linux/drivers/dma/imx-sdma.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2//
   3// drivers/dma/imx-sdma.c
   4//
   5// This file contains a driver for the Freescale Smart DMA engine
   6//
   7// Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
   8//
   9// Based on code from Freescale:
  10//
  11// Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
  12
  13#include <linux/init.h>
  14#include <linux/iopoll.h>
  15#include <linux/module.h>
  16#include <linux/types.h>
  17#include <linux/bitops.h>
  18#include <linux/mm.h>
  19#include <linux/interrupt.h>
  20#include <linux/clk.h>
  21#include <linux/delay.h>
  22#include <linux/sched.h>
  23#include <linux/semaphore.h>
  24#include <linux/spinlock.h>
  25#include <linux/device.h>
  26#include <linux/dma-mapping.h>
  27#include <linux/firmware.h>
  28#include <linux/slab.h>
  29#include <linux/platform_device.h>
  30#include <linux/dmaengine.h>
  31#include <linux/of.h>
  32#include <linux/of_address.h>
  33#include <linux/of_device.h>
  34#include <linux/of_dma.h>
  35#include <linux/workqueue.h>
  36
  37#include <asm/irq.h>
  38#include <linux/platform_data/dma-imx-sdma.h>
  39#include <linux/platform_data/dma-imx.h>
  40#include <linux/regmap.h>
  41#include <linux/mfd/syscon.h>
  42#include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
  43
  44#include "dmaengine.h"
  45#include "virt-dma.h"
  46
  47/* SDMA registers */
  48#define SDMA_H_C0PTR            0x000
  49#define SDMA_H_INTR             0x004
  50#define SDMA_H_STATSTOP         0x008
  51#define SDMA_H_START            0x00c
  52#define SDMA_H_EVTOVR           0x010
  53#define SDMA_H_DSPOVR           0x014
  54#define SDMA_H_HOSTOVR          0x018
  55#define SDMA_H_EVTPEND          0x01c
  56#define SDMA_H_DSPENBL          0x020
  57#define SDMA_H_RESET            0x024
  58#define SDMA_H_EVTERR           0x028
  59#define SDMA_H_INTRMSK          0x02c
  60#define SDMA_H_PSW              0x030
  61#define SDMA_H_EVTERRDBG        0x034
  62#define SDMA_H_CONFIG           0x038
  63#define SDMA_ONCE_ENB           0x040
  64#define SDMA_ONCE_DATA          0x044
  65#define SDMA_ONCE_INSTR         0x048
  66#define SDMA_ONCE_STAT          0x04c
  67#define SDMA_ONCE_CMD           0x050
  68#define SDMA_EVT_MIRROR         0x054
  69#define SDMA_ILLINSTADDR        0x058
  70#define SDMA_CHN0ADDR           0x05c
  71#define SDMA_ONCE_RTB           0x060
  72#define SDMA_XTRIG_CONF1        0x070
  73#define SDMA_XTRIG_CONF2        0x074
  74#define SDMA_CHNENBL0_IMX35     0x200
  75#define SDMA_CHNENBL0_IMX31     0x080
  76#define SDMA_CHNPRI_0           0x100
  77
  78/*
  79 * Buffer descriptor status values.
  80 */
  81#define BD_DONE  0x01
  82#define BD_WRAP  0x02
  83#define BD_CONT  0x04
  84#define BD_INTR  0x08
  85#define BD_RROR  0x10
  86#define BD_LAST  0x20
  87#define BD_EXTD  0x80
  88
  89/*
  90 * Data Node descriptor status values.
  91 */
  92#define DND_END_OF_FRAME  0x80
  93#define DND_END_OF_XFER   0x40
  94#define DND_DONE          0x20
  95#define DND_UNUSED        0x01
  96
  97/*
  98 * IPCV2 descriptor status values.
  99 */
 100#define BD_IPCV2_END_OF_FRAME  0x40
 101
 102#define IPCV2_MAX_NODES        50
 103/*
 104 * Error bit set in the CCB status field by the SDMA,
 105 * in setbd routine, in case of a transfer error
 106 */
 107#define DATA_ERROR  0x10000000
 108
 109/*
 110 * Buffer descriptor commands.
 111 */
 112#define C0_ADDR             0x01
 113#define C0_LOAD             0x02
 114#define C0_DUMP             0x03
 115#define C0_SETCTX           0x07
 116#define C0_GETCTX           0x03
 117#define C0_SETDM            0x01
 118#define C0_SETPM            0x04
 119#define C0_GETDM            0x02
 120#define C0_GETPM            0x08
 121/*
 122 * Change endianness indicator in the BD command field
 123 */
 124#define CHANGE_ENDIANNESS   0x80
 125
 126/*
 127 *  p_2_p watermark_level description
 128 *      Bits            Name                    Description
 129 *      0-7             Lower WML               Lower watermark level
 130 *      8               PS                      1: Pad Swallowing
 131 *                                              0: No Pad Swallowing
 132 *      9               PA                      1: Pad Adding
 133 *                                              0: No Pad Adding
 134 *      10              SPDIF                   If this bit is set both source
 135 *                                              and destination are on SPBA
 136 *      11              Source Bit(SP)          1: Source on SPBA
 137 *                                              0: Source on AIPS
 138 *      12              Destination Bit(DP)     1: Destination on SPBA
 139 *                                              0: Destination on AIPS
 140 *      13-15           ---------               MUST BE 0
 141 *      16-23           Higher WML              HWML
 142 *      24-27           N                       Total number of samples after
 143 *                                              which Pad adding/Swallowing
 144 *                                              must be done. It must be odd.
 145 *      28              Lower WML Event(LWE)    SDMA events reg to check for
 146 *                                              LWML event mask
 147 *                                              0: LWE in EVENTS register
 148 *                                              1: LWE in EVENTS2 register
 149 *      29              Higher WML Event(HWE)   SDMA events reg to check for
 150 *                                              HWML event mask
 151 *                                              0: HWE in EVENTS register
 152 *                                              1: HWE in EVENTS2 register
 153 *      30              ---------               MUST BE 0
 154 *      31              CONT                    1: Amount of samples to be
 155 *                                              transferred is unknown and
 156 *                                              script will keep on
 157 *                                              transferring samples as long as
 158 *                                              both events are detected and
 159 *                                              script must be manually stopped
 160 *                                              by the application
 161 *                                              0: The amount of samples to be
 162 *                                              transferred is equal to the
 163 *                                              count field of mode word
 164 */
 165#define SDMA_WATERMARK_LEVEL_LWML       0xFF
 166#define SDMA_WATERMARK_LEVEL_PS         BIT(8)
 167#define SDMA_WATERMARK_LEVEL_PA         BIT(9)
 168#define SDMA_WATERMARK_LEVEL_SPDIF      BIT(10)
 169#define SDMA_WATERMARK_LEVEL_SP         BIT(11)
 170#define SDMA_WATERMARK_LEVEL_DP         BIT(12)
 171#define SDMA_WATERMARK_LEVEL_HWML       (0xFF << 16)
 172#define SDMA_WATERMARK_LEVEL_LWE        BIT(28)
 173#define SDMA_WATERMARK_LEVEL_HWE        BIT(29)
 174#define SDMA_WATERMARK_LEVEL_CONT       BIT(31)
 175
 176#define SDMA_DMA_BUSWIDTHS      (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
 177                                 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
 178                                 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
 179
 180#define SDMA_DMA_DIRECTIONS     (BIT(DMA_DEV_TO_MEM) | \
 181                                 BIT(DMA_MEM_TO_DEV) | \
 182                                 BIT(DMA_DEV_TO_DEV))
 183
 184/*
 185 * Mode/Count of data node descriptors - IPCv2
 186 */
 187struct sdma_mode_count {
 188#define SDMA_BD_MAX_CNT 0xffff
 189        u32 count   : 16; /* size of the buffer pointed by this BD */
 190        u32 status  :  8; /* E,R,I,C,W,D status bits stored here */
 191        u32 command :  8; /* command mostly used for channel 0 */
 192};
 193
 194/*
 195 * Buffer descriptor
 196 */
 197struct sdma_buffer_descriptor {
 198        struct sdma_mode_count  mode;
 199        u32 buffer_addr;        /* address of the buffer described */
 200        u32 ext_buffer_addr;    /* extended buffer address */
 201} __attribute__ ((packed));
 202
 203/**
 204 * struct sdma_channel_control - Channel control Block
 205 *
 206 * @current_bd_ptr:     current buffer descriptor processed
 207 * @base_bd_ptr:        first element of buffer descriptor array
 208 * @unused:             padding. The SDMA engine expects an array of 128 byte
 209 *                      control blocks
 210 */
 211struct sdma_channel_control {
 212        u32 current_bd_ptr;
 213        u32 base_bd_ptr;
 214        u32 unused[2];
 215} __attribute__ ((packed));
 216
 217/**
 218 * struct sdma_state_registers - SDMA context for a channel
 219 *
 220 * @pc:         program counter
 221 * @unused1:    unused
 222 * @t:          test bit: status of arithmetic & test instruction
 223 * @rpc:        return program counter
 224 * @unused0:    unused
 225 * @sf:         source fault while loading data
 226 * @spc:        loop start program counter
 227 * @unused2:    unused
 228 * @df:         destination fault while storing data
 229 * @epc:        loop end program counter
 230 * @lm:         loop mode
 231 */
 232struct sdma_state_registers {
 233        u32 pc     :14;
 234        u32 unused1: 1;
 235        u32 t      : 1;
 236        u32 rpc    :14;
 237        u32 unused0: 1;
 238        u32 sf     : 1;
 239        u32 spc    :14;
 240        u32 unused2: 1;
 241        u32 df     : 1;
 242        u32 epc    :14;
 243        u32 lm     : 2;
 244} __attribute__ ((packed));
 245
 246/**
 247 * struct sdma_context_data - sdma context specific to a channel
 248 *
 249 * @channel_state:      channel state bits
 250 * @gReg:               general registers
 251 * @mda:                burst dma destination address register
 252 * @msa:                burst dma source address register
 253 * @ms:                 burst dma status register
 254 * @md:                 burst dma data register
 255 * @pda:                peripheral dma destination address register
 256 * @psa:                peripheral dma source address register
 257 * @ps:                 peripheral dma status register
 258 * @pd:                 peripheral dma data register
 259 * @ca:                 CRC polynomial register
 260 * @cs:                 CRC accumulator register
 261 * @dda:                dedicated core destination address register
 262 * @dsa:                dedicated core source address register
 263 * @ds:                 dedicated core status register
 264 * @dd:                 dedicated core data register
 265 * @scratch0:           1st word of dedicated ram for context switch
 266 * @scratch1:           2nd word of dedicated ram for context switch
 267 * @scratch2:           3rd word of dedicated ram for context switch
 268 * @scratch3:           4th word of dedicated ram for context switch
 269 * @scratch4:           5th word of dedicated ram for context switch
 270 * @scratch5:           6th word of dedicated ram for context switch
 271 * @scratch6:           7th word of dedicated ram for context switch
 272 * @scratch7:           8th word of dedicated ram for context switch
 273 */
 274struct sdma_context_data {
 275        struct sdma_state_registers  channel_state;
 276        u32  gReg[8];
 277        u32  mda;
 278        u32  msa;
 279        u32  ms;
 280        u32  md;
 281        u32  pda;
 282        u32  psa;
 283        u32  ps;
 284        u32  pd;
 285        u32  ca;
 286        u32  cs;
 287        u32  dda;
 288        u32  dsa;
 289        u32  ds;
 290        u32  dd;
 291        u32  scratch0;
 292        u32  scratch1;
 293        u32  scratch2;
 294        u32  scratch3;
 295        u32  scratch4;
 296        u32  scratch5;
 297        u32  scratch6;
 298        u32  scratch7;
 299} __attribute__ ((packed));
 300
 301
 302struct sdma_engine;
 303
 304/**
 305 * struct sdma_desc - descriptor structor for one transfer
 306 * @vd:                 descriptor for virt dma
 307 * @num_bd:             number of descriptors currently handling
 308 * @bd_phys:            physical address of bd
 309 * @buf_tail:           ID of the buffer that was processed
 310 * @buf_ptail:          ID of the previous buffer that was processed
 311 * @period_len:         period length, used in cyclic.
