linux/drivers/mtd/devices/lart.c
<<
>>
Prefs
   1
   2/*
   3 * MTD driver for the 28F160F3 Flash Memory (non-CFI) on LART.
   4 *
   5 * Author: Abraham vd Merwe <abraham@2d3d.co.za>
   6 *
   7 * Copyright (c) 2001, 2d3D, Inc.
   8 *
   9 * This code is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License version 2 as
  11 * published by the Free Software Foundation.
  12 *
  13 * References:
  14 *
  15 *    [1] 3 Volt Fast Boot Block Flash Memory" Intel Datasheet
  16 *           - Order Number: 290644-005
  17 *           - January 2000
  18 *
  19 *    [2] MTD internal API documentation
  20 *           - http://www.linux-mtd.infradead.org/ 
  21 *
  22 * Limitations:
  23 *
  24 *    Even though this driver is written for 3 Volt Fast Boot
  25 *    Block Flash Memory, it is rather specific to LART. With
  26 *    Minor modifications, notably the without data/address line
  27 *    mangling and different bus settings, etc. it should be
  28 *    trivial to adapt to other platforms.
  29 *
  30 *    If somebody would sponsor me a different board, I'll
  31 *    adapt the driver (:
  32 */
  33
  34/* debugging */
  35//#define LART_DEBUG
  36
  37#include <linux/kernel.h>
  38#include <linux/module.h>
  39#include <linux/types.h>
  40#include <linux/init.h>
  41#include <linux/errno.h>
  42#include <linux/string.h>
  43#include <linux/mtd/mtd.h>
  44#include <linux/mtd/partitions.h>
  45
  46#ifndef CONFIG_SA1100_LART
  47#error This is for LART architecture only
  48#endif
  49
  50static char module_name[] = "lart";
  51
  52/*
  53 * These values is specific to 28Fxxxx3 flash memory.
  54 * See section 2.3.1 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet
  55 */
  56#define FLASH_BLOCKSIZE_PARAM           (4096 * BUSWIDTH)
  57#define FLASH_NUMBLOCKS_16m_PARAM       8
  58#define FLASH_NUMBLOCKS_8m_PARAM        8
  59
  60/*
  61 * These values is specific to 28Fxxxx3 flash memory.
  62 * See section 2.3.2 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet
  63 */
  64#define FLASH_BLOCKSIZE_MAIN            (32768 * BUSWIDTH)
  65#define FLASH_NUMBLOCKS_16m_MAIN        31
  66#define FLASH_NUMBLOCKS_8m_MAIN         15
  67
  68/*
  69 * These values are specific to LART
  70 */
  71
  72/* general */
  73#define BUSWIDTH                        4                               /* don't change this - a lot of the code _will_ break if you change this */
  74#define FLASH_OFFSET            0xe8000000              /* see linux/arch/arm/mach-sa1100/lart.c */
  75
  76/* blob */
  77#define NUM_BLOB_BLOCKS         FLASH_NUMBLOCKS_16m_PARAM
  78#define PART_BLOB_START         0x00000000
  79#define PART_BLOB_LEN           (NUM_BLOB_BLOCKS * FLASH_BLOCKSIZE_PARAM)
  80
  81/* kernel */
  82#define NUM_KERNEL_BLOCKS       7
  83#define PART_KERNEL_START       (PART_BLOB_START + PART_BLOB_LEN)
  84#define PART_KERNEL_LEN         (NUM_KERNEL_BLOCKS * FLASH_BLOCKSIZE_MAIN)
  85
  86/* initial ramdisk */
  87#define NUM_INITRD_BLOCKS       24
  88#define PART_INITRD_START       (PART_KERNEL_START + PART_KERNEL_LEN)
  89#define PART_INITRD_LEN         (NUM_INITRD_BLOCKS * FLASH_BLOCKSIZE_MAIN)
  90
  91/*
  92 * See section 4.0 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet
  93 */
  94#define READ_ARRAY                      0x00FF00FF              /* Read Array/Reset */
  95#define READ_ID_CODES           0x00900090              /* Read Identifier Codes */
  96#define ERASE_SETUP                     0x00200020              /* Block Erase */
  97#define ERASE_CONFIRM           0x00D000D0              /* Block Erase and Program Resume */
  98#define PGM_SETUP                       0x00400040              /* Program */
  99#define STATUS_READ                     0x00700070              /* Read Status Register */
 100#define STATUS_CLEAR            0x00500050              /* Clear Status Register */
 101#define STATUS_BUSY                     0x00800080              /* Write State Machine Status (WSMS) */
 102#define STATUS_ERASE_ERR        0x00200020              /* Erase Status (ES) */
 103#define STATUS_PGM_ERR          0x00100010              /* Program Status (PS) */
