(ebus_dp, dp) {
 870                        if (of_node_name_eq(dp, "rtc")) {
 871                                op = of_find_device_by_node(dp);
 872                                if (op) {
 873                                        rtc_port = op->resource[0].start;
 874                                        rtc_irq = op->irqs[0];
 875                                        goto found;
 876                                }
 877                        }
 878                }
 879        }
 880        rtc_has_irq = 0;
 881        printk(KERN_ERR "rtc_init: no PC rtc found\n");
 882        return -EIO;
 883
 884found:
 885        if (!rtc_irq) {
 886                rtc_has_irq = 0;
 887                goto no_irq;
 888        }
 889
 890        /*
 891         * XXX Interrupt pin #7 in Espresso is shared between RTC and
 892         * PCI Slot 2 INTA# (and some INTx# in Slot 1).
 893         */
 894        if (request_irq(rtc_irq, rtc_interrupt, IRQF_SHARED, "rtc",
 895                        (void *)&rtc_port)) {
 896                rtc_has_irq = 0;
 897                printk(KERN_ERR "rtc: cannot register IRQ %d\n", rtc_irq);
 898                return -EIO;
 899        }
 900no_irq:
 901#else
 902        r = rtc_request_region(RTC_IO_EXTENT);
 903
 904        /*
 905         * If we've already requested a smaller range (for example, because
 906         * PNPBIOS or ACPI told us how the device is configured), the request
 907         * above might fail because it's too big.
 908         *
 909         * If so, request just the range we actually use.
 910         */
 911        if (!r)
 912                r = rtc_request_region(RTC_IO_EXTENT_USED);
 913        if (!r) {
 914#ifdef RTC_IRQ
 915                rtc_has_irq = 0;
 916#endif
 917                printk(KERN_ERR "rtc: I/O resource %lx is not free.\n",
 918                       (long)(RTC_PORT(0)));
 919                return -EIO;
 920        }
 921
 922#ifdef RTC_IRQ
 923        if (is_hpet_enabled()) {
 924                int err;
 925
 926                rtc_int_handler_ptr = hpet_rtc_interrupt;
 927                err = hpet_register_irq_handler(rtc_interrupt);
 928                if (err != 0) {
 929                        printk(KERN_WARNING "hpet_register_irq_handler failed "
 930                                        "in rtc_init().");
 931                        return err;
 932                }
 933        } else {
 934                rtc_int_handler_ptr = rtc_interrupt;
 935        }
 936
 937        if (request_irq(RTC_IRQ, rtc_int_handler_ptr, 0, "rtc", NULL)) {
 938                /* Yeah right, seeing as irq 8 doesn't even hit the bus. */
 939                rtc_has_irq = 0;
 940                printk(KERN_ERR "rtc: IRQ %d is not free.\n", RTC_IRQ);
 941                rtc_release_region();
 942
 943                return -EIO;
 944        }
 945        hpet_rtc_timer_init();
 946
 947#endif
 948
 949#endif /* CONFIG_SPARC32 vs. others */
 950
 951        if (misc_register(&rtc_dev)) {
 952#ifdef RTC_IRQ
 953                free_irq(RTC_IRQ, NULL);
 954                hpet_unregister_irq_handler(rtc_interrupt);
 955                rtc_has_irq = 0;
 956#endif
 957                rtc_release_region();
 958                return -ENODEV;
 959        }
 960
 961#ifdef CONFIG_PROC_FS
 962        ent = proc_create_single("driver/rtc", 0, NULL, rtc_proc_show);
 963        if (!ent)
 964                printk(KERN_WARNING "rtc: Failed to register with procfs.\n");
 965#endif
 966
 967#if defined(__alpha__) || defined(__mips__)
 968        rtc_freq = HZ;
 969
 970        /* Each operating system on an Alpha uses its own epoch.