 312 * @chn_real_count:     the real count updated from bd->mode.count
 313 * @chn_count:          the transfer count set
 314 * @sdmac:              sdma_channel pointer
 315 * @bd:                 pointer of allocate bd
 316 */
 317struct sdma_desc {
 318        struct virt_dma_desc    vd;
 319        unsigned int            num_bd;
 320        dma_addr_t              bd_phys;
 321        unsigned int            buf_tail;
 322        unsigned int            buf_ptail;
 323        unsigned int            period_len;
 324        unsigned int            chn_real_count;
 325        unsigned int            chn_count;
 326        struct sdma_channel     *sdmac;
 327        struct sdma_buffer_descriptor *bd;
 328};
 329
 330/**
 331 * struct sdma_channel - housekeeping for a SDMA channel
 332 *
 333 * @vc:                 virt_dma base structure
 334 * @desc:               sdma description including vd and other special member
 335 * @sdma:               pointer to the SDMA engine for this channel
 336 * @channel:            the channel number, matches dmaengine chan_id + 1
 337 * @direction:          transfer type. Needed for setting SDMA script
 338 * @slave_config        Slave configuration
 339 * @peripheral_type:    Peripheral type. Needed for setting SDMA script
 340 * @event_id0:          aka dma request line
 341 * @event_id1:          for channels that use 2 events
 342 * @word_size:          peripheral access size
 343 * @pc_from_device:     script address for those device_2_memory
 344 * @pc_to_device:       script address for those memory_2_device
 345 * @device_to_device:   script address for those device_2_device
 346 * @pc_to_pc:           script address for those memory_2_memory
 347 * @flags:              loop mode or not
 348 * @per_address:        peripheral source or destination address in common case
 349 *                      destination address in p_2_p case
 350 * @per_address2:       peripheral source address in p_2_p case
 351 * @event_mask:         event mask used in p_2_p script
 352 * @watermark_level:    value for gReg[7], some script will extend it from
 353 *                      basic watermark such as p_2_p
 354 * @shp_addr:           value for gReg[6]
 355 * @per_addr:           value for gReg[2]
 356 * @status:             status of dma channel
 357 * @data:               specific sdma interface structure
 358 * @bd_pool:            dma_pool for bd
 359 */
 360struct sdma_channel {
 361        struct virt_dma_chan            vc;
 362        struct sdma_desc                *desc;
 363        struct sdma_engine              *sdma;
 364        unsigned int                    channel;
 365        enum dma_transfer_direction             direction;
 366        struct dma_slave_config         slave_config;
 367        enum sdma_peripheral_type       peripheral_type;
 368        unsigned int                    event_id0;
 369        unsigned int                    event_id1;
 370        enum dma_slave_buswidth         word_size;
 371        unsigned int                    pc_from_device, pc_to_device;
 372        unsigned int                    device_to_device;
 373        unsigned int                    pc_to_pc;
 374        unsigned long                   flags;
 375        dma_addr_t                      per_address, per_address2;
 376        unsigned long                   event_mask[2];
 377        unsigned long                   watermark_level;
 378        u32                             shp_addr, per_addr;
 379        enum dma_status                 status;
 380        struct imx_dma_data             data;
 381        struct work_struct              terminate_worker;
 382};
 383
 384#define IMX_DMA_SG_LOOP         BIT(0)
 385
 386#define MAX_DMA_CHANNELS 32
 387#define MXC_SDMA_DEFAULT_PRIORITY 1
 388#define MXC_SDMA_MIN_PRIORITY 1
 389#define MXC_SDMA_MAX_PRIORITY 7
 390
 391#define SDMA_FIRMWARE_MAGIC 0x414d4453
 392
 393/**
 394 * struct sdma_firmware_header - Layout of the firmware image
 395 *
 396 * @magic:              "SDMA"
 397 * @version_major:      increased whenever layout of struct
 398 *                      sdma_script_start_addrs changes.
 399 * @version_minor:      firmware minor version (for binary compatible changes)
 400 * @script_addrs_start: offset of struct sdma_script_start_addrs in this image
 401 * @num_script_addrs:   Number of script addresses in this image
 402 * @ram_code_start:     offset of SDMA ram image in this firmware image
 403 * @ram_code_size:      size of SDMA ram image
 404 * @script_addrs:       Stores the start address of the SDMA scripts
 405 *                      (in SDMA memory space)
 406 */
 407struct sdma_firmware_header {
 408        u32     magic;
 409        u32     version_major;
 410        u32     version_minor;
 411        u32     script_addrs_start;
 412        u32     num_script_addrs;
 413        u32     ram_code_start;
 414        u32     ram_code_size;
 415};
 416
 417struct sdma_driver_data {
 418        int chnenbl0;
 419        int num_events;
 420        struct sdma_script_start_addrs  *script_addrs;
 421};
 422
 423struct sdma_engine {
 424        struct device                   *dev;
 425        struct device_dma_parameters    dma_parms;
 426        struct sdma_channel             channel[MAX_DMA_CHANNELS];
 427        struct sdma_channel_control     *channel_control;
 428        void __iomem                    *regs;
 429        struct sdma_context_data        *context;
 430        dma_addr_t                      context_phys;
 431        struct dma_device               dma_device;
 432        struct clk                      *clk_ipg;
 433        struct clk                      *clk_ahb;
 434        spinlock_t                      channel_0_lock;
 435        u32                             script_number;
 436        struct sdma_script_start_addrs  *script_addrs;
 437        const struct sdma_driver_data   *drvdata;
 438        u32                             spba_start_addr;
 439        u32                             spba_end_addr;
 440        unsigned int                    irq;
 441        dma_addr_t                      bd0_phys;
 442        struct sdma_buffer_descriptor   *bd0;
 443};
 444
 445static int sdma_config_write(struct dma_chan *chan,
 446                       struct dma_slave_config *dmaengine_cfg,
 447                       enum dma_transfer_direction direction);
 448
 449static struct sdma_driver_data sdma_imx31 = {
 450        .chnenbl0 = SDMA_CHNENBL0_IMX31,
 451        .num_events = 32,
 452};
 453
 454static struct sdma_script_start_addrs sdma_script_imx25 = {
 455        .ap_2_ap_addr = 729,
 456        .uart_2_mcu_addr = 904,
 457        .per_2_app_addr = 1255,
 458        .mcu_2_app_addr = 834,
 459        .uartsh_2_mcu_addr = 1120,
 460        .per_2_shp_addr = 1329,
 461        .mcu_2_shp_addr = 1048,
 462        .ata_2_mcu_addr = 1560,
 463        .mcu_2_ata_addr = 1479,
 464        .app_2_per_addr = 1189,
 465        .app_2_mcu_addr = 770,
 466        .shp_2_per_addr = 1407,
 467        .shp_2_mcu_addr = 979,
 468};
 469
 470static struct sdma_driver_data sdma_imx25 = {
 471        .chnenbl0 = SDMA_CHNENBL0_IMX35,
 472        .num_events = 48,
 473        .script_addrs = &sdma_script_imx25,
 474};
 475
 476static struct sdma_driver_data sdma_imx35 = {
 477        .chnenbl0 = SDMA_CHNENBL0_IMX35,
 478        .num_events = 48,
 479};
 480
 481static struct sdma_script_start_addrs sdma_script_imx51 = {
 482        .ap_2_ap_addr = 642,
 483        .uart_2_mcu_addr = 817,
 484        .mcu_2_app_addr = 747,
 485        .mcu_2_shp_addr = 961,
 486        .ata_2_mcu_addr = 1473,
 487        .mcu_2_ata_addr = 1392,
 488        .app_2_per_addr = 1033,
 489        .app_2_mcu_addr = 683,
 490        .shp_2_per_addr = 1251,
 491        .shp_2_mcu_addr = 892,
 492};
 493
 494static struct sdma_driver_data sdma_imx51 = {
 495        .chnenbl0 = SDMA_CHNENBL0_IMX35,
 496        .num_events = 48,
 497        .script_addrs = &sdma_script_imx51,
 498};
 499
 500static struct sdma_script_start_addrs sdma_script_imx53 = {
 501        .ap_2_ap_addr = 642,
 502        .app_2_mcu_addr = 683,
 503        .mcu_2_app_addr = 747,
 504        .uart_2_mcu_addr = 817,
 505        .shp_2_mcu_addr = 891,
 506        .mcu_2_shp_addr = 960,
 507        .uartsh_2_mcu_addr = 1032,
 508        .spdif_2_mcu_addr = 1100,
 509        .mcu_2_spdif_addr = 1134,
 510        .firi_2_mcu_addr = 1193,
 511        .mcu_2_firi_addr = 1290,
 512};
 513
 514static struct sdma_driver_data sdma_imx53 = {
 515        .chnenbl0 = SDMA_CHNENBL0_IMX35,
 516        .num_events = 48,
 517        .script_addrs = &sdma_script_imx53,
 518};
 519
 520static struct sdma_script_start_addrs sdma_script_imx6q = {
 521        .ap_2_ap_addr = 642,