 104
 105/*
 106 * See section 4.2 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet
 107 */
 108#define FLASH_MANUFACTURER                      0x00890089
 109#define FLASH_DEVICE_8mbit_TOP          0x88f188f1
 110#define FLASH_DEVICE_8mbit_BOTTOM       0x88f288f2
 111#define FLASH_DEVICE_16mbit_TOP         0x88f388f3
 112#define FLASH_DEVICE_16mbit_BOTTOM      0x88f488f4
 113
 114/***************************************************************************************************/
 115
 116/*
 117 * The data line mapping on LART is as follows:
 118 *
 119 *       U2  CPU |   U3  CPU
 120 *       -------------------
 121 *        0  20  |   0   12
 122 *        1  22  |   1   14
 123 *        2  19  |   2   11
 124 *        3  17  |   3   9
 125 *        4  24  |   4   0
 126 *        5  26  |   5   2
 127 *        6  31  |   6   7
 128 *        7  29  |   7   5
 129 *        8  21  |   8   13
 130 *        9  23  |   9   15
 131 *        10 18  |   10  10
 132 *        11 16  |   11  8
 133 *        12 25  |   12  1
 134 *        13 27  |   13  3
 135 *        14 30  |   14  6
 136 *        15 28  |   15  4
 137 */
 138
 139/* Mangle data (x) */
 140#define DATA_TO_FLASH(x)                                \
 141        (                                                                       \
 142                (((x) & 0x08009000) >> 11)      +       \
 143                (((x) & 0x00002000) >> 10)      +       \
 144                (((x) & 0x04004000) >> 8)       +       \
 145                (((x) & 0x00000010) >> 4)       +       \
 146                (((x) & 0x91000820) >> 3)       +       \
 147                (((x) & 0x22080080) >> 2)       +       \
 148                ((x) & 0x40000400)                      +       \
 149                (((x) & 0x00040040) << 1)       +       \
 150                (((x) & 0x00110000) << 4)       +       \
 151                (((x) & 0x00220100) << 5)       +       \
 152                (((x) & 0x00800208) << 6)       +       \
 153                (((x) & 0x00400004) << 9)       +       \
 154                (((x) & 0x00000001) << 12)      +       \
 155                (((x) & 0x00000002) << 13)              \
 156        )
 157
 158/* Unmangle data (x) */
 159#define FLASH_TO_DATA(x)                                \
 160        (                                                                       \
 161                (((x) & 0x00010012) << 11)      +       \
 162                (((x) & 0x00000008) << 10)      +       \
 163                (((x) & 0x00040040) << 8)       +       \
 164                (((x) & 0x00000001) << 4)       +       \
 165                (((x) & 0x12200104) << 3)       +       \
 166                (((x) & 0x08820020) << 2)       +       \
 167                ((x) & 0x40000400)                      +       \
 168                (((x) & 0x00080080) >> 1)       +       \
 169                (((x) & 0x01100000) >> 4)       +       \
 170                (((x) & 0x04402000) >> 5)       +       \
 171                (((x) & 0x20008200) >> 6)       +       \
 172                (((x) & 0x80000800) >> 9)       +       \
 173                (((x) & 0x00001000) >> 12)      +       \
 174                (((x) & 0x00004000) >> 13)              \
 175        )
 176
 177/*
 178 * The address line mapping on LART is as follows:
 179 *
 180 *       U3  CPU |   U2  CPU
 181 *       -------------------
 182 *        0  2   |   0   2
 183 *        1  3   |   1   3
 184 *        2  9   |   2   9
 185 *        3  13  |   3   8
 186 *        4  8   |   4   7
 187 *        5  12  |   5   6
 188 *        6  11  |   6   5
 189 *        7  10  |   7   4
 190 *        8  4   |   8   10
 191 *        9  5   |   9   11
 192 *       10  6   |   10  12
 193 *       11  7   |   11  13
 194 *
 195 *       BOOT BLOCK BOUNDARY
 196 *
 197 *       12  15  |   12  15
 198 *       13  14  |   13  14
 199 *       14  16  |   14  16
 200 *
 201 *       MAIN BLOCK BOUNDARY
 202 *
 203 *       15  17  |   15  18
 204 *       16  18  |   16  17
 205 *       17  20  |   17  20
 206 *       18  19  |   18  19
 207 *       19  21  |   19  21
 208 *
