linux/drivers/media/dvb-frontends/drxd_hard.c
<<
>>
Prefs
   1/*
   2 * drxd_hard.c: DVB-T Demodulator Micronas DRX3975D-A2,DRX397xD-B1
   3 *
   4 * Copyright (C) 2003-2007 Micronas
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * version 2 only, as published by the Free Software Foundation.
   9 *
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * To obtain the license, point your browser to
  17 * http://www.gnu.org/copyleft/gpl.html
  18 */
  19
  20#include <linux/kernel.h>
  21#include <linux/module.h>
  22#include <linux/moduleparam.h>
  23#include <linux/init.h>
  24#include <linux/delay.h>
  25#include <linux/firmware.h>
  26#include <linux/i2c.h>
  27#include <asm/div64.h>
  28
  29#include <media/dvb_frontend.h>
  30#include "drxd.h"
  31#include "drxd_firm.h"
  32
  33#define DRX_FW_FILENAME_A2 "drxd-a2-1.1.fw"
  34#define DRX_FW_FILENAME_B1 "drxd-b1-1.1.fw"
  35
  36#define CHUNK_SIZE 48
  37
  38#define DRX_I2C_RMW           0x10
  39#define DRX_I2C_BROADCAST     0x20
  40#define DRX_I2C_CLEARCRC      0x80
  41#define DRX_I2C_SINGLE_MASTER 0xC0
  42#define DRX_I2C_MODEFLAGS     0xC0
  43#define DRX_I2C_FLAGS         0xF0
  44
  45#define DEFAULT_LOCK_TIMEOUT    1100
  46
  47#define DRX_CHANNEL_AUTO 0
  48#define DRX_CHANNEL_HIGH 1
  49#define DRX_CHANNEL_LOW  2
  50
  51#define DRX_LOCK_MPEG  1
  52#define DRX_LOCK_FEC   2
  53#define DRX_LOCK_DEMOD 4
  54
  55/****************************************************************************/
  56
  57enum CSCDState {
  58        CSCD_INIT = 0,
  59        CSCD_SET,
  60        CSCD_SAVED
  61};
  62
  63enum CDrxdState {
  64        DRXD_UNINITIALIZED = 0,
  65        DRXD_STOPPED,
  66        DRXD_STARTED
  67};
  68
  69enum AGC_CTRL_MODE {
  70        AGC_CTRL_AUTO = 0,
  71        AGC_CTRL_USER,
  72        AGC_CTRL_OFF
  73};
  74
  75enum OperationMode {
  76        OM_Default,
  77        OM_DVBT_Diversity_Front,
  78        OM_DVBT_Diversity_End
  79};
  80
  81struct SCfgAgc {
  82        enum AGC_CTRL_MODE ctrlMode;
  83        u16 outputLevel;        /* range [0, ... , 1023], 1/n of fullscale range */
  84        u16 settleLevel;        /* range [0, ... , 1023], 1/n of fullscale range */
  85        u16 minOutputLevel;     /* range [0, ... , 1023], 1/n of fullscale range */
  86        u16 maxOutputLevel;     /* range [0, ... , 1023], 1/n of fullscale range */
  87        u16 speed;              /* range [0, ... , 1023], 1/n of fullscale range */
  88
  89        u16 R1;
  90        u16 R2;
  91        u16 R3;
  92};
  93
  94struct SNoiseCal {
  95        int cpOpt;
  96        short cpNexpOfs;
  97        short tdCal2k;
  98        short tdCal8k;
  99};
 100
 101enum app_env {
 102        APPENV_STATIC = 0,
 103        APPENV_PORTABLE = 1,
 104        APPENV_MOBILE = 2
 105};
 106
 107enum EIFFilter {
 108        IFFILTER_SAW = 0,
 109        IFFILTER_DISCRETE = 1
 110};
 111
 112struct drxd_state {
 113        struct dvb_frontend frontend;
 114        struct dvb_frontend_ops ops;
 115        struct dtv_frontend_properties props;
 116
 117        const struct firmware *fw;
 118        struct device *dev;
 119
 120        struct i2c_adapter *i2c;
 121        void *priv;
 122        struct drxd_config config;
 123
 124        int i2c_access;
 125        int init_done;
 126        struct mutex mutex;
 127
 128        u8 chip_adr;
 129        u16 hi_cfg_timing_div;
 130        u16 hi_cfg_bridge_delay;
 131        u16 hi_cfg_wakeup_key;
 132        u16 hi_cfg_ctrl;
 133
 134        u16 intermediate_freq;
 135        u16 osc_clock_freq;
 136
 137        enum CSCDState cscd_state;
 138        enum CDrxdState drxd_state;
 139
 140        u16 sys_clock_freq;
 141        s16 osc_clock_deviation;
 142        u16 expected_sys_clock_freq;
 143
 144        u16 insert_rs_byte;
 145        u16 enable_parallel;
 146
 147        int operation_mode;
 148
 149        struct SCfgAgc if_agc_cfg;
 150        struct SCfgAgc rf_agc_cfg;
 151
 152        struct SNoiseCal noise_cal;
 153
 154        u32 fe_fs_add_incr;
 155        u32 org_fe_fs_add_incr;
 156        u16 current_fe_if_incr;
 157
 158        u16 m_FeAgRegAgPwd;
 159        u16 m_FeAgRegAgAgcSio;
 160
 161        u16 m_EcOcRegOcModeLop;
 162        u16 m_EcOcRegSncSncLvl;
 163        u8 *m_InitAtomicRead;
 164        u8 *m_HiI2cPatch;
 165
 166        u8 *m_ResetCEFR;
 167        u8 *m_InitFE_1;
 168        u8 *m_InitFE_2;
 169        u8 *m_InitCP;
 170        u8 *m_InitCE;
 171        u8 *m_InitEQ;
 172        u8 *m_InitSC;
 173        u8 *m_InitEC;
 174        u8 *m_ResetECRAM;
 175        u8 *m_InitDiversityFront;
 176        u8 *m_InitDiversityEnd;
 177        u8 *m_DisableDiversity;
 178        u8 *m_StartDiversityFront;
 179        u8 *m_StartDiversityEnd;
 180
 181        u8 *m_DiversityDelay8MHZ;
 182        u8 *m_DiversityDelay6MHZ;
 183
 184        u8 *microcode;
 185        u32 microcode_length;
 186
 187        int type_A;
 188        int PGA;
 189        int diversity;
 190        int tuner_mirrors;
 191
 192        enum app_env app_env_default;
 193        enum app_env app_env_diversity;
 194
 195};
 196
 197/****************************************************************************/
 198/* I2C **********************************************************************/
 199/****************************************************************************/
 200
 201static int i2c_write(struct i2c_adapter *adap, u8 adr, u8 * data, int len)
 202{
 203        struct i2c_msg msg = {.addr = adr, .flags = 0, .buf = data, .len = len };
 204
 205        if (i2c_transfer(adap, &msg, 1) != 1)
 206                return -1;
 207        return 0;
 208}
 209
 210static int i2c_read(struct i2c_adapter *adap,
 211                    u8 adr, u8 *msg, int len, u8 *answ, int alen)
 212{
 213        struct i2c_msg msgs[2] = {
 214                {
 215                        .addr = adr, .flags = 0,
 216                        .buf = msg, .len = len
 217                }, {
 218                        .addr = adr, .flags = I2C_M_RD,
 219                        .buf = answ, .len = alen
 220                }
 221        };
 222        if (i2c_transfer(adap, msgs, 2) != 2)
 223                return -1;
 224        return 0;
 225}
 226
 227static inline u32 MulDiv32(u32 a, u32 b, u32 c)
 228{
 229        u64 tmp64;
 230
 231        tmp64 = (u64)a * (u64)b;
 232        do_div(tmp64, c);
 233
 234        return (u32) tmp64;
 235}
 236
 237static int Read16(struct drxd_state *state, u32 reg, u16 *data, u8 flags)
 238{
 239        u8 adr = state->config.demod_address;
 240        u8 mm1[4] = { reg & 0xff, (reg >> 16) & 0xff,
 241                flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff
 242        };
 243        u8 mm2[2];
 244        if (i2c_read(state->i2c, adr, mm1, 4, mm2, 2) < 0)
 245                return -1;
 246        if (data)
 247                *data = mm2[0] | (mm2[1] << 8);
 248        return mm2[0] | (mm2[1] << 8);
 249}
 250
 251static int Read32(struct drxd_state *state, u32 reg, u32 *data, u8 flags)
 252{
 253        u8 adr = state->config.demod_address;
 254        u8 mm1[4] = { reg & 0xff, (reg >> 16) & 0xff,
 255                flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff
 256        };
 257        u8 mm2[4];
 258
 259        if (i2c_read(state->i2c, adr, mm1, 4, mm2, 4) < 0)
 260                return -1;
 261        if (data)
 262                *data =
 263                    mm2[0] | (mm2[1] << 8) | (mm2[2] << 16) | (mm2[3] << 24);
 264        return 0;
 265}
 266
 267static int Write16(struct drxd_state *state, u32 reg, u16 data, u8 flags)
 268{
 269        u8 adr = state->config.demod_address;
 270        u8 mm[6] = { reg & 0xff, (reg >> 16) & 0xff,
 271                flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff,
 272                data & 0xff, (data >> 8) & 0xff
 273        };
 274
 275        if (i2c_write(state->i2c, adr, mm, 6) < 0)
 276                return -1;
 277        return 0;
 278}
 279
 280static int Write32(struct drxd_state *state, u32 reg, u32 data, u8 flags)
 281{
 282        u8 adr = state->config.demod_address;
 283        u8 mm[8] = { reg & 0xff, (reg >> 16) & 0xff,
 284                flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff,
 285                data & 0xff, (data >> 8) & 0xff,
 286                (data >> 16) & 0xff, (data >> 24) & 0xff
 287        };
 288
 289        if (i2c_write(state->i2c, adr, mm, 8) < 0)
 290                return -1;
 291        return 0;
 292}
 293
 294static int write_chunk(struct drxd_state *state,
 295                       u32 reg, u8 *data, u32 len, u8 flags)
 296{
 297        u8 adr = state->config.demod_address;
 298        u8 mm[CHUNK_SIZE + 4] = { reg & 0xff, (reg >> 16) & 0xff,
 299                flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff
 300        };
 301        int i;
 302
 303        for (i = 0; i < len; i++)
 304                mm[4 + i] = data[i];
 305        if (i2c_write(state->i2c, adr, mm, 4 + len) < 0) {
 306                printk(KERN_ERR "error in write_chunk\n");
 307                return -1;
 308        }
 309        return 0;
 310}
 311
 312static int WriteBlock(struct drxd_state *state,
 313                      u32 Address, u16 BlockSize, u8 *pBlock, u8 Flags)
 314{
 315        while (BlockSize > 0) {
 316                u16 Chunk = BlockSize > CHUNK_SIZE ? CHUNK_SIZE : BlockSize;
 317
 318                if (write_chunk(state, Address, pBlock, Chunk, Flags) < 0)
 319                        return -1;
 320                pBlock += Chunk;
 321                Address += (Chunk >> 1);
 322                BlockSize -= Chunk;
 323        }
 324        return 0;
 325}
 326
 327static int WriteTable(struct drxd_state *state, u8 * pTable)
 328{
 329        int status = 0;
 330
 331        if (!pTable)
 332                return 0;
 333
 334        while (!status) {
 335                u16 Length;
 336                u32 Address = pTable[0] | (pTable[1] << 8) |
 337                    (pTable[2] << 16) | (pTable[3] << 24);
 338
 339                if (Address == 0xFFFFFFFF)
 340                        break;
 341                pTable += sizeof(u32);
 342
 343                Length = pTable[0] | (pTable[1] << 8);
 344                pTable += sizeof(u16);
 345                if (!Length)
 346                        break;
 347                status = WriteBlock(state, Address, Length * 2, pTable, 0);
 348                pTable += (Length * 2);
 349        }
 350        return status;
 351}
 352
 353/****************************************************************************/
 354/****************************************************************************/
 355/****************************************************************************/
 356
 357static int ResetCEFR(struct drxd_state *state)
 358{
 359        return WriteTable(state, state->m_ResetCEFR);
 360}
 361
 362static int InitCP(struct drxd_state *state)
 363{
 364        return WriteTable(state, state->m_InitCP);
 365}
 366
 367static int InitCE(struct drxd_state *state)
 368{
 369        int status;
 370        enum app_env AppEnv = state->app_env_default;
 371
 372        do {
 373                status = WriteTable(state, state->m_InitCE);
 374                if (status < 0)
 375                        break;
 376
 377                if (state->operation_mode == OM_DVBT_Diversity_Front ||
 378                    state->operation_mode == OM_DVBT_Diversity_End) {
 379                        AppEnv = state->app_env_diversity;
 380                }
 381                if (AppEnv == APPENV_STATIC) {
 382                        status = Write16(state, CE_REG_TAPSET__A, 0x0000, 0);
 383                        if (status < 0)
 384                                break;
 385                } else if (AppEnv == APPENV_PORTABLE) {
 386                        status = Write16(state, CE_REG_TAPSET__A, 0x0001, 0);
 387                        if (status < 0)
 388                                break;
 389                } else if (AppEnv == APPENV_MOBILE && state->type_A) {
 390                        status = Write16(state, CE_REG_TAPSET__A, 0x0002, 0);
 391                        if (status < 0)
 392                                break;
 393                } else if (AppEnv == APPENV_MOBILE && !state->type_A) {
 394                        status = Write16(state, CE_REG_TAPSET__A, 0x0006, 0);
 395                        if (status < 0)
 396                                break;
 397                }
 398
 399                /* start ce */
 400                status = Write16(state, B_CE_REG_COMM_EXEC__A, 0x0001, 0);
 401                if (status < 0)
 402                        break;
 403        } while (0);
 404        return status;
 405}
 406
 407static int StopOC(struct drxd_state *state)
 408{
 409        int status = 0;
 410        u16 ocSyncLvl = 0;
 411        u16 ocModeLop = state->m_EcOcRegOcModeLop;
 412        u16 dtoIncLop = 0;
 413        u16 dtoIncHip = 0;
 414
 415        do {
 416                /* Store output configuration */
 417                status = Read16(state, EC_OC_REG_SNC_ISC_LVL__A, &ocSyncLvl, 0);
 418                if (status < 0)
 419                        break;
 420                /* CHK_ERROR(Read16(EC_OC_REG_OC_MODE_LOP__A, &ocModeLop)); */
 421                state->m_EcOcRegSncSncLvl = ocSyncLvl;
 422                /* m_EcOcRegOcModeLop = ocModeLop; */
 423
 424                /* Flush FIFO (byte-boundary) at fixed rate */
 425                status = Read16(state, EC_OC_REG_RCN_MAP_LOP__A, &dtoIncLop, 0);
 426                if (status < 0)
 427                        break;
 428                status = Read16(state, EC_OC_REG_RCN_MAP_HIP__A, &dtoIncHip, 0);
 429                if (status < 0)
 430                        break;
 431                status = Write16(state, EC_OC_REG_DTO_INC_LOP__A, dtoIncLop, 0);
 432                if (status < 0)
 433                        break;
 434                status = Write16(state, EC_OC_REG_DTO_INC_HIP__A, dtoIncHip, 0);
 435                if (status < 0)
 436                        break;
 437                ocModeLop &= ~(EC_OC_REG_OC_MODE_LOP_DTO_CTR_SRC__M);
 438                ocModeLop |= EC_OC_REG_OC_MODE_LOP_DTO_CTR_SRC_STATIC;
 439                status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, ocModeLop, 0);
 440                if (status < 0)
 441                        break;
 442                status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_HOLD, 0);
 443                if (status < 0)
 444                        break;
 445
 446                msleep(1);
 447                /* Output pins to '0' */
 448                status = Write16(state, EC_OC_REG_OCR_MPG_UOS__A, EC_OC_REG_OCR_MPG_UOS__M, 0);
 449                if (status < 0)
 450                        break;
 451
 452                /* Force the OC out of sync */
 453                ocSyncLvl &= ~(EC_OC_REG_SNC_ISC_LVL_OSC__M);
 454                status = Write16(state, EC_OC_REG_SNC_ISC_LVL__A, ocSyncLvl, 0);
