linux/drivers/clocksource/nomadik-mtu.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2008 STMicroelectronics
   3 * Copyright (C) 2010 Alessandro Rubini
   4 * Copyright (C) 2010 Linus Walleij for ST-Ericsson
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2, as
   8 * published by the Free Software Foundation.
   9 */
  10#include <linux/init.h>
  11#include <linux/interrupt.h>
  12#include <linux/irq.h>
  13#include <linux/io.h>
  14#include <linux/clockchips.h>
  15#include <linux/clocksource.h>
  16#include <linux/of_address.h>
  17#include <linux/of_irq.h>
  18#include <linux/of_platform.h>
  19#include <linux/clk.h>
  20#include <linux/jiffies.h>
  21#include <linux/delay.h>
  22#include <linux/err.h>
  23#include <linux/sched_clock.h>
  24#include <asm/mach/time.h>
  25
  26/*
  27 * The MTU device hosts four different counters, with 4 set of
  28 * registers. These are register names.
  29 */
  30
  31#define MTU_IMSC        0x00    /* Interrupt mask set/clear */
  32#define MTU_RIS         0x04    /* Raw interrupt status */
  33#define MTU_MIS         0x08    /* Masked interrupt status */
  34#define MTU_ICR         0x0C    /* Interrupt clear register */
  35
  36/* per-timer registers take 0..3 as argument */
  37#define MTU_LR(x)       (0x10 + 0x10 * (x) + 0x00)      /* Load value */
  38#define MTU_VAL(x)      (0x10 + 0x10 * (x) + 0x04)      /* Current value */
  39#define MTU_CR(x)       (0x10 + 0x10 * (x) + 0x08)      /* Control reg */
  40#define MTU_BGLR(x)     (0x10 + 0x10 * (x) + 0x0c)      /* At next overflow */
  41
  42/* bits for the control register */
  43#define MTU_CRn_ENA             0x80
  44#define MTU_CRn_PERIODIC        0x40    /* if 0 = free-running */
  45#define MTU_CRn_PRESCALE_MASK   0x0c
  46#define MTU_CRn_PRESCALE_1              0x00
  47#define MTU_CRn_PRESCALE_16             0x04
  48#define MTU_CRn_PRESCALE_256            0x08
  49#define MTU_CRn_32BITS          0x02
  50#define MTU_CRn_ONESHOT         0x01    /* if 0 = wraps reloading from BGLR*/
  51
  52/* Other registers are usual amba/primecell registers, currently not used */
  53#define MTU_ITCR        0xff0
  54#define MTU_ITOP        0xff4
  55
  56#define MTU_PERIPH_ID0  0xfe0
  57#define MTU_PERIPH_ID1  0xfe4
  58#define MTU_PERIPH_ID2  0xfe8
  59#define MTU_PERIPH_ID3  0xfeC
  60
  61#define MTU_PCELL0      0xff0
  62#define MTU_PCELL1      0xff4
  63#define MTU_PCELL2      0xff8
  64#define MTU_PCELL3      0xffC
  65
  66static void __iomem *mtu_base;
  67static bool clkevt_periodic;
  68static u32 clk_prescale;
  69static u32 nmdk_cycle;          /* write-once */
  70static struct delay_timer mtu_delay_timer;
  71
  72/*
  73 * Override the global weak sched_clock symbol with this
  74 * local implementation which uses the clocksource to get some
  75 * better resolution when scheduling the kernel.
