linux/drivers/mmc/host/sh_mmcif.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * MMCIF eMMC driver.
   4 *
   5 * Copyright (C) 2010 Renesas Solutions Corp.
   6 * Yusuke Goda <yusuke.goda.sx@renesas.com>
   7 */
   8
   9/*
  10 * The MMCIF driver is now processing MMC requests asynchronously, according
  11 * to the Linux MMC API requirement.
  12 *
  13 * The MMCIF driver processes MMC requests in up to 3 stages: command, optional
  14 * data, and optional stop. To achieve asynchronous processing each of these
  15 * stages is split into two halves: a top and a bottom half. The top half
  16 * initialises the hardware, installs a timeout handler to handle completion
  17 * timeouts, and returns. In case of the command stage this immediately returns
  18 * control to the caller, leaving all further processing to run asynchronously.
  19 * All further request processing is performed by the bottom halves.
  20 *
  21 * The bottom half further consists of a "hard" IRQ handler, an IRQ handler
  22 * thread, a DMA completion callback, if DMA is used, a timeout work, and
  23 * request- and stage-specific handler methods.
  24 *
  25 * Each bottom half run begins with either a hardware interrupt, a DMA callback
  26 * invocation, or a timeout work run. In case of an error or a successful
  27 * processing completion, the MMC core is informed and the request processing is
  28 * finished. In case processing has to continue, i.e., if data has to be read
  29 * from or written to the card, or if a stop command has to be sent, the next
  30 * top half is called, which performs the necessary hardware handling and
  31 * reschedules the timeout work. This returns the driver state machine into the
  32 * bottom half waiting state.
  33 */
  34
  35#include <linux/bitops.h>
  36#include <linux/clk.h>
  37#include <linux/completion.h>
  38#include <linux/delay.h>
  39#include <linux/dma-mapping.h>
  40#include <linux/dmaengine.h>
  41#include <linux/mmc/card.h>
  42#include <linux/mmc/core.h>
  43#include <linux/mmc/host.h>
  44#include <linux/mmc/mmc.h>
  45#include <linux/mmc/sdio.h>
  46#include <linux/mmc/sh_mmcif.h>
  47#include <linux/mmc/slot-gpio.h>
  48#include <linux/mod_devicetable.h>
  49#include <linux/mutex.h>
  50#include <linux/of_device.h>
  51#include <linux/pagemap.h>
  52#include <linux/platform_device.h>
  53#include <linux/pm_qos.h>
  54#include <linux/pm_runtime.h>
  55#include <linux/sh_dma.h>
  56#include <linux/spinlock.h>
  57#include <linux/module.h>
  58
  59#define DRIVER_NAME     "sh_mmcif"
  60
  61/* CE_CMD_SET */
  62#define CMD_MASK                0x3f000000
  63#define CMD_SET_RTYP_NO         ((0 << 23) | (0 << 22))
  64#define CMD_SET_RTYP_6B         ((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
  65#define CMD_SET_RTYP_17B        ((1 << 23) | (0 << 22)) /* R2 */
  66#define CMD_SET_RBSY            (1 << 21) /* R1b */
  67#define CMD_SET_CCSEN           (1 << 20)
  68#define CMD_SET_WDAT            (1 << 19) /* 1: on data, 0: no data */
  69#define CMD_SET_DWEN            (1 << 18) /* 1: write, 0: read */
  70#define CMD_SET_CMLTE           (1 << 17) /* 1: multi block trans, 0: single */
  71#define CMD_SET_CMD12EN         (1 << 16) /* 1: CMD12 auto issue */
  72#define CMD_SET_RIDXC_INDEX     ((0 << 15) | (0 << 14)) /* index check */
  73#define CMD_SET_RIDXC_BITS      ((0 << 15) | (1 << 14)) /* check bits check */
  74#define CMD_SET_RIDXC_NO        ((1 << 15) | (0 << 14)) /* no check */
  75#define CMD_SET_CRC7C           ((0 << 13) | (0 << 12)) /* CRC7 check*/
  76#define CMD_SET_CRC7C_BITS      ((0 << 13) | (1 << 12)) /* check bits check*/
  77#define CMD_SET_CRC7C_INTERNAL  ((1 << 13) | (0 << 12)) /* internal CRC7 check*/
  78#define CMD_SET_CRC16C          (1 << 10) /* 0: CRC16 check*/
  79#define CMD_SET_CRCSTE          (1 << 8) /* 1: not receive CRC status */
  80#define CMD_SET_TBIT            (1 << 7) /* 1: tran mission bit "Low" */
  81#define CMD_SET_OPDM            (1 << 6) /* 1: open/drain */
  82#define CMD_SET_CCSH            (1 << 5)
  83#define CMD_SET_DARS            (1 << 2) /* Dual Data Rate */
  84#define CMD_SET_DATW_1          ((0 << 1) | (0 << 0)) /* 1bit */
  85#define CMD_SET_DATW_4          ((0 << 1) | (1 << 0)) /* 4bit */
  86#define CMD_SET_DATW_8          ((1 << 1) | (0 << 0)) /* 8bit */
  87
  88/* CE_CMD_CTRL */
  89#define CMD_CTRL_BREAK          (1 << 0)
  90
  91/* CE_BLOCK_SET */
  92#define BLOCK_SIZE_MASK         0x0000ffff
  93
  94/* CE_INT */
  95#define INT_CCSDE               (1 << 29)
  96#define INT_CMD12DRE            (1 << 26)
  97#define INT_CMD12RBE            (1 << 25)
  98#define INT_CMD12CRE            (1 << 24)
  99#define INT_DTRANE              (1 << 23)
 100#define INT_BUFRE               (1 << 22)
 101#define INT_BUFWEN              (1 << 21)
 102#define INT_BUFREN              (1 << 20)
 103#define INT_CCSRCV              (1 << 19)
 104#define INT_RBSYE               (1 << 17)
 105#define INT_CRSPE               (1 << 16)
 106#define INT_CMDVIO              (1 << 15)
 107#define INT_BUFVIO              (1 << 14)
 108#define INT_WDATERR             (1 << 11)
 109#define INT_RDATERR             (1 << 10)
 110#define INT_RIDXERR             (1 << 9)
 111#define INT_RSPERR              (1 << 8)
 112#define INT_CCSTO               (1 << 5)
 113#define INT_CRCSTO              (1 << 4)
 114#define INT_WDATTO              (1 << 3)
 115#define INT_RDATTO              (1 << 2)
 116#define INT_RBSYTO              (1 << 1)
 117#define INT_RSPTO               (1 << 0)
 118#define INT_ERR_STS             (INT_CMDVIO | INT_BUFVIO | INT_WDATERR |  \
 119                                 INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
 120                                 INT_CCSTO | INT_CRCSTO | INT_WDATTO |    \
 121                                 INT_RDATTO | INT_RBSYTO | INT_RSPTO)
 122
 123#define INT_ALL                 (INT_RBSYE | INT_CRSPE | INT_BUFREN |    \
 124                                 INT_BUFWEN | INT_CMD12DRE | INT_BUFRE | \
 125                                 INT_DTRANE | INT_CMD12RBE | INT_CMD12CRE)
 126
 127#define INT_CCS                 (INT_CCSTO | INT_CCSRCV | INT_CCSDE)
 128
 129/* CE_INT_MASK */
 130#define MASK_ALL                0x00000000
 131#define MASK_MCCSDE             (1 << 29)
 132#define MASK_MCMD12DRE          (1 << 26)
 133#define MASK_MCMD12RBE          (1 << 25)
 134#define MASK_MCMD12CRE          (1 << 24)
 135#define MASK_MDTRANE            (1 << 23)
 136#define MASK_MBUFRE             (1 << 22)
 137#define MASK_MBUFWEN            (1 << 21)
 138#define MASK_MBUFREN            (1 << 20)
 139#define MASK_MCCSRCV            (1 << 19)
 140#define MASK_MRBSYE             (1 << 17)
 141#define MASK_MCRSPE             (1 << 16)
 142#define MASK_MCMDVIO            (1 << 15)
 143#define MASK_MBUFVIO            (1 << 14)
 144#define MASK_MWDATERR           (1 << 11)
 145#define MASK_MRDATERR           (1 << 10)
 146#define MASK_MRIDXERR           (1 << 9)
 147#define MASK_MRSPERR            (1 << 8)
 148#define MASK_MCCSTO             (1 << 5)
 149#define MASK_MCRCSTO            (1 << 4)
 150#define MASK_MWDATTO            (1 << 3)
 151#define MASK_MRDATTO            (1 << 2)
 152#define MASK_MRBSYTO            (1 << 1)
 153#define MASK_MRSPTO             (1 << 0)
 154
 155#define MASK_START_CMD          (MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \
 156                                 MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \
 157                                 MASK_MCRCSTO | MASK_MWDATTO | \
 158                                 MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO)