 971           Let's try to guess which one we are using now. */
 972
 973        if (rtc_is_updating() != 0)
 974                msleep(20);
 975
 976        spin_lock_irq(&rtc_lock);
 977        year = CMOS_READ(RTC_YEAR);
 978        ctrl = CMOS_READ(RTC_CONTROL);
 979        spin_unlock_irq(&rtc_lock);
 980
 981        if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
 982                year = bcd2bin(year);       /* This should never happen... */
 983
 984        if (year < 20) {
 985                epoch = 2000;
 986                guess = "SRM (post-2000)";
 987        } else if (year >= 20 && year < 48) {
 988                epoch = 1980;
 989                guess = "ARC console";
 990        } else if (year >= 48 && year < 72) {
 991                epoch = 1952;
 992                guess = "Digital UNIX";
 993#if defined(__mips__)
 994        } else if (year >= 72 && year < 74) {
 995                epoch = 2000;
 996                guess = "Digital DECstation";
 997#else
 998        } else if (year >= 70) {
 999                epoch = 1900;
1000                guess = "Standard PC (1900)";
1001#endif
1002        }
1003        if (guess)
1004                printk(KERN_INFO "rtc: %s epoch (%lu) detected\n",
1005                        guess, epoch);
1006#endif
1007#ifdef RTC_IRQ
1008        if (rtc_has_irq == 0)
1009                goto no_irq2;
1010
1011        spin_lock_irq(&rtc_lock);
1012        rtc_freq = 1024;
1013        if (!hpet_set_periodic_freq(rtc_freq)) {
1014                /*
1015                 * Initialize periodic frequency to CMOS reset default,
1016                 * which is 1024Hz
1017                 */
1018                CMOS_WRITE(((CMOS_READ(RTC_FREQ_SELECT) & 0xF0) | 0x06),
1019                           RTC_FREQ_SELECT);
1020        }
1021        spin_unlock_irq(&rtc_lock);
1022no_irq2:
1023#endif
1024
1025        (void) init_sysctl();
1026
1027        printk(KERN_INFO "Real Time Clock Driver v" RTC_VERSION "\n");
1028
1029        return 0;
1030}
1031
1032static void __exit rtc_exit(void)
1033{
1034        cleanup_sysctl();
1035        remove_proc_entry("driver/rtc", NULL);
1036        misc_deregister(&rtc_dev);
1037
1038#ifdef CONFIG_SPARC32
1039        if (rtc_has_irq)
1040                free_irq(rtc_irq, &rtc_port);
1041#else
1042        rtc_release_region();
1043#ifdef RTC_IRQ
1044        if (rtc_has_irq) {
1045                free_irq(RTC_IRQ, NULL);
1046                hpet_unregister_irq_handler(hpet_rtc_interrupt);
1047        }
1048#endif
1049#endif /* CONFIG_SPARC32 */
1050}
1051
1052module_init(rtc_init);
1053module_exit(rtc_exit);
1054
1055#ifdef RTC_IRQ
1056/*
1057 *      At IRQ rates >= 4096Hz, an interrupt may get lost altogether.
1058 *      (usually during an IDE disk interrupt, with IRQ unmasking off)
1059 *      Since the interrupt handler doesn't get called, the IRQ status
1060 *      byte doesn't get read, and the RTC stops generating interrupts.
1061 *      A timer is set, and will call this function if/when that happens.
1062 *      To get it out of this stalled state, we just read the status.
1063 *      At least a jiffy of interrupts (rtc_freq/HZ) will have been lost.
1064 *      (You *really* shouldn't be trying to use a non-realtime system
1065 *      for something that requires a steady > 1KHz signal anyways.)
1066 */
1067
1068static void rtc_dropped_irq(struct timer_list *unused)
1069{
1070        unsigned long freq;
1071
1072        spin_lock_irq(&rtc_lock);
1073
1074        if (hpet_rtc_dropped_irq()) {
1075                spin_unlock_irq(&rtc_lock);
1076                return;
1077        }
1078
1079        /* Just in case someone disabled the timer from behind our back... */
1080        if (rtc_status & RTC_TIMER_ON)
1081                mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100);
1082
1083        rtc_irq_data += ((rtc_freq/HZ)<<8);
1084        rtc_irq_data &= ~0xff;
1085        rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0);     /* restart */
1086
1087        freq = rtc_freq;
1088
1089        spin_unlock_irq(&rtc_lock);
1090
1091        printk_ratelimited(KERN_WARNING "rtc: lost some interrupts at %ldHz.\n",
1092                           freq);
1093
1094        /* Now we have new data */
1095        wake_up_interruptible(&rtc_wait);
1096
1097        kill_fasync(&rtc_async_queue, SIGIO, POLL_IN);
1098}
1099#endif
1100
1101#ifdef CONFIG_PROC_FS
1102/*
1103 *      Info exported via "/proc/driver/rtc".
