linux/drivers/dma/dmaengine.c
<<
>>
Prefs
   1/*
   2 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or modify it
   5 * under the terms of the GNU General Public License as published by the Free
   6 * Software Foundation; either version 2 of the License, or (at your option)
   7 * any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful, but WITHOUT
  10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  12 * more details.
  13 *
  14 * The full GNU General Public License is included in this distribution in the
  15 * file called COPYING.
  16 */
  17
  18/*
  19 * This code implements the DMA subsystem. It provides a HW-neutral interface
  20 * for other kernel code to use asynchronous memory copy capabilities,
  21 * if present, and allows different HW DMA drivers to register as providing
  22 * this capability.
  23 *
  24 * Due to the fact we are accelerating what is already a relatively fast
  25 * operation, the code goes to great lengths to avoid additional overhead,
  26 * such as locking.
  27 *
  28 * LOCKING:
  29 *
  30 * The subsystem keeps a global list of dma_device structs it is protected by a
  31 * mutex, dma_list_mutex.
  32 *
  33 * A subsystem can get access to a channel by calling dmaengine_get() followed
  34 * by dma_find_channel(), or if it has need for an exclusive channel it can call
  35 * dma_request_channel().  Once a channel is allocated a reference is taken
  36 * against its corresponding driver to disable removal.
  37 *
  38 * Each device has a channels list, which runs unlocked but is never modified
  39 * once the device is registered, it's just setup by the driver.
  40 *
  41 * See Documentation/driver-api/dmaengine for more details
  42 */
  43
  44#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  45
  46#include <linux/platform_device.h>
  47#include <linux/dma-mapping.h>
  48#include <linux/init.h>
  49#include <linux/module.h>
  50#include <linux/mm.h>
  51#include <linux/device.h>
  52#include <linux/dmaengine.h>
  53#include <linux/hardirq.h>
  54#include <linux/spinlock.h>
  55#include <linux/percpu.h>
  56#include <linux/rcupdate.h>
  57#include <linux/mutex.h>
  58#include <linux/jiffies.h>
  59#include <linux/rculist.h>
  60#include <linux/idr.h>
  61#include <linux/slab.h>
  62#include <linux/acpi.h>
  63#include <linux/acpi_dma.h>
  64#include <linux/of_dma.h>
  65#include <linux/mempool.h>
  66
  67static DEFINE_MUTEX(dma_list_mutex);
  68static DEFINE_IDA(dma_ida);
  69static LIST_HEAD(dma_device_list);
  70static long dmaengine_ref_count;
  71
  72/* --- sysfs implementation --- */
  73
  74/**
  75 * dev_to_dma_chan - convert a device pointer to the its sysfs container object
  76 * @dev - device node
  77 *
  78 * Must be called under dma_list_mutex
  79 */
  80static struct dma_chan *dev_to_dma_chan(struct device *dev)
  81{
  82        struct dma_chan_dev *chan_dev;
  83
  84        chan_dev = container_of(dev, typeof(*chan_dev), device);
  85        return chan_dev->chan;
  86}
  87
  88static ssize_t memcpy_count_show(struct device *dev,
  89                                 struct device_attribute *attr, char *buf)
  90{
  91        struct dma_chan *chan;
  92        unsigned long count = 0;
  93        int i;
  94        int err;
  95
  96        mutex_lock(&dma_list_mutex);
  97        chan = dev_to_dma_chan(dev);
  98        if (chan) {
  99                for_each_possible_cpu(i)
 100                        count += per_cpu_ptr(chan->local, i)->memcpy_count;
 101                err = sprintf(buf, "%lu\n", count);
 102        } else
 103                err = -ENODEV;
 104        mutex_unlock(&dma_list_mutex);
 105
 106        return err;
 107}
 108static DEVICE_ATTR_RO(memcpy_count);
 109
 110static ssize_t bytes_transferred_show(struct device *dev,
 111                                      struct device_attribute *attr, char *buf)
 112{
 113        struct dma_chan *chan;
 114        unsigned long count = 0;
 115        int i;
 116        int err;
 117
 118        mutex_lock(&dma_list_mutex);
 119        chan = dev_to_dma_chan(dev);
 120        if (chan) {
 121                for_each_possible_cpu(i)
 122                        count += per_cpu_ptr(chan->local, i)->bytes_transferred;
 123                err = sprintf(buf, "%lu\n", count);
 124        } else
 125                err = -ENODEV;
 126        mutex_unlock(&dma_list_mutex);
 127
 128        return err;
 129}
 130static DEVICE_ATTR_RO(bytes_transferred);
 131
 132static ssize_t in_use_show(struct device *dev, struct device_attribute *attr,
 133                           char *buf)
 134{
 135        struct dma_chan *chan;
 136        int err;
 137
 138        mutex_lock(&dma_list_mutex);
 139        chan = dev_to_dma_chan(dev);
 140        if (chan)
 141                err = sprintf(buf, "%d\n", chan->client_count);
 142        else
 143                err = -ENODEV;
 144        mutex_unlock(&dma_list_mutex);
 145
 146        return err;
 147}
 148static DEVICE_ATTR_RO(in_use);
 149
 150static struct attribute *dma_dev_attrs[] = {
 151        &dev_attr_memcpy_count.attr,
 152        &dev_attr_bytes_transferred.attr,
 153        &dev_attr_in_use.attr,
 154        NULL,
 155};
 156ATTRIBUTE_GROUPS(dma_dev);
 157
 158static void chan_dev_release(struct device *dev)
 159{
 160        struct dma_chan_dev *chan_dev;
 161
 162        chan_dev = container_of(dev, typeof(*chan_dev), device);
 163        if (atomic_dec_and_test(chan_dev->idr_ref)) {
 164                ida_free(&dma_ida, chan_dev->dev_id);
 165                kfree(chan_dev->idr_ref);
 166        }
 167        kfree(chan_dev);
 168}
 169
 170static struct class dma_devclass = {
 171        .name           = "dma",
 172        .dev_groups     = dma_dev_groups,
 173        .dev_release    = chan_dev_release,
 174};
 175
 176/* --- client and device registration --- */
 177
 178#define dma_device_satisfies_mask(device, mask) \
 179        __dma_device_satisfies_mask((device), &(mask))
 180static int
 181__dma_device_satisfies_mask(struct dma_device *device,
 182                            const dma_cap_mask_t *want)
 183{
 184        dma_cap_mask_t has;
 185
 186        bitmap_and(has.bits, want->bits, device->cap_mask.bits,
 187                DMA_TX_TYPE_END);
 188        return bitmap_equal(want->bits, has.bits, DMA_TX_TYPE_END);
 189}
 190
 191static struct module *dma_chan_to_owner(struct dma_chan *chan)
 192{
 193        return chan->device->dev->driver->owner;
 194}
 195
 196/**
 197 * balance_ref_count - catch up the channel reference count
 198 * @chan - channel to balance ->client_count versus dmaengine_ref_count
 199 *
 200 * balance_ref_count must be called under dma_list_mutex
 201 */
 202static void balance_ref_count(struct dma_chan *chan)