 159
 160#define MASK_CLEAN              (INT_ERR_STS | MASK_MRBSYE | MASK_MCRSPE |      \
 161                                 MASK_MBUFREN | MASK_MBUFWEN |                  \
 162                                 MASK_MCMD12DRE | MASK_MBUFRE | MASK_MDTRANE |  \
 163                                 MASK_MCMD12RBE | MASK_MCMD12CRE)
 164
 165/* CE_HOST_STS1 */
 166#define STS1_CMDSEQ             (1 << 31)
 167
 168/* CE_HOST_STS2 */
 169#define STS2_CRCSTE             (1 << 31)
 170#define STS2_CRC16E             (1 << 30)
 171#define STS2_AC12CRCE           (1 << 29)
 172#define STS2_RSPCRC7E           (1 << 28)
 173#define STS2_CRCSTEBE           (1 << 27)
 174#define STS2_RDATEBE            (1 << 26)
 175#define STS2_AC12REBE           (1 << 25)
 176#define STS2_RSPEBE             (1 << 24)
 177#define STS2_AC12IDXE           (1 << 23)
 178#define STS2_RSPIDXE            (1 << 22)
 179#define STS2_CCSTO              (1 << 15)
 180#define STS2_RDATTO             (1 << 14)
 181#define STS2_DATBSYTO           (1 << 13)
 182#define STS2_CRCSTTO            (1 << 12)
 183#define STS2_AC12BSYTO          (1 << 11)
 184#define STS2_RSPBSYTO           (1 << 10)
 185#define STS2_AC12RSPTO          (1 << 9)
 186#define STS2_RSPTO              (1 << 8)
 187#define STS2_CRC_ERR            (STS2_CRCSTE | STS2_CRC16E |            \
 188                                 STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
 189#define STS2_TIMEOUT_ERR        (STS2_CCSTO | STS2_RDATTO |             \
 190                                 STS2_DATBSYTO | STS2_CRCSTTO |         \
 191                                 STS2_AC12BSYTO | STS2_RSPBSYTO |       \
 192                                 STS2_AC12RSPTO | STS2_RSPTO)
 193
 194#define CLKDEV_EMMC_DATA        52000000 /* 52MHz */
 195#define CLKDEV_MMC_DATA         20000000 /* 20MHz */
 196#define CLKDEV_INIT             400000   /* 400 KHz */
 197
 198enum sh_mmcif_state {
 199        STATE_IDLE,
 200        STATE_REQUEST,
 201        STATE_IOS,
 202        STATE_TIMEOUT,
 203};
 204
 205enum sh_mmcif_wait_for {
 206        MMCIF_WAIT_FOR_REQUEST,
 207        MMCIF_WAIT_FOR_CMD,
 208        MMCIF_WAIT_FOR_MREAD,
 209        MMCIF_WAIT_FOR_MWRITE,
 210        MMCIF_WAIT_FOR_READ,
 211        MMCIF_WAIT_FOR_WRITE,
 212        MMCIF_WAIT_FOR_READ_END,
 213        MMCIF_WAIT_FOR_WRITE_END,
 214        MMCIF_WAIT_FOR_STOP,
 215};
 216
 217/*
 218 * difference for each SoC
 219 */
 220struct sh_mmcif_host {
 221        struct mmc_host *mmc;
 222        struct mmc_request *mrq;
 223        struct platform_device *pd;
 224        struct clk *clk;
 225        int bus_width;
 226        unsigned char timing;
 227        bool sd_error;
 228        bool dying;
 229        long timeout;
 230        void __iomem *addr;
 231        u32 *pio_ptr;
 232        spinlock_t lock;                /* protect sh_mmcif_host::state */
 233        enum sh_mmcif_state state;
 234        enum sh_mmcif_wait_for wait_for;
 235        struct delayed_work timeout_work;
 236        size_t blocksize;
 237        int sg_idx;
 238        int sg_blkidx;
 239        bool power;
 240        bool ccs_enable;                /* Command Completion Signal support */
 241        bool clk_ctrl2_enable;
 242        struct mutex thread_lock;
 243        u32 clkdiv_map;         /* see CE_CLK_CTRL::CLKDIV */
 244
 245        /* DMA support */
 246        struct dma_chan         *chan_rx;
 247        struct dma_chan         *chan_tx;
 248        struct completion       dma_complete;
 249        bool                    dma_active;
 250};
 251
 252static const struct of_device_id sh_mmcif_of_match[] = {
 253        { .compatible = "renesas,sh-mmcif" },
 254        { }
 255};
 256MODULE_DEVICE_TABLE(of, sh_mmcif_of_match);
 257
 258#define sh_mmcif_host_to_dev(host) (&host->pd->dev)
 259
 260static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
 261                                        unsigned int reg, u32 val)
 262{
 263        writel(val | readl(host->addr + reg), host->addr + reg);
 264}
 265
 266static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
 267                                        unsigned int reg, u32 val)
 268{
 269        writel(~val & readl(host->addr + reg), host->addr + reg);
 270}
 271
 272static void sh_mmcif_dma_complete(void *arg)
 273{
 274        struct sh_mmcif_host *host = arg;
 275        struct mmc_request *mrq = host->mrq;
 276        struct device *dev = sh_mmcif_host_to_dev(host);
 277
 278        dev_dbg(dev, "Command completed\n");
 279
 280        if (WARN(!mrq || !mrq->data, "%s: NULL data in DMA completion!\n",
 281                 dev_name(dev)))
 282                return;
 283
 284        complete(&host->dma_complete);
 285}
 286
 287static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
 288{
 289        struct mmc_data *data = host->mrq->data;
 290        struct scatterlist *sg = data->sg;
 291        struct dma_async_tx_descriptor *desc = NULL;
 292        struct dma_chan *chan = host->chan_rx;
 293        struct device *dev = sh_mmcif_host_to_dev(host);
 294        dma_cookie_t cookie = -EINVAL;
 295        int ret;
 296
 297        ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
 298                         DMA_FROM_DEVICE);
 299        if (ret > 0) {
 300                host->dma_active = true;
 301                desc = dmaengine_prep_slave_sg(chan, sg, ret,
 302                        DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 303        }
 304
 305        if (desc) {
 306                desc->callback = sh_mmcif_dma_complete;
 307                desc->callback_param = host;
 308                cookie = dmaengine_submit(desc);
 309                sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
 310                dma_async_issue_pending(chan);
 311        }
 312        dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
 313                __func__, data->sg_len, ret, cookie);
 314
 315        if (!desc) {
 316                /* DMA failed, fall back to PIO */
 317                if (ret >= 0)
 318                        ret = -EIO;
 319                host->chan_rx = NULL;
 320                host->dma_active = false;
 321                dma_release_channel(chan);
 322                /* Free the Tx channel too */
 323                chan = host->chan_tx;
 324                if (chan) {
 325                        host->chan_tx = NULL;
 326                        dma_release_channel(chan);
 327                }
 328                dev_warn(dev,
 329                         "DMA failed: %d, falling back to PIO\n", ret);
 330                sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
 331        }
 332
 333        dev_dbg(dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
 334                desc, cookie, data->sg_len);
 335}
 336
 337static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
 338{
 339        struct mmc_data *data = host->mrq->data;
 340        struct scatterlist *sg = data->sg;
 341        struct dma_async_tx_descriptor *desc = NULL;
 342        struct dma_chan *chan = host->chan_tx;
 343        struct device *dev = sh_mmcif_host_to_dev(host);
 344        dma_cookie_t cookie = -EINVAL;
 345        int ret;
 346
 347        ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
 348                         DMA_TO_DEVICE);
 349        if (ret > 0) {
 350                host->dma_active = true;
 351                desc = dmaengine_prep_slave_sg(chan, sg, ret,
 352                        DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 353        }
 354
 355        if (desc) {
 356                desc->callback = sh_mmcif_dma_complete;
