linux/drivers/isdn/hardware/mISDN/hfcsusb.c
<<
>>
Prefs
   1/* hfcsusb.c
   2 * mISDN driver for Colognechip HFC-S USB chip
   3 *
   4 * Copyright 2001 by Peter Sprenger (sprenger@moving-bytes.de)
   5 * Copyright 2008 by Martin Bachem (info@bachem-it.com)
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License as published by
   9 * the Free Software Foundation; either version 2, or (at your option)
  10 * any later version.
  11 *
  12 * This program is distributed in the hope that it will be useful,
  13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15 * GNU General Public License for more details.
  16 *
  17 * You should have received a copy of the GNU General Public License
  18 * along with this program; if not, write to the Free Software
  19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  20 *
  21 *
  22 * module params
  23 *   debug=<n>, default=0, with n=0xHHHHGGGG
  24 *      H - l1 driver flags described in hfcsusb.h
  25 *      G - common mISDN debug flags described at mISDNhw.h
  26 *
  27 *   poll=<n>, default 128
  28 *     n : burst size of PH_DATA_IND at transparent rx data
  29 *
  30 * Revision: 0.3.3 (socket), 2008-11-05
  31 */
  32
  33#include <linux/module.h>
  34#include <linux/delay.h>
  35#include <linux/usb.h>
  36#include <linux/mISDNhw.h>
  37#include <linux/slab.h>
  38#include "hfcsusb.h"
  39
  40static unsigned int debug;
  41static int poll = DEFAULT_TRANSP_BURST_SZ;
  42
  43static LIST_HEAD(HFClist);
  44static DEFINE_RWLOCK(HFClock);
  45
  46
  47MODULE_AUTHOR("Martin Bachem");
  48MODULE_LICENSE("GPL");
  49module_param(debug, uint, S_IRUGO | S_IWUSR);
  50module_param(poll, int, 0);
  51
  52static int hfcsusb_cnt;
  53
  54/* some function prototypes */
  55static void hfcsusb_ph_command(struct hfcsusb *hw, u_char command);
  56static void release_hw(struct hfcsusb *hw);
  57static void reset_hfcsusb(struct hfcsusb *hw);
  58static void setPortMode(struct hfcsusb *hw);
  59static void hfcsusb_start_endpoint(struct hfcsusb *hw, int channel);
  60static void hfcsusb_stop_endpoint(struct hfcsusb *hw, int channel);
  61static int  hfcsusb_setup_bch(struct bchannel *bch, int protocol);
  62static void deactivate_bchannel(struct bchannel *bch);
  63static void hfcsusb_ph_info(struct hfcsusb *hw);
  64
  65/* start next background transfer for control channel */
  66static void
  67ctrl_start_transfer(struct hfcsusb *hw)
  68{
  69        if (debug & DBG_HFC_CALL_TRACE)
  70                printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
  71
  72        if (hw->ctrl_cnt) {
  73                hw->ctrl_urb->pipe = hw->ctrl_out_pipe;
  74                hw->ctrl_urb->setup_packet = (u_char *)&hw->ctrl_write;
  75                hw->ctrl_urb->transfer_buffer = NULL;
  76                hw->ctrl_urb->transfer_buffer_length = 0;
  77                hw->ctrl_write.wIndex =
  78                        cpu_to_le16(hw->ctrl_buff[hw->ctrl_out_idx].hfcs_reg);
  79                hw->ctrl_write.wValue =
  80                        cpu_to_le16(hw->ctrl_buff[hw->ctrl_out_idx].reg_val);
  81
  82                usb_submit_urb(hw->ctrl_urb, GFP_ATOMIC);
  83        }
  84}
  85
  86/*
  87 * queue a control transfer request to write HFC-S USB
  88 * chip register using CTRL resuest queue
  89 */
  90static int write_reg(struct hfcsusb *hw, __u8 reg, __u8 val)
  91{
  92        struct ctrl_buf *buf;
  93
  94        if (debug & DBG_HFC_CALL_TRACE)
  95                printk(KERN_DEBUG "%s: %s reg(0x%02x) val(0x%02x)\n",
  96                       hw->name, __func__, reg, val);
  97
  98        spin_lock(&hw->ctrl_lock);
  99        if (hw->ctrl_cnt >= HFC_CTRL_BUFSIZE) {
 100                spin_unlock(&hw->ctrl_lock);
 101                return 1;
 102        }
 103        buf = &hw->ctrl_buff[hw->ctrl_in_idx];
 104        buf->hfcs_reg = reg;
 105        buf->reg_val = val;
 106        if (++hw->ctrl_in_idx >= HFC_CTRL_BUFSIZE)
 107                hw->ctrl_in_idx = 0;
 108        if (++hw->ctrl_cnt == 1)
 109                ctrl_start_transfer(hw);
 110        spin_unlock(&hw->ctrl_lock);
 111
 112        return 0;
 113}
 114
 115/* control completion routine handling background control cmds */
 116static void
 117ctrl_complete(struct urb *urb)
 118{
 119        struct hfcsusb *hw = (struct hfcsusb *) urb->context;
 120
 121        if (debug & DBG_HFC_CALL_TRACE)
 122                printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
 123
 124        urb->dev = hw->dev;
 125        if (hw->ctrl_cnt) {
 126                hw->ctrl_cnt--; /* decrement actual count */
 127                if (++hw->ctrl_out_idx >= HFC_CTRL_BUFSIZE)
 128                        hw->ctrl_out_idx = 0;   /* pointer wrap */
 129
 130                ctrl_start_transfer(hw); /* start next transfer */
 131        }
 132}
 133
 134/* handle LED bits   */
 135static void
 136set_led_bit(struct hfcsusb *hw, signed short led_bits, int set_on)
 137{
 138        if (set_on) {
 139                if (led_bits < 0)
 140                        hw->led_state &= ~abs(led_bits);
 141                else
 142                        hw->led_state |= led_bits;
 143        } else {
 144                if (led_bits < 0)
 145                        hw->led_state |= abs(led_bits);
 146                else
 147                        hw->led_state &= ~led_bits;
 148        }
 149}
 150
 151/* handle LED requests  */
 152static void
 153handle_led(struct hfcsusb *hw, int event)
 154{
 155        struct hfcsusb_vdata *driver_info = (struct hfcsusb_vdata *)
 156                hfcsusb_idtab[hw->vend_idx].driver_info;
 157        __u8 tmpled;
 158
 159        if (driver_info->led_scheme == LED_OFF)
 160                return;
 161        tmpled = hw->led_state;
 162
 163        switch (event) {
 164        case LED_POWER_ON:
 165                set_led_bit(hw, driver_info->led_bits[0], 1);
 166                set_led_bit(hw, driver_info->led_bits[1], 0);
 167                set_led_bit(hw, driver_info->led_bits[2], 0);
 168                set_led_bit(hw, driver_info->led_bits[3], 0);
 169                break;
 170        case LED_POWER_OFF:
 171                set_led_bit(hw, driver_info->led_bits[0], 0);
 172                set_led_bit(hw, driver_info->led_bits[1], 0);
 173                set_led_bit(hw, driver_info->led_bits[2], 0);
 174                set_led_bit(hw, driver_info->led_bits[3], 0);
 175                break;
 176        case LED_S0_ON:
 177                set_led_bit(hw, driver_info->led_bits[1], 1);
 178                break;
 179        case LED_S0_OFF:
 180                set_led_bit(hw, driver_info->led_bits[1], 0);
 181                break;
 182        case LED_B1_ON:
 183                set_led_bit(hw, driver_info->led_bits[2], 1);
 184                break;
 185        case LED_B1_OFF:
 186                set_led_bit(hw, driver_info->led_bits[2], 0);
 187                break;
 188        case LED_B2_ON:
 189                set_led_bit(hw, driver_info->led_bits[3], 1);
 190                break;
 191        case LED_B2_OFF:
 192                set_led_bit(hw, driver_info->led_bits[3], 0);
 193                break;
 194        }
 195
 196        if (hw->led_state != tmpled) {
 197                if (debug & DBG_HFC_CALL_TRACE)
 198                        printk(KERN_DEBUG "%s: %s reg(0x%02x) val(x%02x)\n",
 199                               hw->name, __func__,
 200                               HFCUSB_P_DATA, hw->led_state);
 201
 202                write_reg(hw, HFCUSB_P_DATA, hw->led_state);
 203        }
 204}
 205
 206/*
 207 * Layer2 -> Layer 1 Bchannel data
 208 */
 209static int
 210hfcusb_l2l1B(struct mISDNchannel *ch, struct sk_buff *skb)
 211{
 212        struct bchannel         *bch = container_of(ch, struct bchannel, ch);
 213        struct hfcsusb          *hw = bch->hw;
 214        int                     ret = -EINVAL;
 215        struct mISDNhead        *hh = mISDN_HEAD_P(skb);
 216        u_long                  flags;
 217
 218        if (debug & DBG_HFC_CALL_TRACE)
 219                printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
 220
 221        switch (hh->prim) {
 222        case PH_DATA_REQ:
 223                spin_lock_irqsave(&hw->lock, flags);
 224                ret = bchannel_senddata(bch, skb);
 225                spin_unlock_irqrestore(&hw->lock, flags);
 226                if (debug & DBG_HFC_CALL_TRACE)
 227                        printk(KERN_DEBUG "%s: %s PH_DATA_REQ ret(%i)\n",
 228                               hw->name, __func__, ret);
 229                if (ret > 0)
 230                        ret = 0;
 231                return ret;
 232        case PH_ACTIVATE_REQ:
 233                if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags)) {
 234                        hfcsusb_start_endpoint(hw, bch->nr - 1);
 235                        ret = hfcsusb_setup_bch(bch, ch->protocol);
 236                } else
 237                        ret = 0;
 238                if (!ret)
 239                        _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
 240                                    0, NULL, GFP_KERNEL);
 241                break;
 242        case PH_DEACTIVATE_REQ:
 243                deactivate_bchannel(bch);
 244                _queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY,
 245                            0, NULL, GFP_KERNEL);
 246                ret = 0;
 247                break;
 248        }
 249        if (!ret)
 250                dev_kfree_skb(skb);
 251        return ret;
 252}
 253
 254/*
 255 * send full D/B channel status information
 256 * as MPH_INFORMATION_IND
 257 */
 258static void
 259hfcsusb_ph_info(struct hfcsusb *hw)
 260{
 261        struct ph_info *phi;
 262        struct dchannel *dch = &hw->dch;
 263        int i;
 264
 265        phi = kzalloc(struct_size(phi, bch, dch->dev.nrbchan), GFP_ATOMIC);
 266        phi->dch.ch.protocol = hw->protocol;
 267        phi->dch.ch.Flags = dch->Flags;
 268        phi->dch.state = dch->state;
 269        phi->dch.num_bch = dch->dev.nrbchan;
 270        for (i = 0; i < dch->dev.nrbchan; i++) {
 271                phi->bch[i].protocol = hw->bch[i].ch.protocol;
 272                phi->bch[i].Flags = hw->bch[i].Flags;
 273        }
 274        _queue_data(&dch->dev.D, MPH_INFORMATION_IND, MISDN_ID_ANY,
 275                    sizeof(struct ph_info_dch) + dch->dev.nrbchan *
 276                    sizeof(struct ph_info_ch), phi, GFP_ATOMIC);
 277        kfree(phi);
 278}
 279
 280/*
 281 * Layer2 -> Layer 1 Dchannel data
 282 */
 283static int
 284hfcusb_l2l1D(struct mISDNchannel *ch, struct sk_buff *skb)
 285{
 286        struct mISDNdevice      *dev = container_of(ch, struct mISDNdevice, D);