 209 * As we can see from above, the addresses aren't mangled across
 210 * block boundaries, so we don't need to worry about address
 211 * translations except for sending/reading commands during
 212 * initialization
 213 */
 214
 215/* Mangle address (x) on chip U2 */
 216#define ADDR_TO_FLASH_U2(x)                             \
 217        (                                                                       \
 218                (((x) & 0x00000f00) >> 4)       +       \
 219                (((x) & 0x00042000) << 1)       +       \
 220                (((x) & 0x0009c003) << 2)       +       \
 221                (((x) & 0x00021080) << 3)       +       \
 222                (((x) & 0x00000010) << 4)       +       \
 223                (((x) & 0x00000040) << 5)       +       \
 224                (((x) & 0x00000024) << 7)       +       \
 225                (((x) & 0x00000008) << 10)              \
 226        )
 227
 228/* Unmangle address (x) on chip U2 */
 229#define FLASH_U2_TO_ADDR(x)                             \
 230        (                                                                       \
 231                (((x) << 4) & 0x00000f00)       +       \
 232                (((x) >> 1) & 0x00042000)       +       \
 233                (((x) >> 2) & 0x0009c003)       +       \
 234                (((x) >> 3) & 0x00021080)       +       \
 235                (((x) >> 4) & 0x00000010)       +       \
 236                (((x) >> 5) & 0x00000040)       +       \
 237                (((x) >> 7) & 0x00000024)       +       \
 238                (((x) >> 10) & 0x00000008)              \
 239        )
 240
 241/* Mangle address (x) on chip U3 */
 242#define ADDR_TO_FLASH_U3(x)                             \
 243        (                                                                       \
 244                (((x) & 0x00000080) >> 3)       +       \
 245                (((x) & 0x00000040) >> 1)       +       \
 246                (((x) & 0x00052020) << 1)       +       \
 247                (((x) & 0x00084f03) << 2)       +       \
 248                (((x) & 0x00029010) << 3)       +       \
 249                (((x) & 0x00000008) << 5)       +       \
 250                (((x) & 0x00000004) << 7)               \
 251        )
 252
 253/* Unmangle address (x) on chip U3 */
 254#define FLASH_U3_TO_ADDR(x)                             \
 255        (                                                                       \
 256                (((x) << 3) & 0x00000080)       +       \
 257                (((x) << 1) & 0x00000040)       +       \
 258                (((x) >> 1) & 0x00052020)       +       \
 259                (((x) >> 2) & 0x00084f03)       +       \
 260                (((x) >> 3) & 0x00029010)       +       \
 261                (((x) >> 5) & 0x00000008)       +       \
 262                (((x) >> 7) & 0x00000004)               \
 263        )
 264
 265/***************************************************************************************************/
 266
 267static __u8 read8 (__u32 offset)
 268{
 269   volatile __u8 *data = (__u8 *) (FLASH_OFFSET + offset);
 270#ifdef LART_DEBUG
 271   printk (KERN_DEBUG "%s(): 0x%.8x -> 0x%.2x\n", __func__, offset, *data);
 272#endif
 273   return (*data);
 274}
 275
 276static __u32 read32 (__u32 offset)
 277{
 278   volatile __u32 *data = (__u32 *) (FLASH_OFFSET + offset);
 279#ifdef LART_DEBUG
 280   printk (KERN_DEBUG "%s(): 0x%.8x -> 0x%.8x\n", __func__, offset, *data);
 281#endif
 282   return (*data);
 283}
 284
 285static void write32 (__u32 x,__u32 offset)
 286{
 287   volatile __u32 *data = (__u32 *) (FLASH_OFFSET + offset);
 288   *data = x;
 289#ifdef LART_DEBUG
 290   printk (KERN_DEBUG "%s(): 0x%.8x <- 0x%.8x\n", __func__, offset, *data);
 291#endif
 292}
 293
 294/***************************************************************************************************/
 295
 296/*
 297 * Probe for 16mbit flash memory on a LART board without doing
 298 * too much damage. Since we need to write 1 dword to memory,
 299 * we're f**cked if this happens to be DRAM since we can't
 300 * restore the memory (otherwise we might exit Read Array mode).