 357                desc->callback_param = host;
 358                cookie = dmaengine_submit(desc);
 359                sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
 360                dma_async_issue_pending(chan);
 361        }
 362        dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
 363                __func__, data->sg_len, ret, cookie);
 364
 365        if (!desc) {
 366                /* DMA failed, fall back to PIO */
 367                if (ret >= 0)
 368                        ret = -EIO;
 369                host->chan_tx = NULL;
 370                host->dma_active = false;
 371                dma_release_channel(chan);
 372                /* Free the Rx channel too */
 373                chan = host->chan_rx;
 374                if (chan) {
 375                        host->chan_rx = NULL;
 376                        dma_release_channel(chan);
 377                }
 378                dev_warn(dev,
 379                         "DMA failed: %d, falling back to PIO\n", ret);
 380                sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
 381        }
 382
 383        dev_dbg(dev, "%s(): desc %p, cookie %d\n", __func__,
 384                desc, cookie);
 385}
 386
 387static struct dma_chan *
 388sh_mmcif_request_dma_pdata(struct sh_mmcif_host *host, uintptr_t slave_id)
 389{
 390        dma_cap_mask_t mask;
 391
 392        dma_cap_zero(mask);
 393        dma_cap_set(DMA_SLAVE, mask);
 394        if (slave_id <= 0)
 395                return NULL;
 396
 397        return dma_request_channel(mask, shdma_chan_filter, (void *)slave_id);
 398}
 399
 400static int sh_mmcif_dma_slave_config(struct sh_mmcif_host *host,
 401                                     struct dma_chan *chan,
 402                                     enum dma_transfer_direction direction)
 403{
 404        struct resource *res;
 405        struct dma_slave_config cfg = { 0, };
 406
 407        res = platform_get_resource(host->pd, IORESOURCE_MEM, 0);
 408        cfg.direction = direction;
 409
 410        if (direction == DMA_DEV_TO_MEM) {
 411                cfg.src_addr = res->start + MMCIF_CE_DATA;
 412                cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 413        } else {
 414                cfg.dst_addr = res->start + MMCIF_CE_DATA;
 415                cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 416        }
 417
 418        return dmaengine_slave_config(chan, &cfg);
 419}
 420
 421static void sh_mmcif_request_dma(struct sh_mmcif_host *host)
 422{
 423        struct device *dev = sh_mmcif_host_to_dev(host);
 424        host->dma_active = false;
 425
 426        /* We can only either use DMA for both Tx and Rx or not use it at all */
 427        if (IS_ENABLED(CONFIG_SUPERH) && dev->platform_data) {
 428                struct sh_mmcif_plat_data *pdata = dev->platform_data;
 429
 430                host->chan_tx = sh_mmcif_request_dma_pdata(host,
 431                                                        pdata->slave_id_tx);
 432                host->chan_rx = sh_mmcif_request_dma_pdata(host,
 433                                                        pdata->slave_id_rx);
 434        } else {
 435                host->chan_tx = dma_request_slave_channel(dev, "tx");
 436                host->chan_rx = dma_request_slave_channel(dev, "rx");
 437        }
 438        dev_dbg(dev, "%s: got channel TX %p RX %p\n", __func__, host->chan_tx,
 439                host->chan_rx);
 440
 441        if (!host->chan_tx || !host->chan_rx ||
 442            sh_mmcif_dma_slave_config(host, host->chan_tx, DMA_MEM_TO_DEV) ||
 443            sh_mmcif_dma_slave_config(host, host->chan_rx, DMA_DEV_TO_MEM))
 444                goto error;
 445
 446        return;
 447
 448error:
 449        if (host->chan_tx)
 450                dma_release_channel(host->chan_tx);
 451        if (host->chan_rx)
 452                dma_release_channel(host->chan_rx);
 453        host->chan_tx = host->chan_rx = NULL;
 454}
 455
 456static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
 457{
 458        sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
 459        /* Descriptors are freed automatically */
 460        if (host->chan_tx) {
 461                struct dma_chan *chan = host->chan_tx;
 462                host->chan_tx = NULL;
 463                dma_release_channel(chan);
 464        }
 465        if (host->chan_rx) {
 466                struct dma_chan *chan = host->chan_rx;
 467                host->chan_rx = NULL;
 468                dma_release_channel(chan);
 469        }
 470
 471        host->dma_active = false;
 472}
 473
 474static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
 475{
 476        struct device *dev = sh_mmcif_host_to_dev(host);
 477        struct sh_mmcif_plat_data *p = dev->platform_data;
 478        bool sup_pclk = p ? p->sup_pclk : false;
 479        unsigned int current_clk = clk_get_rate(host->clk);
 480        unsigned int clkdiv;
 481
 482        sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
 483        sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
 484
 485        if (!clk)
 486                return;
 487
 488        if (host->clkdiv_map) {
 489                unsigned int freq, best_freq, myclk, div, diff_min, diff;
 490                int i;
 491
 492                clkdiv = 0;
 493                diff_min = ~0;
 494                best_freq = 0;
 495                for (i = 31; i >= 0; i--) {
 496                        if (!((1 << i) & host->clkdiv_map))
 497                                continue;
 498
 499                        /*
 500                         * clk = parent_freq / div
 501                         * -> parent_freq = clk x div
 502                         */
 503
 504                        div = 1 << (i + 1);
 505                        freq = clk_round_rate(host->clk, clk * div);
 506                        myclk = freq / div;
 507                        diff = (myclk > clk) ? myclk - clk : clk - myclk;
 508
 509                        if (diff <= diff_min) {
 510                                best_freq = freq;
 511                                clkdiv = i;
 512                                diff_min = diff;
 513                        }
 514                }
 515
 516                dev_dbg(dev, "clk %u/%u (%u, 0x%x)\n",
 517                        (best_freq / (1 << (clkdiv + 1))), clk,
 518                        best_freq, clkdiv);
 519
 520                clk_set_rate(host->clk, best_freq);
 521                clkdiv = clkdiv << 16;
 522        } else if (sup_pclk && clk == current_clk) {
 523                clkdiv = CLK_SUP_PCLK;
 524        } else {
 525                clkdiv = (fls(DIV_ROUND_UP(current_clk, clk) - 1) - 1) << 16;
 526        }
 527
 528        sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR & clkdiv);
 529        sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
 530}
 531
 532static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
 533{
 534        u32 tmp;
 535
 536        tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
 537
 538        sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
 539        sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
 540        if (host->ccs_enable)
 541                tmp |= SCCSTO_29;
 542        if (host->clk_ctrl2_enable)
 543                sh_mmcif_writel(host->addr, MMCIF_CE_CLK_CTRL2, 0x0F0F0000);
 544        sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
 545                SRSPTO_256 | SRBSYTO_29 | SRWDTO_29);
 546        /* byte swap on */
 547        sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