 455                if (status < 0)
 456                        break;
 457                ocModeLop &= ~(EC_OC_REG_OC_MODE_LOP_PAR_ENA__M);
 458                ocModeLop |= EC_OC_REG_OC_MODE_LOP_PAR_ENA_ENABLE;
 459                ocModeLop |= 0x2;       /* Magically-out-of-sync */
 460                status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, ocModeLop, 0);
 461                if (status < 0)
 462                        break;
 463                status = Write16(state, EC_OC_REG_COMM_INT_STA__A, 0x0, 0);
 464                if (status < 0)
 465                        break;
 466                status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_ACTIVE, 0);
 467                if (status < 0)
 468                        break;
 469        } while (0);
 470
 471        return status;
 472}
 473
 474static int StartOC(struct drxd_state *state)
 475{
 476        int status = 0;
 477
 478        do {
 479                /* Stop OC */
 480                status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_HOLD, 0);
 481                if (status < 0)
 482                        break;
 483
 484                /* Restore output configuration */
 485                status = Write16(state, EC_OC_REG_SNC_ISC_LVL__A, state->m_EcOcRegSncSncLvl, 0);
 486                if (status < 0)
 487                        break;
 488                status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, state->m_EcOcRegOcModeLop, 0);
 489                if (status < 0)
 490                        break;
 491
 492                /* Output pins active again */
 493                status = Write16(state, EC_OC_REG_OCR_MPG_UOS__A, EC_OC_REG_OCR_MPG_UOS_INIT, 0);
 494                if (status < 0)
 495                        break;
 496
 497                /* Start OC */
 498                status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_ACTIVE, 0);
 499                if (status < 0)
 500                        break;
 501        } while (0);
 502        return status;
 503}
 504
 505static int InitEQ(struct drxd_state *state)
 506{
 507        return WriteTable(state, state->m_InitEQ);
 508}
 509
 510static int InitEC(struct drxd_state *state)
 511{
 512        return WriteTable(state, state->m_InitEC);
 513}
 514
 515static int InitSC(struct drxd_state *state)
 516{
 517        return WriteTable(state, state->m_InitSC);
 518}
 519
 520static int InitAtomicRead(struct drxd_state *state)
 521{
 522        return WriteTable(state, state->m_InitAtomicRead);
 523}
 524
 525static int CorrectSysClockDeviation(struct drxd_state *state);
 526
 527static int DRX_GetLockStatus(struct drxd_state *state, u32 * pLockStatus)
 528{
 529        u16 ScRaRamLock = 0;
 530        const u16 mpeg_lock_mask = (SC_RA_RAM_LOCK_MPEG__M |
 531                                    SC_RA_RAM_LOCK_FEC__M |
 532                                    SC_RA_RAM_LOCK_DEMOD__M);
 533        const u16 fec_lock_mask = (SC_RA_RAM_LOCK_FEC__M |
 534                                   SC_RA_RAM_LOCK_DEMOD__M);
 535        const u16 demod_lock_mask = SC_RA_RAM_LOCK_DEMOD__M;
 536
 537        int status;
 538
 539        *pLockStatus = 0;
 540
 541        status = Read16(state, SC_RA_RAM_LOCK__A, &ScRaRamLock, 0x0000);
 542        if (status < 0) {
 543                printk(KERN_ERR "Can't read SC_RA_RAM_LOCK__A status = %08x\n", status);
 544                return status;
 545        }
 546
 547        if (state->drxd_state != DRXD_STARTED)
 548                return 0;
 549
 550        if ((ScRaRamLock & mpeg_lock_mask) == mpeg_lock_mask) {
 551                *pLockStatus |= DRX_LOCK_MPEG;
 552                CorrectSysClockDeviation(state);
 553        }
 554
 555        if ((ScRaRamLock & fec_lock_mask) == fec_lock_mask)
 556                *pLockStatus |= DRX_LOCK_FEC;
 557
 558        if ((ScRaRamLock & demod_lock_mask) == demod_lock_mask)
 559                *pLockStatus |= DRX_LOCK_DEMOD;
 560        return 0;
 561}
 562
 563/****************************************************************************/
 564
 565static int SetCfgIfAgc(struct drxd_state *state, struct SCfgAgc *cfg)
 566{
 567        int status;
 568
 569        if (cfg->outputLevel > DRXD_FE_CTRL_MAX)
 570                return -1;
 571
 572        if (cfg->ctrlMode == AGC_CTRL_USER) {
 573                do {
 574                        u16 FeAgRegPm1AgcWri;
 575                        u16 FeAgRegAgModeLop;
 576
 577                        status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &FeAgRegAgModeLop, 0);
 578                        if (status < 0)
 579                                break;
 580                        FeAgRegAgModeLop &= (~FE_AG_REG_AG_MODE_LOP_MODE_4__M);
 581                        FeAgRegAgModeLop |= FE_AG_REG_AG_MODE_LOP_MODE_4_STATIC;
 582                        status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, FeAgRegAgModeLop, 0);
 583                        if (status < 0)
 584                                break;
 585
 586                        FeAgRegPm1AgcWri = (u16) (cfg->outputLevel &
 587                                                  FE_AG_REG_PM1_AGC_WRI__M);
 588                        status = Write16(state, FE_AG_REG_PM1_AGC_WRI__A, FeAgRegPm1AgcWri, 0);
 589                        if (status < 0)
 590                                break;
 591                } while (0);
 592        } else if (cfg->ctrlMode == AGC_CTRL_AUTO) {
 593                if (((cfg->maxOutputLevel) < (cfg->minOutputLevel)) ||
 594                    ((cfg->maxOutputLevel) > DRXD_FE_CTRL_MAX) ||
 595                    ((cfg->speed) > DRXD_FE_CTRL_MAX) ||
 596                    ((cfg->settleLevel) > DRXD_FE_CTRL_MAX)
 597                    )
 598                        return -1;
 599                do {
 600                        u16 FeAgRegAgModeLop;
 601                        u16 FeAgRegEgcSetLvl;
 602                        u16 slope, offset;
 603
 604                        /* == Mode == */
 605
 606                        status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &FeAgRegAgModeLop, 0);
 607                        if (status < 0)
 608                                break;
 609                        FeAgRegAgModeLop &= (~FE_AG_REG_AG_MODE_LOP_MODE_4__M);
 610                        FeAgRegAgModeLop |=
 611                            FE_AG_REG_AG_MODE_LOP_MODE_4_DYNAMIC;
 612                        status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, FeAgRegAgModeLop, 0);
 613                        if (status < 0)
 614                                break;
 615
 616                        /* == Settle level == */
 617
 618                        FeAgRegEgcSetLvl = (u16) ((cfg->settleLevel >> 1) &
 619                                                  FE_AG_REG_EGC_SET_LVL__M);
 620                        status = Write16(state, FE_AG_REG_EGC_SET_LVL__A, FeAgRegEgcSetLvl, 0);
 621                        if (status < 0)
 622                                break;
 623
 624                        /* == Min/Max == */
 625
 626                        slope = (u16) ((cfg->maxOutputLevel -
 627                                        cfg->minOutputLevel) / 2);
 628                        offset = (u16) ((cfg->maxOutputLevel +
 629                                         cfg->minOutputLevel) / 2 - 511);
 630
 631                        status = Write16(state, FE_AG_REG_GC1_AGC_RIC__A, slope, 0);
 632                        if (status < 0)
 633                                break;
 634                        status = Write16(state, FE_AG_REG_GC1_AGC_OFF__A, offset, 0);
 635                        if (status < 0)
 636                                break;
 637
 638                        /* == Speed == */
 639                        {
 640                                const u16 maxRur = 8;
 641                                static const u16 slowIncrDecLUT[] = {
 642                                        3, 4, 4, 5, 6 };
 643                                static const u16 fastIncrDecLUT[] = {
 644                                        14, 15, 15, 16,
 645                                        17, 18, 18, 19,
 646                                        20, 21, 22, 23,
 647                                        24, 26, 27, 28,
 648                                        29, 31
 649                                };
 650
 651                                u16 fineSteps = (DRXD_FE_CTRL_MAX + 1) /
 652                                    (maxRur + 1);
 653                                u16 fineSpeed = (u16) (cfg->speed -
 654                                                       ((cfg->speed /
 655                                                         fineSteps) *
 656                                                        fineSteps));
 657                                u16 invRurCount = (u16) (cfg->speed /
 658                                                         fineSteps);
 659                                u16 rurCount;
 660                                if (invRurCount > maxRur) {
 661                                        rurCount = 0;
 662                                        fineSpeed += fineSteps;
 663                                } else {
 664                                        rurCount = maxRur - invRurCount;
 665                                }
 666
 667                                /*
 668                                   fastInc = default *
 669                                   (2^(fineSpeed/fineSteps))
 670                                   => range[default...2*default>
 671                                   slowInc = default *
 672                                   (2^(fineSpeed/fineSteps))
 673                                 */
 674                                {
 675                                        u16 fastIncrDec =
 676                                            fastIncrDecLUT[fineSpeed /
 677                                                           ((fineSteps /
 678                                                             (14 + 1)) + 1)];
 679                                        u16 slowIncrDec =
 680                                            slowIncrDecLUT[fineSpeed /
 681                                                           (fineSteps /
 682                                                            (3 + 1))];
 683
 684                                        status = Write16(state, FE_AG_REG_EGC_RUR_CNT__A, rurCount, 0);
 685                                        if (status < 0)
 686                                                break;
 687                                        status = Write16(state, FE_AG_REG_EGC_FAS_INC__A, fastIncrDec, 0);
 688                                        if (status < 0)
 689                                                break;
 690                                        status = Write16(state, FE_AG_REG_EGC_FAS_DEC__A, fastIncrDec, 0);
 691                                        if (status < 0)
 692                                                break;
 693                                        status = Write16(state, FE_AG_REG_EGC_SLO_INC__A, slowIncrDec, 0);
 694                                        if (status < 0)
 695                                                break;
 696                                        status = Write16(state, FE_AG_REG_EGC_SLO_DEC__A, slowIncrDec, 0);
 697                                        if (status < 0)
 698                                                break;
 699                                }
 700                        }
 701                } while (0);
 702
 703        } else {
 704                /* No OFF mode for IF control */
 705                return -1;
 706        }
 707        return status;
 708}
 709
 710static int SetCfgRfAgc(struct drxd_state *state, struct SCfgAgc *cfg)
 711{
 712        int status = 0;
 713
 714        if (cfg->outputLevel > DRXD_FE_CTRL_MAX)
 715                return -1;
 716
 717        if (cfg->ctrlMode == AGC_CTRL_USER) {
 718                do {
 719                        u16 AgModeLop = 0;
 720                        u16 level = (cfg->outputLevel);
 721
 722                        if (level == DRXD_FE_CTRL_MAX)
 723                                level++;
 724
 725                        status = Write16(state, FE_AG_REG_PM2_AGC_WRI__A, level, 0x0000);
 726                        if (status < 0)
 727                                break;
 728
 729                        /*==== Mode ====*/
 730
 731                        /* Powerdown PD2, WRI source */
 732                        state->m_FeAgRegAgPwd &= ~(FE_AG_REG_AG_PWD_PWD_PD2__M);
 733                        state->m_FeAgRegAgPwd |=
 734                            FE_AG_REG_AG_PWD_PWD_PD2_DISABLE;
 735                        status = Write16(state, FE_AG_REG_AG_PWD__A, state->m_FeAgRegAgPwd, 0x0000);
 736                        if (status < 0)
 737                                break;
 738
 739                        status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
 740                        if (status < 0)
 741                                break;
 742                        AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M |
 743                                        FE_AG_REG_AG_MODE_LOP_MODE_E__M));
 744                        AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
 745                                      FE_AG_REG_AG_MODE_LOP_MODE_E_STATIC);
 746                        status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
 747                        if (status < 0)
 748                                break;
 749
 750                        /* enable AGC2 pin */
 751                        {
 752                                u16 FeAgRegAgAgcSio = 0;
 753                                status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000);
 754                                if (status < 0)
 755                                        break;
 756                                FeAgRegAgAgcSio &=
 757                                    ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
 758                                FeAgRegAgAgcSio |=
 759                                    FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_OUTPUT;
 760                                status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000);
 761                                if (status < 0)
 762                                        break;
 763                        }
 764
 765                } while (0);
 766        } else if (cfg->ctrlMode == AGC_CTRL_AUTO) {
 767                u16 AgModeLop = 0;
 768
 769                do {
 770                        u16 level;
 771                        /* Automatic control */
 772                        /* Powerup PD2, AGC2 as output, TGC source */
 773                        (state->m_FeAgRegAgPwd) &=
 774                            ~(FE_AG_REG_AG_PWD_PWD_PD2__M);
 775                        (state->m_FeAgRegAgPwd) |=
 776                            FE_AG_REG_AG_PWD_PWD_PD2_DISABLE;