1104 */
1105
1106static int rtc_proc_show(struct seq_file *seq, void *v)
1107{
1108#define YN(bit) ((ctrl & bit) ? "yes" : "no")
1109#define NY(bit) ((ctrl & bit) ? "no" : "yes")
1110        struct rtc_time tm;
1111        unsigned char batt, ctrl;
1112        unsigned long freq;
1113
1114        spin_lock_irq(&rtc_lock);
1115        batt = CMOS_READ(RTC_VALID) & RTC_VRT;
1116        ctrl = CMOS_READ(RTC_CONTROL);
1117        freq = rtc_freq;
1118        spin_unlock_irq(&rtc_lock);
1119
1120
1121        rtc_get_rtc_time(&tm);
1122
1123        /*
1124         * There is no way to tell if the luser has the RTC set for local
1125         * time or for Universal Standard Time (GMT). Probably local though.
1126         */
1127        seq_printf(seq,
1128                   "rtc_time\t: %ptRt\n"
1129                   "rtc_date\t: %ptRd\n"
1130                   "rtc_epoch\t: %04lu\n",
1131                   &tm, &tm, epoch);
1132
1133        get_rtc_alm_time(&tm);
1134
1135        /*
1136         * We implicitly assume 24hr mode here. Alarm values >= 0xc0 will
1137         * match any value for that particular field. Values that are
1138         * greater than a valid time, but less than 0xc0 shouldn't appear.
1139         */
1140        seq_puts(seq, "alarm\t\t: ");
1141        if (tm.tm_hour <= 24)
1142                seq_printf(seq, "%02d:", tm.tm_hour);
1143        else
1144                seq_puts(seq, "**:");
1145
1146        if (tm.tm_min <= 59)
1147                seq_printf(seq, "%02d:", tm.tm_min);
1148        else
1149                seq_puts(seq, "**:");
1150
1151        if (tm.tm_sec <= 59)
1152                seq_printf(seq, "%02d\n", tm.tm_sec);
1153        else
1154                seq_puts(seq, "**\n");
1155
1156        seq_printf(seq,
1157                   "DST_enable\t: %s\n"
1158                   "BCD\t\t: %s\n"
1159                   "24hr\t\t: %s\n"
1160                   "square_wave\t: %s\n"
1161                   "alarm_IRQ\t: %s\n"
1162                   "update_IRQ\t: %s\n"
1163                   "periodic_IRQ\t: %s\n"
1164                   "periodic_freq\t: %ld\n"
1165                   "batt_status\t: %s\n",
1166                   YN(RTC_DST_EN),
1167                   NY(RTC_DM_BINARY),
1168                   YN(RTC_24H),
1169                   YN(RTC_SQWE),
1170                   YN(RTC_AIE),
1171                   YN(RTC_UIE),
1172                   YN(RTC_PIE),
1173                   freq,
1174                   batt ? "okay" : "dead");
1175
1176        return  0;
1177#undef YN
1178#undef NY
1179}
1180#endif
1181
1182static void rtc_get_rtc_time(struct rtc_time *rtc_tm)
1183{
1184        unsigned long uip_watchdog = jiffies, flags;
1185        unsigned char ctrl;
1186#ifdef CONFIG_MACH_DECSTATION
1187        unsigned int real_year;
1188#endif
1189
1190        /*
1191         * read RTC once any update in progress is done. The update
1192         * can take just over 2ms. We wait 20ms. There is no need to
1193         * to poll-wait (up to 1s - eeccch) for the falling edge of RTC_UIP.
1194         * If you need to know *exactly* when a second has started, enable
1195         * periodic update complete interrupts, (via ioctl) and then
1196         * immediately read /dev/rtc which will block until you get the IRQ.
1197         * Once the read clears, read the RTC time (again via ioctl). Easy.
1198         */
1199
1200        while (rtc_is_updating() != 0 &&
1201               time_before(jiffies, uip_watchdog + 2*HZ/100))
1202                cpu_relax();
1203
1204        /*
1205         * Only the values that we read from the RTC are set. We leave
1206         * tm_wday, tm_yday and tm_isdst untouched. Note that while the
1207         * RTC has RTC_DAY_OF_WEEK, we should usually ignore it, as it is
1208         * only updated by the RTC when initially set to a non-zero value.