 522        .uart_2_mcu_addr = 817,
 523        .mcu_2_app_addr = 747,
 524        .per_2_per_addr = 6331,
 525        .uartsh_2_mcu_addr = 1032,
 526        .mcu_2_shp_addr = 960,
 527        .app_2_mcu_addr = 683,
 528        .shp_2_mcu_addr = 891,
 529        .spdif_2_mcu_addr = 1100,
 530        .mcu_2_spdif_addr = 1134,
 531};
 532
 533static struct sdma_driver_data sdma_imx6q = {
 534        .chnenbl0 = SDMA_CHNENBL0_IMX35,
 535        .num_events = 48,
 536        .script_addrs = &sdma_script_imx6q,
 537};
 538
 539static struct sdma_script_start_addrs sdma_script_imx7d = {
 540        .ap_2_ap_addr = 644,
 541        .uart_2_mcu_addr = 819,
 542        .mcu_2_app_addr = 749,
 543        .uartsh_2_mcu_addr = 1034,
 544        .mcu_2_shp_addr = 962,
 545        .app_2_mcu_addr = 685,
 546        .shp_2_mcu_addr = 893,
 547        .spdif_2_mcu_addr = 1102,
 548        .mcu_2_spdif_addr = 1136,
 549};
 550
 551static struct sdma_driver_data sdma_imx7d = {
 552        .chnenbl0 = SDMA_CHNENBL0_IMX35,
 553        .num_events = 48,
 554        .script_addrs = &sdma_script_imx7d,
 555};
 556
 557static const struct platform_device_id sdma_devtypes[] = {
 558        {
 559                .name = "imx25-sdma",
 560                .driver_data = (unsigned long)&sdma_imx25,
 561        }, {
 562                .name = "imx31-sdma",
 563                .driver_data = (unsigned long)&sdma_imx31,
 564        }, {
 565                .name = "imx35-sdma",
 566                .driver_data = (unsigned long)&sdma_imx35,
 567        }, {
 568                .name = "imx51-sdma",
 569                .driver_data = (unsigned long)&sdma_imx51,
 570        }, {
 571                .name = "imx53-sdma",
 572                .driver_data = (unsigned long)&sdma_imx53,
 573        }, {
 574                .name = "imx6q-sdma",
 575                .driver_data = (unsigned long)&sdma_imx6q,
 576        }, {
 577                .name = "imx7d-sdma",
 578                .driver_data = (unsigned long)&sdma_imx7d,
 579        }, {
 580                /* sentinel */
 581        }
 582};
 583MODULE_DEVICE_TABLE(platform, sdma_devtypes);
 584
 585static const struct of_device_id sdma_dt_ids[] = {
 586        { .compatible = "fsl,imx6q-sdma", .data = &sdma_imx6q, },
 587        { .compatible = "fsl,imx53-sdma", .data = &sdma_imx53, },
 588        { .compatible = "fsl,imx51-sdma", .data = &sdma_imx51, },
 589        { .compatible = "fsl,imx35-sdma", .data = &sdma_imx35, },
 590        { .compatible = "fsl,imx31-sdma", .data = &sdma_imx31, },
 591        { .compatible = "fsl,imx25-sdma", .data = &sdma_imx25, },
 592        { .compatible = "fsl,imx7d-sdma", .data = &sdma_imx7d, },
 593        { /* sentinel */ }
 594};
 595MODULE_DEVICE_TABLE(of, sdma_dt_ids);
 596
 597#define SDMA_H_CONFIG_DSPDMA    BIT(12) /* indicates if the DSPDMA is used */
 598#define SDMA_H_CONFIG_RTD_PINS  BIT(11) /* indicates if Real-Time Debug pins are enabled */
 599#define SDMA_H_CONFIG_ACR       BIT(4)  /* indicates if AHB freq /core freq = 2 or 1 */
 600#define SDMA_H_CONFIG_CSM       (3)       /* indicates which context switch mode is selected*/
 601
 602static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
 603{
 604        u32 chnenbl0 = sdma->drvdata->chnenbl0;
 605        return chnenbl0 + event * 4;
 606}
 607
 608static int sdma_config_ownership(struct sdma_channel *sdmac,
 609                bool event_override, bool mcu_override, bool dsp_override)
 610{
 611        struct sdma_engine *sdma = sdmac->sdma;
 612        int channel = sdmac->channel;
 613        unsigned long evt, mcu, dsp;
 614
 615        if (event_override && mcu_override && dsp_override)
 616                return -EINVAL;
 617
 618        evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
 619        mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
 620        dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
 621
 622        if (dsp_override)
 623                __clear_bit(channel, &dsp);
 624        else
 625                __set_bit(channel, &dsp);
 626
 627        if (event_override)
 628                __clear_bit(channel, &evt);
 629        else
 630                __set_bit(channel, &evt);
 631
 632        if (mcu_override)
 633                __clear_bit(channel, &mcu);
 634        else
 635                __set_bit(channel, &mcu);
 636
 637        writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
 638        writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
 639        writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
 640
 641        return 0;
 642}
 643
 644static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
 645{
 646        writel(BIT(channel), sdma->regs + SDMA_H_START);
 647}
 648
 649/*
 650 * sdma_run_channel0 - run a channel and wait till it's done
 651 */
 652static int sdma_run_channel0(struct sdma_engine *sdma)
 653{
 654        int ret;
 655        u32 reg;
 656
 657        sdma_enable_channel(sdma, 0);
 658
 659        ret = readl_relaxed_poll_timeout_atomic(sdma->regs + SDMA_H_STATSTOP,
 660                                                reg, !(reg & 1), 1, 500);
 661        if (ret)
 662                dev_err(sdma->dev, "Timeout waiting for CH0 ready\n");
 663
 664        /* Set bits of CONFIG register with dynamic context switching */
 665        if (readl(sdma->regs + SDMA_H_CONFIG) == 0)
 666                writel_relaxed(SDMA_H_CONFIG_CSM, sdma->regs + SDMA_H_CONFIG);
 667
 668        return ret;
 669}
 670
 671static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
 672                u32 address)
 673{
 674        struct sdma_buffer_descriptor *bd0 = sdma->bd0;
 675        void *buf_virt;
 676        dma_addr_t buf_phys;
 677        int ret;
 678        unsigned long flags;
 679
 680        buf_virt = dma_alloc_coherent(NULL, size, &buf_phys, GFP_KERNEL);
 681        if (!buf_virt) {
 682                return -ENOMEM;
 683        }
 684
 685        spin_lock_irqsave(&sdma->channel_0_lock, flags);
 686
 687        bd0->mode.command = C0_SETPM;
 688        bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
 689        bd0->mode.count = size / 2;
 690        bd0->buffer_addr = buf_phys;
 691        bd0->ext_buffer_addr = address;
 692
 693        memcpy(buf_virt, buf, size);
 694
 695        ret = sdma_run_channel0(sdma);
 696
 697        spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
 698
 699        dma_free_coherent(NULL, size, buf_virt, buf_phys);
 700
 701        return ret;
 702}
 703
 704static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
 705{
 706        struct sdma_engine *sdma = sdmac->sdma;
 707        int channel = sdmac->channel;
 708        unsigned long val;
 709        u32 chnenbl = chnenbl_ofs(sdma, event);
 710
 711        val = readl_relaxed(sdma->regs + chnenbl);
 712        __set_bit(channel, &val);
 713        writel_relaxed(val, sdma->regs + chnenbl);
 714}
 715
 716static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
 717{
 718        struct sdma_engine *sdma = sdmac->sdma;
 719        int channel = sdmac->channel;
 720        u32 chnenbl = chnenbl_ofs(sdma, event);
 721        unsigned long val;
 722
 723        val = readl_relaxed(sdma->regs + chnenbl);
 724        __clear_bit(channel, &val);
 725        writel_relaxed(val, sdma->regs + chnenbl);
 726}
 727
 728static struct sdma_desc *to_sdma_desc(struct dma_async_tx_descriptor *t)
 729{
 730        return container_of(t, struct sdma_desc, vd.tx);
 731}
 732
 733static void sdma_start_desc(struct sdma_channel *sdmac)
 734{
 735        struct virt_dma_desc *vd = vchan_next_desc(&sdmac->vc);
 736        struct sdma_desc *desc;
 737        struct sdma_engine *sdma = sdmac->sdma;
 738        int channel = sdmac->channel;
 739
 740        if (!vd) {
 741                sdmac->desc = NULL;
 742                return;
 743        }
 744        sdmac->desc = desc = to_sdma_desc(&vd->tx);
 745        /*
 746         * Do not delete the node in desc_issued list in cyclic mode, otherwise
 747         * the desc allocated will never be freed in vchan_dma_desc_free_list
 748         */
 749        if (!(sdmac->flags & IMX_DMA_SG_LOOP))
 750                list_del(&vd->node);
 751
 752        sdma->channel_control[channel].base_bd_ptr = desc->bd_phys;
 753        sdma->channel_control[channel].current_bd_ptr = desc->bd_phys;
 754        sdma_enable_channel(sdma, sdmac->channel);
 755}
 756
 757static void sdma_update_channel_loop(struct sdma_channel *sdmac)
 758{
 759        struct sdma_buffer_descriptor *bd;
 760        int error = 0;
 761        enum dma_status old_status = sdmac->status;
 762
 763        /*
 764         * loop mode. Iterate over descriptors, re-setup them and
 765         * call callback function.