 777                        status = Write16(state, FE_AG_REG_AG_PWD__A, (state->m_FeAgRegAgPwd), 0x0000);
 778                        if (status < 0)
 779                                break;
 780
 781                        status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
 782                        if (status < 0)
 783                                break;
 784                        AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M |
 785                                        FE_AG_REG_AG_MODE_LOP_MODE_E__M));
 786                        AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
 787                                      FE_AG_REG_AG_MODE_LOP_MODE_E_DYNAMIC);
 788                        status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
 789                        if (status < 0)
 790                                break;
 791                        /* Settle level */
 792                        level = (((cfg->settleLevel) >> 4) &
 793                                 FE_AG_REG_TGC_SET_LVL__M);
 794                        status = Write16(state, FE_AG_REG_TGC_SET_LVL__A, level, 0x0000);
 795                        if (status < 0)
 796                                break;
 797
 798                        /* Min/max: don't care */
 799
 800                        /* Speed: TODO */
 801
 802                        /* enable AGC2 pin */
 803                        {
 804                                u16 FeAgRegAgAgcSio = 0;
 805                                status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000);
 806                                if (status < 0)
 807                                        break;
 808                                FeAgRegAgAgcSio &=
 809                                    ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
 810                                FeAgRegAgAgcSio |=
 811                                    FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_OUTPUT;
 812                                status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000);
 813                                if (status < 0)
 814                                        break;
 815                        }
 816
 817                } while (0);
 818        } else {
 819                u16 AgModeLop = 0;
 820
 821                do {
 822                        /* No RF AGC control */
 823                        /* Powerdown PD2, AGC2 as output, WRI source */
 824                        (state->m_FeAgRegAgPwd) &=
 825                            ~(FE_AG_REG_AG_PWD_PWD_PD2__M);
 826                        (state->m_FeAgRegAgPwd) |=
 827                            FE_AG_REG_AG_PWD_PWD_PD2_ENABLE;
 828                        status = Write16(state, FE_AG_REG_AG_PWD__A, (state->m_FeAgRegAgPwd), 0x0000);
 829                        if (status < 0)
 830                                break;
 831
 832                        status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
 833                        if (status < 0)
 834                                break;
 835                        AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M |
 836                                        FE_AG_REG_AG_MODE_LOP_MODE_E__M));
 837                        AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
 838                                      FE_AG_REG_AG_MODE_LOP_MODE_E_STATIC);
 839                        status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
 840                        if (status < 0)
 841                                break;
 842
 843                        /* set FeAgRegAgAgcSio AGC2 (RF) as input */
 844                        {
 845                                u16 FeAgRegAgAgcSio = 0;
 846                                status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000);
 847                                if (status < 0)
 848                                        break;
 849                                FeAgRegAgAgcSio &=
 850                                    ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
 851                                FeAgRegAgAgcSio |=
 852                                    FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_INPUT;
 853                                status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000);
 854                                if (status < 0)
 855                                        break;
 856                        }
 857                } while (0);
 858        }
 859        return status;
 860}
 861
 862static int ReadIFAgc(struct drxd_state *state, u32 * pValue)
 863{
 864        int status = 0;
 865
 866        *pValue = 0;
 867        if (state->if_agc_cfg.ctrlMode != AGC_CTRL_OFF) {
 868                u16 Value;
 869                status = Read16(state, FE_AG_REG_GC1_AGC_DAT__A, &Value, 0);
 870                Value &= FE_AG_REG_GC1_AGC_DAT__M;
 871                if (status >= 0) {
 872                        /*           3.3V
 873                           |
 874                           R1
 875                           |
 876                           Vin - R3 - * -- Vout
 877                           |
 878                           R2
 879                           |
 880                           GND
 881                         */
 882                        u32 R1 = state->if_agc_cfg.R1;
 883                        u32 R2 = state->if_agc_cfg.R2;
 884                        u32 R3 = state->if_agc_cfg.R3;
 885
 886                        u32 Vmax, Rpar, Vmin, Vout;
 887
 888                        if (R2 == 0 && (R1 == 0 || R3 == 0))
 889                                return 0;
 890
 891                        Vmax = (3300 * R2) / (R1 + R2);
 892                        Rpar = (R2 * R3) / (R3 + R2);
 893                        Vmin = (3300 * Rpar) / (R1 + Rpar);
 894                        Vout = Vmin + ((Vmax - Vmin) * Value) / 1024;
 895
 896                        *pValue = Vout;
 897                }
 898        }
 899        return status;
 900}
 901
 902static int load_firmware(struct drxd_state *state, const char *fw_name)
 903{
 904        const struct firmware *fw;
 905
 906        if (request_firmware(&fw, fw_name, state->dev) < 0) {
 907                printk(KERN_ERR "drxd: firmware load failure [%s]\n", fw_name);
 908                return -EIO;
 909        }
 910
 911        state->microcode = kmemdup(fw->data, fw->size, GFP_KERNEL);
 912        if (!state->microcode) {
 913                release_firmware(fw);
 914                return -ENOMEM;
 915        }
 916
 917        state->microcode_length = fw->size;
 918        release_firmware(fw);
 919        return 0;
 920}
 921
 922static int DownloadMicrocode(struct drxd_state *state,
 923                             const u8 *pMCImage, u32 Length)
 924{
 925        u8 *pSrc;
 926        u32 Address;
 927        u16 nBlocks;
 928        u16 BlockSize;
 929        u32 offset = 0;
 930        int i, status = 0;
 931
 932        pSrc = (u8 *) pMCImage;
 933        /* We're not using Flags */
 934        /* Flags = (pSrc[0] << 8) | pSrc[1]; */
 935        pSrc += sizeof(u16);
 936        offset += sizeof(u16);
 937        nBlocks = (pSrc[0] << 8) | pSrc[1];
 938        pSrc += sizeof(u16);
 939        offset += sizeof(u16);
 940
 941        for (i = 0; i < nBlocks; i++) {
 942                Address = (pSrc[0] << 24) | (pSrc[1] << 16) |
 943                    (pSrc[2] << 8) | pSrc[3];
 944                pSrc += sizeof(u32);
 945                offset += sizeof(u32);
 946
 947                BlockSize = ((pSrc[0] << 8) | pSrc[1]) * sizeof(u16);
 948                pSrc += sizeof(u16);
 949                offset += sizeof(u16);
 950
 951                /* We're not using Flags */
 952                /* u16 Flags = (pSrc[0] << 8) | pSrc[1]; */
 953                pSrc += sizeof(u16);
 954                offset += sizeof(u16);
 955
 956                /* We're not using BlockCRC */
 957                /* u16 BlockCRC = (pSrc[0] << 8) | pSrc[1]; */
 958                pSrc += sizeof(u16);
 959                offset += sizeof(u16);
 960
 961                status = WriteBlock(state, Address, BlockSize,
 962                                    pSrc, DRX_I2C_CLEARCRC);
 963                if (status < 0)
 964                        break;
 965                pSrc += BlockSize;
 966                offset += BlockSize;
 967        }
 968
 969        return status;
 970}
 971
 972static int HI_Command(struct drxd_state *state, u16 cmd, u16 * pResult)
 973{
 974        u32 nrRetries = 0;
 975        int status;
 976
 977        status = Write16(state, HI_RA_RAM_SRV_CMD__A, cmd, 0);
 978        if (status < 0)
 979                return status;
 980
 981        do {
 982                nrRetries += 1;
 983                if (nrRetries > DRXD_MAX_RETRIES) {
 984                        status = -1;
 985                        break;
 986                }
 987                status = Read16(state, HI_RA_RAM_SRV_CMD__A, NULL, 0);
 988        } while (status != 0);
 989
 990        if (status >= 0)
 991                status = Read16(state, HI_RA_RAM_SRV_RES__A, pResult, 0);
 992        return status;
 993}
 994
 995static int HI_CfgCommand(struct drxd_state *state)
 996{
 997        int status = 0;
 998
 999        mutex_lock(&state->mutex);
1000        Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, HI_RA_RAM_SRV_RST_KEY_ACT, 0);
1001        Write16(state, HI_RA_RAM_SRV_CFG_DIV__A, state->hi_cfg_timing_div, 0);
1002        Write16(state, HI_RA_RAM_SRV_CFG_BDL__A, state->hi_cfg_bridge_delay, 0);
1003        Write16(state, HI_RA_RAM_SRV_CFG_WUP__A, state->hi_cfg_wakeup_key, 0);
1004        Write16(state, HI_RA_RAM_SRV_CFG_ACT__A, state->hi_cfg_ctrl, 0);
1005
1006        Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, HI_RA_RAM_SRV_RST_KEY_ACT, 0);
1007
1008        if ((state->hi_cfg_ctrl & HI_RA_RAM_SRV_CFG_ACT_PWD_EXE) ==
1009            HI_RA_RAM_SRV_CFG_ACT_PWD_EXE)
1010                status = Write16(state, HI_RA_RAM_SRV_CMD__A,
1011                                 HI_RA_RAM_SRV_CMD_CONFIG, 0);
1012        else
1013                status = HI_Command(state, HI_RA_RAM_SRV_CMD_CONFIG, NULL);
1014        mutex_unlock(&state->mutex);
1015        return status;
1016}
1017
1018static int InitHI(struct drxd_state *state)
1019{
1020        state->hi_cfg_wakeup_key = (state->chip_adr);
1021        /* port/bridge/power down ctrl */
1022        state->hi_cfg_ctrl = HI_RA_RAM_SRV_CFG_ACT_SLV0_ON;
1023        return HI_CfgCommand(state);
1024}
1025
1026static int HI_ResetCommand(struct drxd_state *state)
1027{
1028        int status;
1029
1030        mutex_lock(&state->mutex);
1031        status = Write16(state, HI_RA_RAM_SRV_RST_KEY__A,
1032                         HI_RA_RAM_SRV_RST_KEY_ACT, 0);
1033        if (status == 0)
1034                status = HI_Command(state, HI_RA_RAM_SRV_CMD_RESET, NULL);
1035        mutex_unlock(&state->mutex);
1036        msleep(1);
1037        return status;
1038}
1039
1040static int DRX_ConfigureI2CBridge(struct drxd_state *state, int bEnableBridge)
1041{
1042        state->hi_cfg_ctrl &= (~HI_RA_RAM_SRV_CFG_ACT_BRD__M);
1043        if (bEnableBridge)
1044                state->hi_cfg_ctrl |= HI_RA_RAM_SRV_CFG_ACT_BRD_ON;
1045        else
1046                state->hi_cfg_ctrl |= HI_RA_RAM_SRV_CFG_ACT_BRD_OFF;
1047
1048        return HI_CfgCommand(state);
1049}
1050
1051#define HI_TR_WRITE      0x9
1052#define HI_TR_READ       0xA
1053#define HI_TR_READ_WRITE 0xB
1054#define HI_TR_BROADCAST  0x4
1055
1056#if 0
1057static int AtomicReadBlock(struct drxd_state *state,
1058                           u32 Addr, u16 DataSize, u8 *pData, u8 Flags)
1059{
1060        int status;
1061        int i = 0;
1062
1063        /* Parameter check */
1064        if ((!pData) || ((DataSize & 1) != 0))
1065                return -1;
1066
1067        mutex_lock(&state->mutex);
1068
1069        do {
1070                /* Instruct HI to read n bytes */
1071                /* TODO use proper names forthese egisters */
1072                status = Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, (HI_TR_FUNC_ADDR & 0xFFFF), 0);
1073                if (status < 0)
1074                        break;
1075                status = Write16(state, HI_RA_RAM_SRV_CFG_DIV__A, (u16) (Addr >> 16), 0);
1076                if (status < 0)
1077                        break;
1078                status = Write16(state, HI_RA_RAM_SRV_CFG_BDL__A, (u16) (Addr & 0xFFFF), 0);
1079                if (status < 0)
1080                        break;
1081                status = Write16(state, HI_RA_RAM_SRV_CFG_WUP__A, (u16) ((DataSize / 2) - 1), 0);
1082                if (status < 0)
1083                        break;
1084                status = Write16(state, HI_RA_RAM_SRV_CFG_ACT__A, HI_TR_READ, 0);
1085                if (status < 0)
1086                        break;
1087
1088                status = HI_Command(state, HI_RA_RAM_SRV_CMD_EXECUTE, 0);
1089                if (status < 0)
1090                        break;
1091
1092        } while (0);
1093
1094        if (status >= 0) {
1095                for (i = 0; i < (DataSize / 2); i += 1) {
1096                        u16 word;
1097
1098                        status = Read16(state, (HI_RA_RAM_USR_BEGIN__A + i),
1099                                        &word, 0);
1100                        if (status < 0)
1101                                break;
1102                        pData[2 * i] = (u8) (word & 0xFF);
1103                        pData[(2 * i) + 1] = (u8) (word >> 8);
1104                }
1105        }
1106        mutex_unlock(&state->mutex);
1107        return status;
1108}
1109
1110static int AtomicReadReg32(struct drxd_state *state,
1111                           u32 Addr, u32 *pData, u8 Flags)
1112{
1113        u8 buf[sizeof(u32)];
1114        int status;
1115
1116        if (!pData)
1117                return -1;
1118        status = AtomicReadBlock(state, Addr, sizeof(u32), buf, Flags);
1119        *pData = (((u32) buf[0]) << 0) +
1120            (((u32) buf[1]) << 8) +
1121            (((u32) buf[2]) << 16) + (((u32) buf[3]) << 24);
1122        return status;
1123}
1124#endif
1125
1126static int StopAllProcessors(struct drxd_state *state)
1127{
1128        return Write16(state, HI_COMM_EXEC__A,
1129                       SC_COMM_EXEC_CTL_STOP, DRX_I2C_BROADCAST);
1130}
1131
1132static int EnableAndResetMB(struct drxd_state *state)
1133{
1134        if (state->type_A) {
1135                /* disable? monitor bus observe @ EC_OC */
1136                Write16(state, EC_OC_REG_OC_MON_SIO__A, 0x0000, 0x0000);
1137        }
1138
1139        /* do inverse broadcast, followed by explicit write to HI */
1140        Write16(state, HI_COMM_MB__A, 0x0000, DRX_I2C_BROADCAST);
1141        Write16(state, HI_COMM_MB__A, 0x0000, 0x0000);
1142        return 0;
1143}
1144
1145static int InitCC(struct drxd_state *state)
1146{
1147        if (state->osc_clock_freq == 0 ||