 287        struct dchannel         *dch = container_of(dev, struct dchannel, dev);
 288        struct mISDNhead        *hh = mISDN_HEAD_P(skb);
 289        struct hfcsusb          *hw = dch->hw;
 290        int                     ret = -EINVAL;
 291        u_long                  flags;
 292
 293        switch (hh->prim) {
 294        case PH_DATA_REQ:
 295                if (debug & DBG_HFC_CALL_TRACE)
 296                        printk(KERN_DEBUG "%s: %s: PH_DATA_REQ\n",
 297                               hw->name, __func__);
 298
 299                spin_lock_irqsave(&hw->lock, flags);
 300                ret = dchannel_senddata(dch, skb);
 301                spin_unlock_irqrestore(&hw->lock, flags);
 302                if (ret > 0) {
 303                        ret = 0;
 304                        queue_ch_frame(ch, PH_DATA_CNF, hh->id, NULL);
 305                }
 306                break;
 307
 308        case PH_ACTIVATE_REQ:
 309                if (debug & DBG_HFC_CALL_TRACE)
 310                        printk(KERN_DEBUG "%s: %s: PH_ACTIVATE_REQ %s\n",
 311                               hw->name, __func__,
 312                               (hw->protocol == ISDN_P_NT_S0) ? "NT" : "TE");
 313
 314                if (hw->protocol == ISDN_P_NT_S0) {
 315                        ret = 0;
 316                        if (test_bit(FLG_ACTIVE, &dch->Flags)) {
 317                                _queue_data(&dch->dev.D,
 318                                            PH_ACTIVATE_IND, MISDN_ID_ANY, 0,
 319                                            NULL, GFP_ATOMIC);
 320                        } else {
 321                                hfcsusb_ph_command(hw,
 322                                                   HFC_L1_ACTIVATE_NT);
 323                                test_and_set_bit(FLG_L2_ACTIVATED,
 324                                                 &dch->Flags);
 325                        }
 326                } else {
 327                        hfcsusb_ph_command(hw, HFC_L1_ACTIVATE_TE);
 328                        ret = l1_event(dch->l1, hh->prim);
 329                }
 330                break;
 331
 332        case PH_DEACTIVATE_REQ:
 333                if (debug & DBG_HFC_CALL_TRACE)
 334                        printk(KERN_DEBUG "%s: %s: PH_DEACTIVATE_REQ\n",
 335                               hw->name, __func__);
 336                test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
 337
 338                if (hw->protocol == ISDN_P_NT_S0) {
 339                        hfcsusb_ph_command(hw, HFC_L1_DEACTIVATE_NT);
 340                        spin_lock_irqsave(&hw->lock, flags);
 341                        skb_queue_purge(&dch->squeue);
 342                        if (dch->tx_skb) {
 343                                dev_kfree_skb(dch->tx_skb);
 344                                dch->tx_skb = NULL;
 345                        }
 346                        dch->tx_idx = 0;
 347                        if (dch->rx_skb) {
 348                                dev_kfree_skb(dch->rx_skb);
 349                                dch->rx_skb = NULL;
 350                        }
 351                        test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
 352                        spin_unlock_irqrestore(&hw->lock, flags);
 353#ifdef FIXME
 354                        if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags))
 355                                dchannel_sched_event(&hc->dch, D_CLEARBUSY);
 356#endif
 357                        ret = 0;
 358                } else
 359                        ret = l1_event(dch->l1, hh->prim);
 360                break;
 361        case MPH_INFORMATION_REQ:
 362                hfcsusb_ph_info(hw);
 363                ret = 0;
 364                break;
 365        }
 366
 367        return ret;
 368}
 369
 370/*
 371 * Layer 1 callback function
 372 */
 373static int
 374hfc_l1callback(struct dchannel *dch, u_int cmd)
 375{
 376        struct hfcsusb *hw = dch->hw;
 377
 378        if (debug & DBG_HFC_CALL_TRACE)
 379                printk(KERN_DEBUG "%s: %s cmd 0x%x\n",
 380                       hw->name, __func__, cmd);
 381
 382        switch (cmd) {
 383        case INFO3_P8:
 384        case INFO3_P10:
 385        case HW_RESET_REQ:
 386        case HW_POWERUP_REQ:
 387                break;
 388
 389        case HW_DEACT_REQ:
 390                skb_queue_purge(&dch->squeue);
 391                if (dch->tx_skb) {
 392                        dev_kfree_skb(dch->tx_skb);
 393                        dch->tx_skb = NULL;
 394                }
 395                dch->tx_idx = 0;
 396                if (dch->rx_skb) {
 397                        dev_kfree_skb(dch->rx_skb);
 398                        dch->rx_skb = NULL;
 399                }
 400                test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
 401                break;
 402        case PH_ACTIVATE_IND:
 403                test_and_set_bit(FLG_ACTIVE, &dch->Flags);
 404                _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
 405                            GFP_ATOMIC);
 406                break;
 407        case PH_DEACTIVATE_IND:
 408                test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
 409                _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
 410                            GFP_ATOMIC);
 411                break;
 412        default:
 413                if (dch->debug & DEBUG_HW)
 414                        printk(KERN_DEBUG "%s: %s: unknown cmd %x\n",
 415                               hw->name, __func__, cmd);
 416                return -1;
 417        }
 418        hfcsusb_ph_info(hw);
 419        return 0;
 420}
 421
 422static int
 423open_dchannel(struct hfcsusb *hw, struct mISDNchannel *ch,
 424              struct channel_req *rq)
 425{
 426        int err = 0;
 427
 428        if (debug & DEBUG_HW_OPEN)
 429                printk(KERN_DEBUG "%s: %s: dev(%d) open addr(%i) from %p\n",
 430                       hw->name, __func__, hw->dch.dev.id, rq->adr.channel,
 431                       __builtin_return_address(0));
 432        if (rq->protocol == ISDN_P_NONE)
 433                return -EINVAL;
 434
 435        test_and_clear_bit(FLG_ACTIVE, &hw->dch.Flags);
 436        test_and_clear_bit(FLG_ACTIVE, &hw->ech.Flags);
 437        hfcsusb_start_endpoint(hw, HFC_CHAN_D);
 438
 439        /* E-Channel logging */
 440        if (rq->adr.channel == 1) {
 441                if (hw->fifos[HFCUSB_PCM_RX].pipe) {
 442                        hfcsusb_start_endpoint(hw, HFC_CHAN_E);
 443                        set_bit(FLG_ACTIVE, &hw->ech.Flags);
 444                        _queue_data(&hw->ech.dev.D, PH_ACTIVATE_IND,
 445                                    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
 446                } else
 447                        return -EINVAL;
 448        }
 449
 450        if (!hw->initdone) {
 451                hw->protocol = rq->protocol;
 452                if (rq->protocol == ISDN_P_TE_S0) {
 453                        err = create_l1(&hw->dch, hfc_l1callback);
 454                        if (err)
 455                                return err;
 456                }
 457                setPortMode(hw);
 458                ch->protocol = rq->protocol;
 459                hw->initdone = 1;
 460        } else {
 461                if (rq->protocol != ch->protocol)
 462                        return -EPROTONOSUPPORT;
 463        }
 464
 465        if (((ch->protocol == ISDN_P_NT_S0) && (hw->dch.state == 3)) ||
 466            ((ch->protocol == ISDN_P_TE_S0) && (hw->dch.state == 7)))
 467                _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
 468                            0, NULL, GFP_KERNEL);
 469        rq->ch = ch;
 470        if (!try_module_get(THIS_MODULE))
 471                printk(KERN_WARNING "%s: %s: cannot get module\n",
 472                       hw->name, __func__);
 473        return 0;
 474}
 475
 476static int
 477open_bchannel(struct hfcsusb *hw, struct channel_req *rq)
 478{
 479        struct bchannel         *bch;
 480
 481        if (rq->adr.channel == 0 || rq->adr.channel > 2)
 482                return -EINVAL;
 483        if (rq->protocol == ISDN_P_NONE)
 484                return -EINVAL;
 485
 486        if (debug & DBG_HFC_CALL_TRACE)
 487                printk(KERN_DEBUG "%s: %s B%i\n",
 488                       hw->name, __func__, rq->adr.channel);
 489
 490        bch = &hw->bch[rq->adr.channel - 1];
 491        if (test_and_set_bit(FLG_OPEN, &bch->Flags))
 492                return -EBUSY; /* b-channel can be only open once */
 493        bch->ch.protocol = rq->protocol;
 494        rq->ch = &bch->ch;
 495
 496        if (!try_module_get(THIS_MODULE))
 497                printk(KERN_WARNING "%s: %s:cannot get module\n",
 498                       hw->name, __func__);
 499        return 0;
 500}
 501
 502static int
 503channel_ctrl(struct hfcsusb *hw, struct mISDN_ctrl_req *cq)
 504{
 505        int ret = 0;
 506
 507        if (debug & DBG_HFC_CALL_TRACE)
 508                printk(KERN_DEBUG "%s: %s op(0x%x) channel(0x%x)\n",
 509                       hw->name, __func__, (cq->op), (cq->channel));
 510
 511        switch (cq->op) {
 512        case MISDN_CTRL_GETOP:
 513                cq->op = MISDN_CTRL_LOOP | MISDN_CTRL_CONNECT |
 514                        MISDN_CTRL_DISCONNECT;
 515                break;
 516        default:
 517                printk(KERN_WARNING "%s: %s: unknown Op %x\n",
 518                       hw->name, __func__, cq->op);
 519                ret = -EINVAL;
 520                break;
 521        }
 522        return ret;
 523}
 524
 525/*
 526 * device control function
 527 */
 528static int
 529hfc_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
 530{
 531        struct mISDNdevice      *dev = container_of(ch, struct mISDNdevice, D);
 532        struct dchannel         *dch = container_of(dev, struct dchannel, dev);
 533        struct hfcsusb          *hw = dch->hw;
 534        struct channel_req      *rq;
 535        int                     err = 0;
 536
 537        if (dch->debug & DEBUG_HW)
 538                printk(KERN_DEBUG "%s: %s: cmd:%x %p\n",
 539                       hw->name, __func__, cmd, arg);
 540        switch (cmd) {
 541        case OPEN_CHANNEL:
 542                rq = arg;
 543                if ((rq->protocol == ISDN_P_TE_S0) ||
 544                    (rq->protocol == ISDN_P_NT_S0))
 545                        err = open_dchannel(hw, ch, rq);
 546                else
 547                        err = open_bchannel(hw, rq);
 548                if (!err)