 203{
 204        struct module *owner = dma_chan_to_owner(chan);
 205
 206        while (chan->client_count < dmaengine_ref_count) {
 207                __module_get(owner);
 208                chan->client_count++;
 209        }
 210}
 211
 212/**
 213 * dma_chan_get - try to grab a dma channel's parent driver module
 214 * @chan - channel to grab
 215 *
 216 * Must be called under dma_list_mutex
 217 */
 218static int dma_chan_get(struct dma_chan *chan)
 219{
 220        struct module *owner = dma_chan_to_owner(chan);
 221        int ret;
 222
 223        /* The channel is already in use, update client count */
 224        if (chan->client_count) {
 225                __module_get(owner);
 226                goto out;
 227        }
 228
 229        if (!try_module_get(owner))
 230                return -ENODEV;
 231
 232        /* allocate upon first client reference */
 233        if (chan->device->device_alloc_chan_resources) {
 234                ret = chan->device->device_alloc_chan_resources(chan);
 235                if (ret < 0)
 236                        goto err_out;
 237        }
 238
 239        if (!dma_has_cap(DMA_PRIVATE, chan->device->cap_mask))
 240                balance_ref_count(chan);
 241
 242out:
 243        chan->client_count++;
 244        return 0;
 245
 246err_out:
 247        module_put(owner);
 248        return ret;
 249}
 250
 251/**
 252 * dma_chan_put - drop a reference to a dma channel's parent driver module
 253 * @chan - channel to release
 254 *
 255 * Must be called under dma_list_mutex
 256 */
 257static void dma_chan_put(struct dma_chan *chan)
 258{
 259        /* This channel is not in use, bail out */
 260        if (!chan->client_count)
 261                return;
 262
 263        chan->client_count--;
 264        module_put(dma_chan_to_owner(chan));
 265
 266        /* This channel is not in use anymore, free it */
 267        if (!chan->client_count && chan->device->device_free_chan_resources) {
 268                /* Make sure all operations have completed */
 269                dmaengine_synchronize(chan);
 270                chan->device->device_free_chan_resources(chan);
 271        }
 272
 273        /* If the channel is used via a DMA request router, free the mapping */
 274        if (chan->router && chan->router->route_free) {
 275                chan->router->route_free(chan->router->dev, chan->route_data);
 276                chan->router = NULL;
 277                chan->route_data = NULL;
 278        }
 279}
 280
 281enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
 282{
 283        enum dma_status status;
 284        unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
 285
 286        dma_async_issue_pending(chan);
 287        do {
 288                status = dma_async_is_tx_complete(chan, cookie, NULL, NULL);
 289                if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
 290                        dev_err(chan->device->dev, "%s: timeout!\n", __func__);
 291                        return DMA_ERROR;
 292                }
 293                if (status != DMA_IN_PROGRESS)
 294                        break;
 295                cpu_relax();
 296        } while (1);
 297
 298        return status;
 299}
 300EXPORT_SYMBOL(dma_sync_wait);
 301
 302/**
 303 * dma_cap_mask_all - enable iteration over all operation types
 304 */
 305static dma_cap_mask_t dma_cap_mask_all;
 306
 307/**
 308 * dma_chan_tbl_ent - tracks channel allocations per core/operation
 309 * @chan - associated channel for this entry
 310 */
 311struct dma_chan_tbl_ent {
 312        struct dma_chan *chan;
 313};
 314
 315/**
 316 * channel_table - percpu lookup table for memory-to-memory offload providers
 317 */
 318static struct dma_chan_tbl_ent __percpu *channel_table[DMA_TX_TYPE_END];
 319
 320static int __init dma_channel_table_init(void)
 321{
 322        enum dma_transaction_type cap;
 323        int err = 0;
 324
 325        bitmap_fill(dma_cap_mask_all.bits, DMA_TX_TYPE_END);
 326
 327        /* 'interrupt', 'private', and 'slave' are channel capabilities,
 328         * but are not associated with an operation so they do not need
 329         * an entry in the channel_table
 330         */
 331        clear_bit(DMA_INTERRUPT, dma_cap_mask_all.bits);
 332        clear_bit(DMA_PRIVATE, dma_cap_mask_all.bits);
 333        clear_bit(DMA_SLAVE, dma_cap_mask_all.bits);
 334
 335        for_each_dma_cap_mask(cap, dma_cap_mask_all) {
 336                channel_table[cap] = alloc_percpu(struct dma_chan_tbl_ent);
 337                if (!channel_table[cap]) {
 338                        err = -ENOMEM;
 339                        break;
 340                }
 341        }
 342
 343        if (err) {
 344                pr_err("initialization failure\n");
 345                for_each_dma_cap_mask(cap, dma_cap_mask_all)
 346                        free_percpu(channel_table[cap]);
 347        }
 348
 349        return err;
 350}
 351arch_initcall(dma_channel_table_init);
 352
 353/**
 354 * dma_find_channel - find a channel to carry out the operation
 355 * @tx_type: transaction type
 356 */
 357struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
 358{
 359        return this_cpu_read(channel_table[tx_type]->chan);
 360}
 361EXPORT_SYMBOL(dma_find_channel);
 362
 363/**
 364 * dma_issue_pending_all - flush all pending operations across all channels
 365 */
 366void dma_issue_pending_all(void)
 367{
 368        struct dma_device *device;
 369        struct dma_chan *chan;
 370
 371        rcu_read_lock();
 372        list_for_each_entry_rcu(device, &dma_device_list, global_node) {
 373                if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
 374                        continue;
 375                list_for_each_entry(chan, &device->channels, device_node)
 376                        if (chan->client_count)
 377                                device->device_issue_pending(chan);
 378        }
 379        rcu_read_unlock();
 380}
 381EXPORT_SYMBOL(dma_issue_pending_all);
 382
 383/**
 384 * dma_chan_is_local - returns true if the channel is in the same numa-node as the cpu
 385 */
 386static bool dma_chan_is_local(struct dma_chan *chan, int cpu)
 387{
 388        int node = dev_to_node(chan->device->dev);
 389        return node == -1 || cpumask_test_cpu(cpu, cpumask_of_node(node));
 390}
 391
 392/**
 393 * min_chan - returns the channel with min count and in the same numa-node as the cpu
 394 * @cap: capability to match
 395 * @cpu: cpu index which the channel should be close to
 396 *
 397 * If some channels are close to the given cpu, the one with the lowest
 398 * reference count is returned. Otherwise, cpu is ignored and only the
 399 * reference count is taken into account.