1148            state->osc_clock_freq > 20000 ||
1149            (state->osc_clock_freq % 4000) != 0) {
1150                printk(KERN_ERR "invalid osc frequency %d\n", state->osc_clock_freq);
1151                return -1;
1152        }
1153
1154        Write16(state, CC_REG_OSC_MODE__A, CC_REG_OSC_MODE_M20, 0);
1155        Write16(state, CC_REG_PLL_MODE__A, CC_REG_PLL_MODE_BYPASS_PLL |
1156                CC_REG_PLL_MODE_PUMP_CUR_12, 0);
1157        Write16(state, CC_REG_REF_DIVIDE__A, state->osc_clock_freq / 4000, 0);
1158        Write16(state, CC_REG_PWD_MODE__A, CC_REG_PWD_MODE_DOWN_PLL, 0);
1159        Write16(state, CC_REG_UPDATE__A, CC_REG_UPDATE_KEY, 0);
1160
1161        return 0;
1162}
1163
1164static int ResetECOD(struct drxd_state *state)
1165{
1166        int status = 0;
1167
1168        if (state->type_A)
1169                status = Write16(state, EC_OD_REG_SYNC__A, 0x0664, 0);
1170        else
1171                status = Write16(state, B_EC_OD_REG_SYNC__A, 0x0664, 0);
1172
1173        if (!(status < 0))
1174                status = WriteTable(state, state->m_ResetECRAM);
1175        if (!(status < 0))
1176                status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0001, 0);
1177        return status;
1178}
1179
1180/* Configure PGA switch */
1181
1182static int SetCfgPga(struct drxd_state *state, int pgaSwitch)
1183{
1184        int status;
1185        u16 AgModeLop = 0;
1186        u16 AgModeHip = 0;
1187        do {
1188                if (pgaSwitch) {
1189                        /* PGA on */
1190                        /* fine gain */
1191                        status = Read16(state, B_FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
1192                        if (status < 0)
1193                                break;
1194                        AgModeLop &= (~(B_FE_AG_REG_AG_MODE_LOP_MODE_C__M));
1195                        AgModeLop |= B_FE_AG_REG_AG_MODE_LOP_MODE_C_DYNAMIC;
1196                        status = Write16(state, B_FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
1197                        if (status < 0)
1198                                break;
1199
1200                        /* coarse gain */
1201                        status = Read16(state, B_FE_AG_REG_AG_MODE_HIP__A, &AgModeHip, 0x0000);
1202                        if (status < 0)
1203                                break;
1204                        AgModeHip &= (~(B_FE_AG_REG_AG_MODE_HIP_MODE_J__M));
1205                        AgModeHip |= B_FE_AG_REG_AG_MODE_HIP_MODE_J_DYNAMIC;
1206                        status = Write16(state, B_FE_AG_REG_AG_MODE_HIP__A, AgModeHip, 0x0000);
1207                        if (status < 0)
1208                                break;
1209
1210                        /* enable fine and coarse gain, enable AAF,
1211                           no ext resistor */
1212                        status = Write16(state, B_FE_AG_REG_AG_PGA_MODE__A, B_FE_AG_REG_AG_PGA_MODE_PFY_PCY_AFY_REN, 0x0000);
1213                        if (status < 0)
1214                                break;
1215                } else {
1216                        /* PGA off, bypass */
1217
1218                        /* fine gain */
1219                        status = Read16(state, B_FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
1220                        if (status < 0)
1221                                break;
1222                        AgModeLop &= (~(B_FE_AG_REG_AG_MODE_LOP_MODE_C__M));
1223                        AgModeLop |= B_FE_AG_REG_AG_MODE_LOP_MODE_C_STATIC;
1224                        status = Write16(state, B_FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
1225                        if (status < 0)
1226                                break;
1227
1228                        /* coarse gain */
1229                        status = Read16(state, B_FE_AG_REG_AG_MODE_HIP__A, &AgModeHip, 0x0000);
1230                        if (status < 0)
1231                                break;
1232                        AgModeHip &= (~(B_FE_AG_REG_AG_MODE_HIP_MODE_J__M));
1233                        AgModeHip |= B_FE_AG_REG_AG_MODE_HIP_MODE_J_STATIC;
1234                        status = Write16(state, B_FE_AG_REG_AG_MODE_HIP__A, AgModeHip, 0x0000);
1235                        if (status < 0)
1236                                break;
1237
1238                        /* disable fine and coarse gain, enable AAF,
1239                           no ext resistor */
1240                        status = Write16(state, B_FE_AG_REG_AG_PGA_MODE__A, B_FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN, 0x0000);
1241                        if (status < 0)
1242                                break;
1243                }
1244        } while (0);
1245        return status;
1246}
1247
1248static int InitFE(struct drxd_state *state)
1249{
1250        int status;
1251
1252        do {
1253                status = WriteTable(state, state->m_InitFE_1);
1254                if (status < 0)
1255                        break;
1256
1257                if (state->type_A) {
1258                        status = Write16(state, FE_AG_REG_AG_PGA_MODE__A,
1259                                         FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN,
1260                                         0);
1261                } else {
1262                        if (state->PGA)
1263                                status = SetCfgPga(state, 0);
1264                        else
1265                                status =
1266                                    Write16(state, B_FE_AG_REG_AG_PGA_MODE__A,
1267                                            B_FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN,
1268                                            0);
1269                }
1270
1271                if (status < 0)
1272                        break;
1273                status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, state->m_FeAgRegAgAgcSio, 0x0000);
1274                if (status < 0)
1275                        break;
1276                status = Write16(state, FE_AG_REG_AG_PWD__A, state->m_FeAgRegAgPwd, 0x0000);
1277                if (status < 0)
1278                        break;
1279
1280                status = WriteTable(state, state->m_InitFE_2);
1281                if (status < 0)
1282                        break;
1283
1284        } while (0);
1285
1286        return status;
1287}
1288
1289static int InitFT(struct drxd_state *state)
1290{
1291        /*
1292           norm OFFSET,  MB says =2 voor 8K en =3 voor 2K waarschijnlijk
1293           SC stuff
1294         */
1295        return Write16(state, FT_REG_COMM_EXEC__A, 0x0001, 0x0000);
1296}
1297
1298static int SC_WaitForReady(struct drxd_state *state)
1299{
1300        int i;
1301
1302        for (i = 0; i < DRXD_MAX_RETRIES; i += 1) {
1303                int status = Read16(state, SC_RA_RAM_CMD__A, NULL, 0);
1304                if (status == 0)
1305                        return status;
1306        }
1307        return -1;
1308}
1309
1310static int SC_SendCommand(struct drxd_state *state, u16 cmd)
1311{
1312        int status = 0, ret;
1313        u16 errCode;
1314
1315        Write16(state, SC_RA_RAM_CMD__A, cmd, 0);
1316        SC_WaitForReady(state);
1317
1318        ret = Read16(state, SC_RA_RAM_CMD_ADDR__A, &errCode, 0);
1319
1320        if (ret < 0 || errCode == 0xFFFF) {
1321                printk(KERN_ERR "Command Error\n");
1322                status = -1;
1323        }
1324
1325        return status;
1326}
1327
1328static int SC_ProcStartCommand(struct drxd_state *state,
1329                               u16 subCmd, u16 param0, u16 param1)
1330{
1331        int ret, status = 0;
1332        u16 scExec;
1333
1334        mutex_lock(&state->mutex);
1335        do {
1336                ret = Read16(state, SC_COMM_EXEC__A, &scExec, 0);
1337                if (ret < 0 || scExec != 1) {
1338                        status = -1;
1339                        break;
1340                }
1341                SC_WaitForReady(state);
1342                Write16(state, SC_RA_RAM_CMD_ADDR__A, subCmd, 0);
1343                Write16(state, SC_RA_RAM_PARAM1__A, param1, 0);
1344                Write16(state, SC_RA_RAM_PARAM0__A, param0, 0);
1345
1346                SC_SendCommand(state, SC_RA_RAM_CMD_PROC_START);
1347        } while (0);
1348        mutex_unlock(&state->mutex);
1349        return status;
1350}
1351
1352static int SC_SetPrefParamCommand(struct drxd_state *state,
1353                                  u16 subCmd, u16 param0, u16 param1)
1354{
1355        int status;
1356
1357        mutex_lock(&state->mutex);
1358        do {
1359                status = SC_WaitForReady(state);
1360                if (status < 0)
1361                        break;
1362                status = Write16(state, SC_RA_RAM_CMD_ADDR__A, subCmd, 0);
1363                if (status < 0)
1364                        break;
1365                status = Write16(state, SC_RA_RAM_PARAM1__A, param1, 0);
1366                if (status < 0)
1367                        break;
1368                status = Write16(state, SC_RA_RAM_PARAM0__A, param0, 0);
1369                if (status < 0)
1370                        break;
1371
1372                status = SC_SendCommand(state, SC_RA_RAM_CMD_SET_PREF_PARAM);
1373                if (status < 0)
1374                        break;
1375        } while (0);
1376        mutex_unlock(&state->mutex);
1377        return status;
1378}
1379
1380#if 0
1381static int SC_GetOpParamCommand(struct drxd_state *state, u16 * result)
1382{
1383        int status = 0;
1384
1385        mutex_lock(&state->mutex);
1386        do {
1387                status = SC_WaitForReady(state);
1388                if (status < 0)
1389                        break;
1390                status = SC_SendCommand(state, SC_RA_RAM_CMD_GET_OP_PARAM);
1391                if (status < 0)
1392                        break;
1393                status = Read16(state, SC_RA_RAM_PARAM0__A, result, 0);
1394                if (status < 0)
1395                        break;
1396        } while (0);
1397        mutex_unlock(&state->mutex);
1398        return status;
1399}
1400#endif
1401
1402static int ConfigureMPEGOutput(struct drxd_state *state, int bEnableOutput)
1403{
1404        int status;
1405
1406        do {
1407                u16 EcOcRegIprInvMpg = 0;
1408                u16 EcOcRegOcModeLop = 0;
1409                u16 EcOcRegOcModeHip = 0;
1410                u16 EcOcRegOcMpgSio = 0;
1411
1412                /*CHK_ERROR(Read16(state, EC_OC_REG_OC_MODE_LOP__A, &EcOcRegOcModeLop, 0)); */
1413
1414                if (state->operation_mode == OM_DVBT_Diversity_Front) {
1415                        if (bEnableOutput) {
1416                                EcOcRegOcModeHip |=
1417                                    B_EC_OC_REG_OC_MODE_HIP_MPG_BUS_SRC_MONITOR;
1418                        } else
1419                                EcOcRegOcMpgSio |= EC_OC_REG_OC_MPG_SIO__M;
1420                        EcOcRegOcModeLop |=
1421                            EC_OC_REG_OC_MODE_LOP_PAR_ENA_DISABLE;
1422                } else {
1423                        EcOcRegOcModeLop = state->m_EcOcRegOcModeLop;
1424
1425                        if (bEnableOutput)
1426                                EcOcRegOcMpgSio &= (~(EC_OC_REG_OC_MPG_SIO__M));
1427                        else
1428                                EcOcRegOcMpgSio |= EC_OC_REG_OC_MPG_SIO__M;
1429
1430                        /* Don't Insert RS Byte */
1431                        if (state->insert_rs_byte) {
1432                                EcOcRegOcModeLop &=
1433                                    (~(EC_OC_REG_OC_MODE_LOP_PAR_ENA__M));
1434                                EcOcRegOcModeHip &=
1435                                    (~EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL__M);
1436                                EcOcRegOcModeHip |=
1437                                    EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL_ENABLE;
1438                        } else {
1439                                EcOcRegOcModeLop |=
1440                                    EC_OC_REG_OC_MODE_LOP_PAR_ENA_DISABLE;
1441                                EcOcRegOcModeHip &=
1442                                    (~EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL__M);
1443                                EcOcRegOcModeHip |=
1444                                    EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL_DISABLE;
1445                        }
1446
1447                        /* Mode = Parallel */
1448                        if (state->enable_parallel)
1449                                EcOcRegOcModeLop &=
1450                                    (~(EC_OC_REG_OC_MODE_LOP_MPG_TRM_MDE__M));
1451                        else
1452                                EcOcRegOcModeLop |=
1453                                    EC_OC_REG_OC_MODE_LOP_MPG_TRM_MDE_SERIAL;
1454                }
1455                /* Invert Data */
1456                /* EcOcRegIprInvMpg |= 0x00FF; */
1457                EcOcRegIprInvMpg &= (~(0x00FF));
1458
1459                /* Invert Error ( we don't use the pin ) */
1460                /*  EcOcRegIprInvMpg |= 0x0100; */
1461                EcOcRegIprInvMpg &= (~(0x0100));
1462
1463                /* Invert Start ( we don't use the pin ) */
1464                /* EcOcRegIprInvMpg |= 0x0200; */
1465                EcOcRegIprInvMpg &= (~(0x0200));
1466
1467                /* Invert Valid ( we don't use the pin ) */
1468                /* EcOcRegIprInvMpg |= 0x0400; */
1469                EcOcRegIprInvMpg &= (~(0x0400));
1470
1471                /* Invert Clock */
1472                /* EcOcRegIprInvMpg |= 0x0800; */
1473                EcOcRegIprInvMpg &= (~(0x0800));
1474
1475                /* EcOcRegOcModeLop =0x05; */
1476                status = Write16(state, EC_OC_REG_IPR_INV_MPG__A, EcOcRegIprInvMpg, 0);
1477                if (status < 0)
1478                        break;
1479                status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, EcOcRegOcModeLop, 0);
1480                if (status < 0)
1481                        break;
1482                status = Write16(state, EC_OC_REG_OC_MODE_HIP__A, EcOcRegOcModeHip, 0x0000);
1483                if (status < 0)
1484                        break;
1485                status = Write16(state, EC_OC_REG_OC_MPG_SIO__A, EcOcRegOcMpgSio, 0);
1486                if (status < 0)
1487                        break;
1488        } while (0);
1489        return status;
1490}
1491
1492static int SetDeviceTypeId(struct drxd_state *state)
1493{
1494        int status = 0;
1495        u16 deviceId = 0;
1496
1497        do {
1498                status = Read16(state, CC_REG_JTAGID_L__A, &deviceId, 0);
1499                if (status < 0)
1500                        break;
1501                /* TODO: why twice? */
1502                status = Read16(state, CC_REG_JTAGID_L__A, &deviceId, 0);
1503                if (status < 0)