 766         */
 767        while (sdmac->desc) {
 768                struct sdma_desc *desc = sdmac->desc;
 769
 770                bd = &desc->bd[desc->buf_tail];
 771
 772                if (bd->mode.status & BD_DONE)
 773                        break;
 774
 775                if (bd->mode.status & BD_RROR) {
 776                        bd->mode.status &= ~BD_RROR;
 777                        sdmac->status = DMA_ERROR;
 778                        error = -EIO;
 779                }
 780
 781               /*
 782                * We use bd->mode.count to calculate the residue, since contains
 783                * the number of bytes present in the current buffer descriptor.
 784                */
 785
 786                desc->chn_real_count = bd->mode.count;
 787                bd->mode.status |= BD_DONE;
 788                bd->mode.count = desc->period_len;
 789                desc->buf_ptail = desc->buf_tail;
 790                desc->buf_tail = (desc->buf_tail + 1) % desc->num_bd;
 791
 792                /*
 793                 * The callback is called from the interrupt context in order
 794                 * to reduce latency and to avoid the risk of altering the
 795                 * SDMA transaction status by the time the client tasklet is
 796                 * executed.
 797                 */
 798                spin_unlock(&sdmac->vc.lock);
 799                dmaengine_desc_get_callback_invoke(&desc->vd.tx, NULL);
 800                spin_lock(&sdmac->vc.lock);
 801
 802                if (error)
 803                        sdmac->status = old_status;
 804        }
 805}
 806
 807static void mxc_sdma_handle_channel_normal(struct sdma_channel *data)
 808{
 809        struct sdma_channel *sdmac = (struct sdma_channel *) data;
 810        struct sdma_buffer_descriptor *bd;
 811        int i, error = 0;
 812
 813        sdmac->desc->chn_real_count = 0;
 814        /*
 815         * non loop mode. Iterate over all descriptors, collect
 816         * errors and call callback function
 817         */
 818        for (i = 0; i < sdmac->desc->num_bd; i++) {
 819                bd = &sdmac->desc->bd[i];
 820
 821                 if (bd->mode.status & (BD_DONE | BD_RROR))
 822                        error = -EIO;
 823                 sdmac->desc->chn_real_count += bd->mode.count;
 824        }
 825
 826        if (error)
 827                sdmac->status = DMA_ERROR;
 828        else
 829                sdmac->status = DMA_COMPLETE;
 830}
 831
 832static irqreturn_t sdma_int_handler(int irq, void *dev_id)
 833{
 834        struct sdma_engine *sdma = dev_id;
 835        unsigned long stat;
 836
 837        stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
 838        writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
 839        /* channel 0 is special and not handled here, see run_channel0() */
 840        stat &= ~1;
 841
 842        while (stat) {
 843                int channel = fls(stat) - 1;
 844                struct sdma_channel *sdmac = &sdma->channel[channel];
 845                struct sdma_desc *desc;
 846
 847                spin_lock(&sdmac->vc.lock);
 848                desc = sdmac->desc;
 849                if (desc) {
 850                        if (sdmac->flags & IMX_DMA_SG_LOOP) {
 851                                sdma_update_channel_loop(sdmac);
 852                        } else {
 853                                mxc_sdma_handle_channel_normal(sdmac);
 854                                vchan_cookie_complete(&desc->vd);
 855                                sdma_start_desc(sdmac);
 856                        }
 857                }
 858
 859                spin_unlock(&sdmac->vc.lock);
 860                __clear_bit(channel, &stat);
 861        }
 862
 863        return IRQ_HANDLED;
 864}
 865
 866/*
 867 * sets the pc of SDMA script according to the peripheral type
 868 */
 869static void sdma_get_pc(struct sdma_channel *sdmac,
 870                enum sdma_peripheral_type peripheral_type)
 871{
 872        struct sdma_engine *sdma = sdmac->sdma;
 873        int per_2_emi = 0, emi_2_per = 0;
 874        /*
 875         * These are needed once we start to support transfers between
 876         * two peripherals or memory-to-memory transfers
 877         */
 878        int per_2_per = 0, emi_2_emi = 0;
 879
 880        sdmac->pc_from_device = 0;
 881        sdmac->pc_to_device = 0;
 882        sdmac->device_to_device = 0;
 883        sdmac->pc_to_pc = 0;
 884
 885        switch (peripheral_type) {
 886        case IMX_DMATYPE_MEMORY:
 887                emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
 888                break;
 889        case IMX_DMATYPE_DSP:
 890                emi_2_per = sdma->script_addrs->bp_2_ap_addr;
 891                per_2_emi = sdma->script_addrs->ap_2_bp_addr;
 892                break;
 893        case IMX_DMATYPE_FIRI:
 894                per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
 895                emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
 896                break;
 897        case IMX_DMATYPE_UART:
 898                per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
 899                emi_2_per = sdma->script_addrs->mcu_2_app_addr;
 900                break;
 901        case IMX_DMATYPE_UART_SP:
 902                per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
 903                emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
 904                break;
 905        case IMX_DMATYPE_ATA:
 906                per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
 907                emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
 908                break;
 909        case IMX_DMATYPE_CSPI:
 910        case IMX_DMATYPE_EXT:
 911        case IMX_DMATYPE_SSI:
 912        case IMX_DMATYPE_SAI:
 913                per_2_emi = sdma->script_addrs->app_2_mcu_addr;
 914                emi_2_per = sdma->script_addrs->mcu_2_app_addr;
 915                break;
 916        case IMX_DMATYPE_SSI_DUAL:
 917                per_2_emi = sdma->script_addrs->ssish_2_mcu_addr;
 918                emi_2_per = sdma->script_addrs->mcu_2_ssish_addr;
 919                break;
 920        case IMX_DMATYPE_SSI_SP:
 921        case IMX_DMATYPE_MMC:
 922        case IMX_DMATYPE_SDHC:
 923        case IMX_DMATYPE_CSPI_SP:
 924        case IMX_DMATYPE_ESAI:
 925        case IMX_DMATYPE_MSHC_SP:
 926                per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
 927                emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
 928                break;
 929        case IMX_DMATYPE_ASRC:
 930                per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
 931                emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
 932                per_2_per = sdma->script_addrs->per_2_per_addr;
 933                break;
 934        case IMX_DMATYPE_ASRC_SP:
 935                per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
 936                emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
 937                per_2_per = sdma->script_addrs->per_2_per_addr;
 938                break;
 939        case IMX_DMATYPE_MSHC:
 940                per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
 941                emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
 942                break;
 943        case IMX_DMATYPE_CCM:
 944                per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
 945                break;
 946        case IMX_DMATYPE_SPDIF:
 947                per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
 948                emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
 949                break;
 950        case IMX_DMATYPE_IPU_MEMORY:
 951                emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
 952                break;
 953        default:
 954                break;
 955        }
 956
 957        sdmac->pc_from_device = per_2_emi;
 958        sdmac->pc_to_device = emi_2_per;
 959        sdmac->device_to_device = per_2_per;
 960        sdmac->pc_to_pc = emi_2_emi;
 961}
 962
 963static int sdma_load_context(struct sdma_channel *sdmac)
 964{
 965        struct sdma_engine *sdma = sdmac->sdma;
 966        int channel = sdmac->channel;
 967        int load_address;
 968        struct sdma_context_data *context = sdma->context;
 969        struct sdma_buffer_descriptor *bd0 = sdma->bd0;
 970        int ret;
 971        unsigned long flags;
 972
 973        if (sdmac->direction == DMA_DEV_TO_MEM)
 974                load_address = sdmac->pc_from_device;
 975        else if (sdmac->direction == DMA_DEV_TO_DEV)
 976                load_address = sdmac->device_to_device;
 977        else if (sdmac->direction == DMA_MEM_TO_MEM)
 978                load_address = sdmac->pc_to_pc;
 979        else
 980                load_address = sdmac->pc_to_device;
 981
 982        if (load_address < 0)
 983                return load_address;
 984
 985        dev_dbg(sdma->dev, "load_address = %d\n", load_address);
 986        dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
 987        dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
 988        dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
 989        dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
 990        dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
 991
 992        spin_lock_irqsave(&sdma->channel_0_lock, flags);
 993
 994        memset(context, 0, sizeof(*context));
 995        context->channel_state.pc = load_address;
 996
 997        /* Send by context the event mask,base address for peripheral
 998         * and watermark level
 999         */
1000        context->gReg[0] = sdmac->event_mask[1];
1001        context->gReg[1] = sdmac->event_mask[0];
1002        context->gReg[2] = sdmac->per_addr;
1003        context->gReg[6] = sdmac->shp_addr;
1004        context->gReg[7] = sdmac->watermark_level;
1005
1006        bd0->mode.command = C0_SETDM;
1007        bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
1008        bd0->mode.count = sizeof(*context) / 4;
1009        bd0->buffer_addr = sdma->context_phys;
1010        bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
1011        ret = sdma_run_channel0(sdma);
1012
1013        spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
1014
1015        return ret;
1016}
1017
1018static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
1019{
1020        return container_of(chan, struct sdma_channel, vc.chan);
1021}
1022
1023static int sdma_disable_channel(struct dma_chan *chan)
1024{
1025        struct sdma_channel *sdmac = to_sdma_chan(chan);
1026        struct sdma_engine *sdma = sdmac->sdma;
1027        int channel = sdmac->channel;
1028
1029        writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
1030        sdmac->status = DMA_ERROR;
1031
1032        return 0;
1033}
1034static void sdma_channel_terminate_work(struct work_struct *work)
1035{
1036        struct sdma_channel *sdmac = container_of(work, struct sdma_channel,
1037                                                  terminate_worker);
1038        unsigned long flags;
1039        LIST_HEAD(head);
1040
1041        /*
1042         * According to NXP R&D team a delay of one BD SDMA cost time
1043         * (maximum is 1ms) should be added after disable of the channel
1044         * bit, to ensure SDMA core has really been stopped after SDMA
1045         * clients call .device_terminate_all.