 549                        hw->open++;
 550                break;
 551        case CLOSE_CHANNEL:
 552                hw->open--;
 553                if (debug & DEBUG_HW_OPEN)
 554                        printk(KERN_DEBUG
 555                               "%s: %s: dev(%d) close from %p (open %d)\n",
 556                               hw->name, __func__, hw->dch.dev.id,
 557                               __builtin_return_address(0), hw->open);
 558                if (!hw->open) {
 559                        hfcsusb_stop_endpoint(hw, HFC_CHAN_D);
 560                        if (hw->fifos[HFCUSB_PCM_RX].pipe)
 561                                hfcsusb_stop_endpoint(hw, HFC_CHAN_E);
 562                        handle_led(hw, LED_POWER_ON);
 563                }
 564                module_put(THIS_MODULE);
 565                break;
 566        case CONTROL_CHANNEL:
 567                err = channel_ctrl(hw, arg);
 568                break;
 569        default:
 570                if (dch->debug & DEBUG_HW)
 571                        printk(KERN_DEBUG "%s: %s: unknown command %x\n",
 572                               hw->name, __func__, cmd);
 573                return -EINVAL;
 574        }
 575        return err;
 576}
 577
 578/*
 579 * S0 TE state change event handler
 580 */
 581static void
 582ph_state_te(struct dchannel *dch)
 583{
 584        struct hfcsusb *hw = dch->hw;
 585
 586        if (debug & DEBUG_HW) {
 587                if (dch->state <= HFC_MAX_TE_LAYER1_STATE)
 588                        printk(KERN_DEBUG "%s: %s: %s\n", hw->name, __func__,
 589                               HFC_TE_LAYER1_STATES[dch->state]);
 590                else
 591                        printk(KERN_DEBUG "%s: %s: TE F%d\n",
 592                               hw->name, __func__, dch->state);
 593        }
 594
 595        switch (dch->state) {
 596        case 0:
 597                l1_event(dch->l1, HW_RESET_IND);
 598                break;
 599        case 3:
 600                l1_event(dch->l1, HW_DEACT_IND);
 601                break;
 602        case 5:
 603        case 8:
 604                l1_event(dch->l1, ANYSIGNAL);
 605                break;
 606        case 6:
 607                l1_event(dch->l1, INFO2);
 608                break;
 609        case 7:
 610                l1_event(dch->l1, INFO4_P8);
 611                break;
 612        }
 613        if (dch->state == 7)
 614                handle_led(hw, LED_S0_ON);
 615        else
 616                handle_led(hw, LED_S0_OFF);
 617}
 618
 619/*
 620 * S0 NT state change event handler
 621 */
 622static void
 623ph_state_nt(struct dchannel *dch)
 624{
 625        struct hfcsusb *hw = dch->hw;
 626
 627        if (debug & DEBUG_HW) {
 628                if (dch->state <= HFC_MAX_NT_LAYER1_STATE)
 629                        printk(KERN_DEBUG "%s: %s: %s\n",
 630                               hw->name, __func__,
 631                               HFC_NT_LAYER1_STATES[dch->state]);
 632
 633                else
 634                        printk(KERN_INFO DRIVER_NAME "%s: %s: NT G%d\n",
 635                               hw->name, __func__, dch->state);
 636        }
 637
 638        switch (dch->state) {
 639        case (1):
 640                test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
 641                test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
 642                hw->nt_timer = 0;
 643                hw->timers &= ~NT_ACTIVATION_TIMER;
 644                handle_led(hw, LED_S0_OFF);
 645                break;
 646
 647        case (2):
 648                if (hw->nt_timer < 0) {
 649                        hw->nt_timer = 0;
 650                        hw->timers &= ~NT_ACTIVATION_TIMER;
 651                        hfcsusb_ph_command(dch->hw, HFC_L1_DEACTIVATE_NT);
 652                } else {
 653                        hw->timers |= NT_ACTIVATION_TIMER;
 654                        hw->nt_timer = NT_T1_COUNT;
 655                        /* allow G2 -> G3 transition */
 656                        write_reg(hw, HFCUSB_STATES, 2 | HFCUSB_NT_G2_G3);
 657                }
 658                break;
 659        case (3):
 660                hw->nt_timer = 0;
 661                hw->timers &= ~NT_ACTIVATION_TIMER;
 662                test_and_set_bit(FLG_ACTIVE, &dch->Flags);
 663                _queue_data(&dch->dev.D, PH_ACTIVATE_IND,
 664                            MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
 665                handle_led(hw, LED_S0_ON);
 666                break;
 667        case (4):
 668                hw->nt_timer = 0;
 669                hw->timers &= ~NT_ACTIVATION_TIMER;
 670                break;
 671        default:
 672                break;
 673        }
 674        hfcsusb_ph_info(hw);
 675}
 676
 677static void
 678ph_state(struct dchannel *dch)
 679{
 680        struct hfcsusb *hw = dch->hw;
 681
 682        if (hw->protocol == ISDN_P_NT_S0)
 683                ph_state_nt(dch);
 684        else if (hw->protocol == ISDN_P_TE_S0)
 685                ph_state_te(dch);
 686}
 687
 688/*
 689 * disable/enable BChannel for desired protocoll
 690 */
 691static int
 692hfcsusb_setup_bch(struct bchannel *bch, int protocol)
 693{
 694        struct hfcsusb *hw = bch->hw;
 695        __u8 conhdlc, sctrl, sctrl_r;
 696
 697        if (debug & DEBUG_HW)
 698                printk(KERN_DEBUG "%s: %s: protocol %x-->%x B%d\n",
 699                       hw->name, __func__, bch->state, protocol,
 700                       bch->nr);
 701
 702        /* setup val for CON_HDLC */
 703        conhdlc = 0;
 704        if (protocol > ISDN_P_NONE)
 705                conhdlc = 8;    /* enable FIFO */
 706
 707        switch (protocol) {
 708        case (-1):      /* used for init */
 709                bch->state = -1;
 710                /* fall through */
 711        case (ISDN_P_NONE):
 712                if (bch->state == ISDN_P_NONE)
 713                        return 0; /* already in idle state */
 714                bch->state = ISDN_P_NONE;
 715                clear_bit(FLG_HDLC, &bch->Flags);
 716                clear_bit(FLG_TRANSPARENT, &bch->Flags);
 717                break;
 718        case (ISDN_P_B_RAW):
 719                conhdlc |= 2;
 720                bch->state = protocol;
 721                set_bit(FLG_TRANSPARENT, &bch->Flags);
 722                break;
 723        case (ISDN_P_B_HDLC):
 724                bch->state = protocol;
 725                set_bit(FLG_HDLC, &bch->Flags);
 726                break;
 727        default:
 728                if (debug & DEBUG_HW)
 729                        printk(KERN_DEBUG "%s: %s: prot not known %x\n",
 730                               hw->name, __func__, protocol);
 731                return -ENOPROTOOPT;
 732        }
 733
 734        if (protocol >= ISDN_P_NONE) {
 735                write_reg(hw, HFCUSB_FIFO, (bch->nr == 1) ? 0 : 2);
 736                write_reg(hw, HFCUSB_CON_HDLC, conhdlc);
 737                write_reg(hw, HFCUSB_INC_RES_F, 2);
 738                write_reg(hw, HFCUSB_FIFO, (bch->nr == 1) ? 1 : 3);
 739                write_reg(hw, HFCUSB_CON_HDLC, conhdlc);
 740                write_reg(hw, HFCUSB_INC_RES_F, 2);
 741
 742                sctrl = 0x40 + ((hw->protocol == ISDN_P_TE_S0) ? 0x00 : 0x04);
 743                sctrl_r = 0x0;
 744                if (test_bit(FLG_ACTIVE, &hw->bch[0].Flags)) {
 745                        sctrl |= 1;
 746                        sctrl_r |= 1;
 747                }
 748                if (test_bit(FLG_ACTIVE, &hw->bch[1].Flags)) {
 749                        sctrl |= 2;
 750                        sctrl_r |= 2;
 751                }
 752                write_reg(hw, HFCUSB_SCTRL, sctrl);
 753                write_reg(hw, HFCUSB_SCTRL_R, sctrl_r);
 754
 755                if (protocol > ISDN_P_NONE)
 756                        handle_led(hw, (bch->nr == 1) ? LED_B1_ON : LED_B2_ON);
 757                else
 758                        handle_led(hw, (bch->nr == 1) ? LED_B1_OFF :
 759                                   LED_B2_OFF);
 760        }
 761        hfcsusb_ph_info(hw);
 762        return 0;
 763}
 764
 765static void
 766hfcsusb_ph_command(struct hfcsusb *hw, u_char command)
 767{
 768        if (debug & DEBUG_HW)
 769                printk(KERN_DEBUG "%s: %s: %x\n",
 770                       hw->name, __func__, command);
 771
 772        switch (command) {
 773        case HFC_L1_ACTIVATE_TE:
 774                /* force sending sending INFO1 */
 775                write_reg(hw, HFCUSB_STATES, 0x14);
 776                /* start l1 activation */
 777                write_reg(hw, HFCUSB_STATES, 0x04);
 778                break;
 779
 780        case HFC_L1_FORCE_DEACTIVATE_TE:
 781                write_reg(hw, HFCUSB_STATES, 0x10);
 782                write_reg(hw, HFCUSB_STATES, 0x03);
 783                break;
 784
 785        case HFC_L1_ACTIVATE_NT:
 786                if (hw->dch.state == 3)
 787                        _queue_data(&hw->dch.dev.D, PH_ACTIVATE_IND,
 788                                    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
 789                else
 790                        write_reg(hw, HFCUSB_STATES, HFCUSB_ACTIVATE |
 791                                  HFCUSB_DO_ACTION | HFCUSB_NT_G2_G3);
 792                break;
 793
 794        case HFC_L1_DEACTIVATE_NT:
 795                write_reg(hw, HFCUSB_STATES,
 796                          HFCUSB_DO_ACTION);
 797                break;
 798        }
 799}
 800
 801/*
 802 * Layer 1 B-channel hardware access
 803 */
 804static int
 805channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq)
 806{
 807        return mISDN_ctrl_bchannel(bch, cq);
 808}
 809
 810/* collect data from incoming interrupt or isochron USB data */
 811static void
 812hfcsusb_rx_frame(struct usb_fifo *fifo, __u8 *data, unsigned int len,
 813                 int finish)
 814{
 815        struct hfcsusb  *hw = fifo->hw;
 816        struct sk_buff  *rx_skb = NULL;
 817        int             maxlen = 0;
 818        int             fifon = fifo->fifonum;
 819        int             i;
 820        int             hdlc = 0;
 821        unsigned long   flags;
 822
 823        if (debug & DBG_HFC_CALL_TRACE)
 824                printk(KERN_DEBUG "%s: %s: fifo(%i) len(%i) "
 825                       "dch(%p) bch(%p) ech(%p)\n",
 826                       hw->name, __func__, fifon, len,
 827                       fifo->dch, fifo->bch, fifo->ech);
 828
 829        if (!len)
 830                return;
 831
 832        if ((!!fifo->dch + !!fifo->bch + !!fifo->ech) != 1) {
 833                printk(KERN_DEBUG "%s: %s: undefined channel\n",