 400 * Must be called under dma_list_mutex.
 401 */
 402static struct dma_chan *min_chan(enum dma_transaction_type cap, int cpu)
 403{
 404        struct dma_device *device;
 405        struct dma_chan *chan;
 406        struct dma_chan *min = NULL;
 407        struct dma_chan *localmin = NULL;
 408
 409        list_for_each_entry(device, &dma_device_list, global_node) {
 410                if (!dma_has_cap(cap, device->cap_mask) ||
 411                    dma_has_cap(DMA_PRIVATE, device->cap_mask))
 412                        continue;
 413                list_for_each_entry(chan, &device->channels, device_node) {
 414                        if (!chan->client_count)
 415                                continue;
 416                        if (!min || chan->table_count < min->table_count)
 417                                min = chan;
 418
 419                        if (dma_chan_is_local(chan, cpu))
 420                                if (!localmin ||
 421                                    chan->table_count < localmin->table_count)
 422                                        localmin = chan;
 423                }
 424        }
 425
 426        chan = localmin ? localmin : min;
 427
 428        if (chan)
 429                chan->table_count++;
 430
 431        return chan;
 432}
 433
 434/**
 435 * dma_channel_rebalance - redistribute the available channels
 436 *
 437 * Optimize for cpu isolation (each cpu gets a dedicated channel for an
 438 * operation type) in the SMP case,  and operation isolation (avoid
 439 * multi-tasking channels) in the non-SMP case.  Must be called under
 440 * dma_list_mutex.
 441 */
 442static void dma_channel_rebalance(void)
 443{
 444        struct dma_chan *chan;
 445        struct dma_device *device;
 446        int cpu;
 447        int cap;
 448
 449        /* undo the last distribution */
 450        for_each_dma_cap_mask(cap, dma_cap_mask_all)
 451                for_each_possible_cpu(cpu)
 452                        per_cpu_ptr(channel_table[cap], cpu)->chan = NULL;
 453
 454        list_for_each_entry(device, &dma_device_list, global_node) {
 455                if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
 456                        continue;
 457                list_for_each_entry(chan, &device->channels, device_node)
 458                        chan->table_count = 0;
 459        }
 460
 461        /* don't populate the channel_table if no clients are available */
 462        if (!dmaengine_ref_count)
 463                return;
 464
 465        /* redistribute available channels */
 466        for_each_dma_cap_mask(cap, dma_cap_mask_all)
 467                for_each_online_cpu(cpu) {
 468                        chan = min_chan(cap, cpu);
 469                        per_cpu_ptr(channel_table[cap], cpu)->chan = chan;
 470                }
 471}
 472
 473int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps)
 474{
 475        struct dma_device *device;
 476
 477        if (!chan || !caps)
 478                return -EINVAL;
 479
 480        device = chan->device;
 481
 482        /* check if the channel supports slave transactions */
 483        if (!(test_bit(DMA_SLAVE, device->cap_mask.bits) ||
 484              test_bit(DMA_CYCLIC, device->cap_mask.bits)))
 485                return -ENXIO;
 486
 487        /*
 488         * Check whether it reports it uses the generic slave
 489         * capabilities, if not, that means it doesn't support any
 490         * kind of slave capabilities reporting.
 491         */
 492        if (!device->directions)
 493                return -ENXIO;
 494
 495        caps->src_addr_widths = device->src_addr_widths;
 496        caps->dst_addr_widths = device->dst_addr_widths;
 497        caps->directions = device->directions;
 498        caps->max_burst = device->max_burst;
 499        caps->residue_granularity = device->residue_granularity;
 500        caps->descriptor_reuse = device->descriptor_reuse;
 501        caps->cmd_pause = !!device->device_pause;
 502        caps->cmd_resume = !!device->device_resume;
 503        caps->cmd_terminate = !!device->device_terminate_all;
 504
 505        return 0;
 506}
 507EXPORT_SYMBOL_GPL(dma_get_slave_caps);
 508
 509static struct dma_chan *private_candidate(const dma_cap_mask_t *mask,
 510                                          struct dma_device *dev,
 511                                          dma_filter_fn fn, void *fn_param)
 512{
 513        struct dma_chan *chan;
 514
 515        if (mask && !__dma_device_satisfies_mask(dev, mask)) {
 516                dev_dbg(dev->dev, "%s: wrong capabilities\n", __func__);
 517                return NULL;
 518        }
 519        /* devices with multiple channels need special handling as we need to
 520         * ensure that all channels are either private or public.
