linux/drivers/infiniband/core/verbs.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
   3 * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
   4 * Copyright (c) 2004 Intel Corporation.  All rights reserved.
   5 * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
   6 * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
   7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
   8 * Copyright (c) 2005, 2006 Cisco Systems.  All rights reserved.
   9 *
  10 * This software is available to you under a choice of one of two
  11 * licenses.  You may choose to be licensed under the terms of the GNU
  12 * General Public License (GPL) Version 2, available from the file
  13 * COPYING in the main directory of this source tree, or the
  14 * OpenIB.org BSD license below:
  15 *
  16 *     Redistribution and use in source and binary forms, with or
  17 *     without modification, are permitted provided that the following
  18 *     conditions are met:
  19 *
  20 *      - Redistributions of source code must retain the above
  21 *        copyright notice, this list of conditions and the following
  22 *        disclaimer.
  23 *
  24 *      - Redistributions in binary form must reproduce the above
  25 *        copyright notice, this list of conditions and the following
  26 *        disclaimer in the documentation and/or other materials
  27 *        provided with the distribution.
  28 *
  29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  36 * SOFTWARE.
  37 */
  38
  39#include <linux/errno.h>
  40#include <linux/err.h>
  41#include <linux/export.h>
  42#include <linux/string.h>
  43#include <linux/slab.h>
  44#include <linux/in.h>
  45#include <linux/in6.h>
  46#include <net/addrconf.h>
  47#include <linux/security.h>
  48
  49#include <rdma/ib_verbs.h>
  50#include <rdma/ib_cache.h>
  51#include <rdma/ib_addr.h>
  52#include <rdma/rw.h>
  53
  54#include "core_priv.h"
  55
  56static int ib_resolve_eth_dmac(struct ib_device *device,
  57                               struct rdma_ah_attr *ah_attr);
  58
  59static const char * const ib_events[] = {
  60        [IB_EVENT_CQ_ERR]               = "CQ error",
  61        [IB_EVENT_QP_FATAL]             = "QP fatal error",
  62        [IB_EVENT_QP_REQ_ERR]           = "QP request error",
  63        [IB_EVENT_QP_ACCESS_ERR]        = "QP access error",
  64        [IB_EVENT_COMM_EST]             = "communication established",
  65        [IB_EVENT_SQ_DRAINED]           = "send queue drained",
  66        [IB_EVENT_PATH_MIG]             = "path migration successful",
  67        [IB_EVENT_PATH_MIG_ERR]         = "path migration error",
  68        [IB_EVENT_DEVICE_FATAL]         = "device fatal error",
  69        [IB_EVENT_PORT_ACTIVE]          = "port active",
  70        [IB_EVENT_PORT_ERR]             = "port error",
  71        [IB_EVENT_LID_CHANGE]           = "LID change",
  72        [IB_EVENT_PKEY_CHANGE]          = "P_key change",
  73        [IB_EVENT_SM_CHANGE]            = "SM change",
  74        [IB_EVENT_SRQ_ERR]              = "SRQ error",
  75        [IB_EVENT_SRQ_LIMIT_REACHED]    = "SRQ limit reached",
  76        [IB_EVENT_QP_LAST_WQE_REACHED]  = "last WQE reached",
  77        [IB_EVENT_CLIENT_REREGISTER]    = "client reregister",
  78        [IB_EVENT_GID_CHANGE]           = "GID changed",
  79};
  80
  81const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
  82{
  83        size_t index = event;
  84
  85        return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
  86                        ib_events[index] : "unrecognized event";
  87}
  88EXPORT_SYMBOL(ib_event_msg);
  89
  90static const char * const wc_statuses[] = {
  91        [IB_WC_SUCCESS]                 = "success",
  92        [IB_WC_LOC_LEN_ERR]             = "local length error",
  93        [IB_WC_LOC_QP_OP_ERR]           = "local QP operation error",
  94        [IB_WC_LOC_EEC_OP_ERR]          = "local EE context operation error",
  95        [IB_WC_LOC_PROT_ERR]            = "local protection error",
  96        [IB_WC_WR_FLUSH_ERR]            = "WR flushed",
  97        [IB_WC_MW_BIND_ERR]             = "memory management operation error",
  98        [IB_WC_BAD_RESP_ERR]            = "bad response error",
  99        [IB_WC_LOC_ACCESS_ERR]          = "local access error",
 100        [IB_WC_REM_INV_REQ_ERR]         = "invalid request error",
 101        [IB_WC_REM_ACCESS_ERR]          = "remote access error",
 102        [IB_WC_REM_OP_ERR]              = "remote operation error",
 103        [IB_WC_RETRY_EXC_ERR]           = "transport retry counter exceeded",
 104        [IB_WC_RNR_RETRY_EXC_ERR]       = "RNR retry counter exceeded",
 105        [IB_WC_LOC_RDD_VIOL_ERR]        = "local RDD violation error",
 106        [IB_WC_REM_INV_RD_REQ_ERR]      = "remote invalid RD request",
 107        [IB_WC_REM_ABORT_ERR]           = "operation aborted",
 108        [IB_WC_INV_EECN_ERR]            = "invalid EE context number",
 109        [IB_WC_INV_EEC_STATE_ERR]       = "invalid EE context state",
 110        [IB_WC_FATAL_ERR]               = "fatal error",
 111        [IB_WC_RESP_TIMEOUT_ERR]        = "response timeout error",
 112        [IB_WC_GENERAL_ERR]             = "general error",
 113};
 114
 115const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
 116{
 117        size_t index = status;
 118
 119        return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
 120                        wc_statuses[index] : "unrecognized status";
 121}
 122EXPORT_SYMBOL(ib_wc_status_msg);
 123
 124__attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
 125{
 126        switch (rate) {
 127        case IB_RATE_2_5_GBPS: return   1;
 128        case IB_RATE_5_GBPS:   return   2;
 129        case IB_RATE_10_GBPS:  return   4;
 130        case IB_RATE_20_GBPS:  return   8;
 131        case IB_RATE_30_GBPS:  return  12;
 132        case IB_RATE_40_GBPS:  return  16;
 133        case IB_RATE_60_GBPS:  return  24;
 134        case IB_RATE_80_GBPS:  return  32;
 135        case IB_RATE_120_GBPS: return  48;
 136        case IB_RATE_14_GBPS:  return   6;
 137        case IB_RATE_56_GBPS:  return  22;
 138        case IB_RATE_112_GBPS: return  45;
 139        case IB_RATE_168_GBPS: return  67;
 140        case IB_RATE_25_GBPS:  return  10;
 141        case IB_RATE_100_GBPS: return  40;
 142        case IB_RATE_200_GBPS: return  80;
 143        case IB_RATE_300_GBPS: return 120;
 144        case IB_RATE_28_GBPS:  return  11;
 145        case IB_RATE_50_GBPS:  return  20;
 146        case IB_RATE_400_GBPS: return 160;
 147        case IB_RATE_600_GBPS: return 240;
 148        default:               return  -1;
 149        }
 150}
 151EXPORT_SYMBOL(ib_rate_to_mult);
 152
 153__attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
 154{
 155        switch (mult) {
 156        case 1:   return IB_RATE_2_5_GBPS;
 157        case 2:   return IB_RATE_5_GBPS;
 158        case 4:   return IB_RATE_10_GBPS;
 159        case 8:   return IB_RATE_20_GBPS;
 160        case 12:  return IB_RATE_30_GBPS;
 161        case 16:  return IB_RATE_40_GBPS;
 162        case 24:  return IB_RATE_60_GBPS;
 163        case 32:  return IB_RATE_80_GBPS;
 164        case 48:  return IB_RATE_120_GBPS;
 165        case 6:   return IB_RATE_14_GBPS;
 166        case 22:  return IB_RATE_56_GBPS;
 167        case 45:  return IB_RATE_112_GBPS;
 168        case 67:  return IB_RATE_168_GBPS;
 169        case 10:  return IB_RATE_25_GBPS;
 170        case 40:  return IB_RATE_100_GBPS;
 171        case 80:  return IB_RATE_200_GBPS;
 172        case 120: return IB_RATE_300_GBPS;
 173        case 11:  return IB_RATE_28_GBPS;
 174        case 20:  return IB_RATE_50_GBPS;
 175        case 160: return IB_RATE_400_GBPS;
 176        case 240: return IB_RATE_600_GBPS;
 177        default:  return IB_RATE_PORT_CURRENT;
 178        }
 179}
 180EXPORT_SYMBOL(mult_to_ib_rate);
 181
 182__attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
 183{
 184        switch (rate) {
 185        case IB_RATE_2_5_GBPS: return 2500;
 186        case IB_RATE_5_GBPS:   return 5000;
 187        case IB_RATE_10_GBPS:  return 10000;
 188        case IB_RATE_20_GBPS:  return 20000;
 189        case IB_RATE_30_GBPS:  return 30000;
 190        case IB_RATE_40_GBPS:  return 40000;
 191        case IB_RATE_60_GBPS:  return 60000;
 192        case IB_RATE_80_GBPS:  return 80000;
 193        case IB_RATE_120_GBPS: return 120000;
 194        case IB_RATE_14_GBPS:  return 14062;
 195        case IB_RATE_56_GBPS:  return 56250;
 196        case IB_RATE_112_GBPS: return 112500;
 197        case IB_RATE_168_GBPS: return 168750;
 198        case IB_RATE_25_GBPS:  return 25781;
 199        case IB_RATE_100_GBPS: return 103125;
 200        case IB_RATE_200_GBPS: return 206250;
 201        case IB_RATE_300_GBPS: return 309375;
 202        case IB_RATE_28_GBPS:  return 28125;
 203        case IB_RATE_50_GBPS:  return 53125;
 204        case IB_RATE_400_GBPS: return 425000;
 205        case IB_RATE_600_GBPS: return 637500;
 206        default:               return -1;
 207        }
 208}
 209EXPORT_SYMBOL(ib_rate_to_mbps);
 210
 211__attribute_const__ enum rdma_transport_type
 212rdma_node_get_transport(enum rdma_node_type node_type)
 213{
 214
 215        if (node_type == RDMA_NODE_USNIC)
 216                return RDMA_TRANSPORT_USNIC;
 217        if (node_type == RDMA_NODE_USNIC_UDP)
 218                return RDMA_TRANSPORT_USNIC_UDP;
 219        if (node_type == RDMA_NODE_RNIC)
 220                return RDMA_TRANSPORT_IWARP;
 221
 222        return RDMA_TRANSPORT_IB;
 223}
 224EXPORT_SYMBOL(rdma_node_get_transport);
 225
 226enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num)
 227{
 228        enum rdma_transport_type lt;
 229        if (device->ops.get_link_layer)
 230                return device->ops.get_link_layer(device, port_num);
 231
 232        lt = rdma_node_get_transport(device->node_type);
 233        if (lt == RDMA_TRANSPORT_IB)
 234                return IB_LINK_LAYER_INFINIBAND;
 235
 236        return IB_LINK_LAYER_ETHERNET;
 237}
 238EXPORT_SYMBOL(rdma_port_get_link_layer);
 239
 240/* Protection domains */
 241
 242/**
 243 * ib_alloc_pd - Allocates an unused protection domain.
 244 * @device: The device on which to allocate the protection domain.
 245 *
 246 * A protection domain object provides an association between QPs, shared
 247 * receive queues, address handles, memory regions, and memory windows.
 248 *
 249 * Every PD has a local_dma_lkey which can be used as the lkey value for local
 250 * memory operations.
 251 */
 252struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
 253                const char *caller)
 254{
 255        struct ib_pd *pd;
 256        int mr_access_flags = 0;
 257
 258        pd = device->ops.alloc_pd(device, NULL, NULL);
 259        if (IS_ERR(pd))
 260                return pd;
 261
 262        pd->device = device;
 263        pd->uobject = NULL;
 264        pd->__internal_mr = NULL;
 265        atomic_set(&pd->usecnt, 0);
 266        pd->flags = flags;
 267
 268        if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)
 269                pd->local_dma_lkey = device->local_dma_lkey;
 270        else
 271                mr_access_flags |= IB_ACCESS_LOCAL_WRITE;
 272
 273        if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
 274                pr_warn("%s: enabling unsafe global rkey\n", caller);
 275                mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE;
 276        }
 277
 278        pd->res.type = RDMA_RESTRACK_PD;
 279        rdma_restrack_set_task(&pd->res, caller);
 280        rdma_restrack_kadd(&pd->res);
 281
 282        if (mr_access_flags) {
 283                struct ib_mr *mr;
 284
 285                mr = pd->device->ops.get_dma_mr(pd, mr_access_flags);
 286                if (IS_ERR(mr)) {
 287                        ib_dealloc_pd(pd);
 288                        return ERR_CAST(mr);
 289                }
 290
 291                mr->device      = pd->device;
 292                mr->pd          = pd;
 293                mr->uobject     = NULL;
 294                mr->need_inval  = false;
 295
 296                pd->__internal_mr = mr;
 297
 298                if (!(device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY))
 299                        pd->local_dma_lkey = pd->__internal_mr->lkey;
 300
 301                if (flags & IB_PD_UNSAFE_GLOBAL_RKEY)
 302                        pd->unsafe_global_rkey = pd->__internal_mr->rkey;
 303        }
 304
 305        return pd;
 306}
 307EXPORT_SYMBOL(__ib_alloc_pd);
 308
 309/**
 310 * ib_dealloc_pd - Deallocates a protection domain.