 301 *
 302 * Returns 1 if we found 16mbit flash memory on LART, 0 otherwise.
 303 */
 304static int flash_probe (void)
 305{
 306   __u32 manufacturer,devtype;
 307
 308   /* setup "Read Identifier Codes" mode */
 309   write32 (DATA_TO_FLASH (READ_ID_CODES),0x00000000);
 310
 311   /* probe U2. U2/U3 returns the same data since the first 3
 312        * address lines is mangled in the same way */
 313   manufacturer = FLASH_TO_DATA (read32 (ADDR_TO_FLASH_U2 (0x00000000)));
 314   devtype = FLASH_TO_DATA (read32 (ADDR_TO_FLASH_U2 (0x00000001)));
 315
 316   /* put the flash back into command mode */
 317   write32 (DATA_TO_FLASH (READ_ARRAY),0x00000000);
 318
 319   return (manufacturer == FLASH_MANUFACTURER && (devtype == FLASH_DEVICE_16mbit_TOP || devtype == FLASH_DEVICE_16mbit_BOTTOM));
 320}
 321
 322/*
 323 * Erase one block of flash memory at offset ``offset'' which is any
 324 * address within the block which should be erased.
 325 *
 326 * Returns 1 if successful, 0 otherwise.
 327 */
 328static inline int erase_block (__u32 offset)
 329{
 330   __u32 status;
 331
 332#ifdef LART_DEBUG
 333   printk (KERN_DEBUG "%s(): 0x%.8x\n", __func__, offset);
 334#endif
 335
 336   /* erase and confirm */
 337   write32 (DATA_TO_FLASH (ERASE_SETUP),offset);
 338   write32 (DATA_TO_FLASH (ERASE_CONFIRM),offset);
 339
 340   /* wait for block erase to finish */
 341   do
 342         {
 343                write32 (DATA_TO_FLASH (STATUS_READ),offset);
 344                status = FLASH_TO_DATA (read32 (offset));
 345         }
 346   while ((~status & STATUS_BUSY) != 0);
 347
 348   /* put the flash back into command mode */
 349   write32 (DATA_TO_FLASH (READ_ARRAY),offset);
 350
 351   /* was the erase successful? */
 352   if ((status & STATUS_ERASE_ERR))
 353         {
 354                printk (KERN_WARNING "%s: erase error at address 0x%.8x.\n",module_name,offset);
 355                return (0);
 356         }
 357
 358   return (1);
 359}
 360
 361static int flash_erase (struct mtd_info *mtd,struct erase_info *instr)
 362{
 363   __u32 addr,len;
 364   int i,first;
 365
 366#ifdef LART_DEBUG
 367   printk (KERN_DEBUG "%s(addr = 0x%.8x, len = %d)\n", __func__, instr->addr, instr->len);
 368#endif
 369
 370   /*
 371        * check that both start and end of the requested erase are
 372        * aligned with the erasesize at the appropriate addresses.