1046         */
1047        usleep_range(1000, 2000);
1048
1049        spin_lock_irqsave(&sdmac->vc.lock, flags);
1050        vchan_get_all_descriptors(&sdmac->vc, &head);
1051        sdmac->desc = NULL;
1052        spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1053        vchan_dma_desc_free_list(&sdmac->vc, &head);
1054}
1055
1056static int sdma_disable_channel_async(struct dma_chan *chan)
1057{
1058        struct sdma_channel *sdmac = to_sdma_chan(chan);
1059
1060        sdma_disable_channel(chan);
1061
1062        if (sdmac->desc)
1063                schedule_work(&sdmac->terminate_worker);
1064
1065        return 0;
1066}
1067
1068static void sdma_channel_synchronize(struct dma_chan *chan)
1069{
1070        struct sdma_channel *sdmac = to_sdma_chan(chan);
1071
1072        vchan_synchronize(&sdmac->vc);
1073
1074        flush_work(&sdmac->terminate_worker);
1075}
1076
1077static void sdma_set_watermarklevel_for_p2p(struct sdma_channel *sdmac)
1078{
1079        struct sdma_engine *sdma = sdmac->sdma;
1080
1081        int lwml = sdmac->watermark_level & SDMA_WATERMARK_LEVEL_LWML;
1082        int hwml = (sdmac->watermark_level & SDMA_WATERMARK_LEVEL_HWML) >> 16;
1083
1084        set_bit(sdmac->event_id0 % 32, &sdmac->event_mask[1]);
1085        set_bit(sdmac->event_id1 % 32, &sdmac->event_mask[0]);
1086
1087        if (sdmac->event_id0 > 31)
1088                sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_LWE;
1089
1090        if (sdmac->event_id1 > 31)
1091                sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_HWE;
1092
1093        /*
1094         * If LWML(src_maxburst) > HWML(dst_maxburst), we need
1095         * swap LWML and HWML of INFO(A.3.2.5.1), also need swap
1096         * r0(event_mask[1]) and r1(event_mask[0]).
1097         */
1098        if (lwml > hwml) {
1099                sdmac->watermark_level &= ~(SDMA_WATERMARK_LEVEL_LWML |
1100                                                SDMA_WATERMARK_LEVEL_HWML);
1101                sdmac->watermark_level |= hwml;
1102                sdmac->watermark_level |= lwml << 16;
1103                swap(sdmac->event_mask[0], sdmac->event_mask[1]);
1104        }
1105
1106        if (sdmac->per_address2 >= sdma->spba_start_addr &&
1107                        sdmac->per_address2 <= sdma->spba_end_addr)
1108                sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SP;
1109
1110        if (sdmac->per_address >= sdma->spba_start_addr &&
1111                        sdmac->per_address <= sdma->spba_end_addr)
1112                sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_DP;
1113
1114        sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_CONT;
1115}
1116
1117static int sdma_config_channel(struct dma_chan *chan)
1118{
1119        struct sdma_channel *sdmac = to_sdma_chan(chan);
1120        int ret;
1121
1122        sdma_disable_channel(chan);
1123
1124        sdmac->event_mask[0] = 0;
1125        sdmac->event_mask[1] = 0;
1126        sdmac->shp_addr = 0;
1127        sdmac->per_addr = 0;
1128
1129        switch (sdmac->peripheral_type) {
1130        case IMX_DMATYPE_DSP:
1131                sdma_config_ownership(sdmac, false, true, true);
1132                break;
1133        case IMX_DMATYPE_MEMORY:
1134                sdma_config_ownership(sdmac, false, true, false);
1135                break;
1136        default:
1137                sdma_config_ownership(sdmac, true, true, false);
1138                break;
1139        }
1140
1141        sdma_get_pc(sdmac, sdmac->peripheral_type);
1142
1143        if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
1144                        (sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
1145                /* Handle multiple event channels differently */
1146                if (sdmac->event_id1) {
1147                        if (sdmac->peripheral_type == IMX_DMATYPE_ASRC_SP ||
1148                            sdmac->peripheral_type == IMX_DMATYPE_ASRC)
1149                                sdma_set_watermarklevel_for_p2p(sdmac);
1150                } else
1151                        __set_bit(sdmac->event_id0, sdmac->event_mask);
1152
1153                /* Address */
1154                sdmac->shp_addr = sdmac->per_address;
1155                sdmac->per_addr = sdmac->per_address2;
1156        } else {
1157                sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
1158        }
1159
1160        ret = sdma_load_context(sdmac);
1161
1162        return ret;
1163}
1164
1165static int sdma_set_channel_priority(struct sdma_channel *sdmac,
1166                unsigned int priority)
1167{
1168        struct sdma_engine *sdma = sdmac->sdma;
1169        int channel = sdmac->channel;
1170
1171        if (priority < MXC_SDMA_MIN_PRIORITY
1172            || priority > MXC_SDMA_MAX_PRIORITY) {
1173                return -EINVAL;
1174        }
1175
1176        writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
1177
1178        return 0;
1179}
1180
1181static int sdma_request_channel0(struct sdma_engine *sdma)
1182{
1183        int ret = -EBUSY;
1184
1185        sdma->bd0 = dma_alloc_coherent(NULL, PAGE_SIZE, &sdma->bd0_phys,
1186                                       GFP_NOWAIT);
1187        if (!sdma->bd0) {
1188                ret = -ENOMEM;
1189                goto out;
1190        }
1191
1192        sdma->channel_control[0].base_bd_ptr = sdma->bd0_phys;
1193        sdma->channel_control[0].current_bd_ptr = sdma->bd0_phys;
1194
1195        sdma_set_channel_priority(&sdma->channel[0], MXC_SDMA_DEFAULT_PRIORITY);
1196        return 0;
1197out:
1198
1199        return ret;
1200}
1201
1202
1203static int sdma_alloc_bd(struct sdma_desc *desc)
1204{
1205        u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor);
1206        int ret = 0;
1207
1208        desc->bd = dma_alloc_coherent(NULL, bd_size, &desc->bd_phys,
1209                                      GFP_NOWAIT);
1210        if (!desc->bd) {
1211                ret = -ENOMEM;
1212                goto out;
1213        }
1214out:
1215        return ret;
1216}
1217
1218static void sdma_free_bd(struct sdma_desc *desc)
1219{
1220        u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor);
1221
1222        dma_free_coherent(NULL, bd_size, desc->bd, desc->bd_phys);
1223}
1224
1225static void sdma_desc_free(struct virt_dma_desc *vd)
1226{
1227        struct sdma_desc *desc = container_of(vd, struct sdma_desc, vd);
1228
1229        sdma_free_bd(desc);
1230        kfree(desc);
1231}
1232
1233static int sdma_alloc_chan_resources(struct dma_chan *chan)
1234{
1235        struct sdma_channel *sdmac = to_sdma_chan(chan);
1236        struct imx_dma_data *data = chan->private;
1237        struct imx_dma_data mem_data;
1238        int prio, ret;
1239
1240        /*
1241         * MEMCPY may never setup chan->private by filter function such as
1242         * dmatest, thus create 'struct imx_dma_data mem_data' for this case.
1243         * Please note in any other slave case, you have to setup chan->private
1244         * with 'struct imx_dma_data' in your own filter function if you want to
1245         * request dma channel by dma_request_channel() rather than
1246         * dma_request_slave_channel(). Othwise, 'MEMCPY in case?' will appear
1247         * to warn you to correct your filter function.