 548}
 549
 550static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
 551{
 552        struct device *dev = sh_mmcif_host_to_dev(host);
 553        u32 state1, state2;
 554        int ret, timeout;
 555
 556        host->sd_error = false;
 557
 558        state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
 559        state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
 560        dev_dbg(dev, "ERR HOST_STS1 = %08x\n", state1);
 561        dev_dbg(dev, "ERR HOST_STS2 = %08x\n", state2);
 562
 563        if (state1 & STS1_CMDSEQ) {
 564                sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
 565                sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
 566                for (timeout = 10000; timeout; timeout--) {
 567                        if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
 568                              & STS1_CMDSEQ))
 569                                break;
 570                        mdelay(1);
 571                }
 572                if (!timeout) {
 573                        dev_err(dev,
 574                                "Forced end of command sequence timeout err\n");
 575                        return -EIO;
 576                }
 577                sh_mmcif_sync_reset(host);
 578                dev_dbg(dev, "Forced end of command sequence\n");
 579                return -EIO;
 580        }
 581
 582        if (state2 & STS2_CRC_ERR) {
 583                dev_err(dev, " CRC error: state %u, wait %u\n",
 584                        host->state, host->wait_for);
 585                ret = -EIO;
 586        } else if (state2 & STS2_TIMEOUT_ERR) {
 587                dev_err(dev, " Timeout: state %u, wait %u\n",
 588                        host->state, host->wait_for);
 589                ret = -ETIMEDOUT;
 590        } else {
 591                dev_dbg(dev, " End/Index error: state %u, wait %u\n",
 592                        host->state, host->wait_for);
 593                ret = -EIO;
 594        }
 595        return ret;
 596}
 597
 598static bool sh_mmcif_next_block(struct sh_mmcif_host *host, u32 *p)
 599{
 600        struct mmc_data *data = host->mrq->data;
 601
 602        host->sg_blkidx += host->blocksize;
 603
 604        /* data->sg->length must be a multiple of host->blocksize? */
 605        BUG_ON(host->sg_blkidx > data->sg->length);
 606
 607        if (host->sg_blkidx == data->sg->length) {
 608                host->sg_blkidx = 0;
 609                if (++host->sg_idx < data->sg_len)
 610                        host->pio_ptr = sg_virt(++data->sg);
 611        } else {
 612                host->pio_ptr = p;
 613        }
 614
 615        return host->sg_idx != data->sg_len;
 616}
 617
 618static void sh_mmcif_single_read(struct sh_mmcif_host *host,
 619                                 struct mmc_request *mrq)
 620{
 621        host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
 622                           BLOCK_SIZE_MASK) + 3;
 623
 624        host->wait_for = MMCIF_WAIT_FOR_READ;
 625
 626        /* buf read enable */
 627        sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
 628}
 629
 630static bool sh_mmcif_read_block(struct sh_mmcif_host *host)
 631{
 632        struct device *dev = sh_mmcif_host_to_dev(host);
 633        struct mmc_data *data = host->mrq->data;
 634        u32 *p = sg_virt(data->sg);
 635        int i;
 636
 637        if (host->sd_error) {
 638                data->error = sh_mmcif_error_manage(host);
 639                dev_dbg(dev, "%s(): %d\n", __func__, data->error);
 640                return false;
 641        }
 642
 643        for (i = 0; i < host->blocksize / 4; i++)
 644                *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
 645
 646        /* buffer read end */
 647        sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
 648        host->wait_for = MMCIF_WAIT_FOR_READ_END;
 649
 650        return true;
 651}
 652
 653static void sh_mmcif_multi_read(struct sh_mmcif_host *host,
 654                                struct mmc_request *mrq)
 655{
 656        struct mmc_data *data = mrq->data;
 657
 658        if (!data->sg_len || !data->sg->length)
 659                return;
 660
 661        host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
 662                BLOCK_SIZE_MASK;
 663
 664        host->wait_for = MMCIF_WAIT_FOR_MREAD;
 665        host->sg_idx = 0;
 666        host->sg_blkidx = 0;
 667        host->pio_ptr = sg_virt(data->sg);
 668
 669        sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
 670}
 671
 672static bool sh_mmcif_mread_block(struct sh_mmcif_host *host)
 673{
 674        struct device *dev = sh_mmcif_host_to_dev(host);
 675        struct mmc_data *data = host->mrq->data;
 676        u32 *p = host->pio_ptr;
 677        int i;
 678
 679        if (host->sd_error) {
 680                data->error = sh_mmcif_error_manage(host);
 681                dev_dbg(dev, "%s(): %d\n", __func__, data->error);
 682                return false;
 683        }
 684
 685        BUG_ON(!data->sg->length);
 686
 687        for (i = 0; i < host->blocksize / 4; i++)
 688                *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
 689
 690        if (!sh_mmcif_next_block(host, p))
 691                return false;
 692
 693        sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
 694
 695        return true;
 696}
 697
 698static void sh_mmcif_single_write(struct sh_mmcif_host *host,
 699                                        struct mmc_request *mrq)
 700{
 701        host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
 702                           BLOCK_SIZE_MASK) + 3;
 703
 704        host->wait_for = MMCIF_WAIT_FOR_WRITE;
 705
 706        /* buf write enable */
 707        sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
 708}
 709
 710static bool sh_mmcif_write_block(struct sh_mmcif_host *host)
 711{
 712        struct device *dev = sh_mmcif_host_to_dev(host);
 713        struct mmc_data *data = host->mrq->data;
 714        u32 *p = sg_virt(data->sg);
 715        int i;
 716
 717        if (host->sd_error) {
 718                data->error = sh_mmcif_error_manage(host);
 719                dev_dbg(dev, "%s(): %d\n", __func__, data->error);
 720                return false;
 721        }
 722
 723        for (i = 0; i < host->blocksize / 4; i++)
 724                sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
 725
 726        /* buffer write end */
 727        sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
 728        host->wait_for = MMCIF_WAIT_FOR_WRITE_END;
 729
 730        return true;
 731}
 732
 733static void sh_mmcif_multi_write(struct sh_mmcif_host *host,
 734                                struct mmc_request *mrq)
 735{
 736        struct mmc_data *data = mrq->data;
 737
 738        if (!data->sg_len || !data->sg->length)
 739                return;
 740
 741        host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
 742                BLOCK_SIZE_MASK;
 743
 744        host->wait_for = MMCIF_WAIT_FOR_MWRITE;
 745        host->sg_idx = 0;
 746        host->sg_blkidx = 0;
 747        host->pio_ptr = sg_virt(data->sg);
 748
 749        sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
 750}
 751
 752static bool sh_mmcif_mwrite_block(struct sh_mmcif_host *host)
 753{
 754        struct device *dev = sh_mmcif_host_to_dev(host);
 755        struct mmc_data *data = host->mrq->data;
 756        u32 *p = host->pio_ptr;
 757        int i;
 758
 759        if (host->sd_error) {
 760                data->error = sh_mmcif_error_manage(host);
 761                dev_dbg(dev, "%s(): %d\n", __func__, data->error);