 373        *
 374        * skip all erase regions which are ended before the start of
 375        * the requested erase. Actually, to save on the calculations,
 376        * we skip to the first erase region which starts after the
 377        * start of the requested erase, and then go back one.
 378        */
 379   for (i = 0; i < mtd->numeraseregions && instr->addr >= mtd->eraseregions[i].offset; i++) ;
 380   i--;
 381
 382   /*
 383        * ok, now i is pointing at the erase region in which this
 384        * erase request starts. Check the start of the requested
 385        * erase range is aligned with the erase size which is in
 386        * effect here.
 387        */
 388   if (i < 0 || (instr->addr & (mtd->eraseregions[i].erasesize - 1)))
 389      return -EINVAL;
 390
 391   /* Remember the erase region we start on */
 392   first = i;
 393
 394   /*
 395        * next, check that the end of the requested erase is aligned
 396        * with the erase region at that address.
 397        *
 398        * as before, drop back one to point at the region in which
 399        * the address actually falls
 400        */
 401   for (; i < mtd->numeraseregions && instr->addr + instr->len >= mtd->eraseregions[i].offset; i++) ;
 402   i--;
 403
 404   /* is the end aligned on a block boundary? */
 405   if (i < 0 || ((instr->addr + instr->len) & (mtd->eraseregions[i].erasesize - 1)))
 406      return -EINVAL;
 407
 408   addr = instr->addr;
 409   len = instr->len;
 410
 411   i = first;
 412
 413   /* now erase those blocks */
 414   while (len)
 415         {
 416                if (!erase_block (addr))
 417                         return (-EIO);
 418
 419                addr += mtd->eraseregions[i].erasesize;
 420                len -= mtd->eraseregions[i].erasesize;
 421
 422                if (addr == mtd->eraseregions[i].offset + (mtd->eraseregions[i].erasesize * mtd->eraseregions[i].numblocks)) i++;
 423         }
 424
 425   return (0);
 426}
 427
 428static int flash_read (struct mtd_info *mtd,loff_t from,size_t len,size_t *retlen,u_char *buf)
 429{
 430#ifdef LART_DEBUG
 431   printk (KERN_DEBUG "%s(from = 0x%.8x, len = %d)\n", __func__, (__u32)from, len);
 432#endif
 433
 434   /* we always read len bytes */
 435   *retlen = len;
 436
 437   /* first, we read bytes until we reach a dword boundary */
 438   if (from & (BUSWIDTH - 1))
 439         {
 440                int gap = BUSWIDTH - (from & (BUSWIDTH - 1));
 441
 442                while (len && gap--) *buf++ = read8 (from++), len--;
 443         }
 444
 445   /* now we read dwords until we reach a non-dword boundary */
 446   while (len >= BUSWIDTH)
 447         {
 448                *((__u32 *) buf) = read32 (from);
 449
 450                buf += BUSWIDTH;
 451                from += BUSWIDTH;
 452                len -= BUSWIDTH;
 453         }
 454
 455   /* top up the last unaligned bytes */
 456   if (len & (BUSWIDTH - 1))
 457         while (len--) *buf++ = read8 (from++);
 458
 459   return (0);
 460}
 461
 462/*
 463 * Write one dword ``x'' to flash memory at offset ``offset''. ``offset''
 464 * must be 32 bits, i.e. it must be on a dword boundary.
 465 *
 466 * Returns 1 if successful, 0 otherwise.