 834                       hw->name, __func__);
 835                return;
 836        }
 837
 838        spin_lock_irqsave(&hw->lock, flags);
 839        if (fifo->dch) {
 840                rx_skb = fifo->dch->rx_skb;
 841                maxlen = fifo->dch->maxlen;
 842                hdlc = 1;
 843        }
 844        if (fifo->bch) {
 845                if (test_bit(FLG_RX_OFF, &fifo->bch->Flags)) {
 846                        fifo->bch->dropcnt += len;
 847                        spin_unlock_irqrestore(&hw->lock, flags);
 848                        return;
 849                }
 850                maxlen = bchannel_get_rxbuf(fifo->bch, len);
 851                rx_skb = fifo->bch->rx_skb;
 852                if (maxlen < 0) {
 853                        if (rx_skb)
 854                                skb_trim(rx_skb, 0);
 855                        pr_warning("%s.B%d: No bufferspace for %d bytes\n",
 856                                   hw->name, fifo->bch->nr, len);
 857                        spin_unlock_irqrestore(&hw->lock, flags);
 858                        return;
 859                }
 860                maxlen = fifo->bch->maxlen;
 861                hdlc = test_bit(FLG_HDLC, &fifo->bch->Flags);
 862        }
 863        if (fifo->ech) {
 864                rx_skb = fifo->ech->rx_skb;
 865                maxlen = fifo->ech->maxlen;
 866                hdlc = 1;
 867        }
 868
 869        if (fifo->dch || fifo->ech) {
 870                if (!rx_skb) {
 871                        rx_skb = mI_alloc_skb(maxlen, GFP_ATOMIC);
 872                        if (rx_skb) {
 873                                if (fifo->dch)
 874                                        fifo->dch->rx_skb = rx_skb;
 875                                if (fifo->ech)
 876                                        fifo->ech->rx_skb = rx_skb;
 877                                skb_trim(rx_skb, 0);
 878                        } else {
 879                                printk(KERN_DEBUG "%s: %s: No mem for rx_skb\n",
 880                                       hw->name, __func__);
 881                                spin_unlock_irqrestore(&hw->lock, flags);
 882                                return;
 883                        }
 884                }
 885                /* D/E-Channel SKB range check */
 886                if ((rx_skb->len + len) >= MAX_DFRAME_LEN_L1) {
 887                        printk(KERN_DEBUG "%s: %s: sbk mem exceeded "
 888                               "for fifo(%d) HFCUSB_D_RX\n",
 889                               hw->name, __func__, fifon);
 890                        skb_trim(rx_skb, 0);
 891                        spin_unlock_irqrestore(&hw->lock, flags);
 892                        return;
 893                }
 894        }
 895
 896        skb_put_data(rx_skb, data, len);
 897
 898        if (hdlc) {
 899                /* we have a complete hdlc packet */
 900                if (finish) {
 901                        if ((rx_skb->len > 3) &&
 902                            (!(rx_skb->data[rx_skb->len - 1]))) {
 903                                if (debug & DBG_HFC_FIFO_VERBOSE) {
 904                                        printk(KERN_DEBUG "%s: %s: fifon(%i)"
 905                                               " new RX len(%i): ",
 906                                               hw->name, __func__, fifon,
 907                                               rx_skb->len);
 908                                        i = 0;
 909                                        while (i < rx_skb->len)
 910                                                printk("%02x ",
 911                                                       rx_skb->data[i++]);
 912                                        printk("\n");
 913                                }
 914
 915                                /* remove CRC & status */
 916                                skb_trim(rx_skb, rx_skb->len - 3);
 917
 918                                if (fifo->dch)
 919                                        recv_Dchannel(fifo->dch);
 920                                if (fifo->bch)
 921                                        recv_Bchannel(fifo->bch, MISDN_ID_ANY,
 922                                                      0);
 923                                if (fifo->ech)
 924                                        recv_Echannel(fifo->ech,
 925                                                      &hw->dch);
 926                        } else {
 927                                if (debug & DBG_HFC_FIFO_VERBOSE) {
 928                                        printk(KERN_DEBUG
 929                                               "%s: CRC or minlen ERROR fifon(%i) "
 930                                               "RX len(%i): ",
 931                                               hw->name, fifon, rx_skb->len);
 932                                        i = 0;
 933                                        while (i < rx_skb->len)
 934                                                printk("%02x ",
 935                                                       rx_skb->data[i++]);
 936                                        printk("\n");
 937                                }
 938                                skb_trim(rx_skb, 0);
 939                        }
 940                }
 941        } else {
 942                /* deliver transparent data to layer2 */
 943                recv_Bchannel(fifo->bch, MISDN_ID_ANY, false);
 944        }
 945        spin_unlock_irqrestore(&hw->lock, flags);
 946}
 947
 948static void
 949fill_isoc_urb(struct urb *urb, struct usb_device *dev, unsigned int pipe,
 950              void *buf, int num_packets, int packet_size, int interval,
 951              usb_complete_t complete, void *context)
 952{
 953        int k;
 954
 955        usb_fill_bulk_urb(urb, dev, pipe, buf, packet_size * num_packets,
 956                          complete, context);
 957
 958        urb->number_of_packets = num_packets;
 959        urb->transfer_flags = URB_ISO_ASAP;
 960        urb->actual_length = 0;
 961        urb->interval = interval;
 962
 963        for (k = 0; k < num_packets; k++) {
 964                urb->iso_frame_desc[k].offset = packet_size * k;
 965                urb->iso_frame_desc[k].length = packet_size;
 966                urb->iso_frame_desc[k].actual_length = 0;
 967        }
 968}
 969
 970/* receive completion routine for all ISO tx fifos   */
 971static void
 972rx_iso_complete(struct urb *urb)
 973{
 974        struct iso_urb *context_iso_urb = (struct iso_urb *) urb->context;
 975        struct usb_fifo *fifo = context_iso_urb->owner_fifo;
 976        struct hfcsusb *hw = fifo->hw;
 977        int k, len, errcode, offset, num_isoc_packets, fifon, maxlen,
 978                status, iso_status, i;
 979        __u8 *buf;
 980        static __u8 eof[8];
 981        __u8 s0_state;
 982        unsigned long flags;
 983
 984        fifon = fifo->fifonum;
 985        status = urb->status;
 986
 987        spin_lock_irqsave(&hw->lock, flags);
 988        if (fifo->stop_gracefull) {
 989                fifo->stop_gracefull = 0;
 990                fifo->active = 0;
 991                spin_unlock_irqrestore(&hw->lock, flags);
 992                return;
 993        }
 994        spin_unlock_irqrestore(&hw->lock, flags);
 995
 996        /*
 997         * ISO transfer only partially completed,
 998         * look at individual frame status for details
 999         */
1000        if (status == -EXDEV) {
1001                if (debug & DEBUG_HW)
1002                        printk(KERN_DEBUG "%s: %s: with -EXDEV "
1003                               "urb->status %d, fifonum %d\n",
1004                               hw->name, __func__,  status, fifon);
1005
1006                /* clear status, so go on with ISO transfers */
1007                status = 0;
1008        }
1009
1010        s0_state = 0;
1011        if (fifo->active && !status) {
1012                num_isoc_packets = iso_packets[fifon];
1013                maxlen = fifo->usb_packet_maxlen;
1014
1015                for (k = 0; k < num_isoc_packets; ++k) {
1016                        len = urb->iso_frame_desc[k].actual_length;
1017                        offset = urb->iso_frame_desc[k].offset;
1018                        buf = context_iso_urb->buffer + offset;
1019                        iso_status = urb->iso_frame_desc[k].status;
1020
1021                        if (iso_status && (debug & DBG_HFC_FIFO_VERBOSE)) {
1022                                printk(KERN_DEBUG "%s: %s: "
1023                                       "ISO packet %i, status: %i\n",
1024                                       hw->name, __func__, k, iso_status);
1025                        }
1026
1027                        /* USB data log for every D ISO in */
1028                        if ((fifon == HFCUSB_D_RX) &&
1029                            (debug & DBG_HFC_USB_VERBOSE)) {
1030                                printk(KERN_DEBUG
1031                                       "%s: %s: %d (%d/%d) len(%d) ",
1032                                       hw->name, __func__, urb->start_frame,
1033                                       k, num_isoc_packets - 1,
1034                                       len);
1035                                for (i = 0; i < len; i++)
1036                                        printk("%x ", buf[i]);
1037                                printk("\n");
1038                        }
1039
1040                        if (!iso_status) {
1041                                if (fifo->last_urblen != maxlen) {
1042                                        /*
1043                                         * save fifo fill-level threshold bits
1044                                         * to use them later in TX ISO URB
1045                                         * completions
1046                                         */
1047                                        hw->threshold_mask = buf[1];
1048
1049                                        if (fifon == HFCUSB_D_RX)
1050                                                s0_state = (buf[0] >> 4);
1051
1052                                        eof[fifon] = buf[0] & 1;
1053                                        if (len > 2)
1054                                                hfcsusb_rx_frame(fifo, buf + 2,
1055                                                                 len - 2, (len < maxlen)
1056                                                                 ? eof[fifon] : 0);
1057                                } else
1058                                        hfcsusb_rx_frame(fifo, buf, len,
1059                                                         (len < maxlen) ?