  76 */
  77static u64 notrace nomadik_read_sched_clock(void)
  78{
  79        if (unlikely(!mtu_base))
  80                return 0;
  81
  82        return -readl(mtu_base + MTU_VAL(0));
  83}
  84
  85static unsigned long nmdk_timer_read_current_timer(void)
  86{
  87        return ~readl_relaxed(mtu_base + MTU_VAL(0));
  88}
  89
  90/* Clockevent device: use one-shot mode */
  91static int nmdk_clkevt_next(unsigned long evt, struct clock_event_device *ev)
  92{
  93        writel(1 << 1, mtu_base + MTU_IMSC);
  94        writel(evt, mtu_base + MTU_LR(1));
  95        /* Load highest value, enable device, enable interrupts */
  96        writel(MTU_CRn_ONESHOT | clk_prescale |
  97               MTU_CRn_32BITS | MTU_CRn_ENA,
  98               mtu_base + MTU_CR(1));
  99
 100        return 0;
 101}
 102
 103static void nmdk_clkevt_reset(void)
 104{
 105        if (clkevt_periodic) {
 106                /* Timer: configure load and background-load, and fire it up */
 107                writel(nmdk_cycle, mtu_base + MTU_LR(1));
 108                writel(nmdk_cycle, mtu_base + MTU_BGLR(1));
 109
 110                writel(MTU_CRn_PERIODIC | clk_prescale |
 111                       MTU_CRn_32BITS | MTU_CRn_ENA,
 112                       mtu_base + MTU_CR(1));
 113                writel(1 << 1, mtu_base + MTU_IMSC);
 114        } else {
 115                /* Generate an interrupt to start the clockevent again */
 116                (void) nmdk_clkevt_next(nmdk_cycle, NULL);
 117        }
 118}
 119
 120static int nmdk_clkevt_shutdown(struct clock_event_device *evt)
 121{
 122        writel(0, mtu_base + MTU_IMSC);
 123        /* disable timer */
 124        writel(0, mtu_base + MTU_CR(1));
 125        /* load some high default value */
 126        writel(0xffffffff, mtu_base + MTU_LR(1));
 127        return 0;
 128}
 129
 130static int nmdk_clkevt_set_oneshot(struct clock_event_device *evt)
 131{
 132        clkevt_periodic = false;
 133        return 0;
 134}
 135
 136static int nmdk_clkevt_set_periodic(struct clock_event_device *evt)
 137{
 138        clkevt_periodic = true;
 139        nmdk_clkevt_reset();
 140        return 0;
 141}
 142
 143static void nmdk_clksrc_reset(void)
 144{
 145        /* Disable */
 146        writel(0, mtu_base + MTU_CR(0));
 147
 148        /* ClockSource: configure load and background-load, and fire it up */
 149        writel(nmdk_cycle, mtu_base + MTU_LR(0));
 150        writel(nmdk_cycle, mtu_base + MTU_BGLR(0));
 151
 152        writel(clk_prescale | MTU_CRn_32BITS | MTU_CRn_ENA,
 153               mtu_base + MTU_CR(0));
 154}
 155
 156static void nmdk_clkevt_resume(struct clock_event_device *cedev)
 157{
 158        nmdk_clkevt_reset();
 159        nmdk_clksrc_reset();
 160}
 161
 162static struct clock_event_device nmdk_clkevt = {
 163        .name                   = "mtu_1",
 164        .features               = CLOCK_EVT_FEAT_ONESHOT |
 165                                  CLOCK_EVT_FEAT_PERIODIC |
 166                                  CLOCK_EVT_FEAT_DYNIRQ,
 167        .rating                 = 200,
 168        .set_state_shutdown     = nmdk_clkevt_shutdown,
 169        .set_state_periodic     = nmdk_clkevt_set_periodic,
 170        .set_state_oneshot      = nmdk_clkevt_set_oneshot,
 171        .set_next_event         = nmdk_clkevt_next,
 172        .resume                 = nmdk_clkevt_resume,
 173};
 174
 175/*
 176 * IRQ Handler for timer 1 of the MTU block.