 762                return false;
 763        }
 764
 765        BUG_ON(!data->sg->length);
 766
 767        for (i = 0; i < host->blocksize / 4; i++)
 768                sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
 769
 770        if (!sh_mmcif_next_block(host, p))
 771                return false;
 772
 773        sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
 774
 775        return true;
 776}
 777
 778static void sh_mmcif_get_response(struct sh_mmcif_host *host,
 779                                                struct mmc_command *cmd)
 780{
 781        if (cmd->flags & MMC_RSP_136) {
 782                cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
 783                cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
 784                cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
 785                cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
 786        } else
 787                cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
 788}
 789
 790static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
 791                                                struct mmc_command *cmd)
 792{
 793        cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
 794}
 795
 796static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
 797                            struct mmc_request *mrq)
 798{
 799        struct device *dev = sh_mmcif_host_to_dev(host);
 800        struct mmc_data *data = mrq->data;
 801        struct mmc_command *cmd = mrq->cmd;
 802        u32 opc = cmd->opcode;
 803        u32 tmp = 0;
 804
 805        /* Response Type check */
 806        switch (mmc_resp_type(cmd)) {
 807        case MMC_RSP_NONE:
 808                tmp |= CMD_SET_RTYP_NO;
 809                break;
 810        case MMC_RSP_R1:
 811        case MMC_RSP_R3:
 812                tmp |= CMD_SET_RTYP_6B;
 813                break;
 814        case MMC_RSP_R1B:
 815                tmp |= CMD_SET_RBSY | CMD_SET_RTYP_6B;
 816                break;
 817        case MMC_RSP_R2:
 818                tmp |= CMD_SET_RTYP_17B;
 819                break;
 820        default:
 821                dev_err(dev, "Unsupported response type.\n");
 822                break;
 823        }
 824
 825        /* WDAT / DATW */
 826        if (data) {
 827                tmp |= CMD_SET_WDAT;
 828                switch (host->bus_width) {
 829                case MMC_BUS_WIDTH_1:
 830                        tmp |= CMD_SET_DATW_1;
 831                        break;
 832                case MMC_BUS_WIDTH_4:
 833                        tmp |= CMD_SET_DATW_4;
 834                        break;
 835                case MMC_BUS_WIDTH_8:
 836                        tmp |= CMD_SET_DATW_8;
 837                        break;
 838                default:
 839                        dev_err(dev, "Unsupported bus width.\n");
 840                        break;
 841                }
 842                switch (host->timing) {
 843                case MMC_TIMING_MMC_DDR52:
 844                        /*
 845                         * MMC core will only set this timing, if the host
 846                         * advertises the MMC_CAP_1_8V_DDR/MMC_CAP_1_2V_DDR
 847                         * capability. MMCIF implementations with this
 848                         * capability, e.g. sh73a0, will have to set it
 849                         * in their platform data.
 850                         */
 851                        tmp |= CMD_SET_DARS;
 852                        break;
 853                }
 854        }
 855        /* DWEN */
 856        if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
 857                tmp |= CMD_SET_DWEN;
 858        /* CMLTE/CMD12EN */
 859        if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
 860                tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
 861                sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
 862                                data->blocks << 16);
 863        }
 864        /* RIDXC[1:0] check bits */
 865        if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
 866            opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
 867                tmp |= CMD_SET_RIDXC_BITS;
 868        /* RCRC7C[1:0] check bits */
 869        if (opc == MMC_SEND_OP_COND)
 870                tmp |= CMD_SET_CRC7C_BITS;
 871        /* RCRC7C[1:0] internal CRC7 */
 872        if (opc == MMC_ALL_SEND_CID ||
 873                opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
 874                tmp |= CMD_SET_CRC7C_INTERNAL;
 875
 876        return (opc << 24) | tmp;
 877}
 878
 879static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
 880                               struct mmc_request *mrq, u32 opc)
 881{
 882        struct device *dev = sh_mmcif_host_to_dev(host);
 883
 884        switch (opc) {
 885        case MMC_READ_MULTIPLE_BLOCK:
 886                sh_mmcif_multi_read(host, mrq);
 887                return 0;
 888        case MMC_WRITE_MULTIPLE_BLOCK:
 889                sh_mmcif_multi_write(host, mrq);
 890                return 0;
 891        case MMC_WRITE_BLOCK:
 892                sh_mmcif_single_write(host, mrq);
 893                return 0;
 894        case MMC_READ_SINGLE_BLOCK:
 895        case MMC_SEND_EXT_CSD:
 896                sh_mmcif_single_read(host, mrq);
 897                return 0;
 898        default:
 899                dev_err(dev, "Unsupported CMD%d\n", opc);
 900                return -EINVAL;
 901        }
 902}
 903
 904static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
 905                               struct mmc_request *mrq)
 906{
 907        struct mmc_command *cmd = mrq->cmd;
 908        u32 opc;
 909        u32 mask = 0;
 910        unsigned long flags;
 911
 912        if (cmd->flags & MMC_RSP_BUSY)
 913                mask = MASK_START_CMD | MASK_MRBSYE;
 914        else
 915                mask = MASK_START_CMD | MASK_MCRSPE;
 916
 917        if (host->ccs_enable)
 918                mask |= MASK_MCCSTO;
 919
 920        if (mrq->data) {
 921                sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
 922                sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
 923                                mrq->data->blksz);
 924        }
 925        opc = sh_mmcif_set_cmd(host, mrq);
 926
 927        if (host->ccs_enable)
 928                sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
 929        else
 930                sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0 | INT_CCS);
 931        sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
 932        /* set arg */
 933        sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
 934        /* set cmd */
 935        spin_lock_irqsave(&host->lock, flags);
 936        sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
 937
 938        host->wait_for = MMCIF_WAIT_FOR_CMD;
 939        schedule_delayed_work(&host->timeout_work, host->timeout);
 940        spin_unlock_irqrestore(&host->lock, flags);
 941}
 942
 943static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
 944                              struct mmc_request *mrq)
 945{
 946        struct device *dev = sh_mmcif_host_to_dev(host);
 947
 948        switch (mrq->cmd->opcode) {
 949        case MMC_READ_MULTIPLE_BLOCK:
 950                sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
 951                break;
 952        case MMC_WRITE_MULTIPLE_BLOCK:
 953                sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
 954                break;
 955        default:
 956                dev_err(dev, "unsupported stop cmd\n");
 957                mrq->stop->error = sh_mmcif_error_manage(host);
 958                return;
 959        }
 960
 961        host->wait_for = MMCIF_WAIT_FOR_STOP;
 962}
 963
 964static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
 965{
 966        struct sh_mmcif_host *host = mmc_priv(mmc);
 967        struct device *dev = sh_mmcif_host_to_dev(host);
 968        unsigned long flags;
 969
 970        spin_lock_irqsave(&host->lock, flags);
 971        if (host->state != STATE_IDLE) {
 972                dev_dbg(dev, "%s() rejected, state %u\n",
 973                        __func__, host->state);
 974                spin_unlock_irqrestore(&host->lock, flags);
 975                mrq->cmd->error = -EAGAIN;
 976                mmc_request_done(mmc, mrq);
 977                return;
 978        }
 979
 980        host->state = STATE_REQUEST;
 981        spin_unlock_irqrestore(&host->lock, flags);
 982
 983        host->mrq = mrq;
 984
 985        sh_mmcif_start_cmd(host, mrq);
 986}
 987
 988static void sh_mmcif_clk_setup(struct sh_mmcif_host *host)
 989{
 990        struct device *dev = sh_mmcif_host_to_dev(host);
 991
 992        if (host->mmc->f_max) {
 993                unsigned int f_max, f_min = 0, f_min_old;
 994
 995                f_max = host->mmc->f_max;
 996                for (f_min_old = f_max; f_min_old > 2;) {
 997                        f_min = clk_round_rate(host->clk, f_min_old / 2);
 998                        if (f_min == f_min_old)
 999                                break;
1000                        f_min_old = f_min;
1001                }
1002
1003                /*
1004                 * This driver assumes this SoC is R-Car Gen2 or later
1005                 */
1006                host->clkdiv_map = 0x3ff;
1007
1008                host->mmc->f_max = f_max / (1 << ffs(host->clkdiv_map));
1009                host->mmc->f_min = f_min / (1 << fls(host->clkdiv_map));
1010        } else {
1011                unsigned int clk = clk_get_rate(host->clk);
1012
1013                host->mmc->f_max = clk / 2;
1014                host->mmc->f_min = clk / 512;
1015        }
1016
1017        dev_dbg(dev, "clk max/min = %d/%d\n",
1018                host->mmc->f_max, host->mmc->f_min);
1019}
1020
1021static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1022{
1023        struct sh_mmcif_host *host = mmc_priv(mmc);
1024        struct device *dev = sh_mmcif_host_to_dev(host);
1025        unsigned long flags;
1026
1027        spin_lock_irqsave(&host->lock, flags);
1028        if (host->state != STATE_IDLE) {
1029                dev_dbg(dev, "%s() rejected, state %u\n",
1030                        __func__, host->state);
1031                spin_unlock_irqrestore(&host->lock, flags);
1032                return;
1033        }
1034
1035        host->state = STATE_IOS;
1036        spin_unlock_irqrestore(&host->lock, flags);
1037
1038        switch (ios->power_mode) {
1039        case MMC_POWER_UP:
1040                if (!IS_ERR(mmc->supply.vmmc))
1041                        mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1042                if (!host->power) {
1043                        clk_prepare_enable(host->clk);
1044                        pm_runtime_get_sync(dev);
1045                        sh_mmcif_sync_reset(host);
1046                        sh_mmcif_request_dma(host);
1047                        host->power = true;
1048                }
1049                break;
1050        case MMC_POWER_OFF:
1051                if (!IS_ERR(mmc->supply.vmmc))
1052                        mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1053                if (host->power) {
1054                        sh_mmcif_clock_control(host, 0);
1055                        sh_mmcif_release_dma(host);
1056                        pm_runtime_put(dev);
1057                        clk_disable_unprepare(host->clk);
1058                        host->power = false;
1059                }
1060                break;
1061        case MMC_POWER_ON:
1062                sh_mmcif_clock_control(host, ios->clock);
1063                break;
1064        }
1065
1066        host->timing = ios->timing;
1067        host->bus_width = ios->bus_width;
1068        host->state = STATE_IDLE;
1069}
1070
1071static const struct mmc_host_ops sh_mmcif_ops = {
1072        .request        = sh_mmcif_request,
1073        .set_ios        = sh_mmcif_set_ios,
1074        .get_cd         = mmc_gpio_get_cd,
1075};
1076
1077static bool sh_mmcif_end_cmd(struct sh_mmcif_host *host)
1078{
1079        struct mmc_command *cmd = host->mrq->cmd;
1080        struct mmc_data *data = host->mrq->data;
1081        struct device *dev = sh_mmcif_host_to_dev(host);
1082        long time;
1083
1084        if (host->sd_error) {
1085                switch (cmd->opcode) {
1086                case MMC_ALL_SEND_CID:
1087                case MMC_SELECT_CARD:
1088                case MMC_APP_CMD:
1089                        cmd->error = -ETIMEDOUT;
1090                        break;
1091                default:
1092                        cmd->error = sh_mmcif_error_manage(host);
1093                        break;
1094                }
1095                dev_dbg(dev, "CMD%d error %d\n",
1096                        cmd->opcode, cmd->error);
1097                host->sd_error = false;
1098                return false;
1099        }
1100        if (!(cmd->flags & MMC_RSP_PRESENT)) {
1101                cmd->error = 0;
1102                return false;
1103        }
1104
1105        sh_mmcif_get_response(host, cmd);
1106
1107        if (!data)
1108                return false;
1109
1110        /*
1111         * Completion can be signalled from DMA callback and error, so, have to
1112         * reset here, before setting .dma_active
1113         */
1114        init_completion(&host->dma_complete);
1115
1116        if (data->flags & MMC_DATA_READ) {
1117                if (host->chan_rx)
1118                        sh_mmcif_start_dma_rx(host);
1119        } else {
1120                if (host->chan_tx)
1121                        sh_mmcif_start_dma_tx(host);
1122        }
1123
1124        if (!host->dma_active) {
1125                data->error = sh_mmcif_data_trans(host, host->mrq, cmd->opcode);
1126                return !data->error;
1127        }
1128
1129        /* Running in the IRQ thread, can sleep */
1130        time = wait_for_completion_interruptible_timeout(&host->dma_complete,
1131                                                         host->timeout);
1132
1133        if (data->flags & MMC_DATA_READ)
1134                dma_unmap_sg(host->chan_rx->device->dev,
1135                             data->sg, data->sg_len,
1136                             DMA_FROM_DEVICE);
1137        else
1138                dma_unmap_sg(host->chan_tx->device->dev,
1139                             data->sg, data->sg_len,
1140                             DMA_TO_DEVICE);
1141
1142        if (host->sd_error) {
1143                dev_err(host->mmc->parent,
1144                        "Error IRQ while waiting for DMA completion!\n");
1145                /* Woken up by an error IRQ: abort DMA */
1146                data->error = sh_mmcif_error_manage(host);
1147        } else if (!time) {
1148                dev_err(host->mmc->parent, "DMA timeout!\n");
1149                data->error = -ETIMEDOUT;
1150        } else if (time < 0) {
1151                dev_err(host->mmc->parent,
1152                        "wait_for_completion_...() error %ld!\n", time);
1153                data->error = time;
1154        }
1155        sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