1060                                                         eof[fifon] : 0);
1061                                fifo->last_urblen = len;
1062                        }
1063                }
1064
1065                /* signal S0 layer1 state change */
1066                if ((s0_state) && (hw->initdone) &&
1067                    (s0_state != hw->dch.state)) {
1068                        hw->dch.state = s0_state;
1069                        schedule_event(&hw->dch, FLG_PHCHANGE);
1070                }
1071
1072                fill_isoc_urb(urb, fifo->hw->dev, fifo->pipe,
1073                              context_iso_urb->buffer, num_isoc_packets,
1074                              fifo->usb_packet_maxlen, fifo->intervall,
1075                              (usb_complete_t)rx_iso_complete, urb->context);
1076                errcode = usb_submit_urb(urb, GFP_ATOMIC);
1077                if (errcode < 0) {
1078                        if (debug & DEBUG_HW)
1079                                printk(KERN_DEBUG "%s: %s: error submitting "
1080                                       "ISO URB: %d\n",
1081                                       hw->name, __func__, errcode);
1082                }
1083        } else {
1084                if (status && (debug & DBG_HFC_URB_INFO))
1085                        printk(KERN_DEBUG "%s: %s: rx_iso_complete : "
1086                               "urb->status %d, fifonum %d\n",
1087                               hw->name, __func__, status, fifon);
1088        }
1089}
1090
1091/* receive completion routine for all interrupt rx fifos */
1092static void
1093rx_int_complete(struct urb *urb)
1094{
1095        int len, status, i;
1096        __u8 *buf, maxlen, fifon;
1097        struct usb_fifo *fifo = (struct usb_fifo *) urb->context;
1098        struct hfcsusb *hw = fifo->hw;
1099        static __u8 eof[8];
1100        unsigned long flags;
1101
1102        spin_lock_irqsave(&hw->lock, flags);
1103        if (fifo->stop_gracefull) {
1104                fifo->stop_gracefull = 0;
1105                fifo->active = 0;
1106                spin_unlock_irqrestore(&hw->lock, flags);
1107                return;
1108        }
1109        spin_unlock_irqrestore(&hw->lock, flags);
1110
1111        fifon = fifo->fifonum;
1112        if ((!fifo->active) || (urb->status)) {
1113                if (debug & DBG_HFC_URB_ERROR)
1114                        printk(KERN_DEBUG
1115                               "%s: %s: RX-Fifo %i is going down (%i)\n",
1116                               hw->name, __func__, fifon, urb->status);
1117
1118                fifo->urb->interval = 0; /* cancel automatic rescheduling */
1119                return;
1120        }
1121        len = urb->actual_length;
1122        buf = fifo->buffer;
1123        maxlen = fifo->usb_packet_maxlen;
1124
1125        /* USB data log for every D INT in */
1126        if ((fifon == HFCUSB_D_RX) && (debug & DBG_HFC_USB_VERBOSE)) {
1127                printk(KERN_DEBUG "%s: %s: D RX INT len(%d) ",
1128                       hw->name, __func__, len);
1129                for (i = 0; i < len; i++)
1130                        printk("%02x ", buf[i]);
1131                printk("\n");
1132        }
1133
1134        if (fifo->last_urblen != fifo->usb_packet_maxlen) {
1135                /* the threshold mask is in the 2nd status byte */
1136                hw->threshold_mask = buf[1];
1137
1138                /* signal S0 layer1 state change */
1139                if (hw->initdone && ((buf[0] >> 4) != hw->dch.state)) {
1140                        hw->dch.state = (buf[0] >> 4);
1141                        schedule_event(&hw->dch, FLG_PHCHANGE);
1142                }
1143
1144                eof[fifon] = buf[0] & 1;
1145                /* if we have more than the 2 status bytes -> collect data */
1146                if (len > 2)
1147                        hfcsusb_rx_frame(fifo, buf + 2,
1148                                         urb->actual_length - 2,
1149                                         (len < maxlen) ? eof[fifon] : 0);
1150        } else {
1151                hfcsusb_rx_frame(fifo, buf, urb->actual_length,
1152                                 (len < maxlen) ? eof[fifon] : 0);
1153        }
1154        fifo->last_urblen = urb->actual_length;
1155
1156        status = usb_submit_urb(urb, GFP_ATOMIC);
1157        if (status) {
1158                if (debug & DEBUG_HW)
1159                        printk(KERN_DEBUG "%s: %s: error resubmitting USB\n",
1160                               hw->name, __func__);
1161        }
1162}
1163
1164/* transmit completion routine for all ISO tx fifos */
1165static void
1166tx_iso_complete(struct urb *urb)
1167{
1168        struct iso_urb *context_iso_urb = (struct iso_urb *) urb->context;
1169        struct usb_fifo *fifo = context_iso_urb->owner_fifo;
1170        struct hfcsusb *hw = fifo->hw;
1171        struct sk_buff *tx_skb;
1172        int k, tx_offset, num_isoc_packets, sink, remain, current_len,
1173                errcode, hdlc, i;
1174        int *tx_idx;
1175        int frame_complete, fifon, status, fillempty = 0;
1176        __u8 threshbit, *p;
1177        unsigned long flags;
1178
1179        spin_lock_irqsave(&hw->lock, flags);
1180        if (fifo->stop_gracefull) {
1181                fifo->stop_gracefull = 0;
1182                fifo->active = 0;
1183                spin_unlock_irqrestore(&hw->lock, flags);
1184                return;
1185        }
1186
1187        if (fifo->dch) {
1188                tx_skb = fifo->dch->tx_skb;
1189                tx_idx = &fifo->dch->tx_idx;
1190                hdlc = 1;
1191        } else if (fifo->bch) {
1192                tx_skb = fifo->bch->tx_skb;
1193                tx_idx = &fifo->bch->tx_idx;
1194                hdlc = test_bit(FLG_HDLC, &fifo->bch->Flags);
1195                if (!tx_skb && !hdlc &&
1196                    test_bit(FLG_FILLEMPTY, &fifo->bch->Flags))
1197                        fillempty = 1;
1198        } else {
1199                printk(KERN_DEBUG "%s: %s: neither BCH nor DCH\n",
1200                       hw->name, __func__);
1201                spin_unlock_irqrestore(&hw->lock, flags);
1202                return;
1203        }
1204
1205        fifon = fifo->fifonum;
1206        status = urb->status;
1207
1208        tx_offset = 0;
1209
1210        /*
1211         * ISO transfer only partially completed,
1212         * look at individual frame status for details
1213         */
1214        if (status == -EXDEV) {
1215                if (debug & DBG_HFC_URB_ERROR)
1216                        printk(KERN_DEBUG "%s: %s: "
1217                               "-EXDEV (%i) fifon (%d)\n",
1218                               hw->name, __func__, status, fifon);
1219
1220                /* clear status, so go on with ISO transfers */
1221                status = 0;
1222        }
1223
1224        if (fifo->active && !status) {
1225                /* is FifoFull-threshold set for our channel? */
1226                threshbit = (hw->threshold_mask & (1 << fifon));
1227                num_isoc_packets = iso_packets[fifon];
1228
1229                /* predict dataflow to avoid fifo overflow */
1230                if (fifon >= HFCUSB_D_TX)
1231                        sink = (threshbit) ? SINK_DMIN : SINK_DMAX;
1232                else
1233                        sink = (threshbit) ? SINK_MIN : SINK_MAX;
1234                fill_isoc_urb(urb, fifo->hw->dev, fifo->pipe,
1235                              context_iso_urb->buffer, num_isoc_packets,
1236                              fifo->usb_packet_maxlen, fifo->intervall,
1237                              (usb_complete_t)tx_iso_complete, urb->context);
1238                memset(context_iso_urb->buffer, 0,
1239                       sizeof(context_iso_urb->buffer));
1240                frame_complete = 0;
1241
1242                for (k = 0; k < num_isoc_packets; ++k) {
1243                        /* analyze tx success of previous ISO packets */
1244                        if (debug & DBG_HFC_URB_ERROR) {
1245                                errcode = urb->iso_frame_desc[k].status;
1246                                if (errcode) {
1247                                        printk(KERN_DEBUG "%s: %s: "
1248                                               "ISO packet %i, status: %i\n",
1249                                               hw->name, __func__, k, errcode);
1250                                }
1251                        }
1252
1253                        /* Generate next ISO Packets */
1254                        if (tx_skb)
1255                                remain = tx_skb->len - *tx_idx;
1256                        else if (fillempty)
1257                                remain = 15; /* > not complete */
1258                        else
1259                                remain = 0;
1260
1261                        if (remain > 0) {
1262                                fifo->bit_line -= sink;
1263                                current_len = (0 - fifo->bit_line) / 8;
1264                                if (current_len > 14)
1265                                        current_len = 14;
1266                                if (current_len < 0)
1267                                        current_len = 0;
1268                                if (remain < current_len)
1269                                        current_len = remain;
1270
1271                                /* how much bit do we put on the line? */
1272                                fifo->bit_line += current_len * 8;
1273
1274                                context_iso_urb->buffer[tx_offset] = 0;
1275                                if (current_len == remain) {
1276                                        if (hdlc) {
1277                                                /* signal frame completion */
1278                                                context_iso_urb->
1279                                                        buffer[tx_offset] = 1;
1280                                                /* add 2 byte flags and 16bit
1281                                                 * CRC at end of ISDN frame */
1282                                                fifo->bit_line += 32;
1283                                        }
1284                                        frame_complete = 1;
1285                                }
1286
1287                                /* copy tx data to iso-urb buffer */
1288                                p = context_iso_urb->buffer + tx_offset + 1;
1289                                if (fillempty) {
1290                                        memset(p, fifo->bch->fill[0],
1291                                               current_len);
1292                                } else {
1293                                        memcpy(p, (tx_skb->data + *tx_idx),
1294                                               current_len);
1295                                        *tx_idx += current_len;
1296                                }
1297                                urb->iso_frame_desc[k].offset = tx_offset;
1298                                urb->iso_frame_desc[k].length = current_len + 1;
1299
1300                                /* USB data log for every D ISO out */
1301                                if ((fifon == HFCUSB_D_RX) && !fillempty &&
1302                                    (debug & DBG_HFC_USB_VERBOSE)) {
1303                                        printk(KERN_DEBUG
1304                                               "%s: %s (%d/%d) offs(%d) len(%d) ",
1305                                               hw->name, __func__,
1306                                               k, num_isoc_packets - 1,
1307                                               urb->iso_frame_desc[k].offset,
1308                                               urb->iso_frame_desc[k].length);
1309