 521         */
 522        if (dev->chancnt > 1 && !dma_has_cap(DMA_PRIVATE, dev->cap_mask))
 523                list_for_each_entry(chan, &dev->channels, device_node) {
 524                        /* some channels are already publicly allocated */
 525                        if (chan->client_count)
 526                                return NULL;
 527                }
 528
 529        list_for_each_entry(chan, &dev->channels, device_node) {
 530                if (chan->client_count) {
 531                        dev_dbg(dev->dev, "%s: %s busy\n",
 532                                 __func__, dma_chan_name(chan));
 533                        continue;
 534                }
 535                if (fn && !fn(chan, fn_param)) {
 536                        dev_dbg(dev->dev, "%s: %s filter said false\n",
 537                                 __func__, dma_chan_name(chan));
 538                        continue;
 539                }
 540                return chan;
 541        }
 542
 543        return NULL;
 544}
 545
 546static struct dma_chan *find_candidate(struct dma_device *device,
 547                                       const dma_cap_mask_t *mask,
 548                                       dma_filter_fn fn, void *fn_param)
 549{
 550        struct dma_chan *chan = private_candidate(mask, device, fn, fn_param);
 551        int err;
 552
 553        if (chan) {
 554                /* Found a suitable channel, try to grab, prep, and return it.
 555                 * We first set DMA_PRIVATE to disable balance_ref_count as this
 556                 * channel will not be published in the general-purpose
 557                 * allocator
 558                 */
 559                dma_cap_set(DMA_PRIVATE, device->cap_mask);
 560                device->privatecnt++;
 561                err = dma_chan_get(chan);
 562
 563                if (err) {
 564                        if (err == -ENODEV) {
 565                                dev_dbg(device->dev, "%s: %s module removed\n",
 566                                        __func__, dma_chan_name(chan));
 567                                list_del_rcu(&device->global_node);
 568                        } else
 569                                dev_dbg(device->dev,
 570                                        "%s: failed to get %s: (%d)\n",
 571                                         __func__, dma_chan_name(chan), err);
 572
 573                        if (--device->privatecnt == 0)
 574                                dma_cap_clear(DMA_PRIVATE, device->cap_mask);
 575
 576                        chan = ERR_PTR(err);
 577                }
 578        }
 579
 580        return chan ? chan : ERR_PTR(-EPROBE_DEFER);
 581}
 582
 583/**
 584 * dma_get_slave_channel - try to get specific channel exclusively
 585 * @chan: target channel
 586 */
 587struct dma_chan *dma_get_slave_channel(struct dma_chan *chan)
 588{
 589        int err = -EBUSY;
 590
 591        /* lock against __dma_request_channel */
 592        mutex_lock(&dma_list_mutex);
 593
 594        if (chan->client_count == 0) {
 595                struct dma_device *device = chan->device;
 596
 597                dma_cap_set(DMA_PRIVATE, device->cap_mask);
 598                device->privatecnt++;
 599                err = dma_chan_get(chan);
 600                if (err) {
 601                        dev_dbg(chan->device->dev,
 602                                "%s: failed to get %s: (%d)\n",
 603                                __func__, dma_chan_name(chan), err);
 604                        chan = NULL;
 605                        if (--device->privatecnt == 0)
 606                                dma_cap_clear(DMA_PRIVATE, device->cap_mask);
 607                }
 608        } else
 609                chan = NULL;
 610
 611        mutex_unlock(&dma_list_mutex);
 612
 613
 614        return chan;
 615}
 616EXPORT_SYMBOL_GPL(dma_get_slave_channel);
 617
 618struct dma_chan *dma_get_any_slave_channel(struct dma_device *device)
 619{
 620        dma_cap_mask_t mask;
 621        struct dma_chan *chan;
 622
 623        dma_cap_zero(mask);
 624        dma_cap_set(DMA_SLAVE, mask);
 625
 626        /* lock against __dma_request_channel */
 627        mutex_lock(&dma_list_mutex);
 628
 629        chan = find_candidate(device, &mask, NULL, NULL);
 630
 631        mutex_unlock(&dma_list_mutex);
 632
 633        return IS_ERR(chan) ? NULL : chan;
 634}
 635EXPORT_SYMBOL_GPL(dma_get_any_slave_channel);
 636
 637/**
 638 * __dma_request_channel - try to allocate an exclusive channel
 639 * @mask: capabilities that the channel must satisfy
 640 * @fn: optional callback to disposition available channels
 641 * @fn_param: opaque parameter to pass to dma_filter_fn
 642 *
 643 * Returns pointer to appropriate DMA channel on success or NULL.
 644 */
 645struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
 646                                       dma_filter_fn fn, void *fn_param)
 647{
 648        struct dma_device *device, *_d;
 649        struct dma_chan *chan = NULL;
 650
 651        /* Find a channel */
 652        mutex_lock(&dma_list_mutex);
 653        list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
 654                chan = find_candidate(device, mask, fn, fn_param);
 655                if (!IS_ERR(chan))
 656                        break;
 657
 658                chan = NULL;
 659        }
 660        mutex_unlock(&dma_list_mutex);
 661
 662        pr_debug("%s: %s (%s)\n",
 663                 __func__,
 664                 chan ? "success" : "fail",
 665                 chan ? dma_chan_name(chan) : NULL);
 666
 667        return chan;
 668}
 669EXPORT_SYMBOL_GPL(__dma_request_channel);
 670
 671static const struct dma_slave_map *dma_filter_match(struct dma_device *device,
 672                                                    const char *name,
 673                                                    struct device *dev)
 674{
 675        int i;
 676
 677        if (!device->filter.mapcnt)
 678                return NULL;
 679
 680        for (i = 0; i < device->filter.mapcnt; i++) {
 681                const struct dma_slave_map *map = &device->filter.map[i];
 682
 683                if (!strcmp(map->devname, dev_name(dev)) &&
 684                    !strcmp(map->slave, name))
 685                        return map;
 686        }
 687
 688        return NULL;
 689}
 690
 691/**
 692 * dma_request_chan - try to allocate an exclusive slave channel
 693 * @dev:        pointer to client device structure
 694 * @name:       slave channel name
 695 *
 696 * Returns pointer to appropriate DMA channel on success or an error pointer.