 467 */
 468static inline int write_dword (__u32 offset,__u32 x)
 469{
 470   __u32 status;
 471
 472#ifdef LART_DEBUG
 473   printk (KERN_DEBUG "%s(): 0x%.8x <- 0x%.8x\n", __func__, offset, x);
 474#endif
 475
 476   /* setup writing */
 477   write32 (DATA_TO_FLASH (PGM_SETUP),offset);
 478
 479   /* write the data */
 480   write32 (x,offset);
 481
 482   /* wait for the write to finish */
 483   do
 484         {
 485                write32 (DATA_TO_FLASH (STATUS_READ),offset);
 486                status = FLASH_TO_DATA (read32 (offset));
 487         }
 488   while ((~status & STATUS_BUSY) != 0);
 489
 490   /* put the flash back into command mode */
 491   write32 (DATA_TO_FLASH (READ_ARRAY),offset);
 492
 493   /* was the write successful? */
 494   if ((status & STATUS_PGM_ERR) || read32 (offset) != x)
 495         {
 496                printk (KERN_WARNING "%s: write error at address 0x%.8x.\n",module_name,offset);
 497                return (0);
 498         }
 499
 500   return (1);
 501}
 502
 503static int flash_write (struct mtd_info *mtd,loff_t to,size_t len,size_t *retlen,const u_char *buf)
 504{
 505   __u8 tmp[4];
 506   int i,n;
 507
 508#ifdef LART_DEBUG
 509   printk (KERN_DEBUG "%s(to = 0x%.8x, len = %d)\n", __func__, (__u32)to, len);
 510#endif
 511
 512   /* sanity checks */
 513   if (!len) return (0);
 514
 515   /* first, we write a 0xFF.... padded byte until we reach a dword boundary */
 516   if (to & (BUSWIDTH - 1))
 517         {
 518                __u32 aligned = to & ~(BUSWIDTH - 1);
 519                int gap = to - aligned;
 520
 521                i = n = 0;
 522
 523                while (gap--) tmp[i++] = 0xFF;
 524                while (len && i < BUSWIDTH) tmp[i++] = buf[n++], len--;
 525                while (i < BUSWIDTH) tmp[i++] = 0xFF;
 526
 527                if (!write_dword (aligned,*((__u32 *) tmp))) return (-EIO);
 528
 529                to += n;
 530                buf += n;
 531                *retlen += n;
 532         }
 533
 534   /* now we write dwords until we reach a non-dword boundary */
 535   while (len >= BUSWIDTH)
 536         {
 537                if (!write_dword (to,*((__u32 *) buf))) return (-EIO);
 538
 539                to += BUSWIDTH;
 540                buf += BUSWIDTH;
 541                *retlen += BUSWIDTH;
 542                len -= BUSWIDTH;
 543         }
 544
 545   /* top up the last unaligned bytes, padded with 0xFF.... */
 546   if (len & (BUSWIDTH - 1))
 547         {
 548                i = n = 0;
 549
 550                while (len--) tmp[i++] = buf[n++];
 551                while (i < BUSWIDTH) tmp[i++] = 0xFF;
 552
 553                if (!write_dword (to,*((__u32 *) tmp))) return (-EIO);
 554
 555                *retlen += n;
 556         }
 557
 558   return (0);
 559}
 560
 561/***************************************************************************************************/
 562
 563static struct mtd_info mtd;
 564
 565static struct mtd_erase_region_info erase_regions[] = {
 566        /* parameter blocks */
 567        {
 568                .offset         = 0x00000000,
 569                .erasesize      = FLASH_BLOCKSIZE_PARAM,
 570                .numblocks      = FLASH_NUMBLOCKS_16m_PARAM,
 571        },
 572        /* main blocks */
 573        {
 574                .offset  = FLASH_BLOCKSIZE_PARAM * FLASH_NUMBLOCKS_16m_PARAM,
 575                .erasesize      = FLASH_BLOCKSIZE_MAIN,
 576                .numblocks      = FLASH_NUMBLOCKS_16m_MAIN,
 577        }
 578};
 579
 580static const struct mtd_partition lart_partitions[] = {
 581        /* blob */
 582        {
 583                .name   = "blob",
 584                .offset = PART_BLOB_START,
 585                .size   = PART_BLOB_LEN,
 586        },
 587        /* kernel */
 588        {
 589                .name   = "kernel",