1209         */
1210        spin_lock_irqsave(&rtc_lock, flags);
1211        rtc_tm->tm_sec = CMOS_READ(RTC_SECONDS);
1212        rtc_tm->tm_min = CMOS_READ(RTC_MINUTES);
1213        rtc_tm->tm_hour = CMOS_READ(RTC_HOURS);
1214        rtc_tm->tm_mday = CMOS_READ(RTC_DAY_OF_MONTH);
1215        rtc_tm->tm_mon = CMOS_READ(RTC_MONTH);
1216        rtc_tm->tm_year = CMOS_READ(RTC_YEAR);
1217        /* Only set from 2.6.16 onwards */
1218        rtc_tm->tm_wday = CMOS_READ(RTC_DAY_OF_WEEK);
1219
1220#ifdef CONFIG_MACH_DECSTATION
1221        real_year = CMOS_READ(RTC_DEC_YEAR);
1222#endif
1223        ctrl = CMOS_READ(RTC_CONTROL);
1224        spin_unlock_irqrestore(&rtc_lock, flags);
1225
1226        if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
1227                rtc_tm->tm_sec = bcd2bin(rtc_tm->tm_sec);
1228                rtc_tm->tm_min = bcd2bin(rtc_tm->tm_min);
1229                rtc_tm->tm_hour = bcd2bin(rtc_tm->tm_hour);
1230                rtc_tm->tm_mday = bcd2bin(rtc_tm->tm_mday);
1231                rtc_tm->tm_mon = bcd2bin(rtc_tm->tm_mon);
1232                rtc_tm->tm_year = bcd2bin(rtc_tm->tm_year);
1233                rtc_tm->tm_wday = bcd2bin(rtc_tm->tm_wday);
1234        }
1235
1236#ifdef CONFIG_MACH_DECSTATION
1237        rtc_tm->tm_year += real_year - 72;
1238#endif
1239
1240        /*
1241         * Account for differences between how the RTC uses the values
1242         * and how they are defined in a struct rtc_time;
1243         */
1244        rtc_tm->tm_year += epoch - 1900;
1245        if (rtc_tm->tm_year <= 69)
1246                rtc_tm->tm_year += 100;
1247
1248        rtc_tm->tm_mon--;
1249}
1250
1251static void get_rtc_alm_time(struct rtc_time *alm_tm)
1252{
1253        unsigned char ctrl;
1254
1255        /*
1256         * Only the values that we read from the RTC are set. That
1257         * means only tm_hour, tm_min, and tm_sec.
1258         */
1259        spin_lock_irq(&rtc_lock);
1260        alm_tm->tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
1261        alm_tm->tm_min = CMOS_READ(RTC_MINUTES_ALARM);
1262        alm_tm->tm_hour = CMOS_READ(RTC_HOURS_ALARM);
1263        ctrl = CMOS_READ(RTC_CONTROL);
1264        spin_unlock_irq(&rtc_lock);
1265
1266        if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
1267                alm_tm->tm_sec = bcd2bin(alm_tm->tm_sec);
1268                alm_tm->tm_min = bcd2bin(alm_tm->tm_min);
1269                alm_tm->tm_hour = bcd2bin(alm_tm->tm_hour);
1270        }
1271}
1272
1273#ifdef RTC_IRQ
1274/*
1275 * Used to disable/enable interrupts for any one of UIE, AIE, PIE.
1276 * Rumour has it that if you frob the interrupt enable/disable
1277 * bits in RTC_CONTROL, you should read RTC_INTR_FLAGS, to
1278 * ensure you actually start getting interrupts. Probably for
1279 * compatibility with older/broken chipset RTC implementations.
1280 * We also clear out any old irq data after an ioctl() that
1281 * meddles with the interrupt enable/disable bits.
1282 */
1283
1284static void mask_rtc_irq_bit_locked(unsigned char bit)
1285{
1286        unsigned char val;
1287
1288        if (hpet_mask_rtc_irq_bit(bit))
1289                return;
1290        val = CMOS_READ(RTC_CONTROL);
1291        val &=  ~bit;
1292        CMOS_WRITE(val, RTC_CONTROL);
1293        CMOS_READ(RTC_INTR_FLAGS);
1294
1295        rtc_irq_data = 0;
1296}
1297
1298static void set_rtc_irq_bit_locked(unsigned char bit)
1299{
1300        unsigned char val;
1301
1302        if (hpet_set_rtc_irq_bit(bit))
1303                return;
1304        val = CMOS_READ(RTC_CONTROL);
1305        val |= bit;
1306        CMOS_WRITE(val, RTC_CONTROL);
1307        CMOS_READ(RTC_INTR_FLAGS);
1308
1309        rtc_irq_data = 0;
1310}
1311#endif
1312
1313MODULE_AUTHOR("Paul Gortmaker");
1314MODULE_LICENSE("GPL");
1315MODULE_ALIAS_MISCDEV(RTC_MINOR);
1316