1504                        break;
1505                printk(KERN_INFO "drxd: deviceId = %04x\n", deviceId);
1506
1507                state->type_A = 0;
1508                state->PGA = 0;
1509                state->diversity = 0;
1510                if (deviceId == 0) {    /* on A2 only 3975 available */
1511                        state->type_A = 1;
1512                        printk(KERN_INFO "DRX3975D-A2\n");
1513                } else {
1514                        deviceId >>= 12;
1515                        printk(KERN_INFO "DRX397%dD-B1\n", deviceId);
1516                        switch (deviceId) {
1517                        case 4:
1518                                state->diversity = 1;
1519                                /* fall through */
1520                        case 3:
1521                        case 7:
1522                                state->PGA = 1;
1523                                break;
1524                        case 6:
1525                                state->diversity = 1;
1526                                /* fall through */
1527                        case 5:
1528                        case 8:
1529                                break;
1530                        default:
1531                                status = -1;
1532                                break;
1533                        }
1534                }
1535        } while (0);
1536
1537        if (status < 0)
1538                return status;
1539
1540        /* Init Table selection */
1541        state->m_InitAtomicRead = DRXD_InitAtomicRead;
1542        state->m_InitSC = DRXD_InitSC;
1543        state->m_ResetECRAM = DRXD_ResetECRAM;
1544        if (state->type_A) {
1545                state->m_ResetCEFR = DRXD_ResetCEFR;
1546                state->m_InitFE_1 = DRXD_InitFEA2_1;
1547                state->m_InitFE_2 = DRXD_InitFEA2_2;
1548                state->m_InitCP = DRXD_InitCPA2;
1549                state->m_InitCE = DRXD_InitCEA2;
1550                state->m_InitEQ = DRXD_InitEQA2;
1551                state->m_InitEC = DRXD_InitECA2;
1552                if (load_firmware(state, DRX_FW_FILENAME_A2))
1553                        return -EIO;
1554        } else {
1555                state->m_ResetCEFR = NULL;
1556                state->m_InitFE_1 = DRXD_InitFEB1_1;
1557                state->m_InitFE_2 = DRXD_InitFEB1_2;
1558                state->m_InitCP = DRXD_InitCPB1;
1559                state->m_InitCE = DRXD_InitCEB1;
1560                state->m_InitEQ = DRXD_InitEQB1;
1561                state->m_InitEC = DRXD_InitECB1;
1562                if (load_firmware(state, DRX_FW_FILENAME_B1))
1563                        return -EIO;
1564        }
1565        if (state->diversity) {
1566                state->m_InitDiversityFront = DRXD_InitDiversityFront;
1567                state->m_InitDiversityEnd = DRXD_InitDiversityEnd;
1568                state->m_DisableDiversity = DRXD_DisableDiversity;
1569                state->m_StartDiversityFront = DRXD_StartDiversityFront;
1570                state->m_StartDiversityEnd = DRXD_StartDiversityEnd;
1571                state->m_DiversityDelay8MHZ = DRXD_DiversityDelay8MHZ;
1572                state->m_DiversityDelay6MHZ = DRXD_DiversityDelay6MHZ;
1573        } else {
1574                state->m_InitDiversityFront = NULL;
1575                state->m_InitDiversityEnd = NULL;
1576                state->m_DisableDiversity = NULL;
1577                state->m_StartDiversityFront = NULL;
1578                state->m_StartDiversityEnd = NULL;
1579                state->m_DiversityDelay8MHZ = NULL;
1580                state->m_DiversityDelay6MHZ = NULL;
1581        }
1582
1583        return status;
1584}
1585
1586static int CorrectSysClockDeviation(struct drxd_state *state)
1587{
1588        int status;
1589        s32 incr = 0;
1590        s32 nomincr = 0;
1591        u32 bandwidth = 0;
1592        u32 sysClockInHz = 0;
1593        u32 sysClockFreq = 0;   /* in kHz */
1594        s16 oscClockDeviation;
1595        s16 Diff;
1596
1597        do {
1598                /* Retrieve bandwidth and incr, sanity check */
1599
1600                /* These accesses should be AtomicReadReg32, but that
1601                   causes trouble (at least for diversity */
1602                status = Read32(state, LC_RA_RAM_IFINCR_NOM_L__A, ((u32 *) &nomincr), 0);
1603                if (status < 0)
1604                        break;
1605                status = Read32(state, FE_IF_REG_INCR0__A, (u32 *) &incr, 0);
1606                if (status < 0)
1607                        break;
1608
1609                if (state->type_A) {
1610                        if ((nomincr - incr < -500) || (nomincr - incr > 500))
1611                                break;
1612                } else {
1613                        if ((nomincr - incr < -2000) || (nomincr - incr > 2000))
1614                                break;
1615                }
1616
1617                switch (state->props.bandwidth_hz) {
1618                case 8000000:
1619                        bandwidth = DRXD_BANDWIDTH_8MHZ_IN_HZ;
1620                        break;
1621                case 7000000:
1622                        bandwidth = DRXD_BANDWIDTH_7MHZ_IN_HZ;
1623                        break;
1624                case 6000000:
1625                        bandwidth = DRXD_BANDWIDTH_6MHZ_IN_HZ;
1626                        break;
1627                default:
1628                        return -1;
1629                        break;
1630                }
1631
1632                /* Compute new sysclock value
1633                   sysClockFreq = (((incr + 2^23)*bandwidth)/2^21)/1000 */
1634                incr += (1 << 23);
1635                sysClockInHz = MulDiv32(incr, bandwidth, 1 << 21);
1636                sysClockFreq = (u32) (sysClockInHz / 1000);
1637                /* rounding */
1638                if ((sysClockInHz % 1000) > 500)
1639                        sysClockFreq++;
1640
1641                /* Compute clock deviation in ppm */
1642                oscClockDeviation = (u16) ((((s32) (sysClockFreq) -
1643                                             (s32)
1644                                             (state->expected_sys_clock_freq)) *
1645                                            1000000L) /
1646                                           (s32)
1647                                           (state->expected_sys_clock_freq));
1648
1649                Diff = oscClockDeviation - state->osc_clock_deviation;
1650                /*printk(KERN_INFO "sysclockdiff=%d\n", Diff); */
1651                if (Diff >= -200 && Diff <= 200) {
1652                        state->sys_clock_freq = (u16) sysClockFreq;
1653                        if (oscClockDeviation != state->osc_clock_deviation) {
1654                                if (state->config.osc_deviation) {
1655                                        state->config.osc_deviation(state->priv,
1656                                                                    oscClockDeviation,
1657                                                                    1);
1658                                        state->osc_clock_deviation =
1659                                            oscClockDeviation;
1660                                }
1661                        }
1662                        /* switch OFF SRMM scan in SC */
1663                        status = Write16(state, SC_RA_RAM_SAMPLE_RATE_COUNT__A, DRXD_OSCDEV_DONT_SCAN, 0);
1664                        if (status < 0)
1665                                break;
1666                        /* overrule FE_IF internal value for
1667                           proper re-locking */
1668                        status = Write16(state, SC_RA_RAM_IF_SAVE__AX, state->current_fe_if_incr, 0);
1669                        if (status < 0)
1670                                break;
1671                        state->cscd_state = CSCD_SAVED;
1672                }
1673        } while (0);
1674
1675        return status;
1676}
1677
1678static int DRX_Stop(struct drxd_state *state)
1679{
1680        int status;
1681
1682        if (state->drxd_state != DRXD_STARTED)
1683                return 0;
1684
1685        do {
1686                if (state->cscd_state != CSCD_SAVED) {
1687                        u32 lock;
1688                        status = DRX_GetLockStatus(state, &lock);
1689                        if (status < 0)
1690                                break;
1691                }
1692
1693                status = StopOC(state);
1694                if (status < 0)
1695                        break;
1696
1697                state->drxd_state = DRXD_STOPPED;
1698
1699                status = ConfigureMPEGOutput(state, 0);
1700                if (status < 0)
1701                        break;
1702
1703                if (state->type_A) {
1704                        /* Stop relevant processors off the device */
1705                        status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0000, 0x0000);
1706                        if (status < 0)
1707                                break;
1708
1709                        status = Write16(state, SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1710                        if (status < 0)
1711                                break;
1712                        status = Write16(state, LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1713                        if (status < 0)
1714                                break;
1715                } else {
1716                        /* Stop all processors except HI & CC & FE */
1717                        status = Write16(state, B_SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1718                        if (status < 0)
1719                                break;
1720                        status = Write16(state, B_LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1721                        if (status < 0)
1722                                break;
1723                        status = Write16(state, B_FT_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1724                        if (status < 0)
1725                                break;
1726                        status = Write16(state, B_CP_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1727                        if (status < 0)
1728                                break;
1729                        status = Write16(state, B_CE_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1730                        if (status < 0)
1731                                break;
1732                        status = Write16(state, B_EQ_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1733                        if (status < 0)
1734                                break;
1735                        status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0000, 0);
1736                        if (status < 0)
1737                                break;
1738                }
1739
1740        } while (0);
1741        return status;
1742}
1743
1744#if 0   /* Currently unused */
1745static int SetOperationMode(struct drxd_state *state, int oMode)
1746{
1747        int status;
1748
1749        do {
1750                if (state->drxd_state != DRXD_STOPPED) {
1751                        status = -1;
1752                        break;
1753                }
1754
1755                if (oMode == state->operation_mode) {
1756                        status = 0;
1757                        break;
1758                }
1759
1760                if (oMode != OM_Default && !state->diversity) {
1761                        status = -1;
1762                        break;
1763                }
1764
1765                switch (oMode) {
1766                case OM_DVBT_Diversity_Front:
1767                        status = WriteTable(state, state->m_InitDiversityFront);
1768                        break;
1769                case OM_DVBT_Diversity_End:
1770                        status = WriteTable(state, state->m_InitDiversityEnd);
1771                        break;
1772                case OM_Default:
1773                        /* We need to check how to
1774                           get DRXD out of diversity */
1775                default:
1776                        status = WriteTable(state, state->m_DisableDiversity);
1777                        break;
1778                }
1779        } while (0);
1780
1781        if (!status)
1782                state->operation_mode = oMode;
1783        return status;
1784}
1785#endif
1786
1787static int StartDiversity(struct drxd_state *state)
1788{
1789        int status = 0;
1790        u16 rcControl;
1791
1792        do {
1793                if (state->operation_mode == OM_DVBT_Diversity_Front) {
1794                        status = WriteTable(state, state->m_StartDiversityFront);
1795                        if (status < 0)
1796                                break;
1797                } else if (state->operation_mode == OM_DVBT_Diversity_End) {
1798                        status = WriteTable(state, state->m_StartDiversityEnd);
1799                        if (status < 0)
1800                                break;
1801                        if (state->props.bandwidth_hz == 8000000) {
1802                                status = WriteTable(state, state->m_DiversityDelay8MHZ);
1803                                if (status < 0)
1804                                        break;
1805                        } else {
1806                                status = WriteTable(state, state->m_DiversityDelay6MHZ);
1807                                if (status < 0)
1808                                        break;
1809                        }
1810
1811                        status = Read16(state, B_EQ_REG_RC_SEL_CAR__A, &rcControl, 0);
1812                        if (status < 0)
1813                                break;
1814                        rcControl &= ~(B_EQ_REG_RC_SEL_CAR_FFTMODE__M);
1815                        rcControl |= B_EQ_REG_RC_SEL_CAR_DIV_ON |
1816                            /*  combining enabled */
1817                            B_EQ_REG_RC_SEL_CAR_MEAS_A_CC |
1818                            B_EQ_REG_RC_SEL_CAR_PASS_A_CC |
1819                            B_EQ_REG_RC_SEL_CAR_LOCAL_A_CC;
1820                        status = Write16(state, B_EQ_REG_RC_SEL_CAR__A, rcControl, 0);
1821                        if (status < 0)
1822                                break;
1823                }
1824        } while (0);
1825        return status;
1826}
1827
1828static int SetFrequencyShift(struct drxd_state *state,
1829                             u32 offsetFreq, int channelMirrored)
1830{
1831        int negativeShift = (state->tuner_mirrors == channelMirrored);
1832
1833        /* Handle all mirroring
1834         *
1835         * Note: ADC mirroring (aliasing) is implictly handled by limiting
1836         * feFsRegAddInc to 28 bits below
1837         * (if the result before masking is more than 28 bits, this means
1838         *  that the ADC is mirroring.