 590                .offset = PART_KERNEL_START,    /* MTDPART_OFS_APPEND */
 591                .size   = PART_KERNEL_LEN,
 592        },
 593        /* initial ramdisk / file system */
 594        {
 595                .name   = "file system",
 596                .offset = PART_INITRD_START,    /* MTDPART_OFS_APPEND */
 597                .size   = PART_INITRD_LEN,      /* MTDPART_SIZ_FULL */
 598        }
 599};
 600#define NUM_PARTITIONS ARRAY_SIZE(lart_partitions)
 601
 602static int __init lart_flash_init (void)
 603{
 604   int result;
 605   memset (&mtd,0,sizeof (mtd));
 606   printk ("MTD driver for LART. Written by Abraham vd Merwe <abraham@2d3d.co.za>\n");
 607   printk ("%s: Probing for 28F160x3 flash on LART...\n",module_name);
 608   if (!flash_probe ())
 609         {
 610                printk (KERN_WARNING "%s: Found no LART compatible flash device\n",module_name);
 611                return (-ENXIO);
 612         }
 613   printk ("%s: This looks like a LART board to me.\n",module_name);
 614   mtd.name = module_name;
 615   mtd.type = MTD_NORFLASH;
 616   mtd.writesize = 1;
 617   mtd.writebufsize = 4;
 618   mtd.flags = MTD_CAP_NORFLASH;
 619   mtd.size = FLASH_BLOCKSIZE_PARAM * FLASH_NUMBLOCKS_16m_PARAM + FLASH_BLOCKSIZE_MAIN * FLASH_NUMBLOCKS_16m_MAIN;
 620   mtd.erasesize = FLASH_BLOCKSIZE_MAIN;
 621   mtd.numeraseregions = ARRAY_SIZE(erase_regions);
 622   mtd.eraseregions = erase_regions;
 623   mtd._erase = flash_erase;
 624   mtd._read = flash_read;
 625   mtd._write = flash_write;
 626   mtd.owner = THIS_MODULE;
 627
 628#ifdef LART_DEBUG
 629   printk (KERN_DEBUG
 630                   "mtd.name = %s\n"
 631                   "mtd.size = 0x%.8x (%uM)\n"
 632                   "mtd.erasesize = 0x%.8x (%uK)\n"
 633                   "mtd.numeraseregions = %d\n",
 634                   mtd.name,
 635                   mtd.size,mtd.size / (1024*1024),
 636                   mtd.erasesize,mtd.erasesize / 1024,
 637                   mtd.numeraseregions);
 638
 639   if (mtd.numeraseregions)
 640         for (result = 0; result < mtd.numeraseregions; result++)
 641           printk (KERN_DEBUG
 642                           "\n\n"
 643                           "mtd.eraseregions[%d].offset = 0x%.8x\n"
 644                           "mtd.eraseregions[%d].erasesize = 0x%.8x (%uK)\n"
 645                           "mtd.eraseregions[%d].numblocks = %d\n",
 646                           result,mtd.eraseregions[result].offset,
 647                           result,mtd.eraseregions[result].erasesize,mtd.eraseregions[result].erasesize / 1024,
 648                           result,mtd.eraseregions[result].numblocks);
 649
 650   printk ("\npartitions = %d\n", ARRAY_SIZE(lart_partitions));
 651
 652   for (result = 0; result < ARRAY_SIZE(lart_partitions); result++)
 653         printk (KERN_DEBUG
 654                         "\n\n"
 655                         "lart_partitions[%d].name = %s\n"
 656                         "lart_partitions[%d].offset = 0x%.8x\n"
 657                         "lart_partitions[%d].size = 0x%.8x (%uK)\n",
 658                         result,lart_partitions[result].name,
 659                         result,lart_partitions[result].offset,
 660                         result,lart_partitions[result].size,lart_partitions[result].size / 1024);
 661#endif
 662
 663   result = mtd_device_register(&mtd, lart_partitions,
 664                                ARRAY_SIZE(lart_partitions));
 665
 666   return (result);
 667}
 668
 669static void __exit lart_flash_exit (void)
 670{
 671   mtd_device_unregister(&mtd);
 672}
 673
 674module_init (lart_flash_init);
 675module_exit (lart_flash_exit);
 676
 677MODULE_LICENSE("GPL");
 678MODULE_AUTHOR("Abraham vd Merwe <abraham@2d3d.co.za>");
 679MODULE_DESCRIPTION("MTD driver for Intel 28F160F3 on LART board");
 680