1310                                        for (i = urb->iso_frame_desc[k].offset;
1311                                             i < (urb->iso_frame_desc[k].offset
1312                                                  + urb->iso_frame_desc[k].length);
1313                                             i++)
1314                                                printk("%x ",
1315                                                       context_iso_urb->buffer[i]);
1316
1317                                        printk(" skb->len(%i) tx-idx(%d)\n",
1318                                               tx_skb->len, *tx_idx);
1319                                }
1320
1321                                tx_offset += (current_len + 1);
1322                        } else {
1323                                urb->iso_frame_desc[k].offset = tx_offset++;
1324                                urb->iso_frame_desc[k].length = 1;
1325                                /* we lower data margin every msec */
1326                                fifo->bit_line -= sink;
1327                                if (fifo->bit_line < BITLINE_INF)
1328                                        fifo->bit_line = BITLINE_INF;
1329                        }
1330
1331                        if (frame_complete) {
1332                                frame_complete = 0;
1333
1334                                if (debug & DBG_HFC_FIFO_VERBOSE) {
1335                                        printk(KERN_DEBUG  "%s: %s: "
1336                                               "fifon(%i) new TX len(%i): ",
1337                                               hw->name, __func__,
1338                                               fifon, tx_skb->len);
1339                                        i = 0;
1340                                        while (i < tx_skb->len)
1341                                                printk("%02x ",
1342                                                       tx_skb->data[i++]);
1343                                        printk("\n");
1344                                }
1345
1346                                dev_kfree_skb(tx_skb);
1347                                tx_skb = NULL;
1348                                if (fifo->dch && get_next_dframe(fifo->dch))
1349                                        tx_skb = fifo->dch->tx_skb;
1350                                else if (fifo->bch &&
1351                                         get_next_bframe(fifo->bch))
1352                                        tx_skb = fifo->bch->tx_skb;
1353                        }
1354                }
1355                errcode = usb_submit_urb(urb, GFP_ATOMIC);
1356                if (errcode < 0) {
1357                        if (debug & DEBUG_HW)
1358                                printk(KERN_DEBUG
1359                                       "%s: %s: error submitting ISO URB: %d \n",
1360                                       hw->name, __func__, errcode);
1361                }
1362
1363                /*
1364                 * abuse DChannel tx iso completion to trigger NT mode state
1365                 * changes tx_iso_complete is assumed to be called every
1366                 * fifo->intervall (ms)
1367                 */
1368                if ((fifon == HFCUSB_D_TX) && (hw->protocol == ISDN_P_NT_S0)
1369                    && (hw->timers & NT_ACTIVATION_TIMER)) {
1370                        if ((--hw->nt_timer) < 0)
1371                                schedule_event(&hw->dch, FLG_PHCHANGE);
1372                }
1373
1374        } else {
1375                if (status && (debug & DBG_HFC_URB_ERROR))
1376                        printk(KERN_DEBUG  "%s: %s: urb->status %s (%i)"
1377                               "fifonum=%d\n",
1378                               hw->name, __func__,
1379                               symbolic(urb_errlist, status), status, fifon);
1380        }
1381        spin_unlock_irqrestore(&hw->lock, flags);
1382}
1383
1384/*
1385 * allocs urbs and start isoc transfer with two pending urbs to avoid
1386 * gaps in the transfer chain
1387 */
1388static int
1389start_isoc_chain(struct usb_fifo *fifo, int num_packets_per_urb,
1390                 usb_complete_t complete, int packet_size)
1391{
1392        struct hfcsusb *hw = fifo->hw;
1393        int i, k, errcode;
1394
1395        if (debug)
1396                printk(KERN_DEBUG "%s: %s: fifo %i\n",
1397                       hw->name, __func__, fifo->fifonum);
1398
1399        /* allocate Memory for Iso out Urbs */
1400        for (i = 0; i < 2; i++) {
1401                if (!(fifo->iso[i].urb)) {
1402                        fifo->iso[i].urb =
1403                                usb_alloc_urb(num_packets_per_urb, GFP_KERNEL);
1404                        if (!(fifo->iso[i].urb)) {
1405                                printk(KERN_DEBUG
1406                                       "%s: %s: alloc urb for fifo %i failed",
1407                                       hw->name, __func__, fifo->fifonum);
1408                        }
1409                        fifo->iso[i].owner_fifo = (struct usb_fifo *) fifo;
1410                        fifo->iso[i].indx = i;
1411
1412                        /* Init the first iso */
1413                        if (ISO_BUFFER_SIZE >=
1414                            (fifo->usb_packet_maxlen *
1415                             num_packets_per_urb)) {
1416                                fill_isoc_urb(fifo->iso[i].urb,
1417                                              fifo->hw->dev, fifo->pipe,
1418                                              fifo->iso[i].buffer,
1419                                              num_packets_per_urb,
1420                                              fifo->usb_packet_maxlen,
1421                                              fifo->intervall, complete,
1422                                              &fifo->iso[i]);
1423                                memset(fifo->iso[i].buffer, 0,
1424                                       sizeof(fifo->iso[i].buffer));
1425
1426                                for (k = 0; k < num_packets_per_urb; k++) {
1427                                        fifo->iso[i].urb->
1428                                                iso_frame_desc[k].offset =
1429                                                k * packet_size;
1430                                        fifo->iso[i].urb->
1431                                                iso_frame_desc[k].length =
1432                                                packet_size;
1433                                }
1434                        } else {
1435                                printk(KERN_DEBUG
1436                                       "%s: %s: ISO Buffer size to small!\n",
1437                                       hw->name, __func__);
1438                        }
1439                }
1440                fifo->bit_line = BITLINE_INF;
1441
1442                errcode = usb_submit_urb(fifo->iso[i].urb, GFP_KERNEL);
1443                fifo->active = (errcode >= 0) ? 1 : 0;
1444                fifo->stop_gracefull = 0;
1445                if (errcode < 0) {
1446                        printk(KERN_DEBUG "%s: %s: %s URB nr:%d\n",
1447                               hw->name, __func__,
1448                               symbolic(urb_errlist, errcode), i);
1449                }
1450        }
1451        return fifo->active;
1452}
1453
1454static void
1455stop_iso_gracefull(struct usb_fifo *fifo)
1456{
1457        struct hfcsusb *hw = fifo->hw;
1458        int i, timeout;
1459        u_long flags;
1460
1461        for (i = 0; i < 2; i++) {
1462                spin_lock_irqsave(&hw->lock, flags);
1463                if (debug)
1464                        printk(KERN_DEBUG "%s: %s for fifo %i.%i\n",
1465                               hw->name, __func__, fifo->fifonum, i);
1466                fifo->stop_gracefull = 1;
1467                spin_unlock_irqrestore(&hw->lock, flags);
1468        }
1469
1470        for (i = 0; i < 2; i++) {
1471                timeout = 3;
1472                while (fifo->stop_gracefull && timeout--)
1473                        schedule_timeout_interruptible((HZ / 1000) * 16);
1474                if (debug && fifo->stop_gracefull)
1475                        printk(KERN_DEBUG "%s: ERROR %s for fifo %i.%i\n",
1476                               hw->name, __func__, fifo->fifonum, i);
1477        }
1478}
1479
1480static void
1481stop_int_gracefull(struct usb_fifo *fifo)
1482{
1483        struct hfcsusb *hw = fifo->hw;
1484        int timeout;
1485        u_long flags;
1486
1487        spin_lock_irqsave(&hw->lock, flags);
1488        if (debug)
1489                printk(KERN_DEBUG "%s: %s for fifo %i\n",
1490                       hw->name, __func__, fifo->fifonum);
1491        fifo->stop_gracefull = 1;
1492        spin_unlock_irqrestore(&hw->lock, flags);
1493
1494        timeout = 3;
1495        while (fifo->stop_gracefull && timeout--)
1496                schedule_timeout_interruptible((HZ / 1000) * 3);
1497        if (debug && fifo->stop_gracefull)
1498                printk(KERN_DEBUG "%s: ERROR %s for fifo %i\n",
1499                       hw->name, __func__, fifo->fifonum);
1500}
1501
1502/* start the interrupt transfer for the given fifo */
1503static void
1504start_int_fifo(struct usb_fifo *fifo)
1505{
1506        struct hfcsusb *hw = fifo->hw;
1507        int errcode;
1508
1509        if (debug)
1510                printk(KERN_DEBUG "%s: %s: INT IN fifo:%d\n",
1511                       hw->name, __func__, fifo->fifonum);
1512
1513        if (!fifo->urb) {
1514                fifo->urb = usb_alloc_urb(0, GFP_KERNEL);
1515                if (!fifo->urb)
1516                        return;
1517        }
1518        usb_fill_int_urb(fifo->urb, fifo->hw->dev, fifo->pipe,
1519                         fifo->buffer, fifo->usb_packet_maxlen,
1520                         (usb_complete_t)rx_int_complete, fifo, fifo->intervall);
1521        fifo->active = 1;
1522        fifo->stop_gracefull = 0;
1523        errcode = usb_submit_urb(fifo->urb, GFP_KERNEL);
1524        if (errcode) {
1525                printk(KERN_DEBUG "%s: %s: submit URB: status:%i\n",
1526                       hw->name, __func__, errcode);
1527                fifo->active = 0;
1528        }
1529}
1530
1531static void
1532setPortMode(struct hfcsusb *hw)
1533{
1534        if (debug & DEBUG_HW)
1535                printk(KERN_DEBUG "%s: %s %s\n", hw->name, __func__,
1536                       (hw->protocol == ISDN_P_TE_S0) ? "TE" : "NT");
1537
1538        if (hw->protocol == ISDN_P_TE_S0) {
1539                write_reg(hw, HFCUSB_SCTRL, 0x40);
1540                write_reg(hw, HFCUSB_SCTRL_E, 0x00);
1541                write_reg(hw, HFCUSB_CLKDEL, CLKDEL_TE);
1542                write_reg(hw, HFCUSB_STATES, 3 | 0x10);
1543                write_reg(hw, HFCUSB_STATES, 3);
1544        } else {
1545                write_reg(hw, HFCUSB_SCTRL, 0x44);
1546                write_reg(hw, HFCUSB_SCTRL_E, 0x09);
1547                write_reg(hw, HFCUSB_CLKDEL, CLKDEL_NT);
1548                write_reg(hw, HFCUSB_STATES, 1 | 0x10);
1549                write_reg(hw, HFCUSB_STATES, 1);
1550        }
1551}
1552
1553static void
1554reset_hfcsusb(struct hfcsusb *hw)
1555{
1556        struct usb_fifo *fifo;
1557        int i;
1558
1559        if (debug & DEBUG_HW)
1560                printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1561
1562        /* do Chip reset */
1563        write_reg(hw, HFCUSB_CIRM, 8);
1564
1565        /* aux = output, reset off */
1566        write_reg(hw, HFCUSB_CIRM, 0x10);
1567
1568        /* set USB_SIZE to match the wMaxPacketSize for INT or BULK transfers */
1569        write_reg(hw, HFCUSB_USB_SIZE, (hw->packet_size / 8) |
1570                  ((hw->packet_size / 8) << 4));
1571
1572        /* set USB_SIZE_I to match the the wMaxPacketSize for ISO transfers */
1573        write_reg(hw, HFCUSB_USB_SIZE_I, hw->iso_packet_size);