1839         * The masking is in fact the aliasing of the ADC)
1840         *
1841         */
1842
1843        /* Compute register value, unsigned computation */
1844        state->fe_fs_add_incr = MulDiv32(state->intermediate_freq +
1845                                         offsetFreq,
1846                                         1 << 28, state->sys_clock_freq);
1847        /* Remove integer part */
1848        state->fe_fs_add_incr &= 0x0FFFFFFFL;
1849        if (negativeShift)
1850                state->fe_fs_add_incr = ((1 << 28) - state->fe_fs_add_incr);
1851
1852        /* Save the frequency shift without tunerOffset compensation
1853           for CtrlGetChannel. */
1854        state->org_fe_fs_add_incr = MulDiv32(state->intermediate_freq,
1855                                             1 << 28, state->sys_clock_freq);
1856        /* Remove integer part */
1857        state->org_fe_fs_add_incr &= 0x0FFFFFFFL;
1858        if (negativeShift)
1859                state->org_fe_fs_add_incr = ((1L << 28) -
1860                                             state->org_fe_fs_add_incr);
1861
1862        return Write32(state, FE_FS_REG_ADD_INC_LOP__A,
1863                       state->fe_fs_add_incr, 0);
1864}
1865
1866static int SetCfgNoiseCalibration(struct drxd_state *state,
1867                                  struct SNoiseCal *noiseCal)
1868{
1869        u16 beOptEna;
1870        int status = 0;
1871
1872        do {
1873                status = Read16(state, SC_RA_RAM_BE_OPT_ENA__A, &beOptEna, 0);
1874                if (status < 0)
1875                        break;
1876                if (noiseCal->cpOpt) {
1877                        beOptEna |= (1 << SC_RA_RAM_BE_OPT_ENA_CP_OPT);
1878                } else {
1879                        beOptEna &= ~(1 << SC_RA_RAM_BE_OPT_ENA_CP_OPT);
1880                        status = Write16(state, CP_REG_AC_NEXP_OFFS__A, noiseCal->cpNexpOfs, 0);
1881                        if (status < 0)
1882                                break;
1883                }
1884                status = Write16(state, SC_RA_RAM_BE_OPT_ENA__A, beOptEna, 0);
1885                if (status < 0)
1886                        break;
1887
1888                if (!state->type_A) {
1889                        status = Write16(state, B_SC_RA_RAM_CO_TD_CAL_2K__A, noiseCal->tdCal2k, 0);
1890                        if (status < 0)
1891                                break;
1892                        status = Write16(state, B_SC_RA_RAM_CO_TD_CAL_8K__A, noiseCal->tdCal8k, 0);
1893                        if (status < 0)
1894                                break;
1895                }
1896        } while (0);
1897
1898        return status;
1899}
1900
1901static int DRX_Start(struct drxd_state *state, s32 off)
1902{
1903        struct dtv_frontend_properties *p = &state->props;
1904        int status;
1905
1906        u16 transmissionParams = 0;
1907        u16 operationMode = 0;
1908        u16 qpskTdTpsPwr = 0;
1909        u16 qam16TdTpsPwr = 0;
1910        u16 qam64TdTpsPwr = 0;
1911        u32 feIfIncr = 0;
1912        u32 bandwidth = 0;
1913        int mirrorFreqSpect;
1914
1915        u16 qpskSnCeGain = 0;
1916        u16 qam16SnCeGain = 0;
1917        u16 qam64SnCeGain = 0;
1918        u16 qpskIsGainMan = 0;
1919        u16 qam16IsGainMan = 0;
1920        u16 qam64IsGainMan = 0;
1921        u16 qpskIsGainExp = 0;
1922        u16 qam16IsGainExp = 0;
1923        u16 qam64IsGainExp = 0;
1924        u16 bandwidthParam = 0;
1925
1926        if (off < 0)
1927                off = (off - 500) / 1000;
1928        else
1929                off = (off + 500) / 1000;
1930
1931        do {
1932                if (state->drxd_state != DRXD_STOPPED)
1933                        return -1;
1934                status = ResetECOD(state);
1935                if (status < 0)
1936                        break;
1937                if (state->type_A) {
1938                        status = InitSC(state);
1939                        if (status < 0)
1940                                break;
1941                } else {
1942                        status = InitFT(state);
1943                        if (status < 0)
1944                                break;
1945                        status = InitCP(state);
1946                        if (status < 0)
1947                                break;
1948                        status = InitCE(state);
1949                        if (status < 0)
1950                                break;
1951                        status = InitEQ(state);
1952                        if (status < 0)
1953                                break;
1954                        status = InitSC(state);
1955                        if (status < 0)
1956                                break;
1957                }
1958
1959                /* Restore current IF & RF AGC settings */
1960
1961                status = SetCfgIfAgc(state, &state->if_agc_cfg);
1962                if (status < 0)
1963                        break;
1964                status = SetCfgRfAgc(state, &state->rf_agc_cfg);
1965                if (status < 0)
1966                        break;
1967
1968                mirrorFreqSpect = (state->props.inversion == INVERSION_ON);
1969
1970                switch (p->transmission_mode) {
1971                default:        /* Not set, detect it automatically */
1972                        operationMode |= SC_RA_RAM_OP_AUTO_MODE__M;
1973                        /* fall through - try first guess DRX_FFTMODE_8K */
1974                case TRANSMISSION_MODE_8K:
1975                        transmissionParams |= SC_RA_RAM_OP_PARAM_MODE_8K;
1976                        if (state->type_A) {
1977                                status = Write16(state, EC_SB_REG_TR_MODE__A, EC_SB_REG_TR_MODE_8K, 0x0000);
1978                                if (status < 0)
1979                                        break;
1980                                qpskSnCeGain = 99;
1981                                qam16SnCeGain = 83;
1982                                qam64SnCeGain = 67;
1983                        }
1984                        break;
1985                case TRANSMISSION_MODE_2K:
1986                        transmissionParams |= SC_RA_RAM_OP_PARAM_MODE_2K;
1987                        if (state->type_A) {
1988                                status = Write16(state, EC_SB_REG_TR_MODE__A, EC_SB_REG_TR_MODE_2K, 0x0000);
1989                                if (status < 0)
1990                                        break;
1991                                qpskSnCeGain = 97;
1992                                qam16SnCeGain = 71;
1993                                qam64SnCeGain = 65;
1994                        }
1995                        break;
1996                }
1997
1998                switch (p->guard_interval) {
1999                case GUARD_INTERVAL_1_4:
2000                        transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_4;
2001                        break;
2002                case GUARD_INTERVAL_1_8:
2003                        transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_8;
2004                        break;
2005                case GUARD_INTERVAL_1_16:
2006                        transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_16;
2007                        break;
2008                case GUARD_INTERVAL_1_32:
2009                        transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_32;
2010                        break;
2011                default:        /* Not set, detect it automatically */
2012                        operationMode |= SC_RA_RAM_OP_AUTO_GUARD__M;
2013                        /* try first guess 1/4 */
2014                        transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_4;
2015                        break;
2016                }
2017
2018                switch (p->hierarchy) {
2019                case HIERARCHY_1:
2020                        transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A1;
2021                        if (state->type_A) {
2022                                status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0001, 0x0000);
2023                                if (status < 0)
2024                                        break;
2025                                status = Write16(state, EC_SB_REG_ALPHA__A, 0x0001, 0x0000);
2026                                if (status < 0)
2027                                        break;
2028
2029                                qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
2030                                qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA1;
2031                                qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA1;
2032
2033                                qpskIsGainMan =
2034                                    SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
2035                                qam16IsGainMan =
2036                                    SC_RA_RAM_EQ_IS_GAIN_16QAM_MAN__PRE;
2037                                qam64IsGainMan =
2038                                    SC_RA_RAM_EQ_IS_GAIN_64QAM_MAN__PRE;
2039
2040                                qpskIsGainExp =
2041                                    SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
2042                                qam16IsGainExp =
2043                                    SC_RA_RAM_EQ_IS_GAIN_16QAM_EXP__PRE;
2044                                qam64IsGainExp =
2045                                    SC_RA_RAM_EQ_IS_GAIN_64QAM_EXP__PRE;
2046                        }
2047                        break;
2048
2049                case HIERARCHY_2:
2050                        transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A2;
2051                        if (state->type_A) {
2052                                status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0002, 0x0000);
2053                                if (status < 0)
2054                                        break;
2055                                status = Write16(state, EC_SB_REG_ALPHA__A, 0x0002, 0x0000);
2056                                if (status < 0)
2057                                        break;
2058
2059                                qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
2060                                qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA2;
2061                                qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA2;
2062
2063                                qpskIsGainMan =
2064                                    SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
2065                                qam16IsGainMan =
2066                                    SC_RA_RAM_EQ_IS_GAIN_16QAM_A2_MAN__PRE;
2067                                qam64IsGainMan =
2068                                    SC_RA_RAM_EQ_IS_GAIN_64QAM_A2_MAN__PRE;
2069
2070                                qpskIsGainExp =
2071                                    SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
2072                                qam16IsGainExp =
2073                                    SC_RA_RAM_EQ_IS_GAIN_16QAM_A2_EXP__PRE;
2074                                qam64IsGainExp =
2075                                    SC_RA_RAM_EQ_IS_GAIN_64QAM_A2_EXP__PRE;
2076                        }
2077                        break;
2078                case HIERARCHY_4:
2079                        transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A4;
2080                        if (state->type_A) {
2081                                status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0003, 0x0000);
2082                                if (status < 0)
2083                                        break;
2084                                status = Write16(state, EC_SB_REG_ALPHA__A, 0x0003, 0x0000);
2085                                if (status < 0)
2086                                        break;
2087
2088                                qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
2089                                qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA4;
2090                                qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA4;
2091
2092                                qpskIsGainMan =
2093                                    SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
2094                                qam16IsGainMan =
2095                                    SC_RA_RAM_EQ_IS_GAIN_16QAM_A4_MAN__PRE;
2096                                qam64IsGainMan =
2097                                    SC_RA_RAM_EQ_IS_GAIN_64QAM_A4_MAN__PRE;
2098
2099                                qpskIsGainExp =
2100                                    SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
2101                                qam16IsGainExp =
2102                                    SC_RA_RAM_EQ_IS_GAIN_16QAM_A4_EXP__PRE;
2103                                qam64IsGainExp =
2104                                    SC_RA_RAM_EQ_IS_GAIN_64QAM_A4_EXP__PRE;
2105                        }
2106                        break;
2107                case HIERARCHY_AUTO:
2108                default:
2109                        /* Not set, detect it automatically, start with none */
2110                        operationMode |= SC_RA_RAM_OP_AUTO_HIER__M;
2111                        transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_NO;
2112                        if (state->type_A) {
2113                                status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0000, 0x0000);
2114                                if (status < 0)
2115                                        break;
2116                                status = Write16(state, EC_SB_REG_ALPHA__A, 0x0000, 0x0000);
2117                                if (status < 0)
2118                                        break;
2119
2120                                qpskTdTpsPwr = EQ_TD_TPS_PWR_QPSK;
2121                                qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHAN;
2122                                qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHAN;
2123
2124                                qpskIsGainMan =
2125                                    SC_RA_RAM_EQ_IS_GAIN_QPSK_MAN__PRE;
2126                                qam16IsGainMan =
2127                                    SC_RA_RAM_EQ_IS_GAIN_16QAM_MAN__PRE;
2128                                qam64IsGainMan =
2129                                    SC_RA_RAM_EQ_IS_GAIN_64QAM_MAN__PRE;
2130
2131                                qpskIsGainExp =
2132                                    SC_RA_RAM_EQ_IS_GAIN_QPSK_EXP__PRE;
2133                                qam16IsGainExp =
2134                                    SC_RA_RAM_EQ_IS_GAIN_16QAM_EXP__PRE;
2135                                qam64IsGainExp =
2136                                    SC_RA_RAM_EQ_IS_GAIN_64QAM_EXP__PRE;
2137                        }
2138                        break;
2139                }
2140                if (status < 0)
2141                        break;
2142
2143                switch (p->modulation) {
2144                default:
2145                        operationMode |= SC_RA_RAM_OP_AUTO_CONST__M;
2146                        /* fall through - try first guess DRX_CONSTELLATION_QAM64 */
2147                case QAM_64:
2148                        transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QAM64;
2149                        if (state->type_A) {
2150                                status = Write16(state, EQ_REG_OT_CONST__A, 0x0002, 0x0000);
2151                                if (status < 0)
2152                                        break;
2153                                status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_64QAM, 0x0000);
2154                                if (status < 0)
2155                                        break;
2156                                status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0020, 0x0000);
2157                                if (status < 0)
2158                                        break;
2159                                status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0008, 0x0000);
2160                                if (status < 0)
2161                                        break;
2162                                status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0002, 0x0000);
2163                                if (status < 0)
2164                                        break;
2165
2166                                status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qam64TdTpsPwr, 0x0000);
2167                                if (status < 0)
2168                                        break;
2169                                status = Write16(state, EQ_REG_SN_CEGAIN__A, qam64SnCeGain, 0x0000);
2170                                if (status < 0)
2171                                        break;
2172                                status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qam64IsGainMan, 0x0000);
2173                                if (status < 0)
2174                                        break;
2175                                status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qam64IsGainExp, 0x0000);
2176                                if (status < 0)