1248         */
1249        if (!data) {
1250                dev_dbg(sdmac->sdma->dev, "MEMCPY in case?\n");
1251                mem_data.priority = 2;
1252                mem_data.peripheral_type = IMX_DMATYPE_MEMORY;
1253                mem_data.dma_request = 0;
1254                mem_data.dma_request2 = 0;
1255                data = &mem_data;
1256
1257                sdma_get_pc(sdmac, IMX_DMATYPE_MEMORY);
1258        }
1259
1260        switch (data->priority) {
1261        case DMA_PRIO_HIGH:
1262                prio = 3;
1263                break;
1264        case DMA_PRIO_MEDIUM:
1265                prio = 2;
1266                break;
1267        case DMA_PRIO_LOW:
1268        default:
1269                prio = 1;
1270                break;
1271        }
1272
1273        sdmac->peripheral_type = data->peripheral_type;
1274        sdmac->event_id0 = data->dma_request;
1275        sdmac->event_id1 = data->dma_request2;
1276
1277        ret = clk_enable(sdmac->sdma->clk_ipg);
1278        if (ret)
1279                return ret;
1280        ret = clk_enable(sdmac->sdma->clk_ahb);
1281        if (ret)
1282                goto disable_clk_ipg;
1283
1284        ret = sdma_set_channel_priority(sdmac, prio);
1285        if (ret)
1286                goto disable_clk_ahb;
1287
1288        return 0;
1289
1290disable_clk_ahb:
1291        clk_disable(sdmac->sdma->clk_ahb);
1292disable_clk_ipg:
1293        clk_disable(sdmac->sdma->clk_ipg);
1294        return ret;
1295}
1296
1297static void sdma_free_chan_resources(struct dma_chan *chan)
1298{
1299        struct sdma_channel *sdmac = to_sdma_chan(chan);
1300        struct sdma_engine *sdma = sdmac->sdma;
1301
1302        sdma_disable_channel_async(chan);
1303
1304        sdma_channel_synchronize(chan);
1305
1306        if (sdmac->event_id0)
1307                sdma_event_disable(sdmac, sdmac->event_id0);
1308        if (sdmac->event_id1)
1309                sdma_event_disable(sdmac, sdmac->event_id1);
1310
1311        sdmac->event_id0 = 0;
1312        sdmac->event_id1 = 0;
1313
1314        sdma_set_channel_priority(sdmac, 0);
1315
1316        clk_disable(sdma->clk_ipg);
1317        clk_disable(sdma->clk_ahb);
1318}
1319
1320static struct sdma_desc *sdma_transfer_init(struct sdma_channel *sdmac,
1321                                enum dma_transfer_direction direction, u32 bds)
1322{
1323        struct sdma_desc *desc;
1324
1325        desc = kzalloc((sizeof(*desc)), GFP_NOWAIT);
1326        if (!desc)
1327                goto err_out;
1328
1329        sdmac->status = DMA_IN_PROGRESS;
1330        sdmac->direction = direction;
1331        sdmac->flags = 0;
1332
1333        desc->chn_count = 0;
1334        desc->chn_real_count = 0;
1335        desc->buf_tail = 0;
1336        desc->buf_ptail = 0;
1337        desc->sdmac = sdmac;
1338        desc->num_bd = bds;
1339
1340        if (sdma_alloc_bd(desc))
1341                goto err_desc_out;
1342
1343        /* No slave_config called in MEMCPY case, so do here */
1344        if (direction == DMA_MEM_TO_MEM)
1345                sdma_config_ownership(sdmac, false, true, false);
1346
1347        if (sdma_load_context(sdmac))
1348                goto err_desc_out;
1349
1350        return desc;
1351
1352err_desc_out:
1353        kfree(desc);
1354err_out:
1355        return NULL;
1356}
1357
1358static struct dma_async_tx_descriptor *sdma_prep_memcpy(
1359                struct dma_chan *chan, dma_addr_t dma_dst,
1360                dma_addr_t dma_src, size_t len, unsigned long flags)
1361{
1362        struct sdma_channel *sdmac = to_sdma_chan(chan);
1363        struct sdma_engine *sdma = sdmac->sdma;
1364        int channel = sdmac->channel;
1365        size_t count;
1366        int i = 0, param;
1367        struct sdma_buffer_descriptor *bd;
1368        struct sdma_desc *desc;
1369
1370        if (!chan || !len)
1371                return NULL;
1372
1373        dev_dbg(sdma->dev, "memcpy: %pad->%pad, len=%zu, channel=%d.\n",
1374                &dma_src, &dma_dst, len, channel);
1375
1376        desc = sdma_transfer_init(sdmac, DMA_MEM_TO_MEM,
1377                                        len / SDMA_BD_MAX_CNT + 1);
1378        if (!desc)
1379                return NULL;
1380
1381        do {
1382                count = min_t(size_t, len, SDMA_BD_MAX_CNT);
1383                bd = &desc->bd[i];
1384                bd->buffer_addr = dma_src;
1385                bd->ext_buffer_addr = dma_dst;
1386                bd->mode.count = count;
1387                desc->chn_count += count;
1388                bd->mode.command = 0;
1389
1390                dma_src += count;
1391                dma_dst += count;
1392                len -= count;
1393                i++;
1394
1395                param = BD_DONE | BD_EXTD | BD_CONT;
1396                /* last bd */
1397                if (!len) {
1398                        param |= BD_INTR;
1399                        param |= BD_LAST;
1400                        param &= ~BD_CONT;
1401                }
1402
1403                dev_dbg(sdma->dev, "entry %d: count: %zd dma: 0x%x %s%s\n",
1404                                i, count, bd->buffer_addr,
1405                                param & BD_WRAP ? "wrap" : "",
1406                                param & BD_INTR ? " intr" : "");
1407
1408                bd->mode.status = param;
1409        } while (len);
1410
1411        return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1412}
1413
1414static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
1415                struct dma_chan *chan, struct scatterlist *sgl,
1416                unsigned int sg_len, enum dma_transfer_direction direction,
1417                unsigned long flags, void *context)
1418{
1419        struct sdma_channel *sdmac = to_sdma_chan(chan);
1420        struct sdma_engine *sdma = sdmac->sdma;
1421        int i, count;
1422        int channel = sdmac->channel;
1423        struct scatterlist *sg;
1424        struct sdma_desc *desc;
1425
1426        sdma_config_write(chan, &sdmac->slave_config, direction);
1427
1428        desc = sdma_transfer_init(sdmac, direction, sg_len);
1429        if (!desc)
1430                goto err_out;
1431
1432        dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
1433                        sg_len, channel);
1434
1435        for_each_sg(sgl, sg, sg_len, i) {
1436                struct sdma_buffer_descriptor *bd = &desc->bd[i];
1437                int param;
1438
1439                bd->buffer_addr = sg->dma_address;
1440
1441                count = sg_dma_len(sg);
1442
1443                if (count > SDMA_BD_MAX_CNT) {
1444                        dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
1445                                        channel, count, SDMA_BD_MAX_CNT);
1446                        goto err_bd_out;
1447                }
1448
1449                bd->mode.count = count;
1450                desc->chn_count += count;
1451
1452                if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1453                        goto err_bd_out;
1454
1455                switch (sdmac->word_size) {
1456                case DMA_SLAVE_BUSWIDTH_4_BYTES:
1457                        bd->mode.command = 0;
1458                        if (count & 3 || sg->dma_address & 3)
1459                                goto err_bd_out;
1460                        break;
1461                case DMA_SLAVE_BUSWIDTH_2_BYTES:
1462                        bd->mode.command = 2;
1463                        if (count & 1 || sg->dma_address & 1)
1464                                goto err_bd_out;
1465                        break;
1466                case DMA_SLAVE_BUSWIDTH_1_BYTE:
1467                        bd->mode.command = 1;
1468                        break;
1469                default:
1470                        goto err_bd_out;
1471                }
1472
1473                param = BD_DONE | BD_EXTD | BD_CONT;
1474
1475                if (i + 1 == sg_len) {
1476                        param |= BD_INTR;
1477                        param |= BD_LAST;
1478                        param &= ~BD_CONT;
1479                }
1480
1481                dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1482                                i, count, (u64)sg->dma_address,
1483                                param & BD_WRAP ? "wrap" : "",
1484                                param & BD_INTR ? " intr" : "");
1485
1486                bd->mode.status = param;
1487        }
1488
1489        return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1490err_bd_out:
1491        sdma_free_bd(desc);
1492        kfree(desc);
1493err_out:
1494        sdmac->status = DMA_ERROR;
1495        return NULL;
1496}
1497
1498static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1499                struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1500                size_t period_len, enum dma_transfer_direction direction,
1501                unsigned long flags)
1502{
1503        struct sdma_channel *sdmac = to_sdma_chan(chan);
1504        struct sdma_engine *sdma = sdmac->sdma;
1505        int num_periods = buf_len / period_len;
1506        int channel = sdmac->channel;
1507        int i = 0, buf = 0;
1508        struct sdma_desc *desc;
1509
1510        dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1511
1512        sdma_config_write(chan, &sdmac->slave_config, direction);
1513
1514        desc = sdma_transfer_init(sdmac, direction, num_periods);
1515        if (!desc)
1516                goto err_out;
1517
1518        desc->period_len = period_len;
1519
1520        sdmac->flags |= IMX_DMA_SG_LOOP;
1521
1522        if (period_len > SDMA_BD_MAX_CNT) {
1523                dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %zu > %d\n",
1524                                channel, period_len, SDMA_BD_MAX_CNT);
1525                goto err_bd_out;
1526        }
1527
1528        while (buf < buf_len) {
1529                struct sdma_buffer_descriptor *bd = &desc->bd[i];
1530                int param;
1531
1532                bd->buffer_addr = dma_addr;
1533
1534                bd->mode.count = period_len;
1535
1536                if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1537                        goto err_bd_out;
1538                if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1539                        bd->mode.command = 0;
1540                else
1541                        bd->mode.command = sdmac->word_size;
1542
1543                param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1544                if (i + 1 == num_periods)
1545                        param |= BD_WRAP;
1546
1547                dev_dbg(sdma->dev, "entry %d: count: %zu dma: %#llx %s%s\n",
1548                                i, period_len, (u64)dma_addr,
1549                                param & BD_WRAP ? "wrap" : "",
1550                                param & BD_INTR ? " intr" : "");
1551
1552                bd->mode.status = param;
1553
1554                dma_addr += period_len;
1555                buf += period_len;
1556
1557                i++;
1558        }
1559
1560        return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1561err_bd_out:
1562        sdma_free_bd(desc);
1563        kfree(desc);
1564err_out:
1565        sdmac->status = DMA_ERROR;
1566        return NULL;
1567}
1568
1569static int sdma_config_write(struct dma_chan *chan,
1570                       struct dma_slave_config *dmaengine_cfg,
1571                       enum dma_transfer_direction direction)
1572{
1573        struct sdma_channel *sdmac = to_sdma_chan(chan);
1574
1575        if (direction == DMA_DEV_TO_MEM) {
1576                sdmac->per_address = dmaengine_cfg->src_addr;
1577                sdmac->watermark_level = dmaengine_cfg->src_maxburst *
1578                        dmaengine_cfg->src_addr_width;
1579                sdmac->word_size = dmaengine_cfg->src_addr_width;
1580        } else if (direction == DMA_DEV_TO_DEV) {
1581                sdmac->per_address2 = dmaengine_cfg->src_addr;
1582                sdmac->per_address = dmaengine_cfg->dst_addr;
1583                sdmac->watermark_level = dmaengine_cfg->src_maxburst &
1584                        SDMA_WATERMARK_LEVEL_LWML;
1585                sdmac->watermark_level |= (dmaengine_cfg->dst_maxburst << 16) &
1586                        SDMA_WATERMARK_LEVEL_HWML;
1587                sdmac->word_size = dmaengine_cfg->dst_addr_width;
1588        } else {
1589                sdmac->per_address = dmaengine_cfg->dst_addr;
1590                sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
1591                        dmaengine_cfg->dst_addr_width;
1592                sdmac->word_size = dmaengine_cfg->dst_addr_width;
1593        }
1594        sdmac->direction = direction;