1574
1575        /* enable PCM/GCI master mode */
1576        write_reg(hw, HFCUSB_MST_MODE1, 0);     /* set default values */
1577        write_reg(hw, HFCUSB_MST_MODE0, 1);     /* enable master mode */
1578
1579        /* init the fifos */
1580        write_reg(hw, HFCUSB_F_THRES,
1581                  (HFCUSB_TX_THRESHOLD / 8) | ((HFCUSB_RX_THRESHOLD / 8) << 4));
1582
1583        fifo = hw->fifos;
1584        for (i = 0; i < HFCUSB_NUM_FIFOS; i++) {
1585                write_reg(hw, HFCUSB_FIFO, i);  /* select the desired fifo */
1586                fifo[i].max_size =
1587                        (i <= HFCUSB_B2_RX) ? MAX_BCH_SIZE : MAX_DFRAME_LEN;
1588                fifo[i].last_urblen = 0;
1589
1590                /* set 2 bit for D- & E-channel */
1591                write_reg(hw, HFCUSB_HDLC_PAR, ((i <= HFCUSB_B2_RX) ? 0 : 2));
1592
1593                /* enable all fifos */
1594                if (i == HFCUSB_D_TX)
1595                        write_reg(hw, HFCUSB_CON_HDLC,
1596                                  (hw->protocol == ISDN_P_NT_S0) ? 0x08 : 0x09);
1597                else
1598                        write_reg(hw, HFCUSB_CON_HDLC, 0x08);
1599                write_reg(hw, HFCUSB_INC_RES_F, 2); /* reset the fifo */
1600        }
1601
1602        write_reg(hw, HFCUSB_SCTRL_R, 0); /* disable both B receivers */
1603        handle_led(hw, LED_POWER_ON);
1604}
1605
1606/* start USB data pipes dependand on device's endpoint configuration */
1607static void
1608hfcsusb_start_endpoint(struct hfcsusb *hw, int channel)
1609{
1610        /* quick check if endpoint already running */
1611        if ((channel == HFC_CHAN_D) && (hw->fifos[HFCUSB_D_RX].active))
1612                return;
1613        if ((channel == HFC_CHAN_B1) && (hw->fifos[HFCUSB_B1_RX].active))
1614                return;
1615        if ((channel == HFC_CHAN_B2) && (hw->fifos[HFCUSB_B2_RX].active))
1616                return;
1617        if ((channel == HFC_CHAN_E) && (hw->fifos[HFCUSB_PCM_RX].active))
1618                return;
1619
1620        /* start rx endpoints using USB INT IN method */
1621        if (hw->cfg_used == CNF_3INT3ISO || hw->cfg_used == CNF_4INT3ISO)
1622                start_int_fifo(hw->fifos + channel * 2 + 1);
1623
1624        /* start rx endpoints using USB ISO IN method */
1625        if (hw->cfg_used == CNF_3ISO3ISO || hw->cfg_used == CNF_4ISO3ISO) {
1626                switch (channel) {
1627                case HFC_CHAN_D:
1628                        start_isoc_chain(hw->fifos + HFCUSB_D_RX,
1629                                         ISOC_PACKETS_D,
1630                                         (usb_complete_t)rx_iso_complete,
1631                                         16);
1632                        break;
1633                case HFC_CHAN_E:
1634                        start_isoc_chain(hw->fifos + HFCUSB_PCM_RX,
1635                                         ISOC_PACKETS_D,
1636                                         (usb_complete_t)rx_iso_complete,
1637                                         16);
1638                        break;
1639                case HFC_CHAN_B1:
1640                        start_isoc_chain(hw->fifos + HFCUSB_B1_RX,
1641                                         ISOC_PACKETS_B,
1642                                         (usb_complete_t)rx_iso_complete,
1643                                         16);
1644                        break;
1645                case HFC_CHAN_B2:
1646                        start_isoc_chain(hw->fifos + HFCUSB_B2_RX,
1647                                         ISOC_PACKETS_B,
1648                                         (usb_complete_t)rx_iso_complete,
1649                                         16);
1650                        break;
1651                }
1652        }
1653
1654        /* start tx endpoints using USB ISO OUT method */
1655        switch (channel) {
1656        case HFC_CHAN_D:
1657                start_isoc_chain(hw->fifos + HFCUSB_D_TX,
1658                                 ISOC_PACKETS_B,
1659                                 (usb_complete_t)tx_iso_complete, 1);
1660                break;
1661        case HFC_CHAN_B1:
1662                start_isoc_chain(hw->fifos + HFCUSB_B1_TX,
1663                                 ISOC_PACKETS_D,
1664                                 (usb_complete_t)tx_iso_complete, 1);
1665                break;
1666        case HFC_CHAN_B2:
1667                start_isoc_chain(hw->fifos + HFCUSB_B2_TX,
1668                                 ISOC_PACKETS_B,
1669                                 (usb_complete_t)tx_iso_complete, 1);
1670                break;
1671        }
1672}
1673
1674/* stop USB data pipes dependand on device's endpoint configuration */
1675static void
1676hfcsusb_stop_endpoint(struct hfcsusb *hw, int channel)
1677{
1678        /* quick check if endpoint currently running */
1679        if ((channel == HFC_CHAN_D) && (!hw->fifos[HFCUSB_D_RX].active))
1680                return;
1681        if ((channel == HFC_CHAN_B1) && (!hw->fifos[HFCUSB_B1_RX].active))
1682                return;
1683        if ((channel == HFC_CHAN_B2) && (!hw->fifos[HFCUSB_B2_RX].active))
1684                return;
1685        if ((channel == HFC_CHAN_E) && (!hw->fifos[HFCUSB_PCM_RX].active))
1686                return;
1687
1688        /* rx endpoints using USB INT IN method */
1689        if (hw->cfg_used == CNF_3INT3ISO || hw->cfg_used == CNF_4INT3ISO)
1690                stop_int_gracefull(hw->fifos + channel * 2 + 1);
1691
1692        /* rx endpoints using USB ISO IN method */
1693        if (hw->cfg_used == CNF_3ISO3ISO || hw->cfg_used == CNF_4ISO3ISO)
1694                stop_iso_gracefull(hw->fifos + channel * 2 + 1);
1695
1696        /* tx endpoints using USB ISO OUT method */
1697        if (channel != HFC_CHAN_E)
1698                stop_iso_gracefull(hw->fifos + channel * 2);
1699}
1700
1701
1702/* Hardware Initialization */
1703static int
1704setup_hfcsusb(struct hfcsusb *hw)
1705{
1706        u_char b;
1707
1708        if (debug & DBG_HFC_CALL_TRACE)
1709                printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1710
1711        /* check the chip id */
1712        if (read_reg_atomic(hw, HFCUSB_CHIP_ID, &b) != 1) {
1713                printk(KERN_DEBUG "%s: %s: cannot read chip id\n",
1714                       hw->name, __func__);
1715                return 1;
1716        }
1717        if (b != HFCUSB_CHIPID) {
1718                printk(KERN_DEBUG "%s: %s: Invalid chip id 0x%02x\n",
1719                       hw->name, __func__, b);
1720                return 1;
1721        }
1722
1723        /* first set the needed config, interface and alternate */
1724        (void) usb_set_interface(hw->dev, hw->if_used, hw->alt_used);
1725
1726        hw->led_state = 0;
1727
1728        /* init the background machinery for control requests */
1729        hw->ctrl_read.bRequestType = 0xc0;
1730        hw->ctrl_read.bRequest = 1;
1731        hw->ctrl_read.wLength = cpu_to_le16(1);
1732        hw->ctrl_write.bRequestType = 0x40;
1733        hw->ctrl_write.bRequest = 0;
1734        hw->ctrl_write.wLength = 0;
1735        usb_fill_control_urb(hw->ctrl_urb, hw->dev, hw->ctrl_out_pipe,
1736                             (u_char *)&hw->ctrl_write, NULL, 0,
1737                             (usb_complete_t)ctrl_complete, hw);
1738
1739        reset_hfcsusb(hw);
1740        return 0;
1741}
1742
1743static void
1744release_hw(struct hfcsusb *hw)
1745{
1746        if (debug & DBG_HFC_CALL_TRACE)
1747                printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1748
1749        /*
1750         * stop all endpoints gracefully
1751         * TODO: mISDN_core should generate CLOSE_CHANNEL
1752         *       signals after calling mISDN_unregister_device()
1753         */
1754        hfcsusb_stop_endpoint(hw, HFC_CHAN_D);
1755        hfcsusb_stop_endpoint(hw, HFC_CHAN_B1);
1756        hfcsusb_stop_endpoint(hw, HFC_CHAN_B2);
1757        if (hw->fifos[HFCUSB_PCM_RX].pipe)
1758                hfcsusb_stop_endpoint(hw, HFC_CHAN_E);
1759        if (hw->protocol == ISDN_P_TE_S0)
1760                l1_event(hw->dch.l1, CLOSE_CHANNEL);
1761
1762        mISDN_unregister_device(&hw->dch.dev);
1763        mISDN_freebchannel(&hw->bch[1]);
1764        mISDN_freebchannel(&hw->bch[0]);
1765        mISDN_freedchannel(&hw->dch);
1766
1767        if (hw->ctrl_urb) {
1768                usb_kill_urb(hw->ctrl_urb);
1769                usb_free_urb(hw->ctrl_urb);
1770                hw->ctrl_urb = NULL;
1771        }
1772
1773        if (hw->intf)
1774                usb_set_intfdata(hw->intf, NULL);
1775        list_del(&hw->list);
1776        kfree(hw);
1777        hw = NULL;
1778}
1779
1780static void
1781deactivate_bchannel(struct bchannel *bch)
1782{
1783        struct hfcsusb *hw = bch->hw;
1784        u_long flags;
1785
1786        if (bch->debug & DEBUG_HW)
1787                printk(KERN_DEBUG "%s: %s: bch->nr(%i)\n",
1788                       hw->name, __func__, bch->nr);
1789
1790        spin_lock_irqsave(&hw->lock, flags);
1791        mISDN_clear_bchannel(bch);
1792        spin_unlock_irqrestore(&hw->lock, flags);
1793        hfcsusb_setup_bch(bch, ISDN_P_NONE);
1794        hfcsusb_stop_endpoint(hw, bch->nr - 1);
1795}
1796
1797/*
1798 * Layer 1 B-channel hardware access
1799 */
1800static int
1801hfc_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
1802{
1803        struct bchannel *bch = container_of(ch, struct bchannel, ch);
1804        int             ret = -EINVAL;
1805
1806        if (bch->debug & DEBUG_HW)
1807                printk(KERN_DEBUG "%s: cmd:%x %p\n", __func__, cmd, arg);
1808
1809        switch (cmd) {
1810        case HW_TESTRX_RAW:
1811        case HW_TESTRX_HDLC:
1812        case HW_TESTRX_OFF:
1813                ret = -EINVAL;
1814                break;
1815
1816        case CLOSE_CHANNEL:
1817                test_and_clear_bit(FLG_OPEN, &bch->Flags);
1818                deactivate_bchannel(bch);
1819                ch->protocol = ISDN_P_NONE;
1820                ch->peer = NULL;
1821                module_put(THIS_MODULE);
1822                ret = 0;
1823                break;
1824        case CONTROL_CHANNEL:
1825                ret = channel_bctrl(bch, arg);
1826                break;
1827        default:
1828                printk(KERN_WARNING "%s: unknown prim(%x)\n",
1829                       __func__, cmd);
1830        }
1831        return ret;
1832}
1833
1834static int
1835setup_instance(struct hfcsusb *hw, struct device *parent)
1836{
1837        u_long  flags;
1838        int     err, i;
1839
1840        if (debug & DBG_HFC_CALL_TRACE)
1841                printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1842
1843        spin_lock_init(&hw->ctrl_lock);
1844        spin_lock_init(&hw->lock);
1845
1846        mISDN_initdchannel(&hw->dch, MAX_DFRAME_LEN_L1, ph_state);
1847        hw->dch.debug = debug & 0xFFFF;
1848        hw->dch.hw = hw;
1849        hw->dch.dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0);
1850        hw->dch.dev.D.send = hfcusb_l2l1D;
1851        hw->dch.dev.D.ctrl = hfc_dctrl;
1852
1853        /* enable E-Channel logging */
1854        if (hw->fifos[HFCUSB_PCM_RX].pipe)
1855                mISDN_initdchannel(&hw->ech, MAX_DFRAME_LEN_L1, NULL);
1856
1857        hw->dch.dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
1858                (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
1859        hw->dch.dev.nrbchan = 2;
1860        for (i = 0; i < 2; i++) {
1861                hw->bch[i].nr = i + 1;
1862                set_channelmap(i + 1, hw->dch.dev.channelmap);
1863                hw->bch[i].debug = debug;
1864                mISDN_initbchannel(&hw->bch[i], MAX_DATA_MEM, poll >> 1);
1865                hw->bch[i].hw = hw;
1866                hw->bch[i].ch.send = hfcusb_l2l1B;
1867                hw->bch[i].ch.ctrl = hfc_bctrl;