2177                                        break;
2178                        }
2179                        break;
2180                case QPSK:
2181                        transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QPSK;
2182                        if (state->type_A) {
2183                                status = Write16(state, EQ_REG_OT_CONST__A, 0x0000, 0x0000);
2184                                if (status < 0)
2185                                        break;
2186                                status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_QPSK, 0x0000);
2187                                if (status < 0)
2188                                        break;
2189                                status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0010, 0x0000);
2190                                if (status < 0)
2191                                        break;
2192                                status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0000, 0x0000);
2193                                if (status < 0)
2194                                        break;
2195                                status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0000, 0x0000);
2196                                if (status < 0)
2197                                        break;
2198
2199                                status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qpskTdTpsPwr, 0x0000);
2200                                if (status < 0)
2201                                        break;
2202                                status = Write16(state, EQ_REG_SN_CEGAIN__A, qpskSnCeGain, 0x0000);
2203                                if (status < 0)
2204                                        break;
2205                                status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qpskIsGainMan, 0x0000);
2206                                if (status < 0)
2207                                        break;
2208                                status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qpskIsGainExp, 0x0000);
2209                                if (status < 0)
2210                                        break;
2211                        }
2212                        break;
2213
2214                case QAM_16:
2215                        transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QAM16;
2216                        if (state->type_A) {
2217                                status = Write16(state, EQ_REG_OT_CONST__A, 0x0001, 0x0000);
2218                                if (status < 0)
2219                                        break;
2220                                status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_16QAM, 0x0000);
2221                                if (status < 0)
2222                                        break;
2223                                status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0010, 0x0000);
2224                                if (status < 0)
2225                                        break;
2226                                status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0004, 0x0000);
2227                                if (status < 0)
2228                                        break;
2229                                status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0000, 0x0000);
2230                                if (status < 0)
2231                                        break;
2232
2233                                status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qam16TdTpsPwr, 0x0000);
2234                                if (status < 0)
2235                                        break;
2236                                status = Write16(state, EQ_REG_SN_CEGAIN__A, qam16SnCeGain, 0x0000);
2237                                if (status < 0)
2238                                        break;
2239                                status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qam16IsGainMan, 0x0000);
2240                                if (status < 0)
2241                                        break;
2242                                status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qam16IsGainExp, 0x0000);
2243                                if (status < 0)
2244                                        break;
2245                        }
2246                        break;
2247
2248                }
2249                if (status < 0)
2250                        break;
2251
2252                switch (DRX_CHANNEL_HIGH) {
2253                default:
2254                case DRX_CHANNEL_AUTO:
2255                case DRX_CHANNEL_LOW:
2256                        transmissionParams |= SC_RA_RAM_OP_PARAM_PRIO_LO;
2257                        status = Write16(state, EC_SB_REG_PRIOR__A, EC_SB_REG_PRIOR_LO, 0x0000);
2258                        if (status < 0)
2259                                break;
2260                        break;
2261                case DRX_CHANNEL_HIGH:
2262                        transmissionParams |= SC_RA_RAM_OP_PARAM_PRIO_HI;
2263                        status = Write16(state, EC_SB_REG_PRIOR__A, EC_SB_REG_PRIOR_HI, 0x0000);
2264                        if (status < 0)
2265                                break;
2266                        break;
2267
2268                }
2269
2270                switch (p->code_rate_HP) {
2271                case FEC_1_2:
2272                        transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_1_2;
2273                        if (state->type_A) {
2274                                status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C1_2, 0x0000);
2275                                if (status < 0)
2276                                        break;
2277                        }
2278                        break;
2279                default:
2280                        operationMode |= SC_RA_RAM_OP_AUTO_RATE__M;
2281                        /* fall through */
2282                case FEC_2_3:
2283                        transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_2_3;
2284                        if (state->type_A) {
2285                                status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C2_3, 0x0000);
2286                                if (status < 0)
2287                                        break;
2288                        }
2289                        break;
2290                case FEC_3_4:
2291                        transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_3_4;
2292                        if (state->type_A) {
2293                                status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C3_4, 0x0000);
2294                                if (status < 0)
2295                                        break;
2296                        }
2297                        break;
2298                case FEC_5_6:
2299                        transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_5_6;
2300                        if (state->type_A) {
2301                                status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C5_6, 0x0000);
2302                                if (status < 0)
2303                                        break;
2304                        }
2305                        break;
2306                case FEC_7_8:
2307                        transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_7_8;
2308                        if (state->type_A) {
2309                                status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C7_8, 0x0000);
2310                                if (status < 0)
2311                                        break;
2312                        }
2313                        break;
2314                }
2315                if (status < 0)
2316                        break;
2317
2318                /* First determine real bandwidth (Hz) */
2319                /* Also set delay for impulse noise cruncher (only A2) */
2320                /* Also set parameters for EC_OC fix, note
2321                   EC_OC_REG_TMD_HIL_MAR is changed
2322                   by SC for fix for some 8K,1/8 guard but is restored by
2323                   InitEC and ResetEC
2324                   functions */
2325                switch (p->bandwidth_hz) {
2326                case 0:
2327                        p->bandwidth_hz = 8000000;
2328                        /* fall through */
2329                case 8000000:
2330                        /* (64/7)*(8/8)*1000000 */
2331                        bandwidth = DRXD_BANDWIDTH_8MHZ_IN_HZ;
2332
2333                        bandwidthParam = 0;
2334                        status = Write16(state,
2335                                         FE_AG_REG_IND_DEL__A, 50, 0x0000);
2336                        break;
2337                case 7000000:
2338                        /* (64/7)*(7/8)*1000000 */
2339                        bandwidth = DRXD_BANDWIDTH_7MHZ_IN_HZ;
2340                        bandwidthParam = 0x4807;        /*binary:0100 1000 0000 0111 */
2341                        status = Write16(state,
2342                                         FE_AG_REG_IND_DEL__A, 59, 0x0000);
2343                        break;
2344                case 6000000:
2345                        /* (64/7)*(6/8)*1000000 */
2346                        bandwidth = DRXD_BANDWIDTH_6MHZ_IN_HZ;
2347                        bandwidthParam = 0x0F07;        /*binary: 0000 1111 0000 0111 */
2348                        status = Write16(state,
2349                                         FE_AG_REG_IND_DEL__A, 71, 0x0000);
2350                        break;
2351                default:
2352                        status = -EINVAL;
2353                }
2354                if (status < 0)
2355                        break;
2356
2357                status = Write16(state, SC_RA_RAM_BAND__A, bandwidthParam, 0x0000);
2358                if (status < 0)
2359                        break;
2360
2361                {
2362                        u16 sc_config;
2363                        status = Read16(state, SC_RA_RAM_CONFIG__A, &sc_config, 0);
2364                        if (status < 0)
2365                                break;
2366
2367                        /* enable SLAVE mode in 2k 1/32 to
2368                           prevent timing change glitches */
2369                        if ((p->transmission_mode == TRANSMISSION_MODE_2K) &&
2370                            (p->guard_interval == GUARD_INTERVAL_1_32)) {
2371                                /* enable slave */
2372                                sc_config |= SC_RA_RAM_CONFIG_SLAVE__M;
2373                        } else {
2374                                /* disable slave */
2375                                sc_config &= ~SC_RA_RAM_CONFIG_SLAVE__M;
2376                        }
2377                        status = Write16(state, SC_RA_RAM_CONFIG__A, sc_config, 0);
2378                        if (status < 0)
2379                                break;
2380                }
2381
2382                status = SetCfgNoiseCalibration(state, &state->noise_cal);
2383                if (status < 0)
2384                        break;
2385
2386                if (state->cscd_state == CSCD_INIT) {
2387                        /* switch on SRMM scan in SC */
2388                        status = Write16(state, SC_RA_RAM_SAMPLE_RATE_COUNT__A, DRXD_OSCDEV_DO_SCAN, 0x0000);
2389                        if (status < 0)
2390                                break;
2391/*            CHK_ERROR(Write16(SC_RA_RAM_SAMPLE_RATE_STEP__A, DRXD_OSCDEV_STEP, 0x0000));*/
2392                        state->cscd_state = CSCD_SET;
2393                }
2394
2395                /* Now compute FE_IF_REG_INCR */
2396                /*((( SysFreq/BandWidth)/2)/2) -1) * 2^23) =>
2397                   ((SysFreq / BandWidth) * (2^21) ) - (2^23) */
2398                feIfIncr = MulDiv32(state->sys_clock_freq * 1000,
2399                                    (1ULL << 21), bandwidth) - (1 << 23);
2400                status = Write16(state, FE_IF_REG_INCR0__A, (u16) (feIfIncr & FE_IF_REG_INCR0__M), 0x0000);
2401                if (status < 0)
2402                        break;
2403                status = Write16(state, FE_IF_REG_INCR1__A, (u16) ((feIfIncr >> FE_IF_REG_INCR0__W) & FE_IF_REG_INCR1__M), 0x0000);
2404                if (status < 0)
2405                        break;
2406                /* Bandwidth setting done */
2407
2408                /* Mirror & frequency offset */
2409                SetFrequencyShift(state, off, mirrorFreqSpect);
2410
2411                /* Start SC, write channel settings to SC */
2412
2413                /* Enable SC after setting all other parameters */
2414                status = Write16(state, SC_COMM_STATE__A, 0, 0x0000);
2415                if (status < 0)
2416                        break;
2417                status = Write16(state, SC_COMM_EXEC__A, 1, 0x0000);
2418                if (status < 0)
2419                        break;
2420
2421                /* Write SC parameter registers, operation mode */
2422#if 1
2423                operationMode = (SC_RA_RAM_OP_AUTO_MODE__M |
2424                                 SC_RA_RAM_OP_AUTO_GUARD__M |
2425                                 SC_RA_RAM_OP_AUTO_CONST__M |
2426                                 SC_RA_RAM_OP_AUTO_HIER__M |
2427                                 SC_RA_RAM_OP_AUTO_RATE__M);
2428#endif
2429                status = SC_SetPrefParamCommand(state, 0x0000, transmissionParams, operationMode);
2430                if (status < 0)
2431                        break;
2432
2433                /* Start correct processes to get in lock */
2434                status = SC_ProcStartCommand(state, SC_RA_RAM_PROC_LOCKTRACK, SC_RA_RAM_SW_EVENT_RUN_NMASK__M, SC_RA_RAM_LOCKTRACK_MIN);
2435                if (status < 0)
2436                        break;
2437
2438                status = StartOC(state);
2439                if (status < 0)
2440                        break;
2441
2442                if (state->operation_mode != OM_Default) {
2443                        status = StartDiversity(state);
2444                        if (status < 0)
2445                                break;
2446                }
2447
2448                state->drxd_state = DRXD_STARTED;
2449        } while (0);
2450
2451        return status;
2452}
2453
2454static int CDRXD(struct drxd_state *state, u32 IntermediateFrequency)
2455{
2456        u32 ulRfAgcOutputLevel = 0xffffffff;
2457        u32 ulRfAgcSettleLevel = 528;   /* Optimum value for MT2060 */
2458        u32 ulRfAgcMinLevel = 0;        /* Currently unused */
2459        u32 ulRfAgcMaxLevel = DRXD_FE_CTRL_MAX; /* Currently unused */
2460        u32 ulRfAgcSpeed = 0;   /* Currently unused */
2461        u32 ulRfAgcMode = 0;    /*2;   Off */
2462        u32 ulRfAgcR1 = 820;
2463        u32 ulRfAgcR2 = 2200;
2464        u32 ulRfAgcR3 = 150;
2465        u32 ulIfAgcMode = 0;    /* Auto */
2466        u32 ulIfAgcOutputLevel = 0xffffffff;
2467        u32 ulIfAgcSettleLevel = 0xffffffff;
2468        u32 ulIfAgcMinLevel = 0xffffffff;
2469        u32 ulIfAgcMaxLevel = 0xffffffff;
2470        u32 ulIfAgcSpeed = 0xffffffff;
2471        u32 ulIfAgcR1 = 820;
2472        u32 ulIfAgcR2 = 2200;
2473        u32 ulIfAgcR3 = 150;
2474        u32 ulClock = state->config.clock;
2475        u32 ulSerialMode = 0;
2476        u32 ulEcOcRegOcModeLop = 4;     /* Dynamic DTO source */
2477        u32 ulHiI2cDelay = HI_I2C_DELAY;
2478        u32 ulHiI2cBridgeDelay = HI_I2C_BRIDGE_DELAY;
2479        u32 ulHiI2cPatch = 0;
2480        u32 ulEnvironment = APPENV_PORTABLE;
2481        u32 ulEnvironmentDiversity = APPENV_MOBILE;
2482        u32 ulIFFilter = IFFILTER_SAW;
2483
2484        state->if_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2485        state->if_agc_cfg.outputLevel = 0;
2486        state->if_agc_cfg.settleLevel = 140;
2487        state->if_agc_cfg.minOutputLevel = 0;
2488        state->if_agc_cfg.maxOutputLevel = 1023;
2489        state->if_agc_cfg.speed = 904;
2490
2491        if (ulIfAgcMode == 1 && ulIfAgcOutputLevel <= DRXD_FE_CTRL_MAX) {
2492                state->if_agc_cfg.ctrlMode = AGC_CTRL_USER;
2493                state->if_agc_cfg.outputLevel = (u16) (ulIfAgcOutputLevel);
2494        }
2495
2496        if (ulIfAgcMode == 0 &&
2497            ulIfAgcSettleLevel <= DRXD_FE_CTRL_MAX &&
2498            ulIfAgcMinLevel <= DRXD_FE_CTRL_MAX &&
2499            ulIfAgcMaxLevel <= DRXD_FE_CTRL_MAX &&
2500            ulIfAgcSpeed <= DRXD_FE_CTRL_MAX) {
2501                state->if_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2502                state->if_agc_cfg.settleLevel = (u16) (ulIfAgcSettleLevel);
2503                state->if_agc_cfg.minOutputLevel = (u16) (ulIfAgcMinLevel);
2504                state->if_agc_cfg.maxOutputLevel = (u16) (ulIfAgcMaxLevel);
2505                state->if_agc_cfg.speed = (u16) (ulIfAgcSpeed);
2506        }
2507
2508        state->if_agc_cfg.R1 = (u16) (ulIfAgcR1);
2509        state->if_agc_cfg.R2 = (u16) (ulIfAgcR2);
2510        state->if_agc_cfg.R3 = (u16) (ulIfAgcR3);
2511
2512        state->rf_agc_cfg.R1 = (u16) (ulRfAgcR1);
2513        state->rf_agc_cfg.R2 = (u16) (ulRfAgcR2);
2514        state->rf_agc_cfg.R3 = (u16) (ulRfAgcR3);
2515