 311 * @pd: The protection domain to deallocate.
 312 *
 313 * It is an error to call this function while any resources in the pd still
 314 * exist.  The caller is responsible to synchronously destroy them and
 315 * guarantee no new allocations will happen.
 316 */
 317void ib_dealloc_pd(struct ib_pd *pd)
 318{
 319        int ret;
 320
 321        if (pd->__internal_mr) {
 322                ret = pd->device->ops.dereg_mr(pd->__internal_mr);
 323                WARN_ON(ret);
 324                pd->__internal_mr = NULL;
 325        }
 326
 327        /* uverbs manipulates usecnt with proper locking, while the kabi
 328           requires the caller to guarantee we can't race here. */
 329        WARN_ON(atomic_read(&pd->usecnt));
 330
 331        rdma_restrack_del(&pd->res);
 332        /* Making delalloc_pd a void return is a WIP, no driver should return
 333           an error here. */
 334        ret = pd->device->ops.dealloc_pd(pd);
 335        WARN_ONCE(ret, "Infiniband HW driver failed dealloc_pd");
 336}
 337EXPORT_SYMBOL(ib_dealloc_pd);
 338
 339/* Address handles */
 340
 341/**
 342 * rdma_copy_ah_attr - Copy rdma ah attribute from source to destination.
 343 * @dest:       Pointer to destination ah_attr. Contents of the destination
 344 *              pointer is assumed to be invalid and attribute are overwritten.
 345 * @src:        Pointer to source ah_attr.
 346 */
 347void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
 348                       const struct rdma_ah_attr *src)
 349{
 350        *dest = *src;
 351        if (dest->grh.sgid_attr)
 352                rdma_hold_gid_attr(dest->grh.sgid_attr);
 353}
 354EXPORT_SYMBOL(rdma_copy_ah_attr);
 355
 356/**
 357 * rdma_replace_ah_attr - Replace valid ah_attr with new new one.
 358 * @old:        Pointer to existing ah_attr which needs to be replaced.
 359 *              old is assumed to be valid or zero'd
 360 * @new:        Pointer to the new ah_attr.
 361 *
 362 * rdma_replace_ah_attr() first releases any reference in the old ah_attr if
 363 * old the ah_attr is valid; after that it copies the new attribute and holds
 364 * the reference to the replaced ah_attr.
 365 */
 366void rdma_replace_ah_attr(struct rdma_ah_attr *old,
 367                          const struct rdma_ah_attr *new)
 368{
 369        rdma_destroy_ah_attr(old);
 370        *old = *new;
 371        if (old->grh.sgid_attr)
 372                rdma_hold_gid_attr(old->grh.sgid_attr);
 373}
 374EXPORT_SYMBOL(rdma_replace_ah_attr);
 375
 376/**
 377 * rdma_move_ah_attr - Move ah_attr pointed by source to destination.
 378 * @dest:       Pointer to destination ah_attr to copy to.
 379 *              dest is assumed to be valid or zero'd
 380 * @src:        Pointer to the new ah_attr.
 381 *
 382 * rdma_move_ah_attr() first releases any reference in the destination ah_attr
 383 * if it is valid. This also transfers ownership of internal references from
 384 * src to dest, making src invalid in the process. No new reference of the src
 385 * ah_attr is taken.
 386 */
 387void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src)
 388{
 389        rdma_destroy_ah_attr(dest);
 390        *dest = *src;
 391        src->grh.sgid_attr = NULL;
 392}
 393EXPORT_SYMBOL(rdma_move_ah_attr);
 394
 395/*
 396 * Validate that the rdma_ah_attr is valid for the device before passing it
 397 * off to the driver.
 398 */
 399static int rdma_check_ah_attr(struct ib_device *device,
 400                              struct rdma_ah_attr *ah_attr)
 401{
 402        if (!rdma_is_port_valid(device, ah_attr->port_num))
 403                return -EINVAL;
 404
 405        if ((rdma_is_grh_required(device, ah_attr->port_num) ||
 406             ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) &&
 407            !(ah_attr->ah_flags & IB_AH_GRH))
 408                return -EINVAL;
 409
 410        if (ah_attr->grh.sgid_attr) {
 411                /*
 412                 * Make sure the passed sgid_attr is consistent with the
 413                 * parameters
 414                 */
 415                if (ah_attr->grh.sgid_attr->index != ah_attr->grh.sgid_index ||
 416                    ah_attr->grh.sgid_attr->port_num != ah_attr->port_num)
 417                        return -EINVAL;
 418        }
 419        return 0;
 420}
 421
 422/*
 423 * If the ah requires a GRH then ensure that sgid_attr pointer is filled in.
 424 * On success the caller is responsible to call rdma_unfill_sgid_attr().
 425 */
 426static int rdma_fill_sgid_attr(struct ib_device *device,
 427                               struct rdma_ah_attr *ah_attr,
 428                               const struct ib_gid_attr **old_sgid_attr)
 429{
 430        const struct ib_gid_attr *sgid_attr;
 431        struct ib_global_route *grh;
 432        int ret;
 433
 434        *old_sgid_attr = ah_attr->grh.sgid_attr;
 435
 436        ret = rdma_check_ah_attr(device, ah_attr);
 437        if (ret)
 438                return ret;
 439
 440        if (!(ah_attr->ah_flags & IB_AH_GRH))
 441                return 0;
 442
 443        grh = rdma_ah_retrieve_grh(ah_attr);
 444        if (grh->sgid_attr)
 445                return 0;
 446
 447        sgid_attr =
 448                rdma_get_gid_attr(device, ah_attr->port_num, grh->sgid_index);
 449        if (IS_ERR(sgid_attr))
 450                return PTR_ERR(sgid_attr);
 451
 452        /* Move ownerhip of the kref into the ah_attr */
 453        grh->sgid_attr = sgid_attr;
 454        return 0;
 455}
 456
 457static void rdma_unfill_sgid_attr(struct rdma_ah_attr *ah_attr,
 458                                  const struct ib_gid_attr *old_sgid_attr)
 459{
 460        /*
 461         * Fill didn't change anything, the caller retains ownership of
 462         * whatever it passed
 463         */
 464        if (ah_attr->grh.sgid_attr == old_sgid_attr)
 465                return;
 466
 467        /*
 468         * Otherwise, we need to undo what rdma_fill_sgid_attr so the caller
 469         * doesn't see any change in the rdma_ah_attr. If we get here
 470         * old_sgid_attr is NULL.
 471         */
 472        rdma_destroy_ah_attr(ah_attr);
 473}
 474
 475static const struct ib_gid_attr *
 476rdma_update_sgid_attr(struct rdma_ah_attr *ah_attr,
 477                      const struct ib_gid_attr *old_attr)
 478{
 479        if (old_attr)
 480                rdma_put_gid_attr(old_attr);
 481        if (ah_attr->ah_flags & IB_AH_GRH) {
 482                rdma_hold_gid_attr(ah_attr->grh.sgid_attr);
 483                return ah_attr->grh.sgid_attr;
 484        }
 485        return NULL;
 486}
 487
 488static struct ib_ah *_rdma_create_ah(struct ib_pd *pd,
 489                                     struct rdma_ah_attr *ah_attr,
 490                                     u32 flags,
 491                                     struct ib_udata *udata)
 492{
 493        struct ib_ah *ah;
 494
 495        might_sleep_if(flags & RDMA_CREATE_AH_SLEEPABLE);
 496
 497        if (!pd->device->ops.create_ah)
 498                return ERR_PTR(-EOPNOTSUPP);
 499
 500        ah = pd->device->ops.create_ah(pd, ah_attr, flags, udata);
 501
 502        if (!IS_ERR(ah)) {
 503                ah->device  = pd->device;
 504                ah->pd      = pd;
 505                ah->uobject = NULL;
 506                ah->type    = ah_attr->type;
 507                ah->sgid_attr = rdma_update_sgid_attr(ah_attr, NULL);
 508
 509                atomic_inc(&pd->usecnt);
 510        }
 511
 512        return ah;
 513}
 514
 515/**
 516 * rdma_create_ah - Creates an address handle for the
 517 * given address vector.
 518 * @pd: The protection domain associated with the address handle.
 519 * @ah_attr: The attributes of the address vector.
 520 * @flags: Create address handle flags (see enum rdma_create_ah_flags).
 521 *
 522 * It returns 0 on success and returns appropriate error code on error.
 523 * The address handle is used to reference a local or global destination
 524 * in all UD QP post sends.
 525 */
 526struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr,
 527                             u32 flags)
 528{
 529        const struct ib_gid_attr *old_sgid_attr;
 530        struct ib_ah *ah;
 531        int ret;
 532
 533        ret = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr);
 534        if (ret)
 535                return ERR_PTR(ret);
 536
 537        ah = _rdma_create_ah(pd, ah_attr, flags, NULL);
 538
 539        rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
 540        return ah;
 541}
 542EXPORT_SYMBOL(rdma_create_ah);
 543
 544/**
 545 * rdma_create_user_ah - Creates an address handle for the
 546 * given address vector.
 547 * It resolves destination mac address for ah attribute of RoCE type.
 548 * @pd: The protection domain associated with the address handle.
 549 * @ah_attr: The attributes of the address vector.
 550 * @udata: pointer to user's input output buffer information need by
 551 *         provider driver.
 552 *
 553 * It returns 0 on success and returns appropriate error code on error.
 554 * The address handle is used to reference a local or global destination
 555 * in all UD QP post sends.
 556 */
 557struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
 558                                  struct rdma_ah_attr *ah_attr,
 559                                  struct ib_udata *udata)
 560{
 561        const struct ib_gid_attr *old_sgid_attr;
 562        struct ib_ah *ah;
 563        int err;
 564
 565        err = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr);
 566        if (err)
 567                return ERR_PTR(err);
 568
 569        if (ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) {
 570                err = ib_resolve_eth_dmac(pd->device, ah_attr);
 571                if (err) {
 572                        ah = ERR_PTR(err);
 573                        goto out;
 574                }
 575        }
 576
 577        ah = _rdma_create_ah(pd, ah_attr, RDMA_CREATE_AH_SLEEPABLE, udata);
 578
 579out:
 580        rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
 581        return ah;
 582}
 583EXPORT_SYMBOL(rdma_create_user_ah);
 584
 585int ib_get_rdma_header_version(const union rdma_network_hdr *hdr)
 586{
 587        const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh;
 588        struct iphdr ip4h_checked;
 589        const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh;
 590
 591        /* If it's IPv6, the version must be 6, otherwise, the first
 592         * 20 bytes (before the IPv4 header) are garbled.
 593         */
 594        if (ip6h->version != 6)
 595                return (ip4h->version == 4) ? 4 : 0;
 596        /* version may be 6 or 4 because the first 20 bytes could be garbled */
 597
 598        /* RoCE v2 requires no options, thus header length
 599         * must be 5 words
 600         */
 601        if (ip4h->ihl != 5)
 602                return 6;
 603
 604        /* Verify checksum.
 605         * We can't write on scattered buffers so we need to copy to
 606         * temp buffer.