 697 */
 698struct dma_chan *dma_request_chan(struct device *dev, const char *name)
 699{
 700        struct dma_device *d, *_d;
 701        struct dma_chan *chan = NULL;
 702
 703        /* If device-tree is present get slave info from here */
 704        if (dev->of_node)
 705                chan = of_dma_request_slave_channel(dev->of_node, name);
 706
 707        /* If device was enumerated by ACPI get slave info from here */
 708        if (has_acpi_companion(dev) && !chan)
 709                chan = acpi_dma_request_slave_chan_by_name(dev, name);
 710
 711        if (chan) {
 712                /* Valid channel found or requester need to be deferred */
 713                if (!IS_ERR(chan) || PTR_ERR(chan) == -EPROBE_DEFER)
 714                        return chan;
 715        }
 716
 717        /* Try to find the channel via the DMA filter map(s) */
 718        mutex_lock(&dma_list_mutex);
 719        list_for_each_entry_safe(d, _d, &dma_device_list, global_node) {
 720                dma_cap_mask_t mask;
 721                const struct dma_slave_map *map = dma_filter_match(d, name, dev);
 722
 723                if (!map)
 724                        continue;
 725
 726                dma_cap_zero(mask);
 727                dma_cap_set(DMA_SLAVE, mask);
 728
 729                chan = find_candidate(d, &mask, d->filter.fn, map->param);
 730                if (!IS_ERR(chan))
 731                        break;
 732        }
 733        mutex_unlock(&dma_list_mutex);
 734
 735        return chan ? chan : ERR_PTR(-EPROBE_DEFER);
 736}
 737EXPORT_SYMBOL_GPL(dma_request_chan);
 738
 739/**
 740 * dma_request_slave_channel - try to allocate an exclusive slave channel
 741 * @dev:        pointer to client device structure
 742 * @name:       slave channel name
 743 *
 744 * Returns pointer to appropriate DMA channel on success or NULL.
 745 */
 746struct dma_chan *dma_request_slave_channel(struct device *dev,
 747                                           const char *name)
 748{
 749        struct dma_chan *ch = dma_request_chan(dev, name);
 750        if (IS_ERR(ch))
 751                return NULL;
 752
 753        return ch;
 754}
 755EXPORT_SYMBOL_GPL(dma_request_slave_channel);
 756
 757/**
 758 * dma_request_chan_by_mask - allocate a channel satisfying certain capabilities
 759 * @mask: capabilities that the channel must satisfy
 760 *
 761 * Returns pointer to appropriate DMA channel on success or an error pointer.
 762 */
 763struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask)
 764{
 765        struct dma_chan *chan;
 766
 767        if (!mask)
 768                return ERR_PTR(-ENODEV);
 769
 770        chan = __dma_request_channel(mask, NULL, NULL);
 771        if (!chan) {
 772                mutex_lock(&dma_list_mutex);
 773                if (list_empty(&dma_device_list))
 774                        chan = ERR_PTR(-EPROBE_DEFER);
 775                else
 776                        chan = ERR_PTR(-ENODEV);
 777                mutex_unlock(&dma_list_mutex);
 778        }
 779
 780        return chan;
 781}
 782EXPORT_SYMBOL_GPL(dma_request_chan_by_mask);
 783
 784void dma_release_channel(struct dma_chan *chan)
 785{
 786        mutex_lock(&dma_list_mutex);
 787        WARN_ONCE(chan->client_count != 1,
 788                  "chan reference count %d != 1\n", chan->client_count);
 789        dma_chan_put(chan);
 790        /* drop PRIVATE cap enabled by __dma_request_channel() */
 791        if (--chan->device->privatecnt == 0)
 792                dma_cap_clear(DMA_PRIVATE, chan->device->cap_mask);
 793        mutex_unlock(&dma_list_mutex);
 794}
 795EXPORT_SYMBOL_GPL(dma_release_channel);
 796
 797/**
 798 * dmaengine_get - register interest in dma_channels
 799 */
 800void dmaengine_get(void)
 801{
 802        struct dma_device *device, *_d;
 803        struct dma_chan *chan;
 804        int err;
 805
 806        mutex_lock(&dma_list_mutex);
 807        dmaengine_ref_count++;
 808
 809        /* try to grab channels */
 810        list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
 811                if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
 812                        continue;
 813                list_for_each_entry(chan, &device->channels, device_node) {
 814                        err = dma_chan_get(chan);
 815                        if (err == -ENODEV) {
 816                                /* module removed before we could use it */
 817                                list_del_rcu(&device->global_node);
 818                                break;
 819                        } else if (err)
 820                                dev_dbg(chan->device->dev,
 821                                        "%s: failed to get %s: (%d)\n",
 822                                        __func__, dma_chan_name(chan), err);
 823                }
 824        }
 825
 826        /* if this is the first reference and there were channels
 827         * waiting we need to rebalance to get those channels
 828         * incorporated into the channel table
 829         */
 830        if (dmaengine_ref_count == 1)
 831                dma_channel_rebalance();
 832        mutex_unlock(&dma_list_mutex);
 833}
 834EXPORT_SYMBOL(dmaengine_get);
 835
 836/**
 837 * dmaengine_put - let dma drivers be removed when ref_count == 0
 838 */
 839void dmaengine_put(void)
 840{
 841        struct dma_device *device;
 842        struct dma_chan *chan;
 843
 844        mutex_lock(&dma_list_mutex);
 845        dmaengine_ref_count--;
 846        BUG_ON(dmaengine_ref_count < 0);
 847        /* drop channel references */
 848        list_for_each_entry(device, &dma_device_list, global_node) {
 849                if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
 850                        continue;
 851                list_for_each_entry(chan, &device->channels, device_node)
 852                        dma_chan_put(chan);
 853        }
 854        mutex_unlock(&dma_list_mutex);
 855}
 856EXPORT_SYMBOL(dmaengine_put);
 857
 858static bool device_has_all_tx_types(struct dma_device *device)
 859{
 860        /* A device that satisfies this test has channels that will never cause
 861         * an async_tx channel switch event as all possible operation types can
 862         * be handled.