1868                hw->bch[i].ch.nr = i + 1;
1869                list_add(&hw->bch[i].ch.list, &hw->dch.dev.bchannels);
1870        }
1871
1872        hw->fifos[HFCUSB_B1_TX].bch = &hw->bch[0];
1873        hw->fifos[HFCUSB_B1_RX].bch = &hw->bch[0];
1874        hw->fifos[HFCUSB_B2_TX].bch = &hw->bch[1];
1875        hw->fifos[HFCUSB_B2_RX].bch = &hw->bch[1];
1876        hw->fifos[HFCUSB_D_TX].dch = &hw->dch;
1877        hw->fifos[HFCUSB_D_RX].dch = &hw->dch;
1878        hw->fifos[HFCUSB_PCM_RX].ech = &hw->ech;
1879        hw->fifos[HFCUSB_PCM_TX].ech = &hw->ech;
1880
1881        err = setup_hfcsusb(hw);
1882        if (err)
1883                goto out;
1884
1885        snprintf(hw->name, MISDN_MAX_IDLEN - 1, "%s.%d", DRIVER_NAME,
1886                 hfcsusb_cnt + 1);
1887        printk(KERN_INFO "%s: registered as '%s'\n",
1888               DRIVER_NAME, hw->name);
1889
1890        err = mISDN_register_device(&hw->dch.dev, parent, hw->name);
1891        if (err)
1892                goto out;
1893
1894        hfcsusb_cnt++;
1895        write_lock_irqsave(&HFClock, flags);
1896        list_add_tail(&hw->list, &HFClist);
1897        write_unlock_irqrestore(&HFClock, flags);
1898        return 0;
1899
1900out:
1901        mISDN_freebchannel(&hw->bch[1]);
1902        mISDN_freebchannel(&hw->bch[0]);
1903        mISDN_freedchannel(&hw->dch);
1904        kfree(hw);
1905        return err;
1906}
1907
1908static int
1909hfcsusb_probe(struct usb_interface *intf, const struct usb_device_id *id)
1910{
1911        struct hfcsusb                  *hw;
1912        struct usb_device               *dev = interface_to_usbdev(intf);
1913        struct usb_host_interface       *iface = intf->cur_altsetting;
1914        struct usb_host_interface       *iface_used = NULL;
1915        struct usb_host_endpoint        *ep;
1916        struct hfcsusb_vdata            *driver_info;
1917        int ifnum = iface->desc.bInterfaceNumber, i, idx, alt_idx,
1918                probe_alt_setting, vend_idx, cfg_used, *vcf, attr, cfg_found,
1919                ep_addr, cmptbl[16], small_match, iso_packet_size, packet_size,
1920                alt_used = 0;
1921
1922        vend_idx = 0xffff;
1923        for (i = 0; hfcsusb_idtab[i].idVendor; i++) {
1924                if ((le16_to_cpu(dev->descriptor.idVendor)
1925                     == hfcsusb_idtab[i].idVendor) &&
1926                    (le16_to_cpu(dev->descriptor.idProduct)
1927                     == hfcsusb_idtab[i].idProduct)) {
1928                        vend_idx = i;
1929                        continue;
1930                }
1931        }
1932
1933        printk(KERN_DEBUG
1934               "%s: interface(%d) actalt(%d) minor(%d) vend_idx(%d)\n",
1935               __func__, ifnum, iface->desc.bAlternateSetting,
1936               intf->minor, vend_idx);
1937
1938        if (vend_idx == 0xffff) {
1939                printk(KERN_WARNING
1940                       "%s: no valid vendor found in USB descriptor\n",
1941                       __func__);
1942                return -EIO;
1943        }
1944        /* if vendor and product ID is OK, start probing alternate settings */
1945        alt_idx = 0;
1946        small_match = -1;
1947
1948        /* default settings */
1949        iso_packet_size = 16;
1950        packet_size = 64;
1951
1952        while (alt_idx < intf->num_altsetting) {
1953                iface = intf->altsetting + alt_idx;
1954                probe_alt_setting = iface->desc.bAlternateSetting;
1955                cfg_used = 0;
1956
1957                while (validconf[cfg_used][0]) {
1958                        cfg_found = 1;
1959                        vcf = validconf[cfg_used];
1960                        ep = iface->endpoint;
1961                        memcpy(cmptbl, vcf, 16 * sizeof(int));
1962
1963                        /* check for all endpoints in this alternate setting */
1964                        for (i = 0; i < iface->desc.bNumEndpoints; i++) {
1965                                ep_addr = ep->desc.bEndpointAddress;
1966
1967                                /* get endpoint base */
1968                                idx = ((ep_addr & 0x7f) - 1) * 2;
1969                                if (ep_addr & 0x80)
1970                                        idx++;
1971                                attr = ep->desc.bmAttributes;
1972
1973                                if (cmptbl[idx] != EP_NOP) {
1974                                        if (cmptbl[idx] == EP_NUL)
1975                                                cfg_found = 0;
1976                                        if (attr == USB_ENDPOINT_XFER_INT
1977                                            && cmptbl[idx] == EP_INT)
1978                                                cmptbl[idx] = EP_NUL;
1979                                        if (attr == USB_ENDPOINT_XFER_BULK
1980                                            && cmptbl[idx] == EP_BLK)
1981                                                cmptbl[idx] = EP_NUL;
1982                                        if (attr == USB_ENDPOINT_XFER_ISOC
1983                                            && cmptbl[idx] == EP_ISO)
1984                                                cmptbl[idx] = EP_NUL;
1985
1986                                        if (attr == USB_ENDPOINT_XFER_INT &&
1987                                            ep->desc.bInterval < vcf[17]) {
1988                                                cfg_found = 0;
1989                                        }
1990                                }
1991                                ep++;
1992                        }
1993
1994                        for (i = 0; i < 16; i++)
1995                                if (cmptbl[i] != EP_NOP && cmptbl[i] != EP_NUL)
1996                                        cfg_found = 0;
1997
1998                        if (cfg_found) {
1999                                if (small_match < cfg_used) {
2000                                        small_match = cfg_used;
2001                                        alt_used = probe_alt_setting;
2002                                        iface_used = iface;
2003                                }
2004                        }
2005                        cfg_used++;
2006                }
2007                alt_idx++;
2008        }       /* (alt_idx < intf->num_altsetting) */
2009
2010        /* not found a valid USB Ta Endpoint config */
2011        if (small_match == -1)
2012                return -EIO;
2013
2014        iface = iface_used;
2015        hw = kzalloc(sizeof(struct hfcsusb), GFP_KERNEL);
2016        if (!hw)
2017                return -ENOMEM; /* got no mem */
2018        snprintf(hw->name, MISDN_MAX_IDLEN - 1, "%s", DRIVER_NAME);
2019
2020        ep = iface->endpoint;
2021        vcf = validconf[small_match];
2022
2023        for (i = 0; i < iface->desc.bNumEndpoints; i++) {
2024                struct usb_fifo *f;
2025
2026                ep_addr = ep->desc.bEndpointAddress;
2027                /* get endpoint base */
2028                idx = ((ep_addr & 0x7f) - 1) * 2;
2029                if (ep_addr & 0x80)
2030                        idx++;
2031                f = &hw->fifos[idx & 7];
2032
2033                /* init Endpoints */
2034                if (vcf[idx] == EP_NOP || vcf[idx] == EP_NUL) {
2035                        ep++;
2036                        continue;
2037                }
2038                switch (ep->desc.bmAttributes) {
2039                case USB_ENDPOINT_XFER_INT:
2040                        f->pipe = usb_rcvintpipe(dev,
2041                                                 ep->desc.bEndpointAddress);
2042                        f->usb_transfer_mode = USB_INT;
2043                        packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2044                        break;
2045                case USB_ENDPOINT_XFER_BULK:
2046                        if (ep_addr & 0x80)
2047                                f->pipe = usb_rcvbulkpipe(dev,
2048                                                          ep->desc.bEndpointAddress);
2049                        else
2050                                f->pipe = usb_sndbulkpipe(dev,
2051                                                          ep->desc.bEndpointAddress);
2052                        f->usb_transfer_mode = USB_BULK;
2053                        packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2054                        break;
2055                case USB_ENDPOINT_XFER_ISOC:
2056                        if (ep_addr & 0x80)
2057                                f->pipe = usb_rcvisocpipe(dev,
2058                                                          ep->desc.bEndpointAddress);
2059                        else
2060                                f->pipe = usb_sndisocpipe(dev,
2061                                                          ep->desc.bEndpointAddress);
2062                        f->usb_transfer_mode = USB_ISOC;
2063                        iso_packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2064                        break;
2065                default:
2066                        f->pipe = 0;
2067                }
2068
2069                if (f->pipe) {
2070                        f->fifonum = idx & 7;
2071                        f->hw = hw;
2072                        f->usb_packet_maxlen =
2073                                le16_to_cpu(ep->desc.wMaxPacketSize);
2074                        f->intervall = ep->desc.bInterval;
2075                }
2076                ep++;
2077        }
2078        hw->dev = dev; /* save device */
2079        hw->if_used = ifnum; /* save used interface */
2080        hw->alt_used = alt_used; /* and alternate config */
2081        hw->ctrl_paksize = dev->descriptor.bMaxPacketSize0; /* control size */
2082        hw->cfg_used = vcf[16]; /* store used config */
2083        hw->vend_idx = vend_idx; /* store found vendor */
2084        hw->packet_size = packet_size;
2085        hw->iso_packet_size = iso_packet_size;
2086
2087        /* create the control pipes needed for register access */
2088        hw->ctrl_in_pipe = usb_rcvctrlpipe(hw->dev, 0);
2089        hw->ctrl_out_pipe = usb_sndctrlpipe(hw->dev, 0);
2090
2091        driver_info = (struct hfcsusb_vdata *)
2092                      hfcsusb_idtab[vend_idx].driver_info;
2093
2094        hw->ctrl_urb = usb_alloc_urb(0, GFP_KERNEL);
2095        if (!hw->ctrl_urb) {
2096                pr_warn("%s: No memory for control urb\n",
2097                        driver_info->vend_name);
2098                kfree(hw);
2099                return -ENOMEM;
2100        }
2101
2102        pr_info("%s: %s: detected \"%s\" (%s, if=%d alt=%d)\n",
2103                hw->name, __func__, driver_info->vend_name,
2104                conf_str[small_match], ifnum, alt_used);
2105
2106        if (setup_instance(hw, dev->dev.parent))
2107                return -EIO;
2108
2109        hw->intf = intf;
2110        usb_set_intfdata(hw->intf, hw);
2111        return 0;
2112}
2113
2114/* function called when an active device is removed */
2115static void
2116hfcsusb_disconnect(struct usb_interface *intf)
2117{
2118        struct hfcsusb *hw = usb_get_intfdata(intf);
2119        struct hfcsusb *next;
2120        int cnt = 0;
2121
2122        printk(KERN_INFO "%s: device disconnected\n", hw->name);
2123
2124        handle_led(hw, LED_POWER_OFF);
2125        release_hw(hw);
2126
2127        list_for_each_entry_safe(hw, next, &HFClist, list)
2128                cnt++;
2129        if (!cnt)
2130                hfcsusb_cnt = 0;
2131
2132        usb_set_intfdata(intf, NULL);
2133}
2134
2135static struct usb_driver hfcsusb_drv = {
2136        .name = DRIVER_NAME,
2137        .id_table = hfcsusb_idtab,
2138        .probe = hfcsusb_probe,
2139        .disconnect = hfcsusb_disconnect,
2140        .disable_hub_initiated_lpm = 1,
2141};
2142
2143module_usb_driver(hfcsusb_drv);
2144