1595        return sdma_config_channel(chan);
1596}
1597
1598static int sdma_config(struct dma_chan *chan,
1599                       struct dma_slave_config *dmaengine_cfg)
1600{
1601        struct sdma_channel *sdmac = to_sdma_chan(chan);
1602
1603        memcpy(&sdmac->slave_config, dmaengine_cfg, sizeof(*dmaengine_cfg));
1604
1605        /* Set ENBLn earlier to make sure dma request triggered after that */
1606        if (sdmac->event_id0) {
1607                if (sdmac->event_id0 >= sdmac->sdma->drvdata->num_events)
1608                        return -EINVAL;
1609                sdma_event_enable(sdmac, sdmac->event_id0);
1610        }
1611
1612        if (sdmac->event_id1) {
1613                if (sdmac->event_id1 >= sdmac->sdma->drvdata->num_events)
1614                        return -EINVAL;
1615                sdma_event_enable(sdmac, sdmac->event_id1);
1616        }
1617
1618        return 0;
1619}
1620
1621static enum dma_status sdma_tx_status(struct dma_chan *chan,
1622                                      dma_cookie_t cookie,
1623                                      struct dma_tx_state *txstate)
1624{
1625        struct sdma_channel *sdmac = to_sdma_chan(chan);
1626        struct sdma_desc *desc;
1627        u32 residue;
1628        struct virt_dma_desc *vd;
1629        enum dma_status ret;
1630        unsigned long flags;
1631
1632        ret = dma_cookie_status(chan, cookie, txstate);
1633        if (ret == DMA_COMPLETE || !txstate)
1634                return ret;
1635
1636        spin_lock_irqsave(&sdmac->vc.lock, flags);
1637        vd = vchan_find_desc(&sdmac->vc, cookie);
1638        if (vd) {
1639                desc = to_sdma_desc(&vd->tx);
1640                if (sdmac->flags & IMX_DMA_SG_LOOP)
1641                        residue = (desc->num_bd - desc->buf_ptail) *
1642                                desc->period_len - desc->chn_real_count;
1643                else
1644                        residue = desc->chn_count - desc->chn_real_count;
1645        } else if (sdmac->desc && sdmac->desc->vd.tx.cookie == cookie) {
1646                residue = sdmac->desc->chn_count - sdmac->desc->chn_real_count;
1647        } else {
1648                residue = 0;
1649        }
1650        spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1651
1652        dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
1653                         residue);
1654
1655        return sdmac->status;
1656}
1657
1658static void sdma_issue_pending(struct dma_chan *chan)
1659{
1660        struct sdma_channel *sdmac = to_sdma_chan(chan);
1661        unsigned long flags;
1662
1663        spin_lock_irqsave(&sdmac->vc.lock, flags);
1664        if (vchan_issue_pending(&sdmac->vc) && !sdmac->desc)
1665                sdma_start_desc(sdmac);
1666        spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1667}
1668
1669#define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1 34
1670#define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2 38
1671#define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3 41
1672#define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4 42
1673
1674static void sdma_add_scripts(struct sdma_engine *sdma,
1675                const struct sdma_script_start_addrs *addr)
1676{
1677        s32 *addr_arr = (u32 *)addr;
1678        s32 *saddr_arr = (u32 *)sdma->script_addrs;
1679        int i;
1680
1681        /* use the default firmware in ROM if missing external firmware */
1682        if (!sdma->script_number)
1683                sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1684
1685        for (i = 0; i < sdma->script_number; i++)
1686                if (addr_arr[i] > 0)
1687                        saddr_arr[i] = addr_arr[i];
1688}
1689
1690static void sdma_load_firmware(const struct firmware *fw, void *context)
1691{
1692        struct sdma_engine *sdma = context;
1693        const struct sdma_firmware_header *header;
1694        const struct sdma_script_start_addrs *addr;
1695        unsigned short *ram_code;
1696
1697        if (!fw) {
1698                dev_info(sdma->dev, "external firmware not found, using ROM firmware\n");
1699                /* In this case we just use the ROM firmware. */
1700                return;
1701        }
1702
1703        if (fw->size < sizeof(*header))
1704                goto err_firmware;
1705
1706        header = (struct sdma_firmware_header *)fw->data;
1707
1708        if (header->magic != SDMA_FIRMWARE_MAGIC)
1709                goto err_firmware;
1710        if (header->ram_code_start + header->ram_code_size > fw->size)
1711                goto err_firmware;
1712        switch (header->version_major) {
1713        case 1:
1714                sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1715                break;
1716        case 2:
1717                sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2;
1718                break;
1719        case 3:
1720                sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3;
1721                break;
1722        case 4:
1723                sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4;
1724                break;
1725        default:
1726                dev_err(sdma->dev, "unknown firmware version\n");
1727                goto err_firmware;
1728        }
1729
1730        addr = (void *)header + header->script_addrs_start;
1731        ram_code = (void *)header + header->ram_code_start;
1732
1733        clk_enable(sdma->clk_ipg);
1734        clk_enable(sdma->clk_ahb);
1735        /* download the RAM image for SDMA */
1736        sdma_load_script(sdma, ram_code,
1737                        header->ram_code_size,
1738                        addr->ram_code_start_addr);
1739        clk_disable(sdma->clk_ipg);
1740        clk_disable(sdma->clk_ahb);
1741
1742        sdma_add_scripts(sdma, addr);
1743
1744        dev_info(sdma->dev, "loaded firmware %d.%d\n",
1745                        header->version_major,
1746                        header->version_minor);
1747
1748err_firmware:
1749        release_firmware(fw);
1750}
1751
1752#define EVENT_REMAP_CELLS 3
1753
1754static int sdma_event_remap(struct sdma_engine *sdma)
1755{
1756        struct device_node *np = sdma->dev->of_node;
1757        struct device_node *gpr_np = of_parse_phandle(np, "gpr", 0);
1758        struct property *event_remap;
1759        struct regmap *gpr;
1760        char propname[] = "fsl,sdma-event-remap";
1761        u32 reg, val, shift, num_map, i;
1762        int ret = 0;
1763
1764        if (IS_ERR(np) || IS_ERR(gpr_np))
1765                goto out;
1766
1767        event_remap = of_find_property(np, propname, NULL);
1768        num_map = event_remap ? (event_remap->length / sizeof(u32)) : 0;
1769        if (!num_map) {
1770                dev_dbg(sdma->dev, "no event needs to be remapped\n");
1771                goto out;
1772        } else if (num_map % EVENT_REMAP_CELLS) {
1773                dev_err(sdma->dev, "the property %s must modulo %d\n",
1774                                propname, EVENT_REMAP_CELLS);
1775                ret = -EINVAL;
1776                goto out;
1777        }
1778
1779        gpr = syscon_node_to_regmap(gpr_np);
1780        if (IS_ERR(gpr)) {
1781                dev_err(sdma->dev, "failed to get gpr regmap\n");
1782                ret = PTR_ERR(gpr);
1783                goto out;
1784        }
1785
1786        for (i = 0; i < num_map; i += EVENT_REMAP_CELLS) {
1787                ret = of_property_read_u32_index(np, propname, i, &reg);
1788                if (ret) {
1789                        dev_err(sdma->dev, "failed to read property %s index %d\n",
1790                                        propname, i);
1791                        goto out;
1792                }
1793
1794                ret = of_property_read_u32_index(np, propname, i + 1, &shift);
1795                if (ret) {
1796                        dev_err(sdma->dev, "failed to read property %s index %d\n",
1797                                        propname, i + 1);
1798                        goto out;
1799                }
1800
1801                ret = of_property_read_u32_index(np, propname, i + 2, &val);
1802                if (ret) {
1803                        dev_err(sdma->dev, "failed to read property %s index %d\n",
1804                                        propname, i + 2);
1805                        goto out;
1806                }
1807
1808                regmap_update_bits(gpr, reg, BIT(shift), val << shift);
1809        }
1810
1811out:
1812        if (!IS_ERR(gpr_np))
1813                of_node_put(gpr_np);
1814
1815        return ret;
1816}
1817
1818static int sdma_get_firmware(struct sdma_engine *sdma,
1819                const char *fw_name)
1820{
1821        int ret;
1822
1823        ret = request_firmware_nowait(THIS_MODULE,
1824                        FW_ACTION_HOTPLUG, fw_name, sdma->dev,
1825                        GFP_KERNEL, sdma, sdma_load_firmware);
1826
1827        return ret;
1828}
1829
1830static int sdma_init(struct sdma_engine *sdma)
1831{
1832        int i, ret;
1833        dma_addr_t ccb_phys;
1834
1835        ret = clk_enable(sdma->clk_ipg);
1836        if (ret)
1837                return ret;
1838        ret = clk_enable(sdma->clk_ahb);
1839        if (ret)
1840                goto disable_clk_ipg;
1841
1842        /* Be sure SDMA has not started yet */
1843        writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
1844
1845        sdma->channel_control = dma_alloc_coherent(NULL,
1846                        MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
1847                        sizeof(struct sdma_context_data),
1848                        &ccb_phys, GFP_KERNEL);
1849
1850        if (!sdma->channel_control) {
1851                ret = -ENOMEM;
1852                goto err_dma_alloc;
1853        }
1854
1855        sdma->context = (void *)sdma->channel_control +
1856                MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1857        sdma->context_phys = ccb_phys +
1858                MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1859
1860        /* Zero-out the CCB structures array just allocated */
1861        memset(sdma->channel_control, 0,
1862                        MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control));
1863
1864        /* disable all channels */
1865        for (i = 0; i < sdma->drvdata->num_events; i++)
1866                writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
1867
1868        /* All channels have priority 0 */
1869        for (i = 0; i < MAX_DMA_CHANNELS; i++)
1870                writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
1871
1872        ret = sdma_request_channel0(sdma);
1873        if (ret)
1874                goto err_dma_alloc;
1875
1876        sdma_config_ownership(&sdma->channel[0], false, true, false);
1877
1878        /* Set Command Channel (Channel Zero) */
1879        writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
1880
1881        /* Set bits of CONFIG register but with static context switching */
1882        /* FIXME: Check whether to set ACR bit depending on clock ratios */
1883        writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
1884
1885        writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
1886
1887        /* Initializes channel's priorities */
1888        sdma_set_channel_priority(&sdma->channel[0], 7);
1889
1890        clk_disable(sdma->clk_ipg);
1891        clk_disable(sdma->clk_ahb);
1892
1893        return 0;
1894
1895err_dma_alloc:
1896        clk_disable(sdma->clk_ahb);
1897disable_clk_ipg:
1898        clk_disable(sdma->clk_ipg);
1899        dev_err(sdma->dev, "initialisation failed with %d\n", ret);
1900        return ret;
1901}
1902
1903static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param)
1904{
1905        struct sdma_channel *sdmac = to_sdma_chan(chan);
1906        struct imx_dma_data *data = fn_param;
1907
1908        if (!imx_dma_is_general_purpose(chan))
1909                return false;
1910
1911        sdmac->data = *data;
1912        chan->private = &sdmac->data;
1913
1914        return true;
1915}
1916
1917static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec,
1918                                   struct of_dma *ofdma)
1919{
1920        struct sdma_engine *sdma = ofdma->of_dma_data;
1921        dma_cap_mask_t mask = sdma->dma_device.cap_mask;
1922        struct imx_dma_data data;
1923
1924        if (dma_spec->args_count != 3)
1925                return NULL;
1926
1927        data.dma_request = dma_spec->args[0];
1928        data.peripheral_type = dma_spec->args[1];
1929        data.priority = dma_spec->args[2];
1930        /*
1931         * init dma_request2 to zero, which is not used by the dts.