 863         */
 864        #ifdef CONFIG_ASYNC_TX_DMA
 865        if (!dma_has_cap(DMA_INTERRUPT, device->cap_mask))
 866                return false;
 867        #endif
 868
 869        #if IS_ENABLED(CONFIG_ASYNC_MEMCPY)
 870        if (!dma_has_cap(DMA_MEMCPY, device->cap_mask))
 871                return false;
 872        #endif
 873
 874        #if IS_ENABLED(CONFIG_ASYNC_XOR)
 875        if (!dma_has_cap(DMA_XOR, device->cap_mask))
 876                return false;
 877
 878        #ifndef CONFIG_ASYNC_TX_DISABLE_XOR_VAL_DMA
 879        if (!dma_has_cap(DMA_XOR_VAL, device->cap_mask))
 880                return false;
 881        #endif
 882        #endif
 883
 884        #if IS_ENABLED(CONFIG_ASYNC_PQ)
 885        if (!dma_has_cap(DMA_PQ, device->cap_mask))
 886                return false;
 887
 888        #ifndef CONFIG_ASYNC_TX_DISABLE_PQ_VAL_DMA
 889        if (!dma_has_cap(DMA_PQ_VAL, device->cap_mask))
 890                return false;
 891        #endif
 892        #endif
 893
 894        return true;
 895}
 896
 897static int get_dma_id(struct dma_device *device)
 898{
 899        int rc = ida_alloc(&dma_ida, GFP_KERNEL);
 900
 901        if (rc < 0)
 902                return rc;
 903        device->dev_id = rc;
 904        return 0;
 905}
 906
 907/**
 908 * dma_async_device_register - registers DMA devices found
 909 * @device: &dma_device
 910 */
 911int dma_async_device_register(struct dma_device *device)
 912{
 913        int chancnt = 0, rc;
 914        struct dma_chan* chan;
 915        atomic_t *idr_ref;
 916
 917        if (!device)
 918                return -ENODEV;
 919
 920        /* validate device routines */
 921        if (!device->dev) {
 922                pr_err("DMAdevice must have dev\n");
 923                return -EIO;
 924        }
 925
 926        if (dma_has_cap(DMA_MEMCPY, device->cap_mask) && !device->device_prep_dma_memcpy) {
 927                dev_err(device->dev,
 928                        "Device claims capability %s, but op is not defined\n",
 929                        "DMA_MEMCPY");
 930                return -EIO;
 931        }
 932
 933        if (dma_has_cap(DMA_XOR, device->cap_mask) && !device->device_prep_dma_xor) {
 934                dev_err(device->dev,
 935                        "Device claims capability %s, but op is not defined\n",
 936                        "DMA_XOR");
 937                return -EIO;
 938        }
 939
 940        if (dma_has_cap(DMA_XOR_VAL, device->cap_mask) && !device->device_prep_dma_xor_val) {
 941                dev_err(device->dev,
 942                        "Device claims capability %s, but op is not defined\n",
 943                        "DMA_XOR_VAL");
 944                return -EIO;
 945        }
 946
 947        if (dma_has_cap(DMA_PQ, device->cap_mask) && !device->device_prep_dma_pq) {
 948                dev_err(device->dev,
 949                        "Device claims capability %s, but op is not defined\n",
 950                        "DMA_PQ");
 951                return -EIO;
 952        }
 953
 954        if (dma_has_cap(DMA_PQ_VAL, device->cap_mask) && !device->device_prep_dma_pq_val) {
 955                dev_err(device->dev,
 956                        "Device claims capability %s, but op is not defined\n",
 957                        "DMA_PQ_VAL");
 958                return -EIO;
 959        }
 960
 961        if (dma_has_cap(DMA_MEMSET, device->cap_mask) && !device->device_prep_dma_memset) {
 962                dev_err(device->dev,
 963                        "Device claims capability %s, but op is not defined\n",
 964                        "DMA_MEMSET");
 965                return -EIO;
 966        }
 967
 968        if (dma_has_cap(DMA_INTERRUPT, device->cap_mask) && !device->device_prep_dma_interrupt) {
 969                dev_err(device->dev,
 970                        "Device claims capability %s, but op is not defined\n",
 971                        "DMA_INTERRUPT");
 972                return -EIO;
 973        }
 974
 975        if (dma_has_cap(DMA_CYCLIC, device->cap_mask) && !device->device_prep_dma_cyclic) {
 976                dev_err(device->dev,
 977                        "Device claims capability %s, but op is not defined\n",
 978                        "DMA_CYCLIC");
 979                return -EIO;
 980        }
 981
 982        if (dma_has_cap(DMA_INTERLEAVE, device->cap_mask) && !device->device_prep_interleaved_dma) {
 983                dev_err(device->dev,
 984                        "Device claims capability %s, but op is not defined\n",
 985                        "DMA_INTERLEAVE");
 986                return -EIO;
 987        }
 988
 989
 990        if (!device->device_tx_status) {
 991                dev_err(device->dev, "Device tx_status is not defined\n");
 992                return -EIO;
 993        }
 994
 995
 996        if (!device->device_issue_pending) {
 997                dev_err(device->dev, "Device issue_pending is not defined\n");
 998                return -EIO;
 999        }
1000
1001        /* note: this only matters in the
1002         * CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH=n case
1003         */
1004        if (device_has_all_tx_types(device))
1005                dma_cap_set(DMA_ASYNC_TX, device->cap_mask);
1006
1007        idr_ref = kmalloc(sizeof(*idr_ref), GFP_KERNEL);
1008        if (!idr_ref)
1009                return -ENOMEM;
1010        rc = get_dma_id(device);
1011        if (rc != 0) {
1012                kfree(idr_ref);