1156                        BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
1157        host->dma_active = false;
1158
1159        if (data->error) {
1160                data->bytes_xfered = 0;
1161                /* Abort DMA */
1162                if (data->flags & MMC_DATA_READ)
1163                        dmaengine_terminate_all(host->chan_rx);
1164                else
1165                        dmaengine_terminate_all(host->chan_tx);
1166        }
1167
1168        return false;
1169}
1170
1171static irqreturn_t sh_mmcif_irqt(int irq, void *dev_id)
1172{
1173        struct sh_mmcif_host *host = dev_id;
1174        struct mmc_request *mrq;
1175        struct device *dev = sh_mmcif_host_to_dev(host);
1176        bool wait = false;
1177        unsigned long flags;
1178        int wait_work;
1179
1180        spin_lock_irqsave(&host->lock, flags);
1181        wait_work = host->wait_for;
1182        spin_unlock_irqrestore(&host->lock, flags);
1183
1184        cancel_delayed_work_sync(&host->timeout_work);
1185
1186        mutex_lock(&host->thread_lock);
1187
1188        mrq = host->mrq;
1189        if (!mrq) {
1190                dev_dbg(dev, "IRQ thread state %u, wait %u: NULL mrq!\n",
1191                        host->state, host->wait_for);
1192                mutex_unlock(&host->thread_lock);
1193                return IRQ_HANDLED;
1194        }
1195
1196        /*
1197         * All handlers return true, if processing continues, and false, if the
1198         * request has to be completed - successfully or not
1199         */
1200        switch (wait_work) {
1201        case MMCIF_WAIT_FOR_REQUEST:
1202                /* We're too late, the timeout has already kicked in */
1203                mutex_unlock(&host->thread_lock);
1204                return IRQ_HANDLED;
1205        case MMCIF_WAIT_FOR_CMD:
1206                /* Wait for data? */
1207                wait = sh_mmcif_end_cmd(host);
1208                break;
1209        case MMCIF_WAIT_FOR_MREAD:
1210                /* Wait for more data? */
1211                wait = sh_mmcif_mread_block(host);
1212                break;
1213        case MMCIF_WAIT_FOR_READ:
1214                /* Wait for data end? */
1215                wait = sh_mmcif_read_block(host);
1216                break;
1217        case MMCIF_WAIT_FOR_MWRITE:
1218                /* Wait data to write? */
1219                wait = sh_mmcif_mwrite_block(host);
1220                break;
1221        case MMCIF_WAIT_FOR_WRITE:
1222                /* Wait for data end? */
1223                wait = sh_mmcif_write_block(host);
1224                break;
1225        case MMCIF_WAIT_FOR_STOP:
1226                if (host->sd_error) {
1227                        mrq->stop->error = sh_mmcif_error_manage(host);
1228                        dev_dbg(dev, "%s(): %d\n", __func__, mrq->stop->error);
1229                        break;
1230                }
1231                sh_mmcif_get_cmd12response(host, mrq->stop);
1232                mrq->stop->error = 0;
1233                break;
1234        case MMCIF_WAIT_FOR_READ_END:
1235        case MMCIF_WAIT_FOR_WRITE_END:
1236                if (host->sd_error) {
1237                        mrq->data->error = sh_mmcif_error_manage(host);
1238                        dev_dbg(dev, "%s(): %d\n", __func__, mrq->data->error);
1239                }
1240                break;
1241        default:
1242                BUG();
1243        }
1244
1245        if (wait) {
1246                schedule_delayed_work(&host->timeout_work, host->timeout);
1247                /* Wait for more data */
1248                mutex_unlock(&host->thread_lock);
1249                return IRQ_HANDLED;
1250        }
1251
1252        if (host->wait_for != MMCIF_WAIT_FOR_STOP) {
1253                struct mmc_data *data = mrq->data;
1254                if (!mrq->cmd->error && data && !data->error)
1255                        data->bytes_xfered =
1256                                data->blocks * data->blksz;
1257
1258                if (mrq->stop && !mrq->cmd->error && (!data || !data->error)) {
1259                        sh_mmcif_stop_cmd(host, mrq);
1260                        if (!mrq->stop->error) {
1261                                schedule_delayed_work(&host->timeout_work, host->timeout);
1262                                mutex_unlock(&host->thread_lock);
1263                                return IRQ_HANDLED;
1264                        }
1265                }
1266        }
1267
1268        host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1269        host->state = STATE_IDLE;
1270        host->mrq = NULL;
1271        mmc_request_done(host->mmc, mrq);
1272
1273        mutex_unlock(&host->thread_lock);
1274
1275        return IRQ_HANDLED;
1276}
1277
1278static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
1279{
1280        struct sh_mmcif_host *host = dev_id;
1281        struct device *dev = sh_mmcif_host_to_dev(host);
1282        u32 state, mask;
1283
1284        state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
1285        mask = sh_mmcif_readl(host->addr, MMCIF_CE_INT_MASK);
1286        if (host->ccs_enable)
1287                sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~(state & mask));
1288        else
1289                sh_mmcif_writel(host->addr, MMCIF_CE_INT, INT_CCS | ~(state & mask));
1290        sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state & MASK_CLEAN);
1291
1292        if (state & ~MASK_CLEAN)
1293                dev_dbg(dev, "IRQ state = 0x%08x incompletely cleared\n",
1294                        state);
1295
1296        if (state & INT_ERR_STS || state & ~INT_ALL) {
1297                host->sd_error = true;
1298                dev_dbg(dev, "int err state = 0x%08x\n", state);
1299        }
1300        if (state & ~(INT_CMD12RBE | INT_CMD12CRE)) {
1301                if (!host->mrq)
1302                        dev_dbg(dev, "NULL IRQ state = 0x%08x\n", state);
1303                if (!host->dma_active)
1304                        return IRQ_WAKE_THREAD;
1305                else if (host->sd_error)
1306                        sh_mmcif_dma_complete(host);
1307        } else {
1308                dev_dbg(dev, "Unexpected IRQ 0x%x\n", state);
1309        }
1310
1311        return IRQ_HANDLED;
1312}
1313
1314static void sh_mmcif_timeout_work(struct work_struct *work)
1315{
1316        struct delayed_work *d = to_delayed_work(work);
1317        struct sh_mmcif_host *host = container_of(d, struct sh_mmcif_host, timeout_work);
1318        struct mmc_request *mrq = host->mrq;
1319        struct device *dev = sh_mmcif_host_to_dev(host);
1320        unsigned long flags;
1321
1322        if (host->dying)
1323                /* Don't run after mmc_remove_host() */
1324                return;
1325
1326        spin_lock_irqsave(&host->lock, flags);
1327        if (host->state == STATE_IDLE) {
1328                spin_unlock_irqrestore(&host->lock, flags);
1329                return;
1330        }
1331
1332        dev_err(dev, "Timeout waiting for %u on CMD%u\n",
1333                host->wait_for, mrq->cmd->opcode);
1334
1335        host->state = STATE_TIMEOUT;
1336        spin_unlock_irqrestore(&host->lock, flags);
1337
1338        /*
1339         * Handle races with cancel_delayed_work(), unless
1340         * cancel_delayed_work_sync() is used
1341         */
1342        switch (host->wait_for) {
1343        case MMCIF_WAIT_FOR_CMD:
1344                mrq->cmd->error = sh_mmcif_error_manage(host);
1345                break;
1346        case MMCIF_WAIT_FOR_STOP:
1347                mrq->stop->error = sh_mmcif_error_manage(host);