 177 */
 178static irqreturn_t nmdk_timer_interrupt(int irq, void *dev_id)
 179{
 180        struct clock_event_device *evdev = dev_id;
 181
 182        writel(1 << 1, mtu_base + MTU_ICR); /* Interrupt clear reg */
 183        evdev->event_handler(evdev);
 184        return IRQ_HANDLED;
 185}
 186
 187static struct irqaction nmdk_timer_irq = {
 188        .name           = "Nomadik Timer Tick",
 189        .flags          = IRQF_TIMER,
 190        .handler        = nmdk_timer_interrupt,
 191        .dev_id         = &nmdk_clkevt,
 192};
 193
 194static int __init nmdk_timer_init(void __iomem *base, int irq,
 195                                   struct clk *pclk, struct clk *clk)
 196{
 197        unsigned long rate;
 198        int ret;
 199
 200        mtu_base = base;
 201
 202        BUG_ON(clk_prepare_enable(pclk));
 203        BUG_ON(clk_prepare_enable(clk));
 204
 205        /*
 206         * Tick rate is 2.4MHz for Nomadik and 2.4Mhz, 100MHz or 133 MHz
 207         * for ux500.
 208         * Use a divide-by-16 counter if the tick rate is more than 32MHz.
 209         * At 32 MHz, the timer (with 32 bit counter) can be programmed
 210         * to wake-up at a max 127s a head in time. Dividing a 2.4 MHz timer
 211         * with 16 gives too low timer resolution.
 212         */
 213        rate = clk_get_rate(clk);
 214        if (rate > 32000000) {
 215                rate /= 16;
 216                clk_prescale = MTU_CRn_PRESCALE_16;
 217        } else {
 218                clk_prescale = MTU_CRn_PRESCALE_1;
 219        }
 220
 221        /* Cycles for periodic mode */
 222        nmdk_cycle = DIV_ROUND_CLOSEST(rate, HZ);
 223
 224
 225        /* Timer 0 is the free running clocksource */
 226        nmdk_clksrc_reset();
 227
 228        ret = clocksource_mmio_init(mtu_base + MTU_VAL(0), "mtu_0",
 229                                    rate, 200, 32, clocksource_mmio_readl_down);
 230        if (ret) {
 231                pr_err("timer: failed to initialize clock source %s\n", "mtu_0");
 232                return ret;
 233        }
 234
 235        sched_clock_register(nomadik_read_sched_clock, 32, rate);
 236
 237        /* Timer 1 is used for events, register irq and clockevents */
 238        setup_irq(irq, &nmdk_timer_irq);
 239        nmdk_clkevt.cpumask = cpumask_of(0);
 240        nmdk_clkevt.irq = irq;
 241        clockevents_config_and_register(&nmdk_clkevt, rate, 2, 0xffffffffU);
 242
 243        mtu_delay_timer.read_current_timer = &nmdk_timer_read_current_timer;
 244        mtu_delay_timer.freq = rate;
 245        register_current_timer_delay(&mtu_delay_timer);
 246
 247        return 0;
 248}
 249
 250static int __init nmdk_timer_of_init(struct device_node *node)
 251{
 252        struct clk *pclk;
 253        struct clk *clk;
 254        void __iomem *base;
 255        int irq;
 256
 257        base = of_iomap(node, 0);
 258        if (!base) {
 259                pr_err("Can't remap registers\n");
 260                return -ENXIO;
 261        }
 262
 263        pclk = of_clk_get_by_name(node, "apb_pclk");
 264        if (IS_ERR(pclk)) {
 265                pr_err("could not get apb_pclk\n");
 266                return PTR_ERR(pclk);
 267        }
 268
 269        clk = of_clk_get_by_name(node, "timclk");
 270        if (IS_ERR(clk)) {
 271                pr_err("could not get timclk\n");
 272                return PTR_ERR(clk);
 273        }
 274
 275        irq = irq_of_parse_and_map(node, 0);
 276        if (irq <= 0) {
 277                pr_err("Can't parse IRQ\n");
 278                return -EINVAL;
 279        }
 280
 281        return nmdk_timer_init(base, irq, pclk, clk);
 282}
 283TIMER_OF_DECLARE(nomadik_mtu, "st,nomadik-mtu",
 284                       nmdk_timer_of_init);
 285