 607         */
 608        memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
 609        ip4h_checked.check = 0;
 610        ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5);
 611        /* if IPv4 header checksum is OK, believe it */
 612        if (ip4h->check == ip4h_checked.check)
 613                return 4;
 614        return 6;
 615}
 616EXPORT_SYMBOL(ib_get_rdma_header_version);
 617
 618static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
 619                                                     u8 port_num,
 620                                                     const struct ib_grh *grh)
 621{
 622        int grh_version;
 623
 624        if (rdma_protocol_ib(device, port_num))
 625                return RDMA_NETWORK_IB;
 626
 627        grh_version = ib_get_rdma_header_version((union rdma_network_hdr *)grh);
 628
 629        if (grh_version == 4)
 630                return RDMA_NETWORK_IPV4;
 631
 632        if (grh->next_hdr == IPPROTO_UDP)
 633                return RDMA_NETWORK_IPV6;
 634
 635        return RDMA_NETWORK_ROCE_V1;
 636}
 637
 638struct find_gid_index_context {
 639        u16 vlan_id;
 640        enum ib_gid_type gid_type;
 641};
 642
 643static bool find_gid_index(const union ib_gid *gid,
 644                           const struct ib_gid_attr *gid_attr,
 645                           void *context)
 646{
 647        struct find_gid_index_context *ctx = context;
 648
 649        if (ctx->gid_type != gid_attr->gid_type)
 650                return false;
 651
 652        if ((!!(ctx->vlan_id != 0xffff) == !is_vlan_dev(gid_attr->ndev)) ||
 653            (is_vlan_dev(gid_attr->ndev) &&
 654             vlan_dev_vlan_id(gid_attr->ndev) != ctx->vlan_id))
 655                return false;
 656
 657        return true;
 658}
 659
 660static const struct ib_gid_attr *
 661get_sgid_attr_from_eth(struct ib_device *device, u8 port_num,
 662                       u16 vlan_id, const union ib_gid *sgid,
 663                       enum ib_gid_type gid_type)
 664{
 665        struct find_gid_index_context context = {.vlan_id = vlan_id,
 666                                                 .gid_type = gid_type};
 667
 668        return rdma_find_gid_by_filter(device, sgid, port_num, find_gid_index,
 669                                       &context);
 670}
 671
 672int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
 673                              enum rdma_network_type net_type,
 674                              union ib_gid *sgid, union ib_gid *dgid)
 675{
 676        struct sockaddr_in  src_in;
 677        struct sockaddr_in  dst_in;
 678        __be32 src_saddr, dst_saddr;
 679
 680        if (!sgid || !dgid)
 681                return -EINVAL;
 682
 683        if (net_type == RDMA_NETWORK_IPV4) {
 684                memcpy(&src_in.sin_addr.s_addr,
 685                       &hdr->roce4grh.saddr, 4);
 686                memcpy(&dst_in.sin_addr.s_addr,
 687                       &hdr->roce4grh.daddr, 4);
 688                src_saddr = src_in.sin_addr.s_addr;
 689                dst_saddr = dst_in.sin_addr.s_addr;
 690                ipv6_addr_set_v4mapped(src_saddr,
 691                                       (struct in6_addr *)sgid);
 692                ipv6_addr_set_v4mapped(dst_saddr,
 693                                       (struct in6_addr *)dgid);
 694                return 0;
 695        } else if (net_type == RDMA_NETWORK_IPV6 ||
 696                   net_type == RDMA_NETWORK_IB) {
 697                *dgid = hdr->ibgrh.dgid;
 698                *sgid = hdr->ibgrh.sgid;
 699                return 0;
 700        } else {
 701                return -EINVAL;
 702        }
 703}
 704EXPORT_SYMBOL(ib_get_gids_from_rdma_hdr);
 705
 706/* Resolve destination mac address and hop limit for unicast destination
 707 * GID entry, considering the source GID entry as well.
 708 * ah_attribute must have have valid port_num, sgid_index.
 709 */
 710static int ib_resolve_unicast_gid_dmac(struct ib_device *device,
 711                                       struct rdma_ah_attr *ah_attr)
 712{
 713        struct ib_global_route *grh = rdma_ah_retrieve_grh(ah_attr);
 714        const struct ib_gid_attr *sgid_attr = grh->sgid_attr;
 715        int hop_limit = 0xff;
 716        int ret = 0;
 717
 718        /* If destination is link local and source GID is RoCEv1,
 719         * IP stack is not used.
 720         */
 721        if (rdma_link_local_addr((struct in6_addr *)grh->dgid.raw) &&
 722            sgid_attr->gid_type == IB_GID_TYPE_ROCE) {
 723                rdma_get_ll_mac((struct in6_addr *)grh->dgid.raw,
 724                                ah_attr->roce.dmac);
 725                return ret;
 726        }
 727
 728        ret = rdma_addr_find_l2_eth_by_grh(&sgid_attr->gid, &grh->dgid,
 729                                           ah_attr->roce.dmac,
 730                                           sgid_attr, &hop_limit);
 731
 732        grh->hop_limit = hop_limit;
 733        return ret;
 734}
 735
 736/*
 737 * This function initializes address handle attributes from the incoming packet.
 738 * Incoming packet has dgid of the receiver node on which this code is
 739 * getting executed and, sgid contains the GID of the sender.
 740 *
 741 * When resolving mac address of destination, the arrived dgid is used
 742 * as sgid and, sgid is used as dgid because sgid contains destinations
 743 * GID whom to respond to.
 744 *
 745 * On success the caller is responsible to call rdma_destroy_ah_attr on the
 746 * attr.
 747 */
 748int ib_init_ah_attr_from_wc(struct ib_device *device, u8 port_num,
 749                            const struct ib_wc *wc, const struct ib_grh *grh,
 750                            struct rdma_ah_attr *ah_attr)
 751{
 752        u32 flow_class;
 753        int ret;
 754        enum rdma_network_type net_type = RDMA_NETWORK_IB;
 755        enum ib_gid_type gid_type = IB_GID_TYPE_IB;
 756        const struct ib_gid_attr *sgid_attr;
 757        int hoplimit = 0xff;
 758        union ib_gid dgid;
 759        union ib_gid sgid;
 760
 761        might_sleep();
 762
 763        memset(ah_attr, 0, sizeof *ah_attr);
 764        ah_attr->type = rdma_ah_find_type(device, port_num);
 765        if (rdma_cap_eth_ah(device, port_num)) {
 766                if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
 767                        net_type = wc->network_hdr_type;
 768                else
 769                        net_type = ib_get_net_type_by_grh(device, port_num, grh);
 770                gid_type = ib_network_to_gid_type(net_type);
 771        }
 772        ret = ib_get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type,
 773                                        &sgid, &dgid);
 774        if (ret)
 775                return ret;
 776
 777        rdma_ah_set_sl(ah_attr, wc->sl);
 778        rdma_ah_set_port_num(ah_attr, port_num);
 779
 780        if (rdma_protocol_roce(device, port_num)) {
 781                u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ?
 782                                wc->vlan_id : 0xffff;
 783
 784                if (!(wc->wc_flags & IB_WC_GRH))
 785                        return -EPROTOTYPE;
 786
 787                sgid_attr = get_sgid_attr_from_eth(device, port_num,
 788                                                   vlan_id, &dgid,
 789                                                   gid_type);
 790                if (IS_ERR(sgid_attr))
 791                        return PTR_ERR(sgid_attr);
 792
 793                flow_class = be32_to_cpu(grh->version_tclass_flow);
 794                rdma_move_grh_sgid_attr(ah_attr,
 795                                        &sgid,
 796                                        flow_class & 0xFFFFF,
 797                                        hoplimit,
 798                                        (flow_class >> 20) & 0xFF,
 799                                        sgid_attr);
 800
 801                ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
 802                if (ret)
 803                        rdma_destroy_ah_attr(ah_attr);
 804
 805                return ret;
 806        } else {
 807                rdma_ah_set_dlid(ah_attr, wc->slid);
 808                rdma_ah_set_path_bits(ah_attr, wc->dlid_path_bits);
 809
 810                if ((wc->wc_flags & IB_WC_GRH) == 0)
 811                        return 0;
 812
 813                if (dgid.global.interface_id !=
 814                                        cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) {
 815                        sgid_attr = rdma_find_gid_by_port(
 816                                device, &dgid, IB_GID_TYPE_IB, port_num, NULL);
 817                } else
 818                        sgid_attr = rdma_get_gid_attr(device, port_num, 0);
 819
 820                if (IS_ERR(sgid_attr))
 821                        return PTR_ERR(sgid_attr);
 822                flow_class = be32_to_cpu(grh->version_tclass_flow);
 823                rdma_move_grh_sgid_attr(ah_attr,
 824                                        &sgid,
 825                                        flow_class & 0xFFFFF,
 826                                        hoplimit,
 827                                        (flow_class >> 20) & 0xFF,
 828                                        sgid_attr);
 829
 830                return 0;
 831        }
 832}
 833EXPORT_SYMBOL(ib_init_ah_attr_from_wc);
 834
 835/**
 836 * rdma_move_grh_sgid_attr - Sets the sgid attribute of GRH, taking ownership
 837 * of the reference
 838 *
 839 * @attr:       Pointer to AH attribute structure
 840 * @dgid:       Destination GID
 841 * @flow_label: Flow label
 842 * @hop_limit:  Hop limit
 843 * @traffic_class: traffic class
 844 * @sgid_attr:  Pointer to SGID attribute
 845 *
 846 * This takes ownership of the sgid_attr reference. The caller must ensure
 847 * rdma_destroy_ah_attr() is called before destroying the rdma_ah_attr after
 848 * calling this function.
 849 */
 850void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
 851                             u32 flow_label, u8 hop_limit, u8 traffic_class,
 852                             const struct ib_gid_attr *sgid_attr)
 853{
 854        rdma_ah_set_grh(attr, dgid, flow_label, sgid_attr->index, hop_limit,
 855                        traffic_class);
 856        attr->grh.sgid_attr = sgid_attr;
 857}
 858EXPORT_SYMBOL(rdma_move_grh_sgid_attr);
 859
 860/**
 861 * rdma_destroy_ah_attr - Release reference to SGID attribute of
 862 * ah attribute.
 863 * @ah_attr: Pointer to ah attribute
 864 *
 865 * Release reference to the SGID attribute of the ah attribute if it is
 866 * non NULL. It is safe to call this multiple times, and safe to call it on
 867 * a zero initialized ah_attr.
 868 */
 869void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr)
 870{
 871        if (ah_attr->grh.sgid_attr) {
 872                rdma_put_gid_attr(ah_attr->grh.sgid_attr);
 873                ah_attr->grh.sgid_attr = NULL;
 874        }
 875}
 876EXPORT_SYMBOL(rdma_destroy_ah_attr);
 877
 878struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
 879                                   const struct ib_grh *grh, u8 port_num)
 880{
 881        struct rdma_ah_attr ah_attr;
 882        struct ib_ah *ah;
 883        int ret;
 884
 885        ret = ib_init_ah_attr_from_wc(pd->device, port_num, wc, grh, &ah_attr);
 886        if (ret)
 887                return ERR_PTR(ret);
 888
 889        ah = rdma_create_ah(pd, &ah_attr, RDMA_CREATE_AH_SLEEPABLE);
 890
 891        rdma_destroy_ah_attr(&ah_attr);
 892        return ah;
 893}
 894EXPORT_SYMBOL(ib_create_ah_from_wc);
 895
 896int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
 897{
 898        const struct ib_gid_attr *old_sgid_attr;
 899        int ret;
 900
 901        if (ah->type != ah_attr->type)
 902                return -EINVAL;
 903
 904        ret = rdma_fill_sgid_attr(ah->device, ah_attr, &old_sgid_attr);
 905        if (ret)
 906                return ret;
 907
 908        ret = ah->device->ops.modify_ah ?
 909                ah->device->ops.modify_ah(ah, ah_attr) :
 910                -EOPNOTSUPP;
 911
 912        ah->sgid_attr = rdma_update_sgid_attr(ah_attr, ah->sgid_attr);
 913        rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
 914        return ret;
 915}
 916EXPORT_SYMBOL(rdma_modify_ah);
 917
 918int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
 919{
 920        ah_attr->grh.sgid_attr = NULL;
 921
 922        return ah->device->ops.query_ah ?
 923                ah->device->ops.query_ah(ah, ah_attr) :
 924                -EOPNOTSUPP;
 925}
 926EXPORT_SYMBOL(rdma_query_ah);
 927
 928int rdma_destroy_ah(struct ib_ah *ah, u32 flags)
 929{
 930        const struct ib_gid_attr *sgid_attr = ah->sgid_attr;
 931        struct ib_pd *pd;
 932        int ret;
 933
 934        might_sleep_if(flags & RDMA_DESTROY_AH_SLEEPABLE);
 935
 936        pd = ah->pd;
 937        ret = ah->device->ops.destroy_ah(ah, flags);
 938        if (!ret) {
 939                atomic_dec(&pd->usecnt);
 940                if (sgid_attr)
 941                        rdma_put_gid_attr(sgid_attr);
 942        }
 943
 944        return ret;
 945}
 946EXPORT_SYMBOL(rdma_destroy_ah);
 947
 948/* Shared receive queues */
 949
 950struct ib_srq *ib_create_srq(struct ib_pd *pd,
 951                             struct ib_srq_init_attr *srq_init_attr)
 952{
 953        struct ib_srq *srq;
 954
 955        if (!pd->device->ops.create_srq)
 956                return ERR_PTR(-EOPNOTSUPP);
 957
 958        srq = pd->device->ops.create_srq(pd, srq_init_attr, NULL);
 959
 960        if (!IS_ERR(srq)) {
 961                srq->device        = pd->device;
 962                srq->pd            = pd;
 963                srq->uobject       = NULL;
 964                srq->event_handler = srq_init_attr->event_handler;
 965                srq->srq_context   = srq_init_attr->srq_context;
 966                srq->srq_type      = srq_init_attr->srq_type;
 967                if (ib_srq_has_cq(srq->srq_type)) {
 968                        srq->ext.cq   = srq_init_attr->ext.cq;
 969                        atomic_inc(&srq->ext.cq->usecnt);
 970                }
 971                if (srq->srq_type == IB_SRQT_XRC) {
 972                        srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
 973                        atomic_inc(&srq->ext.xrc.xrcd->usecnt);
 974                }
 975                atomic_inc(&pd->usecnt);
 976                atomic_set(&srq->usecnt, 0);
 977        }
 978
 979        return srq;
 980}
 981EXPORT_SYMBOL(ib_create_srq);
 982
 983int ib_modify_srq(struct ib_srq *srq,
 984                  struct ib_srq_attr *srq_attr,
 985                  enum ib_srq_attr_mask srq_attr_mask)
 986{
 987        return srq->device->ops.modify_srq ?