1348                break;
1349        case MMCIF_WAIT_FOR_MREAD:
1350        case MMCIF_WAIT_FOR_MWRITE:
1351        case MMCIF_WAIT_FOR_READ:
1352        case MMCIF_WAIT_FOR_WRITE:
1353        case MMCIF_WAIT_FOR_READ_END:
1354        case MMCIF_WAIT_FOR_WRITE_END:
1355                mrq->data->error = sh_mmcif_error_manage(host);
1356                break;
1357        default:
1358                BUG();
1359        }
1360
1361        host->state = STATE_IDLE;
1362        host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1363        host->mrq = NULL;
1364        mmc_request_done(host->mmc, mrq);
1365}
1366
1367static void sh_mmcif_init_ocr(struct sh_mmcif_host *host)
1368{
1369        struct device *dev = sh_mmcif_host_to_dev(host);
1370        struct sh_mmcif_plat_data *pd = dev->platform_data;
1371        struct mmc_host *mmc = host->mmc;
1372
1373        mmc_regulator_get_supply(mmc);
1374
1375        if (!pd)
1376                return;
1377
1378        if (!mmc->ocr_avail)
1379                mmc->ocr_avail = pd->ocr;
1380        else if (pd->ocr)
1381                dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1382}
1383
1384static int sh_mmcif_probe(struct platform_device *pdev)
1385{
1386        int ret = 0, irq[2];
1387        struct mmc_host *mmc;
1388        struct sh_mmcif_host *host;
1389        struct device *dev = &pdev->dev;
1390        struct sh_mmcif_plat_data *pd = dev->platform_data;
1391        struct resource *res;
1392        void __iomem *reg;
1393        const char *name;
1394
1395        irq[0] = platform_get_irq(pdev, 0);
1396        irq[1] = platform_get_irq(pdev, 1);
1397        if (irq[0] < 0) {
1398                dev_err(dev, "Get irq error\n");
1399                return -ENXIO;
1400        }
1401
1402        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1403        reg = devm_ioremap_resource(dev, res);
1404        if (IS_ERR(reg))
1405                return PTR_ERR(reg);
1406
1407        mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), dev);
1408        if (!mmc)
1409                return -ENOMEM;
1410
1411        ret = mmc_of_parse(mmc);
1412        if (ret < 0)
1413                goto err_host;
1414
1415        host            = mmc_priv(mmc);
1416        host->mmc       = mmc;
1417        host->addr      = reg;
1418        host->timeout   = msecs_to_jiffies(10000);
1419        host->ccs_enable = true;
1420        host->clk_ctrl2_enable = false;
1421
1422        host->pd = pdev;
1423
1424        spin_lock_init(&host->lock);
1425
1426        mmc->ops = &sh_mmcif_ops;
1427        sh_mmcif_init_ocr(host);
1428
1429        mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_WAIT_WHILE_BUSY;
1430        mmc->caps2 |= MMC_CAP2_NO_SD | MMC_CAP2_NO_SDIO;
1431        mmc->max_busy_timeout = 10000;
1432
1433        if (pd && pd->caps)
1434                mmc->caps |= pd->caps;
1435        mmc->max_segs = 32;
1436        mmc->max_blk_size = 512;
1437        mmc->max_req_size = PAGE_SIZE * mmc->max_segs;
1438        mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
1439        mmc->max_seg_size = mmc->max_req_size;
1440
1441        platform_set_drvdata(pdev, host);
1442
1443        host->clk = devm_clk_get(dev, NULL);
1444        if (IS_ERR(host->clk)) {
1445                ret = PTR_ERR(host->clk);
1446                dev_err(dev, "cannot get clock: %d\n", ret);
1447                goto err_host;
1448        }
1449
1450        ret = clk_prepare_enable(host->clk);
1451        if (ret < 0)
1452                goto err_host;
1453
1454        sh_mmcif_clk_setup(host);
1455
1456        pm_runtime_enable(dev);
1457        host->power = false;
1458
1459        ret = pm_runtime_get_sync(dev);
1460        if (ret < 0)
1461                goto err_clk;
1462
1463        INIT_DELAYED_WORK(&host->timeout_work, sh_mmcif_timeout_work);
1464
1465        sh_mmcif_sync_reset(host);
1466        sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1467
1468        name = irq[1] < 0 ? dev_name(dev) : "sh_mmc:error";
1469        ret = devm_request_threaded_irq(dev, irq[0], sh_mmcif_intr,
1470                                        sh_mmcif_irqt, 0, name, host);
1471        if (ret) {
1472                dev_err(dev, "request_irq error (%s)\n", name);
1473                goto err_clk;
1474        }
1475        if (irq[1] >= 0) {
1476                ret = devm_request_threaded_irq(dev, irq[1],
1477                                                sh_mmcif_intr, sh_mmcif_irqt,
1478                                                0, "sh_mmc:int", host);
1479                if (ret) {
1480                        dev_err(dev, "request_irq error (sh_mmc:int)\n");
1481                        goto err_clk;
1482                }
1483        }
1484
1485        mutex_init(&host->thread_lock);
1486
1487        ret = mmc_add_host(mmc);
1488        if (ret < 0)
1489                goto err_clk;
1490
1491        dev_pm_qos_expose_latency_limit(dev, 100);
1492
1493        dev_info(dev, "Chip version 0x%04x, clock rate %luMHz\n",
1494                 sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0xffff,
1495                 clk_get_rate(host->clk) / 1000000UL);
1496
1497        pm_runtime_put(dev);
1498        clk_disable_unprepare(host->clk);
1499        return ret;
1500
1501err_clk:
1502        clk_disable_unprepare(host->clk);
1503        pm_runtime_put_sync(dev);
1504        pm_runtime_disable(dev);
1505err_host:
1506        mmc_free_host(mmc);
1507        return ret;
1508}
1509
1510static int sh_mmcif_remove(struct platform_device *pdev)
1511{
1512        struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1513
1514        host->dying = true;
1515        clk_prepare_enable(host->clk);
1516        pm_runtime_get_sync(&pdev->dev);
1517
1518        dev_pm_qos_hide_latency_limit(&pdev->dev);
1519
1520        mmc_remove_host(host->mmc);
1521        sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1522
1523        /*
1524         * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the
1525         * mmc_remove_host() call above. But swapping order doesn't help either
1526         * (a query on the linux-mmc mailing list didn't bring any replies).
1527         */
1528        cancel_delayed_work_sync(&host->timeout_work);
1529
1530        clk_disable_unprepare(host->clk);
1531        mmc_free_host(host->mmc);
1532        pm_runtime_put_sync(&pdev->dev);
1533        pm_runtime_disable(&pdev->dev);
1534
1535        return 0;
1536}
1537
1538#ifdef CONFIG_PM_SLEEP
1539static int sh_mmcif_suspend(struct device *dev)
1540{
1541        struct sh_mmcif_host *host = dev_get_drvdata(dev);
1542
1543        pm_runtime_get_sync(dev);
1544        sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1545        pm_runtime_put(dev);
1546
1547        return 0;
1548}
1549
1550static int sh_mmcif_resume(struct device *dev)
1551{
1552        return 0;
1553}
1554#endif
1555
1556static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
1557        SET_SYSTEM_SLEEP_PM_OPS(sh_mmcif_suspend, sh_mmcif_resume)
1558};
1559
1560static struct platform_driver sh_mmcif_driver = {
1561        .probe          = sh_mmcif_probe,
1562        .remove         = sh_mmcif_remove,
1563        .driver         = {
1564                .name   = DRIVER_NAME,
1565                .pm     = &sh_mmcif_dev_pm_ops,
1566                .of_match_table = sh_mmcif_of_match,
1567        },
1568};
1569
1570module_platform_driver(sh_mmcif_driver);
1571
1572MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
1573MODULE_LICENSE("GPL v2");
1574MODULE_ALIAS("platform:" DRIVER_NAME);
1575MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");
1576