2516        state->rf_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2517        /* rest of the RFAgcCfg structure currently unused */
2518        if (ulRfAgcMode == 1 && ulRfAgcOutputLevel <= DRXD_FE_CTRL_MAX) {
2519                state->rf_agc_cfg.ctrlMode = AGC_CTRL_USER;
2520                state->rf_agc_cfg.outputLevel = (u16) (ulRfAgcOutputLevel);
2521        }
2522
2523        if (ulRfAgcMode == 0 &&
2524            ulRfAgcSettleLevel <= DRXD_FE_CTRL_MAX &&
2525            ulRfAgcMinLevel <= DRXD_FE_CTRL_MAX &&
2526            ulRfAgcMaxLevel <= DRXD_FE_CTRL_MAX &&
2527            ulRfAgcSpeed <= DRXD_FE_CTRL_MAX) {
2528                state->rf_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2529                state->rf_agc_cfg.settleLevel = (u16) (ulRfAgcSettleLevel);
2530                state->rf_agc_cfg.minOutputLevel = (u16) (ulRfAgcMinLevel);
2531                state->rf_agc_cfg.maxOutputLevel = (u16) (ulRfAgcMaxLevel);
2532                state->rf_agc_cfg.speed = (u16) (ulRfAgcSpeed);
2533        }
2534
2535        if (ulRfAgcMode == 2)
2536                state->rf_agc_cfg.ctrlMode = AGC_CTRL_OFF;
2537
2538        if (ulEnvironment <= 2)
2539                state->app_env_default = (enum app_env)
2540                    (ulEnvironment);
2541        if (ulEnvironmentDiversity <= 2)
2542                state->app_env_diversity = (enum app_env)
2543                    (ulEnvironmentDiversity);
2544
2545        if (ulIFFilter == IFFILTER_DISCRETE) {
2546                /* discrete filter */
2547                state->noise_cal.cpOpt = 0;
2548                state->noise_cal.cpNexpOfs = 40;
2549                state->noise_cal.tdCal2k = -40;
2550                state->noise_cal.tdCal8k = -24;
2551        } else {
2552                /* SAW filter */
2553                state->noise_cal.cpOpt = 1;
2554                state->noise_cal.cpNexpOfs = 0;
2555                state->noise_cal.tdCal2k = -21;
2556                state->noise_cal.tdCal8k = -24;
2557        }
2558        state->m_EcOcRegOcModeLop = (u16) (ulEcOcRegOcModeLop);
2559
2560        state->chip_adr = (state->config.demod_address << 1) | 1;
2561        switch (ulHiI2cPatch) {
2562        case 1:
2563                state->m_HiI2cPatch = DRXD_HiI2cPatch_1;
2564                break;
2565        case 3:
2566                state->m_HiI2cPatch = DRXD_HiI2cPatch_3;
2567                break;
2568        default:
2569                state->m_HiI2cPatch = NULL;
2570        }
2571
2572        /* modify tuner and clock attributes */
2573        state->intermediate_freq = (u16) (IntermediateFrequency / 1000);
2574        /* expected system clock frequency in kHz */
2575        state->expected_sys_clock_freq = 48000;
2576        /* real system clock frequency in kHz */
2577        state->sys_clock_freq = 48000;
2578        state->osc_clock_freq = (u16) ulClock;
2579        state->osc_clock_deviation = 0;
2580        state->cscd_state = CSCD_INIT;
2581        state->drxd_state = DRXD_UNINITIALIZED;
2582
2583        state->PGA = 0;
2584        state->type_A = 0;
2585        state->tuner_mirrors = 0;
2586
2587        /* modify MPEG output attributes */
2588        state->insert_rs_byte = state->config.insert_rs_byte;
2589        state->enable_parallel = (ulSerialMode != 1);
2590
2591        /* Timing div, 250ns/Psys */
2592        /* Timing div, = ( delay (nano seconds) * sysclk (kHz) )/ 1000 */
2593
2594        state->hi_cfg_timing_div = (u16) ((state->sys_clock_freq / 1000) *
2595                                          ulHiI2cDelay) / 1000;
2596        /* Bridge delay, uses oscilator clock */
2597        /* Delay = ( delay (nano seconds) * oscclk (kHz) )/ 1000 */
2598        state->hi_cfg_bridge_delay = (u16) ((state->osc_clock_freq / 1000) *
2599                                            ulHiI2cBridgeDelay) / 1000;
2600
2601        state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_CONSUMER;
2602        /* state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_PRO; */
2603        state->m_FeAgRegAgAgcSio = DRXD_DEF_AG_AGC_SIO;
2604        return 0;
2605}
2606
2607static int DRXD_init(struct drxd_state *state, const u8 *fw, u32 fw_size)
2608{
2609        int status = 0;
2610        u32 driverVersion;
2611
2612        if (state->init_done)
2613                return 0;
2614
2615        CDRXD(state, state->config.IF ? state->config.IF : 36000000);
2616
2617        do {
2618                state->operation_mode = OM_Default;
2619
2620                status = SetDeviceTypeId(state);
2621                if (status < 0)
2622                        break;
2623
2624                /* Apply I2c address patch to B1 */
2625                if (!state->type_A && state->m_HiI2cPatch) {
2626                        status = WriteTable(state, state->m_HiI2cPatch);
2627                        if (status < 0)
2628                                break;
2629                }
2630
2631                if (state->type_A) {
2632                        /* HI firmware patch for UIO readout,
2633                           avoid clearing of result register */
2634                        status = Write16(state, 0x43012D, 0x047f, 0);
2635                        if (status < 0)
2636                                break;
2637                }
2638
2639                status = HI_ResetCommand(state);
2640                if (status < 0)
2641                        break;
2642
2643                status = StopAllProcessors(state);
2644                if (status < 0)
2645                        break;
2646                status = InitCC(state);
2647                if (status < 0)
2648                        break;
2649
2650                state->osc_clock_deviation = 0;
2651
2652                if (state->config.osc_deviation)
2653                        state->osc_clock_deviation =
2654                            state->config.osc_deviation(state->priv, 0, 0);
2655                {
2656                        /* Handle clock deviation */
2657                        s32 devB;
2658                        s32 devA = (s32) (state->osc_clock_deviation) *
2659                            (s32) (state->expected_sys_clock_freq);
2660                        /* deviation in kHz */
2661                        s32 deviation = (devA / (1000000L));
2662                        /* rounding, signed */
2663                        if (devA > 0)
2664                                devB = (2);
2665                        else
2666                                devB = (-2);
2667                        if ((devB * (devA % 1000000L) > 1000000L)) {
2668                                /* add +1 or -1 */
2669                                deviation += (devB / 2);
2670                        }
2671
2672                        state->sys_clock_freq =
2673                            (u16) ((state->expected_sys_clock_freq) +
2674                                   deviation);
2675                }
2676                status = InitHI(state);
2677                if (status < 0)
2678                        break;
2679                status = InitAtomicRead(state);
2680                if (status < 0)
2681                        break;
2682
2683                status = EnableAndResetMB(state);
2684                if (status < 0)
2685                        break;
2686                if (state->type_A) {
2687                        status = ResetCEFR(state);
2688                        if (status < 0)
2689                                break;
2690                }
2691                if (fw) {
2692                        status = DownloadMicrocode(state, fw, fw_size);
2693                        if (status < 0)
2694                                break;
2695                } else {
2696                        status = DownloadMicrocode(state, state->microcode, state->microcode_length);
2697                        if (status < 0)
2698                                break;
2699                }
2700
2701                if (state->PGA) {
2702                        state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_PRO;
2703                        SetCfgPga(state, 0);    /* PGA = 0 dB */
2704                } else {
2705                        state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_CONSUMER;
2706                }
2707
2708                state->m_FeAgRegAgAgcSio = DRXD_DEF_AG_AGC_SIO;
2709
2710                status = InitFE(state);
2711                if (status < 0)
2712                        break;
2713                status = InitFT(state);
2714                if (status < 0)
2715                        break;
2716                status = InitCP(state);
2717                if (status < 0)
2718                        break;
2719                status = InitCE(state);
2720                if (status < 0)
2721                        break;
2722                status = InitEQ(state);
2723                if (status < 0)
2724                        break;
2725                status = InitEC(state);
2726                if (status < 0)
2727                        break;
2728                status = InitSC(state);
2729                if (status < 0)
2730                        break;
2731
2732                status = SetCfgIfAgc(state, &state->if_agc_cfg);
2733                if (status < 0)
2734                        break;
2735                status = SetCfgRfAgc(state, &state->rf_agc_cfg);
2736                if (status < 0)
2737                        break;
2738
2739                state->cscd_state = CSCD_INIT;
2740                status = Write16(state, SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
2741                if (status < 0)
2742                        break;
2743                status = Write16(state, LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
2744                if (status < 0)
2745                        break;
2746
2747                driverVersion = (((VERSION_MAJOR / 10) << 4) +
2748                                 (VERSION_MAJOR % 10)) << 24;
2749                driverVersion += (((VERSION_MINOR / 10) << 4) +
2750                                  (VERSION_MINOR % 10)) << 16;
2751                driverVersion += ((VERSION_PATCH / 1000) << 12) +
2752                    ((VERSION_PATCH / 100) << 8) +
2753                    ((VERSION_PATCH / 10) << 4) + (VERSION_PATCH % 10);
2754
2755                status = Write32(state, SC_RA_RAM_DRIVER_VERSION__AX, driverVersion, 0);
2756                if (status < 0)
2757                        break;
2758
2759                status = StopOC(state);
2760                if (status < 0)
2761                        break;
2762
2763                state->drxd_state = DRXD_STOPPED;
2764                state->init_done = 1;
2765                status = 0;
2766        } while (0);
2767        return status;
2768}
2769
2770static int DRXD_status(struct drxd_state *state, u32 *pLockStatus)
2771{
2772        DRX_GetLockStatus(state, pLockStatus);
2773
2774        /*if (*pLockStatus&DRX_LOCK_MPEG) */
2775        if (*pLockStatus & DRX_LOCK_FEC) {
2776                ConfigureMPEGOutput(state, 1);
2777                /* Get status again, in case we have MPEG lock now */
2778                /*DRX_GetLockStatus(state, pLockStatus); */
2779        }
2780
2781        return 0;
2782}
2783
2784/****************************************************************************/
2785/****************************************************************************/
2786/****************************************************************************/
2787
2788static int drxd_read_signal_strength(struct dvb_frontend *fe, u16 * strength)
2789{
2790        struct drxd_state *state = fe->demodulator_priv;
2791        u32 value;
2792        int res;
2793
2794        res = ReadIFAgc(state, &value);
2795        if (res < 0)
2796                *strength = 0;
2797        else
2798                *strength = 0xffff - (value << 4);
2799        return 0;
2800}
2801
2802static int drxd_read_status(struct dvb_frontend *fe, enum fe_status *status)
2803{
2804        struct drxd_state *state = fe->demodulator_priv;
2805        u32 lock;
2806
2807        DRXD_status(state, &lock);
2808        *status = 0;
2809        /* No MPEG lock in V255 firmware, bug ? */
2810#if 1
2811        if (lock & DRX_LOCK_MPEG)
2812                *status |= FE_HAS_LOCK;
2813#else
2814        if (lock & DRX_LOCK_FEC)
2815                *status |= FE_HAS_LOCK;
2816#endif
2817        if (lock & DRX_LOCK_FEC)
2818                *status |= FE_HAS_VITERBI | FE_HAS_SYNC;
2819        if (lock & DRX_LOCK_DEMOD)
2820                *status |= FE_HAS_CARRIER | FE_HAS_SIGNAL;
2821
2822        return 0;
2823}
2824
2825static int drxd_init(struct dvb_frontend *fe)
2826{
2827        struct drxd_state *state = fe->demodulator_priv;
2828
2829        return DRXD_init(state, NULL, 0);
2830}
2831
2832static int drxd_config_i2c(struct dvb_frontend *fe, int onoff)
2833{
2834        struct drxd_state *state = fe->demodulator_priv;
2835
2836        if (state->config.disable_i2c_gate_ctrl == 1)
2837                return 0;
2838
2839        return DRX_ConfigureI2CBridge(state, onoff);
2840}
2841
2842static int drxd_get_tune_settings(struct dvb_frontend *fe,
2843                                  struct dvb_frontend_tune_settings *sets)
2844{
2845        sets->min_delay_ms = 10000;
2846        sets->max_drift = 0;
2847        sets->step_size = 0;
2848        return 0;
2849}
2850
2851static int drxd_read_ber(struct dvb_frontend *fe, u32 * ber)
2852{
2853        *ber = 0;
2854        return 0;
2855}
2856
2857static int drxd_read_snr(struct dvb_frontend *fe, u16 * snr)
2858{
2859        *snr = 0;
2860        return 0;
2861}
2862
2863static int drxd_read_ucblocks(struct dvb_frontend *fe, u32 * ucblocks)
2864{
2865        *ucblocks = 0;
2866        return 0;
2867}
2868
2869static int drxd_sleep(struct dvb_frontend *fe)
2870{
2871        struct drxd_state *state = fe->demodulator_priv;
2872
2873        ConfigureMPEGOutput(state, 0);
2874        return 0;
2875}
2876
2877static int drxd_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
2878{
2879        return drxd_config_i2c(fe, enable);
2880}
2881
2882static int drxd_set_frontend(struct dvb_frontend *fe)
2883{
2884        struct dtv_frontend_properties *p = &fe->dtv_property_cache;
2885        struct drxd_state *state = fe->demodulator_priv;
2886        s32 off = 0;
2887
2888        state->props = *p;
2889        DRX_Stop(state);
2890
2891        if (fe->ops.tuner_ops.set_params) {
2892                fe->ops.tuner_ops.set_params(fe);
2893                if (fe->ops.i2c_gate_ctrl)
2894                        fe->ops.i2c_gate_ctrl(fe, 0);
2895        }
2896
2897        msleep(200);
2898
2899        return DRX_Start(state, off);
2900}
2901
2902static void drxd_release(struct dvb_frontend *fe)
2903{
2904        struct drxd_state *state = fe->demodulator_priv;
2905
2906        kfree(state);
2907}
2908
2909static const struct dvb_frontend_ops drxd_ops = {
2910        .delsys = { SYS_DVBT},
2911        .info = {
2912                 .name = "Micronas DRXD DVB-T",
2913                 .frequency_min_hz =  47125 * kHz,
2914                 .frequency_max_hz = 855250 * kHz,
2915                 .frequency_stepsize_hz = 166667,
2916                 .caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 |
2917                 FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 |
2918                 FE_CAN_FEC_AUTO |
2919                 FE_CAN_QAM_16 | FE_CAN_QAM_64 |
2920                 FE_CAN_QAM_AUTO |
2921                 FE_CAN_TRANSMISSION_MODE_AUTO |
2922                 FE_CAN_GUARD_INTERVAL_AUTO |
2923                 FE_CAN_HIERARCHY_AUTO | FE_CAN_RECOVER | FE_CAN_MUTE_TS},
2924
2925        .release = drxd_release,
2926        .init = drxd_init,
2927        .sleep = drxd_sleep,
2928        .i2c_gate_ctrl = drxd_i2c_gate_ctrl,
2929
2930        .set_frontend = drxd_set_frontend,
2931        .get_tune_settings = drxd_get_tune_settings,
2932
2933        .read_status = drxd_read_status,
2934        .read_ber = drxd_read_ber,
2935        .read_signal_strength = drxd_read_signal_strength,
2936        .read_snr = drxd_read_snr,
2937        .read_ucblocks = drxd_read_ucblocks,
2938};
2939
2940struct dvb_frontend *drxd_attach(const struct drxd_config *config,
2941                                 void *priv, struct i2c_adapter *i2c,
2942                                 struct device *dev)
2943{
2944        struct drxd_state *state = NULL;
2945
2946        state = kzalloc(sizeof(*state), GFP_KERNEL);
2947        if (!state)
2948                return NULL;
2949
2950        state->ops = drxd_ops;
2951        state->dev = dev;
2952        state->config = *config;
2953        state->i2c = i2c;
2954        state->priv = priv;
2955
2956        mutex_init(&state->mutex);
2957
2958        if (Read16(state, 0, NULL, 0) < 0)
2959                goto error;
2960
2961        state->frontend.ops = drxd_ops;
2962        state->frontend.demodulator_priv = state;
2963        ConfigureMPEGOutput(state, 0);
2964        /* add few initialization to allow gate control */
2965        CDRXD(state, state->config.IF ? state->config.IF : 36000000);
2966        InitHI(state);
2967
2968        return &state->frontend;
2969
2970error:
2971        printk(KERN_ERR "drxd: not found\n");
2972        kfree(state);
2973        return NULL;
2974}
2975EXPORT_SYMBOL(drxd_attach);
2976
2977MODULE_DESCRIPTION("DRXD driver");
2978MODULE_AUTHOR("Micronas");
2979MODULE_LICENSE("GPL");
2980