 988                srq->device->ops.modify_srq(srq, srq_attr, srq_attr_mask,
 989                                            NULL) : -EOPNOTSUPP;
 990}
 991EXPORT_SYMBOL(ib_modify_srq);
 992
 993int ib_query_srq(struct ib_srq *srq,
 994                 struct ib_srq_attr *srq_attr)
 995{
 996        return srq->device->ops.query_srq ?
 997                srq->device->ops.query_srq(srq, srq_attr) : -EOPNOTSUPP;
 998}
 999EXPORT_SYMBOL(ib_query_srq);
1000
1001int ib_destroy_srq(struct ib_srq *srq)
1002{
1003        struct ib_pd *pd;
1004        enum ib_srq_type srq_type;
1005        struct ib_xrcd *uninitialized_var(xrcd);
1006        struct ib_cq *uninitialized_var(cq);
1007        int ret;
1008
1009        if (atomic_read(&srq->usecnt))
1010                return -EBUSY;
1011
1012        pd = srq->pd;
1013        srq_type = srq->srq_type;
1014        if (ib_srq_has_cq(srq_type))
1015                cq = srq->ext.cq;
1016        if (srq_type == IB_SRQT_XRC)
1017                xrcd = srq->ext.xrc.xrcd;
1018
1019        ret = srq->device->ops.destroy_srq(srq);
1020        if (!ret) {
1021                atomic_dec(&pd->usecnt);
1022                if (srq_type == IB_SRQT_XRC)
1023                        atomic_dec(&xrcd->usecnt);
1024                if (ib_srq_has_cq(srq_type))
1025                        atomic_dec(&cq->usecnt);
1026        }
1027
1028        return ret;
1029}
1030EXPORT_SYMBOL(ib_destroy_srq);
1031
1032/* Queue pairs */
1033
1034static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
1035{
1036        struct ib_qp *qp = context;
1037        unsigned long flags;
1038
1039        spin_lock_irqsave(&qp->device->event_handler_lock, flags);
1040        list_for_each_entry(event->element.qp, &qp->open_list, open_list)
1041                if (event->element.qp->event_handler)
1042                        event->element.qp->event_handler(event, event->element.qp->qp_context);
1043        spin_unlock_irqrestore(&qp->device->event_handler_lock, flags);
1044}
1045
1046static void __ib_insert_xrcd_qp(struct ib_xrcd *xrcd, struct ib_qp *qp)
1047{
1048        mutex_lock(&xrcd->tgt_qp_mutex);
1049        list_add(&qp->xrcd_list, &xrcd->tgt_qp_list);
1050        mutex_unlock(&xrcd->tgt_qp_mutex);
1051}
1052
1053static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
1054                                  void (*event_handler)(struct ib_event *, void *),
1055                                  void *qp_context)
1056{
1057        struct ib_qp *qp;
1058        unsigned long flags;
1059        int err;
1060
1061        qp = kzalloc(sizeof *qp, GFP_KERNEL);
1062        if (!qp)
1063                return ERR_PTR(-ENOMEM);
1064
1065        qp->real_qp = real_qp;
1066        err = ib_open_shared_qp_security(qp, real_qp->device);
1067        if (err) {
1068                kfree(qp);
1069                return ERR_PTR(err);
1070        }
1071
1072        qp->real_qp = real_qp;
1073        atomic_inc(&real_qp->usecnt);
1074        qp->device = real_qp->device;
1075        qp->event_handler = event_handler;
1076        qp->qp_context = qp_context;
1077        qp->qp_num = real_qp->qp_num;
1078        qp->qp_type = real_qp->qp_type;
1079
1080        spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
1081        list_add(&qp->open_list, &real_qp->open_list);
1082        spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
1083
1084        return qp;
1085}
1086
1087struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
1088                         struct ib_qp_open_attr *qp_open_attr)
1089{
1090        struct ib_qp *qp, *real_qp;
1091
1092        if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
1093                return ERR_PTR(-EINVAL);
1094
1095        qp = ERR_PTR(-EINVAL);
1096        mutex_lock(&xrcd->tgt_qp_mutex);
1097        list_for_each_entry(real_qp, &xrcd->tgt_qp_list, xrcd_list) {
1098                if (real_qp->qp_num == qp_open_attr->qp_num) {
1099                        qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
1100                                          qp_open_attr->qp_context);
1101                        break;
1102                }
1103        }
1104        mutex_unlock(&xrcd->tgt_qp_mutex);
1105        return qp;
1106}
1107EXPORT_SYMBOL(ib_open_qp);
1108
1109static struct ib_qp *ib_create_xrc_qp(struct ib_qp *qp,
1110                struct ib_qp_init_attr *qp_init_attr)
1111{
1112        struct ib_qp *real_qp = qp;
1113
1114        qp->event_handler = __ib_shared_qp_event_handler;
1115        qp->qp_context = qp;
1116        qp->pd = NULL;
1117        qp->send_cq = qp->recv_cq = NULL;
1118        qp->srq = NULL;
1119        qp->xrcd = qp_init_attr->xrcd;
1120        atomic_inc(&qp_init_attr->xrcd->usecnt);
1121        INIT_LIST_HEAD(&qp->open_list);
1122
1123        qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
1124                          qp_init_attr->qp_context);
1125        if (!IS_ERR(qp))
1126                __ib_insert_xrcd_qp(qp_init_attr->xrcd, real_qp);
1127        else
1128                real_qp->device->ops.destroy_qp(real_qp);
1129        return qp;
1130}
1131
1132struct ib_qp *ib_create_qp(struct ib_pd *pd,
1133                           struct ib_qp_init_attr *qp_init_attr)
1134{
1135        struct ib_device *device = pd ? pd->device : qp_init_attr->xrcd->device;
1136        struct ib_qp *qp;
1137        int ret;
1138
1139        if (qp_init_attr->rwq_ind_tbl &&
1140            (qp_init_attr->recv_cq ||
1141            qp_init_attr->srq || qp_init_attr->cap.max_recv_wr ||
1142            qp_init_attr->cap.max_recv_sge))
1143                return ERR_PTR(-EINVAL);
1144
1145        /*
1146         * If the callers is using the RDMA API calculate the resources
1147         * needed for the RDMA READ/WRITE operations.
1148         *
1149         * Note that these callers need to pass in a port number.
1150         */
1151        if (qp_init_attr->cap.max_rdma_ctxs)
1152                rdma_rw_init_qp(device, qp_init_attr);
1153
1154        qp = _ib_create_qp(device, pd, qp_init_attr, NULL, NULL);
1155        if (IS_ERR(qp))
1156                return qp;
1157
1158        ret = ib_create_qp_security(qp, device);
1159        if (ret) {
1160                ib_destroy_qp(qp);
1161                return ERR_PTR(ret);
1162        }
1163
1164        qp->real_qp    = qp;
1165        qp->qp_type    = qp_init_attr->qp_type;
1166        qp->rwq_ind_tbl = qp_init_attr->rwq_ind_tbl;
1167
1168        atomic_set(&qp->usecnt, 0);
1169        qp->mrs_used = 0;
1170        spin_lock_init(&qp->mr_lock);
1171        INIT_LIST_HEAD(&qp->rdma_mrs);
1172        INIT_LIST_HEAD(&qp->sig_mrs);
1173        qp->port = 0;
1174
1175        if (qp_init_attr->qp_type == IB_QPT_XRC_TGT)
1176                return ib_create_xrc_qp(qp, qp_init_attr);
1177
1178        qp->event_handler = qp_init_attr->event_handler;
1179        qp->qp_context = qp_init_attr->qp_context;
1180        if (qp_init_attr->qp_type == IB_QPT_XRC_INI) {
1181                qp->recv_cq = NULL;
1182                qp->srq = NULL;
1183        } else {
1184                qp->recv_cq = qp_init_attr->recv_cq;
1185                if (qp_init_attr->recv_cq)
1186                        atomic_inc(&qp_init_attr->recv_cq->usecnt);
1187                qp->srq = qp_init_attr->srq;
1188                if (qp->srq)
1189                        atomic_inc(&qp_init_attr->srq->usecnt);
1190        }
1191
1192        qp->send_cq = qp_init_attr->send_cq;
1193        qp->xrcd    = NULL;
1194
1195        atomic_inc(&pd->usecnt);
1196        if (qp_init_attr->send_cq)
1197                atomic_inc(&qp_init_attr->send_cq->usecnt);
1198        if (qp_init_attr->rwq_ind_tbl)
1199                atomic_inc(&qp->rwq_ind_tbl->usecnt);
1200
1201        if (qp_init_attr->cap.max_rdma_ctxs) {
1202                ret = rdma_rw_init_mrs(qp, qp_init_attr);
1203                if (ret) {
1204                        pr_err("failed to init MR pool ret= %d\n", ret);
1205                        ib_destroy_qp(qp);
1206                        return ERR_PTR(ret);
1207                }
1208        }
1209
1210        /*
1211         * Note: all hw drivers guarantee that max_send_sge is lower than
1212         * the device RDMA WRITE SGE limit but not all hw drivers ensure that
1213         * max_send_sge <= max_sge_rd.
1214         */
1215        qp->max_write_sge = qp_init_attr->cap.max_send_sge;
1216        qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge,
1217                                 device->attrs.max_sge_rd);
1218
1219        return qp;
1220}
1221EXPORT_SYMBOL(ib_create_qp);
1222
1223static const struct {
1224        int                     valid;
1225        enum ib_qp_attr_mask    req_param[IB_QPT_MAX];
1226        enum ib_qp_attr_mask    opt_param[IB_QPT_MAX];
1227} qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
1228        [IB_QPS_RESET] = {
1229                [IB_QPS_RESET] = { .valid = 1 },
1230                [IB_QPS_INIT]  = {
1231                        .valid = 1,
1232                        .req_param = {
1233                                [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
1234                                                IB_QP_PORT                      |
1235                                                IB_QP_QKEY),
1236                                [IB_QPT_RAW_PACKET] = IB_QP_PORT,
1237                                [IB_QPT_UC]  = (IB_QP_PKEY_INDEX                |
1238                                                IB_QP_PORT                      |
1239                                                IB_QP_ACCESS_FLAGS),
1240                                [IB_QPT_RC]  = (IB_QP_PKEY_INDEX                |
1241                                                IB_QP_PORT                      |
1242                                                IB_QP_ACCESS_FLAGS),
1243                                [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX            |
1244                                                IB_QP_PORT                      |
1245                                                IB_QP_ACCESS_FLAGS),
1246                                [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX            |
1247                                                IB_QP_PORT                      |
1248                                                IB_QP_ACCESS_FLAGS),
1249                                [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
1250                                                IB_QP_QKEY),
1251                                [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
1252                                                IB_QP_QKEY),
1253                        }
1254                },
1255        },
1256        [IB_QPS_INIT]  = {
1257                [IB_QPS_RESET] = { .valid = 1 },
1258                [IB_QPS_ERR] =   { .valid = 1 },
1259                [IB_QPS_INIT]  = {
1260                        .valid = 1,
1261                        .opt_param = {
1262                                [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
1263                                                IB_QP_PORT                      |
1264                                                IB_QP_QKEY),
1265                                [IB_QPT_UC]  = (IB_QP_PKEY_INDEX                |
1266                                                IB_QP_PORT                      |
1267                                                IB_QP_ACCESS_FLAGS),
1268                                [IB_QPT_RC]  = (IB_QP_PKEY_INDEX                |
1269                                                IB_QP_PORT                      |
1270                                                IB_QP_ACCESS_FLAGS),
1271                                [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX            |
1272                                                IB_QP_PORT                      |
1273                                                IB_QP_ACCESS_FLAGS),
1274                                [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX            |
1275                                                IB_QP_PORT                      |
1276                                                IB_QP_ACCESS_FLAGS),
1277                                [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
1278                                                IB_QP_QKEY),
1279                                [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
1280                                                IB_QP_QKEY),
1281                        }
1282                },
1283                [IB_QPS_RTR]   = {
1284                        .valid = 1,
1285                        .req_param = {
1286                                [IB_QPT_UC]  = (IB_QP_AV                        |
1287                                                IB_QP_PATH_MTU                  |
1288                                                IB_QP_DEST_QPN                  |
1289                                                IB_QP_RQ_PSN),
1290                                [IB_QPT_RC]  = (IB_QP_AV                        |
1291                                                IB_QP_PATH_MTU                  |
1292                                                IB_QP_DEST_QPN                  |
1293                                                IB_QP_RQ_PSN                    |
1294                                                IB_QP_MAX_DEST_RD_ATOMIC        |
1295                                                IB_QP_MIN_RNR_TIMER),
1296                                [IB_QPT_XRC_INI] = (IB_QP_AV                    |
1297                                                IB_QP_PATH_MTU                  |
1298                                                IB_QP_DEST_QPN                  |
1299                                                IB_QP_RQ_PSN),
1300                                [IB_QPT_XRC_TGT] = (IB_QP_AV                    |
1301                                                IB_QP_PATH_MTU                  |
1302                                                IB_QP_DEST_QPN                  |
1303                                                IB_QP_RQ_PSN                    |
1304                                                IB_QP_MAX_DEST_RD_ATOMIC        |
1305                                                IB_QP_MIN_RNR_TIMER),
1306                        },
1307                        .opt_param = {
1308                                 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX               |
1309                                                 IB_QP_QKEY),
1310                                 [IB_QPT_UC]  = (IB_QP_ALT_PATH                 |
1311                                                 IB_QP_ACCESS_FLAGS             |
1312                                                 IB_QP_PKEY_INDEX),
1313                                 [IB_QPT_RC]  = (IB_QP_ALT_PATH                 |
1314                                                 IB_QP_ACCESS_FLAGS             |
1315                                                 IB_QP_PKEY_INDEX),
1316                                 [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH             |
1317                                                 IB_QP_ACCESS_FLAGS             |
1318                                                 IB_QP_PKEY_INDEX),
1319                                 [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH             |
1320                                                 IB_QP_ACCESS_FLAGS             |
1321                                                 IB_QP_PKEY_INDEX),
1322                                 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX               |
1323                                                 IB_QP_QKEY),
1324                                 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX               |
1325                                                 IB_QP_QKEY),
1326                         },
1327                },
1328        },
1329        [IB_QPS_RTR]   = {
1330                [IB_QPS_RESET] = { .valid = 1 },
1331                [IB_QPS_ERR] =   { .valid = 1 },
1332                [IB_QPS_RTS]   = {
1333                        .valid = 1,
1334                        .req_param = {
1335                                [IB_QPT_UD]  = IB_QP_SQ_PSN,
1336                                [IB_QPT_UC]  = IB_QP_SQ_PSN,