1013                return rc;
1014        }
1015
1016        atomic_set(idr_ref, 0);
1017
1018        /* represent channels in sysfs. Probably want devs too */
1019        list_for_each_entry(chan, &device->channels, device_node) {
1020                rc = -ENOMEM;
1021                chan->local = alloc_percpu(typeof(*chan->local));
1022                if (chan->local == NULL)
1023                        goto err_out;
1024                chan->dev = kzalloc(sizeof(*chan->dev), GFP_KERNEL);
1025                if (chan->dev == NULL) {
1026                        free_percpu(chan->local);
1027                        chan->local = NULL;
1028                        goto err_out;
1029                }
1030
1031                chan->chan_id = chancnt++;
1032                chan->dev->device.class = &dma_devclass;
1033                chan->dev->device.parent = device->dev;
1034                chan->dev->chan = chan;
1035                chan->dev->idr_ref = idr_ref;
1036                chan->dev->dev_id = device->dev_id;
1037                atomic_inc(idr_ref);
1038                dev_set_name(&chan->dev->device, "dma%dchan%d",
1039                             device->dev_id, chan->chan_id);
1040
1041                rc = device_register(&chan->dev->device);
1042                if (rc) {
1043                        free_percpu(chan->local);
1044                        chan->local = NULL;
1045                        kfree(chan->dev);
1046                        atomic_dec(idr_ref);
1047                        goto err_out;
1048                }
1049                chan->client_count = 0;
1050        }
1051
1052        if (!chancnt) {
1053                dev_err(device->dev, "%s: device has no channels!\n", __func__);
1054                rc = -ENODEV;
1055                goto err_out;
1056        }
1057
1058        device->chancnt = chancnt;
1059
1060        mutex_lock(&dma_list_mutex);
1061        /* take references on public channels */
1062        if (dmaengine_ref_count && !dma_has_cap(DMA_PRIVATE, device->cap_mask))
1063                list_for_each_entry(chan, &device->channels, device_node) {
1064                        /* if clients are already waiting for channels we need
1065                         * to take references on their behalf
1066                         */
1067                        if (dma_chan_get(chan) == -ENODEV) {
1068                                /* note we can only get here for the first
1069                                 * channel as the remaining channels are
1070                                 * guaranteed to get a reference
1071                                 */
1072                                rc = -ENODEV;
1073                                mutex_unlock(&dma_list_mutex);
1074                                goto err_out;
1075                        }
1076                }
1077        list_add_tail_rcu(&device->global_node, &dma_device_list);
1078        if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
1079                device->privatecnt++;   /* Always private */
1080        dma_channel_rebalance();
1081        mutex_unlock(&dma_list_mutex);
1082
1083        return 0;
1084
1085err_out:
1086        /* if we never registered a channel just release the idr */
1087        if (atomic_read(idr_ref) == 0) {
1088                ida_free(&dma_ida, device->dev_id);
1089                kfree(idr_ref);
1090                return rc;
1091        }
1092
1093        list_for_each_entry(chan, &device->channels, device_node) {
1094                if (chan->local == NULL)
1095                        continue;
1096                mutex_lock(&dma_list_mutex);
1097                chan->dev->chan = NULL;
1098                mutex_unlock(&dma_list_mutex);
1099                device_unregister(&chan->dev->device);
1100                free_percpu(chan->local);
1101        }
1102        return rc;
1103}
1104EXPORT_SYMBOL(dma_async_device_register);
1105
1106/**
1107 * dma_async_device_unregister - unregister a DMA device
1108 * @device: &dma_device
1109 *
1110 * This routine is called by dma driver exit routines, dmaengine holds module
1111 * references to prevent it being called while channels are in use.
1112 */
1113void dma_async_device_unregister(struct dma_device *device)
1114{
1115        struct dma_chan *chan;
1116
1117        mutex_lock(&dma_list_mutex);
1118        list_del_rcu(&device->global_node);
1119        dma_channel_rebalance();
1120        mutex_unlock(&dma_list_mutex);
1121
1122        list_for_each_entry(chan, &device->channels, device_node) {
1123                WARN_ONCE(chan->client_count,
1124                          "%s called while %d clients hold a reference\n",
1125                          __func__, chan->client_count);
1126                mutex_lock(&dma_list_mutex);
1127                chan->dev->chan = NULL;
1128                mutex_unlock(&dma_list_mutex);
1129                device_unregister(&chan->dev->device);
1130                free_percpu(chan->local);
1131        }
1132}
1133EXPORT_SYMBOL(dma_async_device_unregister);
1134
1135static void dmam_device_release(struct device *dev, void *res)
1136{
1137        struct dma_device *device;
1138
1139        device = *(struct dma_device **)res;
1140        dma_async_device_unregister(device);
1141}
1142
1143/**
1144 * dmaenginem_async_device_register - registers DMA devices found
1145 * @device: &dma_device
1146 *
1147 * The operation is managed and will be undone on driver detach.