1932         * For P2P, dma_request2 is init from dma_request_channel(),
1933         * chan->private will point to the imx_dma_data, and in
1934         * device_alloc_chan_resources(), imx_dma_data.dma_request2 will
1935         * be set to sdmac->event_id1.
1936         */
1937        data.dma_request2 = 0;
1938
1939        return dma_request_channel(mask, sdma_filter_fn, &data);
1940}
1941
1942static int sdma_probe(struct platform_device *pdev)
1943{
1944        const struct of_device_id *of_id =
1945                        of_match_device(sdma_dt_ids, &pdev->dev);
1946        struct device_node *np = pdev->dev.of_node;
1947        struct device_node *spba_bus;
1948        const char *fw_name;
1949        int ret;
1950        int irq;
1951        struct resource *iores;
1952        struct resource spba_res;
1953        struct sdma_platform_data *pdata = dev_get_platdata(&pdev->dev);
1954        int i;
1955        struct sdma_engine *sdma;
1956        s32 *saddr_arr;
1957        const struct sdma_driver_data *drvdata = NULL;
1958
1959        if (of_id)
1960                drvdata = of_id->data;
1961        else if (pdev->id_entry)
1962                drvdata = (void *)pdev->id_entry->driver_data;
1963
1964        if (!drvdata) {
1965                dev_err(&pdev->dev, "unable to find driver data\n");
1966                return -EINVAL;
1967        }
1968
1969        ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1970        if (ret)
1971                return ret;
1972
1973        sdma = devm_kzalloc(&pdev->dev, sizeof(*sdma), GFP_KERNEL);
1974        if (!sdma)
1975                return -ENOMEM;
1976
1977        spin_lock_init(&sdma->channel_0_lock);
1978
1979        sdma->dev = &pdev->dev;
1980        sdma->drvdata = drvdata;
1981
1982        irq = platform_get_irq(pdev, 0);
1983        if (irq < 0)
1984                return irq;
1985
1986        iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1987        sdma->regs = devm_ioremap_resource(&pdev->dev, iores);
1988        if (IS_ERR(sdma->regs))
1989                return PTR_ERR(sdma->regs);
1990
1991        sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
1992        if (IS_ERR(sdma->clk_ipg))
1993                return PTR_ERR(sdma->clk_ipg);
1994
1995        sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
1996        if (IS_ERR(sdma->clk_ahb))
1997                return PTR_ERR(sdma->clk_ahb);
1998
1999        ret = clk_prepare(sdma->clk_ipg);
2000        if (ret)
2001                return ret;
2002
2003        ret = clk_prepare(sdma->clk_ahb);
2004        if (ret)
2005                goto err_clk;
2006
2007        ret = devm_request_irq(&pdev->dev, irq, sdma_int_handler, 0, "sdma",
2008                               sdma);
2009        if (ret)
2010                goto err_irq;
2011
2012        sdma->irq = irq;
2013
2014        sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
2015        if (!sdma->script_addrs) {
2016                ret = -ENOMEM;
2017                goto err_irq;
2018        }
2019
2020        /* initially no scripts available */
2021        saddr_arr = (s32 *)sdma->script_addrs;
2022        for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
2023                saddr_arr[i] = -EINVAL;
2024
2025        dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
2026        dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
2027        dma_cap_set(DMA_MEMCPY, sdma->dma_device.cap_mask);
2028
2029        INIT_LIST_HEAD(&sdma->dma_device.channels);
2030        /* Initialize channel parameters */
2031        for (i = 0; i < MAX_DMA_CHANNELS; i++) {
2032                struct sdma_channel *sdmac = &sdma->channel[i];
2033
2034                sdmac->sdma = sdma;
2035
2036                sdmac->channel = i;
2037                sdmac->vc.desc_free = sdma_desc_free;
2038                INIT_WORK(&sdmac->terminate_worker,
2039                                sdma_channel_terminate_work);
2040                /*
2041                 * Add the channel to the DMAC list. Do not add channel 0 though
2042                 * because we need it internally in the SDMA driver. This also means
2043                 * that channel 0 in dmaengine counting matches sdma channel 1.
2044                 */
2045                if (i)
2046                        vchan_init(&sdmac->vc, &sdma->dma_device);
2047        }
2048
2049        ret = sdma_init(sdma);
2050        if (ret)
2051                goto err_init;
2052
2053        ret = sdma_event_remap(sdma);
2054        if (ret)
2055                goto err_init;
2056
2057        if (sdma->drvdata->script_addrs)
2058                sdma_add_scripts(sdma, sdma->drvdata->script_addrs);
2059        if (pdata && pdata->script_addrs)
2060                sdma_add_scripts(sdma, pdata->script_addrs);
2061
2062        if (pdata) {
2063                ret = sdma_get_firmware(sdma, pdata->fw_name);
2064                if (ret)
2065                        dev_warn(&pdev->dev, "failed to get firmware from platform data\n");
2066        } else {
2067                /*
2068                 * Because that device tree does not encode ROM script address,
2069                 * the RAM script in firmware is mandatory for device tree
2070                 * probe, otherwise it fails.
2071                 */
2072                ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
2073                                              &fw_name);
2074                if (ret)
2075                        dev_warn(&pdev->dev, "failed to get firmware name\n");
2076                else {
2077                        ret = sdma_get_firmware(sdma, fw_name);
2078                        if (ret)
2079                                dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
2080                }
2081        }
2082
2083        sdma->dma_device.dev = &pdev->dev;
2084
2085        sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
2086        sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
2087        sdma->dma_device.device_tx_status = sdma_tx_status;
2088        sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
2089        sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
2090        sdma->dma_device.device_config = sdma_config;
2091        sdma->dma_device.device_terminate_all = sdma_disable_channel_async;
2092        sdma->dma_device.device_synchronize = sdma_channel_synchronize;
2093        sdma->dma_device.src_addr_widths = SDMA_DMA_BUSWIDTHS;
2094        sdma->dma_device.dst_addr_widths = SDMA_DMA_BUSWIDTHS;
2095        sdma->dma_device.directions = SDMA_DMA_DIRECTIONS;
2096        sdma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
2097        sdma->dma_device.device_prep_dma_memcpy = sdma_prep_memcpy;
2098        sdma->dma_device.device_issue_pending = sdma_issue_pending;
2099        sdma->dma_device.dev->dma_parms = &sdma->dma_parms;
2100        dma_set_max_seg_size(sdma->dma_device.dev, SDMA_BD_MAX_CNT);
2101
2102        platform_set_drvdata(pdev, sdma);
2103
2104        ret = dma_async_device_register(&sdma->dma_device);
2105        if (ret) {
2106                dev_err(&pdev->dev, "unable to register\n");
2107                goto err_init;
2108        }
2109
2110        if (np) {
2111                ret = of_dma_controller_register(np, sdma_xlate, sdma);
2112                if (ret) {
2113                        dev_err(&pdev->dev, "failed to register controller\n");
2114                        goto err_register;
2115                }
2116
2117                spba_bus = of_find_compatible_node(NULL, NULL, "fsl,spba-bus");
2118                ret = of_address_to_resource(spba_bus, 0, &spba_res);
2119                if (!ret) {
2120                        sdma->spba_start_addr = spba_res.start;
2121                        sdma->spba_end_addr = spba_res.end;
2122                }
2123                of_node_put(spba_bus);
2124        }
2125
2126        return 0;
2127
2128err_register:
2129        dma_async_device_unregister(&sdma->dma_device);
2130err_init:
2131        kfree(sdma->script_addrs);
2132err_irq:
2133        clk_unprepare(sdma->clk_ahb);
2134err_clk:
2135        clk_unprepare(sdma->clk_ipg);
2136        return ret;
2137}
2138
2139static int sdma_remove(struct platform_device *pdev)
2140{
2141        struct sdma_engine *sdma = platform_get_drvdata(pdev);
2142        int i;
2143
2144        devm_free_irq(&pdev->dev, sdma->irq, sdma);
2145        dma_async_device_unregister(&sdma->dma_device);
2146        kfree(sdma->script_addrs);
2147        clk_unprepare(sdma->clk_ahb);
2148        clk_unprepare(sdma->clk_ipg);
2149        /* Kill the tasklet */
2150        for (i = 0; i < MAX_DMA_CHANNELS; i++) {
2151                struct sdma_channel *sdmac = &sdma->channel[i];
2152
2153                tasklet_kill(&sdmac->vc.task);
2154                sdma_free_chan_resources(&sdmac->vc.chan);
2155        }
2156
2157        platform_set_drvdata(pdev, NULL);
2158        return 0;
2159}
2160
2161static struct platform_driver sdma_driver = {
2162        .driver         = {
2163                .name   = "imx-sdma",
2164                .of_match_table = sdma_dt_ids,
2165        },
2166        .id_table       = sdma_devtypes,
2167        .remove         = sdma_remove,
2168        .probe          = sdma_probe,
2169};
2170
2171module_platform_driver(sdma_driver);
2172
2173MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
2174MODULE_DESCRIPTION("i.MX SDMA driver");
2175#if IS_ENABLED(CONFIG_SOC_IMX6Q)
2176MODULE_FIRMWARE("imx/sdma/sdma-imx6q.bin");
2177#endif
2178#if IS_ENABLED(CONFIG_SOC_IMX7D)
2179MODULE_FIRMWARE("imx/sdma/sdma-imx7d.bin");
2180#endif
2181MODULE_LICENSE("GPL");
2182