1337                                [IB_QPT_RC]  = (IB_QP_TIMEOUT                   |
1338                                                IB_QP_RETRY_CNT                 |
1339                                                IB_QP_RNR_RETRY                 |
1340                                                IB_QP_SQ_PSN                    |
1341                                                IB_QP_MAX_QP_RD_ATOMIC),
1342                                [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT               |
1343                                                IB_QP_RETRY_CNT                 |
1344                                                IB_QP_RNR_RETRY                 |
1345                                                IB_QP_SQ_PSN                    |
1346                                                IB_QP_MAX_QP_RD_ATOMIC),
1347                                [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT               |
1348                                                IB_QP_SQ_PSN),
1349                                [IB_QPT_SMI] = IB_QP_SQ_PSN,
1350                                [IB_QPT_GSI] = IB_QP_SQ_PSN,
1351                        },
1352                        .opt_param = {
1353                                 [IB_QPT_UD]  = (IB_QP_CUR_STATE                |
1354                                                 IB_QP_QKEY),
1355                                 [IB_QPT_UC]  = (IB_QP_CUR_STATE                |
1356                                                 IB_QP_ALT_PATH                 |
1357                                                 IB_QP_ACCESS_FLAGS             |
1358                                                 IB_QP_PATH_MIG_STATE),
1359                                 [IB_QPT_RC]  = (IB_QP_CUR_STATE                |
1360                                                 IB_QP_ALT_PATH                 |
1361                                                 IB_QP_ACCESS_FLAGS             |
1362                                                 IB_QP_MIN_RNR_TIMER            |
1363                                                 IB_QP_PATH_MIG_STATE),
1364                                 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE            |
1365                                                 IB_QP_ALT_PATH                 |
1366                                                 IB_QP_ACCESS_FLAGS             |
1367                                                 IB_QP_PATH_MIG_STATE),
1368                                 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE            |
1369                                                 IB_QP_ALT_PATH                 |
1370                                                 IB_QP_ACCESS_FLAGS             |
1371                                                 IB_QP_MIN_RNR_TIMER            |
1372                                                 IB_QP_PATH_MIG_STATE),
1373                                 [IB_QPT_SMI] = (IB_QP_CUR_STATE                |
1374                                                 IB_QP_QKEY),
1375                                 [IB_QPT_GSI] = (IB_QP_CUR_STATE                |
1376                                                 IB_QP_QKEY),
1377                                 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1378                         }
1379                }
1380        },
1381        [IB_QPS_RTS]   = {
1382                [IB_QPS_RESET] = { .valid = 1 },
1383                [IB_QPS_ERR] =   { .valid = 1 },
1384                [IB_QPS_RTS]   = {
1385                        .valid = 1,
1386                        .opt_param = {
1387                                [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1388                                                IB_QP_QKEY),
1389                                [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1390                                                IB_QP_ACCESS_FLAGS              |
1391                                                IB_QP_ALT_PATH                  |
1392                                                IB_QP_PATH_MIG_STATE),
1393                                [IB_QPT_RC]  = (IB_QP_CUR_STATE                 |
1394                                                IB_QP_ACCESS_FLAGS              |
1395                                                IB_QP_ALT_PATH                  |
1396                                                IB_QP_PATH_MIG_STATE            |
1397                                                IB_QP_MIN_RNR_TIMER),
1398                                [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE             |
1399                                                IB_QP_ACCESS_FLAGS              |
1400                                                IB_QP_ALT_PATH                  |
1401                                                IB_QP_PATH_MIG_STATE),
1402                                [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE             |
1403                                                IB_QP_ACCESS_FLAGS              |
1404                                                IB_QP_ALT_PATH                  |
1405                                                IB_QP_PATH_MIG_STATE            |
1406                                                IB_QP_MIN_RNR_TIMER),
1407                                [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1408                                                IB_QP_QKEY),
1409                                [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1410                                                IB_QP_QKEY),
1411                                [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1412                        }
1413                },
1414                [IB_QPS_SQD]   = {
1415                        .valid = 1,
1416                        .opt_param = {
1417                                [IB_QPT_UD]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1418                                [IB_QPT_UC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1419                                [IB_QPT_RC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1420                                [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1421                                [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
1422                                [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1423                                [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
1424                        }
1425                },
1426        },
1427        [IB_QPS_SQD]   = {
1428                [IB_QPS_RESET] = { .valid = 1 },
1429                [IB_QPS_ERR] =   { .valid = 1 },
1430                [IB_QPS_RTS]   = {
1431                        .valid = 1,
1432                        .opt_param = {
1433                                [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1434                                                IB_QP_QKEY),
1435                                [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1436                                                IB_QP_ALT_PATH                  |
1437                                                IB_QP_ACCESS_FLAGS              |
1438                                                IB_QP_PATH_MIG_STATE),
1439                                [IB_QPT_RC]  = (IB_QP_CUR_STATE                 |
1440                                                IB_QP_ALT_PATH                  |
1441                                                IB_QP_ACCESS_FLAGS              |
1442                                                IB_QP_MIN_RNR_TIMER             |
1443                                                IB_QP_PATH_MIG_STATE),
1444                                [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE             |
1445                                                IB_QP_ALT_PATH                  |
1446                                                IB_QP_ACCESS_FLAGS              |
1447                                                IB_QP_PATH_MIG_STATE),
1448                                [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE             |
1449                                                IB_QP_ALT_PATH                  |
1450                                                IB_QP_ACCESS_FLAGS              |
1451                                                IB_QP_MIN_RNR_TIMER             |
1452                                                IB_QP_PATH_MIG_STATE),
1453                                [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1454                                                IB_QP_QKEY),
1455                                [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1456                                                IB_QP_QKEY),
1457                        }
1458                },
1459                [IB_QPS_SQD]   = {
1460                        .valid = 1,
1461                        .opt_param = {
1462                                [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
1463                                                IB_QP_QKEY),
1464                                [IB_QPT_UC]  = (IB_QP_AV                        |
1465                                                IB_QP_ALT_PATH                  |
1466                                                IB_QP_ACCESS_FLAGS              |
1467                                                IB_QP_PKEY_INDEX                |
1468                                                IB_QP_PATH_MIG_STATE),
1469                                [IB_QPT_RC]  = (IB_QP_PORT                      |
1470                                                IB_QP_AV                        |
1471                                                IB_QP_TIMEOUT                   |
1472                                                IB_QP_RETRY_CNT                 |
1473                                                IB_QP_RNR_RETRY                 |
1474                                                IB_QP_MAX_QP_RD_ATOMIC          |
1475                                                IB_QP_MAX_DEST_RD_ATOMIC        |
1476                                                IB_QP_ALT_PATH                  |
1477                                                IB_QP_ACCESS_FLAGS              |
1478                                                IB_QP_PKEY_INDEX                |
1479                                                IB_QP_MIN_RNR_TIMER             |
1480                                                IB_QP_PATH_MIG_STATE),
1481                                [IB_QPT_XRC_INI] = (IB_QP_PORT                  |
1482                                                IB_QP_AV                        |
1483                                                IB_QP_TIMEOUT                   |
1484                                                IB_QP_RETRY_CNT                 |
1485                                                IB_QP_RNR_RETRY                 |
1486                                                IB_QP_MAX_QP_RD_ATOMIC          |
1487                                                IB_QP_ALT_PATH                  |
1488                                                IB_QP_ACCESS_FLAGS              |
1489                                                IB_QP_PKEY_INDEX                |
1490                                                IB_QP_PATH_MIG_STATE),
1491                                [IB_QPT_XRC_TGT] = (IB_QP_PORT                  |
1492                                                IB_QP_AV                        |
1493                                                IB_QP_TIMEOUT                   |
1494                                                IB_QP_MAX_DEST_RD_ATOMIC        |
1495                                                IB_QP_ALT_PATH                  |
1496                                                IB_QP_ACCESS_FLAGS              |
1497                                                IB_QP_PKEY_INDEX                |
1498                                                IB_QP_MIN_RNR_TIMER             |
1499                                                IB_QP_PATH_MIG_STATE),
1500                                [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
1501                                                IB_QP_QKEY),
1502                                [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
1503                                                IB_QP_QKEY),
1504                        }
1505                }
1506        },
1507        [IB_QPS_SQE]   = {
1508                [IB_QPS_RESET] = { .valid = 1 },
1509                [IB_QPS_ERR] =   { .valid = 1 },
1510                [IB_QPS_RTS]   = {
1511                        .valid = 1,
1512                        .opt_param = {
1513                                [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1514                                                IB_QP_QKEY),
1515                                [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1516                                                IB_QP_ACCESS_FLAGS),
1517                                [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1518                                                IB_QP_QKEY),
1519                                [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1520                                                IB_QP_QKEY),
1521                        }
1522                }
1523        },
1524        [IB_QPS_ERR] = {
1525                [IB_QPS_RESET] = { .valid = 1 },
1526                [IB_QPS_ERR] =   { .valid = 1 }
1527        }
1528};
1529
1530bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1531                        enum ib_qp_type type, enum ib_qp_attr_mask mask)
1532{
1533        enum ib_qp_attr_mask req_param, opt_param;
1534
1535        if (mask & IB_QP_CUR_STATE  &&
1536            cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
1537            cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
1538                return false;
1539
1540        if (!qp_state_table[cur_state][next_state].valid)
1541                return false;
1542
1543        req_param = qp_state_table[cur_state][next_state].req_param[type];
1544        opt_param = qp_state_table[cur_state][next_state].opt_param[type];
1545
1546        if ((mask & req_param) != req_param)
1547                return false;
1548
1549        if (mask & ~(req_param | opt_param | IB_QP_STATE))
1550                return false;
1551
1552        return true;
1553}
1554EXPORT_SYMBOL(ib_modify_qp_is_ok);
1555
1556/**
1557 * ib_resolve_eth_dmac - Resolve destination mac address
1558 * @device:             Device to consider
1559 * @ah_attr:            address handle attribute which describes the
1560 *                      source and destination parameters
1561 * ib_resolve_eth_dmac() resolves destination mac address and L3 hop limit It
1562 * returns 0 on success or appropriate error code. It initializes the
1563 * necessary ah_attr fields when call is successful.
1564 */
1565static int ib_resolve_eth_dmac(struct ib_device *device,
1566                               struct rdma_ah_attr *ah_attr)
1567{
1568        int ret = 0;
1569
1570        if (rdma_is_multicast_addr((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1571                if (ipv6_addr_v4mapped((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1572                        __be32 addr = 0;
1573
1574                        memcpy(&addr, ah_attr->grh.dgid.raw + 12, 4);
1575                        ip_eth_mc_map(addr, (char *)ah_attr->roce.dmac);
1576                } else {
1577                        ipv6_eth_mc_map((struct in6_addr *)ah_attr->grh.dgid.raw,
1578                                        (char *)ah_attr->roce.dmac);
1579                }
1580        } else {
1581                ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
1582        }
1583        return ret;
1584}
1585
1586static bool is_qp_type_connected(const struct ib_qp *qp)
1587{
1588        return (qp->qp_type == IB_QPT_UC ||
1589                qp->qp_type == IB_QPT_RC ||
1590                qp->qp_type == IB_QPT_XRC_INI ||
1591                qp->qp_type == IB_QPT_XRC_TGT);
1592}
1593
1594/**
1595 * IB core internal function to perform QP attributes modification.