1148 */
1149int dmaenginem_async_device_register(struct dma_device *device)
1150{
1151        void *p;
1152        int ret;
1153
1154        p = devres_alloc(dmam_device_release, sizeof(void *), GFP_KERNEL);
1155        if (!p)
1156                return -ENOMEM;
1157
1158        ret = dma_async_device_register(device);
1159        if (!ret) {
1160                *(struct dma_device **)p = device;
1161                devres_add(device->dev, p);
1162        } else {
1163                devres_free(p);
1164        }
1165
1166        return ret;
1167}
1168EXPORT_SYMBOL(dmaenginem_async_device_register);
1169
1170struct dmaengine_unmap_pool {
1171        struct kmem_cache *cache;
1172        const char *name;
1173        mempool_t *pool;
1174        size_t size;
1175};
1176
1177#define __UNMAP_POOL(x) { .size = x, .name = "dmaengine-unmap-" __stringify(x) }
1178static struct dmaengine_unmap_pool unmap_pool[] = {
1179        __UNMAP_POOL(2),
1180        #if IS_ENABLED(CONFIG_DMA_ENGINE_RAID)
1181        __UNMAP_POOL(16),
1182        __UNMAP_POOL(128),
1183        __UNMAP_POOL(256),
1184        #endif
1185};
1186
1187static struct dmaengine_unmap_pool *__get_unmap_pool(int nr)
1188{
1189        int order = get_count_order(nr);
1190
1191        switch (order) {
1192        case 0 ... 1:
1193                return &unmap_pool[0];
1194#if IS_ENABLED(CONFIG_DMA_ENGINE_RAID)
1195        case 2 ... 4:
1196                return &unmap_pool[1];
1197        case 5 ... 7:
1198                return &unmap_pool[2];
1199        case 8:
1200                return &unmap_pool[3];
1201#endif
1202        default:
1203                BUG();
1204                return NULL;
1205        }
1206}
1207
1208static void dmaengine_unmap(struct kref *kref)
1209{
1210        struct dmaengine_unmap_data *unmap = container_of(kref, typeof(*unmap), kref);
1211        struct device *dev = unmap->dev;
1212        int cnt, i;
1213
1214        cnt = unmap->to_cnt;
1215        for (i = 0; i < cnt; i++)
1216                dma_unmap_page(dev, unmap->addr[i], unmap->len,
1217                               DMA_TO_DEVICE);
1218        cnt += unmap->from_cnt;
1219        for (; i < cnt; i++)
1220                dma_unmap_page(dev, unmap->addr[i], unmap->len,
1221                               DMA_FROM_DEVICE);
1222        cnt += unmap->bidi_cnt;
1223        for (; i < cnt; i++) {
1224                if (unmap->addr[i] == 0)
1225                        continue;
1226                dma_unmap_page(dev, unmap->addr[i], unmap->len,
1227                               DMA_BIDIRECTIONAL);
1228        }
1229        cnt = unmap->map_cnt;
1230        mempool_free(unmap, __get_unmap_pool(cnt)->pool);
1231}
1232
1233void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
1234{
1235        if (unmap)
1236                kref_put(&unmap->kref, dmaengine_unmap);
1237}
1238EXPORT_SYMBOL_GPL(dmaengine_unmap_put);
1239
1240static void dmaengine_destroy_unmap_pool(void)
1241{
1242        int i;
1243
1244        for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) {
1245                struct dmaengine_unmap_pool *p = &unmap_pool[i];
1246
1247                mempool_destroy(p->pool);
1248                p->pool = NULL;
1249                kmem_cache_destroy(p->cache);
1250                p->cache = NULL;
1251        }
1252}
1253
1254static int __init dmaengine_init_unmap_pool(void)
1255{
1256        int i;
1257
1258        for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) {
1259                struct dmaengine_unmap_pool *p = &unmap_pool[i];
1260                size_t size;
1261
1262                size = sizeof(struct dmaengine_unmap_data) +
1263                       sizeof(dma_addr_t) * p->size;
1264
1265                p->cache = kmem_cache_create(p->name, size, 0,
1266                                             SLAB_HWCACHE_ALIGN, NULL);
1267                if (!p->cache)
1268                        break;
1269                p->pool = mempool_create_slab_pool(1, p->cache);
1270                if (!p->pool)
1271                        break;
1272        }
1273
1274        if (i == ARRAY_SIZE(unmap_pool))
1275                return 0;
1276
1277        dmaengine_destroy_unmap_pool();
1278        return -ENOMEM;
1279}
1280
1281struct dmaengine_unmap_data *
1282dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
1283{
1284        struct dmaengine_unmap_data *unmap;
1285
1286        unmap = mempool_alloc(__get_unmap_pool(nr)->pool, flags);
1287        if (!unmap)
1288                return NULL;
1289
1290        memset(unmap, 0, sizeof(*unmap));
1291        kref_init(&unmap->kref);
1292        unmap->dev = dev;
1293        unmap->map_cnt = nr;
1294
1295        return unmap;
1296}
1297EXPORT_SYMBOL(dmaengine_get_unmap_data);
1298
1299void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
1300        struct dma_chan *chan)
1301{
1302        tx->chan = chan;
1303        #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
1304        spin_lock_init(&tx->lock);
1305        #endif
1306}
1307EXPORT_SYMBOL(dma_async_tx_descriptor_init);
1308
1309/* dma_wait_for_async_tx - spin wait for a transaction to complete
1310 * @tx: in-flight transaction to wait on
1311 */
1312enum dma_status
1313dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1314{
1315        unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
1316
1317        if (!tx)
1318                return DMA_COMPLETE;
1319
1320        while (tx->cookie == -EBUSY) {
1321                if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
1322                        dev_err(tx->chan->device->dev,
1323                                "%s timeout waiting for descriptor submission\n",
1324                                __func__);
1325                        return DMA_ERROR;
1326                }
1327                cpu_relax();
1328        }
1329        return dma_sync_wait(tx->chan, tx->cookie);
1330}
1331EXPORT_SYMBOL_GPL(dma_wait_for_async_tx);
1332
1333/* dma_run_dependencies - helper routine for dma drivers to process
1334 *      (start) dependent operations on their target channel
1335 * @tx: transaction with dependencies
1336 */
1337void dma_run_dependencies(struct dma_async_tx_descriptor *tx)
1338{
1339        struct dma_async_tx_descriptor *dep = txd_next(tx);
1340        struct dma_async_tx_descriptor *dep_next;
1341        struct dma_chan *chan;
1342
1343        if (!dep)
1344                return;
1345
1346        /* we'll submit tx->next now, so clear the link */
1347        txd_clear_next(tx);
1348        chan = dep->chan;
1349
1350        /* keep submitting up until a channel switch is detected
1351         * in that case we will be called again as a result of
1352         * processing the interrupt from async_tx_channel_switch
1353         */
1354        for (; dep; dep = dep_next) {
1355                txd_lock(dep);
1356                txd_clear_parent(dep);
1357                dep_next = txd_next(dep);
1358                if (dep_next && dep_next->chan == chan)
1359                        txd_clear_next(dep); /* ->next will be submitted */
1360                else
1361                        dep_next = NULL; /* submit current dep and terminate */
1362                txd_unlock(dep);
1363
1364                dep->tx_submit(dep);
1365        }
1366
1367        chan->device->device_issue_pending(chan);
1368}
1369EXPORT_SYMBOL_GPL(dma_run_dependencies);
1370
1371static int __init dma_bus_init(void)
1372{
1373        int err = dmaengine_init_unmap_pool();
1374
1375        if (err)
1376                return err;
1377        return class_register(&dma_devclass);
1378}
1379arch_initcall(dma_bus_init);
1380
1381
1382