1596 */
1597static int _ib_modify_qp(struct ib_qp *qp, struct ib_qp_attr *attr,
1598                         int attr_mask, struct ib_udata *udata)
1599{
1600        u8 port = attr_mask & IB_QP_PORT ? attr->port_num : qp->port;
1601        const struct ib_gid_attr *old_sgid_attr_av;
1602        const struct ib_gid_attr *old_sgid_attr_alt_av;
1603        int ret;
1604
1605        if (attr_mask & IB_QP_AV) {
1606                ret = rdma_fill_sgid_attr(qp->device, &attr->ah_attr,
1607                                          &old_sgid_attr_av);
1608                if (ret)
1609                        return ret;
1610        }
1611        if (attr_mask & IB_QP_ALT_PATH) {
1612                /*
1613                 * FIXME: This does not track the migration state, so if the
1614                 * user loads a new alternate path after the HW has migrated
1615                 * from primary->alternate we will keep the wrong
1616                 * references. This is OK for IB because the reference
1617                 * counting does not serve any functional purpose.
1618                 */
1619                ret = rdma_fill_sgid_attr(qp->device, &attr->alt_ah_attr,
1620                                          &old_sgid_attr_alt_av);
1621                if (ret)
1622                        goto out_av;
1623
1624                /*
1625                 * Today the core code can only handle alternate paths and APM
1626                 * for IB. Ban them in roce mode.
1627                 */
1628                if (!(rdma_protocol_ib(qp->device,
1629                                       attr->alt_ah_attr.port_num) &&
1630                      rdma_protocol_ib(qp->device, port))) {
1631                        ret = EINVAL;
1632                        goto out;
1633                }
1634        }
1635
1636        /*
1637         * If the user provided the qp_attr then we have to resolve it. Kernel
1638         * users have to provide already resolved rdma_ah_attr's
1639         */
1640        if (udata && (attr_mask & IB_QP_AV) &&
1641            attr->ah_attr.type == RDMA_AH_ATTR_TYPE_ROCE &&
1642            is_qp_type_connected(qp)) {
1643                ret = ib_resolve_eth_dmac(qp->device, &attr->ah_attr);
1644                if (ret)
1645                        goto out;
1646        }
1647
1648        if (rdma_ib_or_roce(qp->device, port)) {
1649                if (attr_mask & IB_QP_RQ_PSN && attr->rq_psn & ~0xffffff) {
1650                        dev_warn(&qp->device->dev,
1651                                 "%s rq_psn overflow, masking to 24 bits\n",
1652                                 __func__);
1653                        attr->rq_psn &= 0xffffff;
1654                }
1655
1656                if (attr_mask & IB_QP_SQ_PSN && attr->sq_psn & ~0xffffff) {
1657                        dev_warn(&qp->device->dev,
1658                                 " %s sq_psn overflow, masking to 24 bits\n",
1659                                 __func__);
1660                        attr->sq_psn &= 0xffffff;
1661                }
1662        }
1663
1664        ret = ib_security_modify_qp(qp, attr, attr_mask, udata);
1665        if (ret)
1666                goto out;
1667
1668        if (attr_mask & IB_QP_PORT)
1669                qp->port = attr->port_num;
1670        if (attr_mask & IB_QP_AV)
1671                qp->av_sgid_attr =
1672                        rdma_update_sgid_attr(&attr->ah_attr, qp->av_sgid_attr);
1673        if (attr_mask & IB_QP_ALT_PATH)
1674                qp->alt_path_sgid_attr = rdma_update_sgid_attr(
1675                        &attr->alt_ah_attr, qp->alt_path_sgid_attr);
1676
1677out:
1678        if (attr_mask & IB_QP_ALT_PATH)
1679                rdma_unfill_sgid_attr(&attr->alt_ah_attr, old_sgid_attr_alt_av);
1680out_av:
1681        if (attr_mask & IB_QP_AV)
1682                rdma_unfill_sgid_attr(&attr->ah_attr, old_sgid_attr_av);
1683        return ret;
1684}
1685
1686/**
1687 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
1688 * @ib_qp: The QP to modify.
1689 * @attr: On input, specifies the QP attributes to modify.  On output,
1690 *   the current values of selected QP attributes are returned.
1691 * @attr_mask: A bit-mask used to specify which attributes of the QP
1692 *   are being modified.
1693 * @udata: pointer to user's input output buffer information
1694 *   are being modified.
1695 * It returns 0 on success and returns appropriate error code on error.
1696 */
1697int ib_modify_qp_with_udata(struct ib_qp *ib_qp, struct ib_qp_attr *attr,
1698                            int attr_mask, struct ib_udata *udata)
1699{
1700        return _ib_modify_qp(ib_qp->real_qp, attr, attr_mask, udata);
1701}
1702EXPORT_SYMBOL(ib_modify_qp_with_udata);
1703
1704int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u8 *speed, u8 *width)
1705{
1706        int rc;
1707        u32 netdev_speed;
1708        struct net_device *netdev;
1709        struct ethtool_link_ksettings lksettings;
1710
1711        if (rdma_port_get_link_layer(dev, port_num) != IB_LINK_LAYER_ETHERNET)
1712                return -EINVAL;
1713
1714        if (!dev->ops.get_netdev)
1715                return -EOPNOTSUPP;
1716
1717        netdev = dev->ops.get_netdev(dev, port_num);
1718        if (!netdev)
1719                return -ENODEV;
1720
1721        rtnl_lock();
1722        rc = __ethtool_get_link_ksettings(netdev, &lksettings);
1723        rtnl_unlock();
1724
1725        dev_put(netdev);
1726
1727        if (!rc) {
1728                netdev_speed = lksettings.base.speed;
1729        } else {
1730                netdev_speed = SPEED_1000;
1731                pr_warn("%s speed is unknown, defaulting to %d\n", netdev->name,
1732                        netdev_speed);
1733        }
1734
1735        if (netdev_speed <= SPEED_1000) {
1736                *width = IB_WIDTH_1X;
1737                *speed = IB_SPEED_SDR;
1738        } else if (netdev_speed <= SPEED_10000) {
1739                *width = IB_WIDTH_1X;
1740                *speed = IB_SPEED_FDR10;
1741        } else if (netdev_speed <= SPEED_20000) {
1742                *width = IB_WIDTH_4X;
1743                *speed = IB_SPEED_DDR;
1744        } else if (netdev_speed <= SPEED_25000) {
1745                *width = IB_WIDTH_1X;
1746                *speed = IB_SPEED_EDR;
1747        } else if (netdev_speed <= SPEED_40000) {
1748                *width = IB_WIDTH_4X;
1749                *speed = IB_SPEED_FDR10;
1750        } else {
1751                *width = IB_WIDTH_4X;
1752                *speed = IB_SPEED_EDR;
1753        }
1754
1755        return 0;
1756}
1757EXPORT_SYMBOL(ib_get_eth_speed);
1758
1759int ib_modify_qp(struct ib_qp *qp,
1760                 struct ib_qp_attr *qp_attr,
1761                 int qp_attr_mask)
1762{
1763        return _ib_modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL);
1764}
1765EXPORT_SYMBOL(ib_modify_qp);
1766
1767int ib_query_qp(struct ib_qp *qp,
1768                struct ib_qp_attr *qp_attr,
1769                int qp_attr_mask,
1770                struct ib_qp_init_attr *qp_init_attr)
1771{
1772        qp_attr->ah_attr.grh.sgid_attr = NULL;
1773        qp_attr->alt_ah_attr.grh.sgid_attr = NULL;
1774
1775        return qp->device->ops.query_qp ?
1776                qp->device->ops.query_qp(qp->real_qp, qp_attr, qp_attr_mask,
1777                                         qp_init_attr) : -EOPNOTSUPP;
1778}
1779EXPORT_SYMBOL(ib_query_qp);
1780
1781int ib_close_qp(struct ib_qp *qp)
1782{
1783        struct ib_qp *real_qp;
1784        unsigned long flags;
1785
1786        real_qp = qp->real_qp;
1787        if (real_qp == qp)
1788                return -EINVAL;
1789
1790        spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
1791        list_del(&qp->open_list);
1792        spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
1793
1794        atomic_dec(&real_qp->usecnt);
1795        if (qp->qp_sec)
1796                ib_close_shared_qp_security(qp->qp_sec);
1797        kfree(qp);
1798
1799        return 0;
1800}
1801EXPORT_SYMBOL(ib_close_qp);
1802
1803static int __ib_destroy_shared_qp(struct ib_qp *qp)
1804{
1805        struct ib_xrcd *xrcd;
1806        struct ib_qp *real_qp;
1807        int ret;
1808
1809        real_qp = qp->real_qp;
1810        xrcd = real_qp->xrcd;
1811
1812        mutex_lock(&xrcd->tgt_qp_mutex);
1813        ib_close_qp(qp);
1814        if (atomic_read(&real_qp->usecnt) == 0)
1815                list_del(&real_qp->xrcd_list);
1816        else
1817                real_qp = NULL;
1818        mutex_unlock(&xrcd->tgt_qp_mutex);
1819
1820        if (real_qp) {
1821                ret = ib_destroy_qp(real_qp);
1822                if (!ret)
1823                        atomic_dec(&xrcd->usecnt);
1824                else
1825                        __ib_insert_xrcd_qp(xrcd, real_qp);
1826        }
1827
1828        return 0;
1829}
1830
1831int ib_destroy_qp(struct ib_qp *qp)
1832{
1833        const struct ib_gid_attr *alt_path_sgid_attr = qp->alt_path_sgid_attr;
1834        const struct ib_gid_attr *av_sgid_attr = qp->av_sgid_attr;
1835        struct ib_pd *pd;
1836        struct ib_cq *scq, *rcq;
1837        struct ib_srq *srq;
1838        struct ib_rwq_ind_table *ind_tbl;
1839        struct ib_qp_security *sec;
1840        int ret;
1841
1842        WARN_ON_ONCE(qp->mrs_used > 0);
1843
1844        if (atomic_read(&qp->usecnt))
1845                return -EBUSY;
1846
1847        if (qp->real_qp != qp)
1848                return __ib_destroy_shared_qp(qp);
1849
1850        pd   = qp->pd;
1851        scq  = qp->send_cq;
1852        rcq  = qp->recv_cq;
1853        srq  = qp->srq;
1854        ind_tbl = qp->rwq_ind_tbl;
1855        sec  = qp->qp_sec;
1856        if (sec)
1857                ib_destroy_qp_security_begin(sec);
1858
1859        if (!qp->uobject)
1860                rdma_rw_cleanup_mrs(qp);
1861
1862        rdma_restrack_del(&qp->res);
1863        ret = qp->device->ops.destroy_qp(qp);
1864        if (!ret) {
1865                if (alt_path_sgid_attr)
1866                        rdma_put_gid_attr(alt_path_sgid_attr);
1867                if (av_sgid_attr)
1868                        rdma_put_gid_attr(av_sgid_attr);
1869                if (pd)
1870                        atomic_dec(&pd->usecnt);
1871                if (scq)
1872                        atomic_dec(&scq->usecnt);
1873                if (rcq)
1874                        atomic_dec(&rcq->usecnt);
1875                if (srq)
1876                        atomic_dec(&srq->usecnt);
1877                if (ind_tbl)
1878                        atomic_dec(&ind_tbl->usecnt);
1879                if (sec)
1880                        ib_destroy_qp_security_end(sec);
1881        } else {
1882                if (sec)
1883                        ib_destroy_qp_security_abort(sec);
1884        }
1885
1886        return ret;
1887}
1888EXPORT_SYMBOL(ib_destroy_qp);
1889
1890/* Completion queues */
1891
1892struct ib_cq *__ib_create_cq(struct ib_device *device,
1893                             ib_comp_handler comp_handler,
1894                             void (*event_handler)(struct ib_event *, void *),
1895                             void *cq_context,
1896                             const struct ib_cq_init_attr *cq_attr,
1897                             const char *caller)
1898{
1899        struct ib_cq *cq;
1900
1901        cq = device->ops.create_cq(device, cq_attr, NULL, NULL);
1902
1903        if (!IS_ERR(cq)) {
1904                cq->device        = device;
1905                cq->uobject       = NULL;
1906                cq->comp_handler  = comp_handler;
1907                cq->event_handler = event_handler;
1908                cq->cq_context    = cq_context;
1909                atomic_set(&cq->usecnt, 0);
1910                cq->res.type = RDMA_RESTRACK_CQ;
1911                rdma_restrack_set_task(&cq->res, caller);
1912                rdma_restrack_kadd(&cq->res);
1913        }
1914
1915        return cq;
1916}
1917EXPORT_SYMBOL(__ib_create_cq);
1918
1919int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period)
1920{
1921        return cq->device->ops.modify_cq ?
1922                cq->device->ops.modify_cq(cq, cq_count,
1923                                          cq_period) : -EOPNOTSUPP;
1924}
1925EXPORT_SYMBOL(rdma_set_cq_moderation);
1926
1927int ib_destroy_cq(struct ib_cq *cq)
1928{
1929        if (atomic_read(&cq->usecnt))
1930                return -EBUSY;
1931
1932        rdma_restrack_del(&cq->res);
1933        return cq->device->ops.destroy_cq(cq);
1934}
1935EXPORT_SYMBOL(ib_destroy_cq);
1936
1937int ib_resize_cq(struct ib_cq *cq, int cqe)
1938{
1939        return cq->device->ops.resize_cq ?
1940                cq->device->ops.resize_cq(cq, cqe, NULL) : -EOPNOTSUPP;
1941}
1942EXPORT_SYMBOL(ib_resize_cq);
1943
1944/* Memory regions */
1945
1946int ib_dereg_mr(struct ib_mr *mr)
1947{
1948        struct ib_pd *pd = mr->pd;
1949        struct ib_dm *dm = mr->dm;
1950        int ret;
1951
1952        rdma_restrack_del(&mr->res);
1953        ret = mr->device->ops.dereg_mr(mr);
1954        if (!ret) {
1955                atomic_dec(&pd->usecnt);
1956                if (dm)
1957                        atomic_dec(&dm->usecnt);
1958        }
1959
1960        return ret;
1961}
1962EXPORT_SYMBOL(ib_dereg_mr);
1963
1964/**
1965 * ib_alloc_mr() - Allocates a memory region
1966 * @pd:            protection domain associated with the region
1967 * @mr_type:       memory region type
1968 * @max_num_sg:    maximum sg entries available for registration.
1969 *
1970 * Notes:
1971 * Memory registeration page/sg lists must not exceed max_num_sg.
1972 * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
1973 * max_num_sg * used_page_size.
1974 *
1975 */
1976struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
1977                          enum ib_mr_type mr_type,
1978                          u32 max_num_sg)
1979{
1980        struct ib_mr *mr;
1981
1982        if (!pd->device->ops.alloc_mr)
1983                return ERR_PTR(-EOPNOTSUPP);
1984
1985        mr = pd->device->ops.alloc_mr(pd, mr_type, max_num_sg);
1986        if (!IS_ERR(mr)) {
1987                mr->device  = pd->device;
1988                mr->pd      = pd;
1989                mr->dm      = NULL;
1990                mr->uobject = NULL;
1991                atomic_inc(&pd->usecnt);
1992                mr->need_inval = false;
1993                mr->res.type = RDMA_RESTRACK_MR;
1994                rdma_restrack_kadd(&mr->res);
1995        }
1996
1997        return mr;
1998}
1999EXPORT_SYMBOL(ib_alloc_mr);
2000
2001/* "Fast" memory regions */
2002
2003struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
2004                            int mr_access_flags,
2005                            struct ib_fmr_attr *fmr_attr)
2006{
2007        struct ib_fmr *fmr;
2008
2009        if (!pd->device->ops.alloc_fmr)
2010                return ERR_PTR(-EOPNOTSUPP);
2011
2012        fmr = pd->device->ops.alloc_fmr(pd, mr_access_flags, fmr_attr);
2013        if (!IS_ERR(fmr)) {
2014                fmr->device = pd->device;
2015                fmr->pd     = pd;
2016                atomic_inc(&pd->usecnt);
2017        }
2018
2019        return fmr;
2020}
2021EXPORT_SYMBOL(ib_alloc_fmr);
2022
2023int ib_unmap_fmr(struct list_head *fmr_list)
2024{
2025        struct ib_fmr *fmr;
2026
2027        if (list_empty(fmr_list))
2028                return 0;
2029
2030        fmr = list_entry(fmr_list->next, struct ib_fmr, list);
2031        return fmr->device->ops.unmap_fmr(fmr_list);
2032}
2033EXPORT_SYMBOL(ib_unmap_fmr);
2034
2035int ib_dealloc_fmr(struct ib_fmr *fmr)
2036{
2037        struct ib_pd *pd;
2038        int ret;
2039
2040        pd = fmr->pd;
2041        ret = fmr->device->ops.dealloc_fmr(fmr);
2042        if (!ret)
2043                atomic_dec(&pd->usecnt);
2044
2045        return ret;
2046}
2047EXPORT_SYMBOL(ib_dealloc_fmr);
2048
2049/* Multicast groups */
2050
2051static bool is_valid_mcast_lid(struct ib_qp *qp, u16 lid)
2052{
2053        struct ib_qp_init_attr init_attr = {};
2054        struct ib_qp_attr attr = {};
2055        int num_eth_ports = 0;
2056        int port;
2057
2058        /* If QP state >= init, it is assigned to a port and we can check this
2059         * port only.
2060         */
2061        if (!ib_query_qp(qp, &attr, IB_QP_STATE | IB_QP_PORT, &init_attr)) {
2062                if (attr.qp_state >= IB_QPS_INIT) {
2063                        if (rdma_port_get_link_layer(qp->device, attr.port_num) !=
2064                            IB_LINK_LAYER_INFINIBAND)
2065                                return true;
2066                        goto lid_check;
2067                }
2068        }
2069
2070        /* Can't get a quick answer, iterate over all ports */
2071        for (port = 0; port < qp->device->phys_port_cnt; port++)
2072                if (rdma_port_get_link_layer(qp->device, port) !=
2073                    IB_LINK_LAYER_INFINIBAND)
2074                        num_eth_ports++;
2075
2076        /* If we have at lease one Ethernet port, RoCE annex declares that
2077         * multicast LID should be ignored. We can't tell at this step if the
2078         * QP belongs to an IB or Ethernet port.
2079         */
2080        if (num_eth_ports)
2081                return true;
2082
2083        /* If all the ports are IB, we can check according to IB spec. */
2084lid_check:
2085        return !(lid < be16_to_cpu(IB_MULTICAST_LID_BASE) ||
2086                 lid == be16_to_cpu(IB_LID_PERMISSIVE));
2087}
2088
2089int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
2090{
2091        int ret;
2092
2093        if (!qp->device->ops.attach_mcast)
2094                return -EOPNOTSUPP;
2095
2096        if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
2097            qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
2098                return -EINVAL;
2099
2100        ret = qp->device->ops.attach_mcast(qp, gid, lid);
2101        if (!ret)
2102                atomic_inc(&qp->usecnt);
2103        return ret;
2104}
2105EXPORT_SYMBOL(ib_attach_mcast);
2106
2107int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
2108{
2109        int ret;
2110
2111        if (!qp->device->ops.detach_mcast)
2112                return -EOPNOTSUPP;
2113
2114        if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
2115            qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
2116                return -EINVAL;
2117
2118        ret = qp->device->ops.detach_mcast(qp, gid, lid);
2119        if (!ret)
2120                atomic_dec(&qp->usecnt);
2121        return ret;
2122}
2123EXPORT_SYMBOL(ib_detach_mcast);
2124
2125struct ib_xrcd *__ib_alloc_xrcd(struct ib_device *device, const char *caller)
2126{
2127        struct ib_xrcd *xrcd;
2128
2129        if (!device->ops.alloc_xrcd)
2130                return ERR_PTR(-EOPNOTSUPP);
2131
2132        xrcd = device->ops.alloc_xrcd(device, NULL, NULL);
2133        if (!IS_ERR(xrcd)) {
2134                xrcd->device = device;
2135                xrcd->inode = NULL;
2136                atomic_set(&xrcd->usecnt, 0);
2137                mutex_init(&xrcd->tgt_qp_mutex);
2138                INIT_LIST_HEAD(&xrcd->tgt_qp_list);
2139        }
2140
2141        return xrcd;
2142}
2143EXPORT_SYMBOL(__ib_alloc_xrcd);
2144
2145int ib_dealloc_xrcd(struct ib_xrcd *xrcd)
2146{
2147        struct ib_qp *qp;
2148        int ret;
2149
2150        if (atomic_read(&xrcd->usecnt))
2151                return -EBUSY;
2152
2153        while (!list_empty(&xrcd->tgt_qp_list)) {
2154                qp = list_entry(xrcd->tgt_qp_list.next, struct ib_qp, xrcd_list);
2155                ret = ib_destroy_qp(qp);
2156                if (ret)
2157                        return ret;
2158        }
2159
2160        return xrcd->device->ops.dealloc_xrcd(xrcd);
2161}
2162EXPORT_SYMBOL(ib_dealloc_xrcd);
2163
2164/**
2165 * ib_create_wq - Creates a WQ associated with the specified protection
2166 * domain.
2167 * @pd: The protection domain associated with the WQ.
2168 * @wq_attr: A list of initial attributes required to create the
2169 * WQ. If WQ creation succeeds, then the attributes are updated to
2170 * the actual capabilities of the created WQ.
2171 *
2172 * wq_attr->max_wr and wq_attr->max_sge determine
2173 * the requested size of the WQ, and set to the actual values allocated
2174 * on return.
2175 * If ib_create_wq() succeeds, then max_wr and max_sge will always be
2176 * at least as large as the requested values.
2177 */
2178struct ib_wq *ib_create_wq(struct ib_pd *pd,
2179                           struct ib_wq_init_attr *wq_attr)
2180{
2181        struct ib_wq *wq;
2182
2183        if (!pd->device->ops.create_wq)
2184                return ERR_PTR(-EOPNOTSUPP);
2185
2186        wq = pd->device->ops.create_wq(pd, wq_attr, NULL);
2187        if (!IS_ERR(wq)) {
2188                wq->event_handler = wq_attr->event_handler;
2189                wq->wq_context = wq_attr->wq_context;
2190                wq->wq_type = wq_attr->wq_type;
2191                wq->cq = wq_attr->cq;
2192                wq->device = pd->device;
2193                wq->pd = pd;
2194                wq->uobject = NULL;
2195                atomic_inc(&pd->usecnt);
2196                atomic_inc(&wq_attr->cq->usecnt);
2197                atomic_set(&wq->usecnt, 0);
2198        }
2199        return wq;
2200}
2201EXPORT_SYMBOL(ib_create_wq);
2202
2203/**
2204 * ib_destroy_wq - Destroys the specified WQ.
2205 * @wq: The WQ to destroy.
2206 */
2207int ib_destroy_wq(struct ib_wq *wq)
2208{
2209        int err;
2210        struct ib_cq *cq = wq->cq;
2211        struct ib_pd *pd = wq->pd;
2212
2213        if (atomic_read(&wq->usecnt))
2214                return -EBUSY;
2215
2216        err = wq->device->ops.destroy_wq(wq);
2217        if (!err) {
2218                atomic_dec(&pd->usecnt);
2219                atomic_dec(&cq->usecnt);
2220        }
2221        return err;
2222}
2223EXPORT_SYMBOL(ib_destroy_wq);
2224
2225/**
2226 * ib_modify_wq - Modifies the specified WQ.
2227 * @wq: The WQ to modify.
2228 * @wq_attr: On input, specifies the WQ attributes to modify.
2229 * @wq_attr_mask: A bit-mask used to specify which attributes of the WQ
2230 *   are being modified.
2231 * On output, the current values of selected WQ attributes are returned.
2232 */
2233int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *wq_attr,
2234                 u32 wq_attr_mask)
2235{
2236        int err;
2237
2238        if (!wq->device->ops.modify_wq)
2239                return -EOPNOTSUPP;
2240
2241        err = wq->device->ops.modify_wq(wq, wq_attr, wq_attr_mask, NULL);
2242        return err;
2243}
2244EXPORT_SYMBOL(ib_modify_wq);
2245
2246/*
2247 * ib_create_rwq_ind_table - Creates a RQ Indirection Table.
2248 * @device: The device on which to create the rwq indirection table.
2249 * @ib_rwq_ind_table_init_attr: A list of initial attributes required to
2250 * create the Indirection Table.
2251 *
2252 * Note: The life time of ib_rwq_ind_table_init_attr->ind_tbl is not less
2253 *      than the created ib_rwq_ind_table object and the caller is responsible
2254 *      for its memory allocation/free.
2255 */
2256struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
2257                                                 struct ib_rwq_ind_table_init_attr *init_attr)
2258{
2259        struct ib_rwq_ind_table *rwq_ind_table;
2260        int i;
2261        u32 table_size;
2262
2263        if (!device->ops.create_rwq_ind_table)
2264                return ERR_PTR(-EOPNOTSUPP);
2265
2266        table_size = (1 << init_attr->log_ind_tbl_size);
2267        rwq_ind_table = device->ops.create_rwq_ind_table(device,
2268                                                         init_attr, NULL);
2269        if (IS_ERR(rwq_ind_table))
2270                return rwq_ind_table;
2271
2272        rwq_ind_table->ind_tbl = init_attr->ind_tbl;
2273        rwq_ind_table->log_ind_tbl_size = init_attr->log_ind_tbl_size;
2274        rwq_ind_table->device = device;
2275        rwq_ind_table->uobject = NULL;
2276        atomic_set(&rwq_ind_table->usecnt, 0);
2277
2278        for (i = 0; i < table_size; i++)
2279                atomic_inc(&rwq_ind_table->ind_tbl[i]->usecnt);
2280
2281        return rwq_ind_table;
2282}
2283EXPORT_SYMBOL(ib_create_rwq_ind_table);
2284
2285/*
2286 * ib_destroy_rwq_ind_table - Destroys the specified Indirection Table.
2287 * @wq_ind_table: The Indirection Table to destroy.
2288*/
2289int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *rwq_ind_table)
2290{
2291        int err, i;
2292        u32 table_size = (1 << rwq_ind_table->log_ind_tbl_size);
2293        struct ib_wq **ind_tbl = rwq_ind_table->ind_tbl;
2294
2295        if (atomic_read(&rwq_ind_table->usecnt))
2296                return -EBUSY;
2297
2298        err = rwq_ind_table->device->ops.destroy_rwq_ind_table(rwq_ind_table);
2299        if (!err) {
2300                for (i = 0; i < table_size; i++)
2301                        atomic_dec(&ind_tbl[i]->usecnt);
2302        }
2303
2304        return err;
2305}
2306EXPORT_SYMBOL(ib_destroy_rwq_ind_table);
2307
2308int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
2309                       struct ib_mr_status *mr_status)
2310{
2311        if (!mr->device->ops.check_mr_status)
2312                return -EOPNOTSUPP;
2313
2314        return mr->device->ops.check_mr_status(mr, check_mask, mr_status);
2315}
2316EXPORT_SYMBOL(ib_check_mr_status);
2317
2318int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
2319                         int state)
2320{
2321        if (!device->ops.set_vf_link_state)
2322                return -EOPNOTSUPP;
2323
2324        return device->ops.set_vf_link_state(device, vf, port, state);
2325}
2326EXPORT_SYMBOL(ib_set_vf_link_state);
2327
2328int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
2329                     struct ifla_vf_info *info)
2330{
2331        if (!device->ops.get_vf_config)
2332                return -EOPNOTSUPP;
2333
2334        return device->ops.get_vf_config(device, vf, port, info);
2335}
2336EXPORT_SYMBOL(ib_get_vf_config);
2337
2338int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
2339                    struct ifla_vf_stats *stats)
2340{
2341        if (!device->ops.get_vf_stats)
2342                return -EOPNOTSUPP;
2343
2344        return device->ops.get_vf_stats(device, vf, port, stats);
2345}
2346EXPORT_SYMBOL(ib_get_vf_stats);
2347
2348int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
2349                   int type)
2350{
2351        if (!device->ops.set_vf_guid)
2352                return -EOPNOTSUPP;
2353
2354        return device->ops.set_vf_guid(device, vf, port, guid, type);
2355}
2356EXPORT_SYMBOL(ib_set_vf_guid);
2357
2358/**
2359 * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
2360 *     and set it the memory region.
2361 * @mr:            memory region
2362 * @sg:            dma mapped scatterlist
2363 * @sg_nents:      number of entries in sg
2364 * @sg_offset:     offset in bytes into sg
2365 * @page_size:     page vector desired page size
2366 *
2367 * Constraints:
2368 * - The first sg element is allowed to have an offset.
2369 * - Each sg element must either be aligned to page_size or virtually
2370 *   contiguous to the previous element. In case an sg element has a
2371 *   non-contiguous offset, the mapping prefix will not include it.
2372 * - The last sg element is allowed to have length less than page_size.
2373 * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
2374 *   then only max_num_sg entries will be mapped.
2375 * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these
2376 *   constraints holds and the page_size argument is ignored.
2377 *
2378 * Returns the number of sg elements that were mapped to the memory region.
2379 *
2380 * After this completes successfully, the  memory region
2381 * is ready for registration.
2382 */
2383int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2384                 unsigned int *sg_offset, unsigned int page_size)
2385{
2386        if (unlikely(!mr->device->ops.map_mr_sg))
2387                return -EOPNOTSUPP;
2388
2389        mr->page_size = page_size;
2390
2391        return mr->device->ops.map_mr_sg(mr, sg, sg_nents, sg_offset);
2392}
2393EXPORT_SYMBOL(ib_map_mr_sg);
2394
2395/**
2396 * ib_sg_to_pages() - Convert the largest prefix of a sg list
2397 *     to a page vector
2398 * @mr:            memory region
2399 * @sgl:           dma mapped scatterlist
2400 * @sg_nents:      number of entries in sg
2401 * @sg_offset_p:   IN:  start offset in bytes into sg
2402 *                 OUT: offset in bytes for element n of the sg of the first
2403 *                      byte that has not been processed where n is the return
2404 *                      value of this function.
2405 * @set_page:      driver page assignment function pointer
2406 *
2407 * Core service helper for drivers to convert the largest
2408 * prefix of given sg list to a page vector. The sg list
2409 * prefix converted is the prefix that meet the requirements
2410 * of ib_map_mr_sg.
2411 *
2412 * Returns the number of sg elements that were assigned to
2413 * a page vector.
2414 */
2415int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
2416                unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64))
2417{
2418        struct scatterlist *sg;
2419        u64 last_end_dma_addr = 0;
2420        unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
2421        unsigned int last_page_off = 0;
2422        u64 page_mask = ~((u64)mr->page_size - 1);
2423        int i, ret;
2424
2425        if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0])))
2426                return -EINVAL;
2427
2428        mr->iova = sg_dma_address(&sgl[0]) + sg_offset;
2429        mr->length = 0;
2430
2431        for_each_sg(sgl, sg, sg_nents, i) {
2432                u64 dma_addr = sg_dma_address(sg) + sg_offset;
2433                u64 prev_addr = dma_addr;
2434                unsigned int dma_len = sg_dma_len(sg) - sg_offset;
2435                u64 end_dma_addr = dma_addr + dma_len;
2436                u64 page_addr = dma_addr & page_mask;
2437
2438                /*
2439                 * For the second and later elements, check whether either the
2440                 * end of element i-1 or the start of element i is not aligned
2441                 * on a page boundary.
2442                 */
2443                if (i && (last_page_off != 0 || page_addr != dma_addr)) {
2444                        /* Stop mapping if there is a gap. */
2445                        if (last_end_dma_addr != dma_addr)
2446                                break;
2447
2448                        /*
2449                         * Coalesce this element with the last. If it is small
2450                         * enough just update mr->length. Otherwise start
2451                         * mapping from the next page.
2452                         */
2453                        goto next_page;
2454                }
2455
2456                do {
2457                        ret = set_page(mr, page_addr);
2458                        if (unlikely(ret < 0)) {
2459                                sg_offset = prev_addr - sg_dma_address(sg);
2460                                mr->length += prev_addr - dma_addr;
2461                                if (sg_offset_p)
2462                                        *sg_offset_p = sg_offset;
2463                                return i || sg_offset ? i : ret;
2464                        }
2465                        prev_addr = page_addr;
2466next_page:
2467                        page_addr += mr->page_size;
2468                } while (page_addr < end_dma_addr);
2469
2470                mr->length += dma_len;
2471                last_end_dma_addr = end_dma_addr;
2472                last_page_off = end_dma_addr & ~page_mask;
2473
2474                sg_offset = 0;
2475        }
2476
2477        if (sg_offset_p)
2478                *sg_offset_p = 0;
2479        return i;
2480}
2481EXPORT_SYMBOL(ib_sg_to_pages);
2482
2483struct ib_drain_cqe {
2484        struct ib_cqe cqe;
2485        struct completion done;
2486};
2487
2488static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
2489{
2490        struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
2491                                                cqe);
2492
2493        complete(&cqe->done);
2494}
2495
2496/*
2497 * Post a WR and block until its completion is reaped for the SQ.
2498 */
2499static void __ib_drain_sq(struct ib_qp *qp)
2500{
2501        struct ib_cq *cq = qp->send_cq;
2502        struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2503        struct ib_drain_cqe sdrain;
2504        struct ib_rdma_wr swr = {
2505                .wr = {
2506                        .next = NULL,
2507                        { .wr_cqe       = &sdrain.cqe, },
2508                        .opcode = IB_WR_RDMA_WRITE,
2509                },
2510        };
2511        int ret;
2512
2513        ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2514        if (ret) {
2515                WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2516                return;
2517        }
2518
2519        sdrain.cqe.done = ib_drain_qp_done;
2520        init_completion(&sdrain.done);
2521
2522        ret = ib_post_send(qp, &swr.wr, NULL);
2523        if (ret) {
2524                WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2525                return;
2526        }
2527
2528        if (cq->poll_ctx == IB_POLL_DIRECT)
2529                while (wait_for_completion_timeout(&sdrain.done, HZ / 10) <= 0)
2530                        ib_process_cq_direct(cq, -1);
2531        else
2532                wait_for_completion(&sdrain.done);
2533}
2534
2535/*
2536 * Post a WR and block until its completion is reaped for the RQ.
2537 */
2538static void __ib_drain_rq(struct ib_qp *qp)
2539{
2540        struct ib_cq *cq = qp->recv_cq;
2541        struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2542        struct ib_drain_cqe rdrain;
2543        struct ib_recv_wr rwr = {};
2544        int ret;
2545
2546        ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2547        if (ret) {
2548                WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2549                return;
2550        }
2551
2552        rwr.wr_cqe = &rdrain.cqe;
2553        rdrain.cqe.done = ib_drain_qp_done;
2554        init_completion(&rdrain.done);
2555
2556        ret = ib_post_recv(qp, &rwr, NULL);
2557        if (ret) {
2558                WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2559                return;
2560        }
2561
2562        if (cq->poll_ctx == IB_POLL_DIRECT)
2563                while (wait_for_completion_timeout(&rdrain.done, HZ / 10) <= 0)
2564                        ib_process_cq_direct(cq, -1);
2565        else
2566                wait_for_completion(&rdrain.done);
2567}
2568
2569/**
2570 * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
2571 *                 application.
2572 * @qp:            queue pair to drain
2573 *
2574 * If the device has a provider-specific drain function, then
2575 * call that.  Otherwise call the generic drain function
2576 * __ib_drain_sq().
2577 *
2578 * The caller must:
2579 *
2580 * ensure there is room in the CQ and SQ for the drain work request and
2581 * completion.
2582 *
2583 * allocate the CQ using ib_alloc_cq().
2584 *
2585 * ensure that there are no other contexts that are posting WRs concurrently.
2586 * Otherwise the drain is not guaranteed.
2587 */
2588void ib_drain_sq(struct ib_qp *qp)
2589{
2590        if (qp->device->ops.drain_sq)
2591                qp->device->ops.drain_sq(qp);
2592        else
2593                __ib_drain_sq(qp);
2594}
2595EXPORT_SYMBOL(ib_drain_sq);
2596
2597/**
2598 * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
2599 *                 application.
2600 * @qp:            queue pair to drain
2601 *
2602 * If the device has a provider-specific drain function, then
2603 * call that.  Otherwise call the generic drain function
2604 * __ib_drain_rq().
2605 *
2606 * The caller must:
2607 *
2608 * ensure there is room in the CQ and RQ for the drain work request and
2609 * completion.
2610 *
2611 * allocate the CQ using ib_alloc_cq().
2612 *
2613 * ensure that there are no other contexts that are posting WRs concurrently.
2614 * Otherwise the drain is not guaranteed.
2615 */
2616void ib_drain_rq(struct ib_qp *qp)
2617{
2618        if (qp->device->ops.drain_rq)
2619                qp->device->ops.drain_rq(qp);
2620        else
2621                __ib_drain_rq(qp);
2622}
2623EXPORT_SYMBOL(ib_drain_rq);
2624
2625/**
2626 * ib_drain_qp() - Block until all CQEs have been consumed by the
2627 *                 application on both the RQ and SQ.
2628 * @qp:            queue pair to drain
2629 *
2630 * The caller must:
2631 *
2632 * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
2633 * and completions.
2634 *
2635 * allocate the CQs using ib_alloc_cq().
2636 *
2637 * ensure that there are no other contexts that are posting WRs concurrently.
2638 * Otherwise the drain is not guaranteed.
2639 */
2640void ib_drain_qp(struct ib_qp *qp)
2641{
2642        ib_drain_sq(qp);
2643        if (!qp->srq)
2644                ib_drain_rq(qp);
2645}
2646EXPORT_SYMBOL(ib_drain_qp);
2647
2648struct net_device *rdma_alloc_netdev(struct ib_device *device, u8 port_num,
2649                                     enum rdma_netdev_t type, const char *name,
2650                                     unsigned char name_assign_type,
2651                                     void (*setup)(struct net_device *))
2652{
2653        struct rdma_netdev_alloc_params params;
2654        struct net_device *netdev;
2655        int rc;
2656
2657        if (!device->ops.rdma_netdev_get_params)
2658                return ERR_PTR(-EOPNOTSUPP);
2659
2660        rc = device->ops.rdma_netdev_get_params(device, port_num, type,
2661                                                &params);
2662        if (rc)
2663                return ERR_PTR(rc);
2664
2665        netdev = alloc_netdev_mqs(params.sizeof_priv, name, name_assign_type,
2666                                  setup, params.txqs, params.rxqs);
2667        if (!netdev)
2668                return ERR_PTR(-ENOMEM);
2669
2670        return netdev;
2671}
2672EXPORT_SYMBOL(rdma_alloc_netdev);
2673
2674int rdma_init_netdev(struct ib_device *device, u8 port_num,
2675                     enum rdma_netdev_t type, const char *name,
2676                     unsigned char name_assign_type,
2677                     void (*setup)(struct net_device *),
2678                     struct net_device *netdev)
2679{
2680        struct rdma_netdev_alloc_params params;
2681        int rc;
2682
2683        if (!device->ops.rdma_netdev_get_params)
2684                return -EOPNOTSUPP;
2685
2686        rc = device->ops.rdma_netdev_get_params(device, port_num, type,
2687                                                &params);
2688        if (rc)
2689                return rc;
2690
2691        return params.initialize_rdma_netdev(device, port_num,
2692                                             netdev, params.param);
2693}
2694EXPORT_SYMBOL(rdma_init_netdev);
2695