linux/drivers/mtd/nand/raw/lpc32xx_slc.c
<<
>>
Prefs
   1/*
   2 * NXP LPC32XX NAND SLC driver
   3 *
   4 * Authors:
   5 *    Kevin Wells <kevin.wells@nxp.com>
   6 *    Roland Stigge <stigge@antcom.de>
   7 *
   8 * Copyright © 2011 NXP Semiconductors
   9 * Copyright © 2012 Roland Stigge
  10 *
  11 * This program is free software; you can redistribute it and/or modify
  12 * it under the terms of the GNU General Public License as published by
  13 * the Free Software Foundation; either version 2 of the License, or
  14 * (at your option) any later version.
  15 *
  16 * This program is distributed in the hope that it will be useful,
  17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  19 * GNU General Public License for more details.
  20 */
  21
  22#include <linux/slab.h>
  23#include <linux/module.h>
  24#include <linux/platform_device.h>
  25#include <linux/mtd/mtd.h>
  26#include <linux/mtd/rawnand.h>
  27#include <linux/mtd/partitions.h>
  28#include <linux/clk.h>
  29#include <linux/err.h>
  30#include <linux/delay.h>
  31#include <linux/io.h>
  32#include <linux/mm.h>
  33#include <linux/dma-mapping.h>
  34#include <linux/dmaengine.h>
  35#include <linux/mtd/nand_ecc.h>
  36#include <linux/gpio.h>
  37#include <linux/of.h>
  38#include <linux/of_gpio.h>
  39#include <linux/mtd/lpc32xx_slc.h>
  40
  41#define LPC32XX_MODNAME         "lpc32xx-nand"
  42
  43/**********************************************************************
  44* SLC NAND controller register offsets
  45**********************************************************************/
  46
  47#define SLC_DATA(x)             (x + 0x000)
  48#define SLC_ADDR(x)             (x + 0x004)
  49#define SLC_CMD(x)              (x + 0x008)
  50#define SLC_STOP(x)             (x + 0x00C)
  51#define SLC_CTRL(x)             (x + 0x010)
  52#define SLC_CFG(x)              (x + 0x014)
  53#define SLC_STAT(x)             (x + 0x018)
  54#define SLC_INT_STAT(x)         (x + 0x01C)
  55#define SLC_IEN(x)              (x + 0x020)
  56#define SLC_ISR(x)              (x + 0x024)
  57#define SLC_ICR(x)              (x + 0x028)
  58#define SLC_TAC(x)              (x + 0x02C)
  59#define SLC_TC(x)               (x + 0x030)
  60#define SLC_ECC(x)              (x + 0x034)
  61#define SLC_DMA_DATA(x)         (x + 0x038)
  62
  63/**********************************************************************
  64* slc_ctrl register definitions
  65**********************************************************************/
  66#define SLCCTRL_SW_RESET        (1 << 2) /* Reset the NAND controller bit */
  67#define SLCCTRL_ECC_CLEAR       (1 << 1) /* Reset ECC bit */
  68#define SLCCTRL_DMA_START       (1 << 0) /* Start DMA channel bit */
  69
  70/**********************************************************************
  71* slc_cfg register definitions
  72**********************************************************************/
  73#define SLCCFG_CE_LOW           (1 << 5) /* Force CE low bit */
  74#define SLCCFG_DMA_ECC          (1 << 4) /* Enable DMA ECC bit */
  75#define SLCCFG_ECC_EN           (1 << 3) /* ECC enable bit */
  76#define SLCCFG_DMA_BURST        (1 << 2) /* DMA burst bit */
  77#define SLCCFG_DMA_DIR          (1 << 1) /* DMA write(0)/read(1) bit */
  78#define SLCCFG_WIDTH            (1 << 0) /* External device width, 0=8bit */
  79
  80/**********************************************************************
  81* slc_stat register definitions
  82**********************************************************************/
  83#define SLCSTAT_DMA_FIFO        (1 << 2) /* DMA FIFO has data bit */
  84#define SLCSTAT_SLC_FIFO        (1 << 1) /* SLC FIFO has data bit */
  85#define SLCSTAT_NAND_READY      (1 << 0) /* NAND device is ready bit */
  86
  87/**********************************************************************
  88* slc_int_stat, slc_ien, slc_isr, and slc_icr register definitions
  89**********************************************************************/
  90#define SLCSTAT_INT_TC          (1 << 1) /* Transfer count bit */
  91#define SLCSTAT_INT_RDY_EN      (1 << 0) /* Ready interrupt bit */
  92
  93/**********************************************************************
  94* slc_tac register definitions
  95**********************************************************************/
  96/* Computation of clock cycles on basis of controller and device clock rates */
  97#define SLCTAC_CLOCKS(c, n, s)  (min_t(u32, DIV_ROUND_UP(c, n) - 1, 0xF) << s)
  98
  99/* Clock setting for RDY write sample wait time in 2*n clocks */
 100#define SLCTAC_WDR(n)           (((n) & 0xF) << 28)
 101/* Write pulse width in clock cycles, 1 to 16 clocks */
 102#define SLCTAC_WWIDTH(c, n)     (SLCTAC_CLOCKS(c, n, 24))
 103/* Write hold time of control and data signals, 1 to 16 clocks */
 104#define SLCTAC_WHOLD(c, n)      (SLCTAC_CLOCKS(c, n, 20))
 105/* Write setup time of control and data signals, 1 to 16 clocks */
 106#define SLCTAC_WSETUP(c, n)     (SLCTAC_CLOCKS(c, n, 16))
 107/* Clock setting for RDY read sample wait time in 2*n clocks */
 108#define SLCTAC_RDR(n)           (((n) & 0xF) << 12)
 109/* Read pulse width in clock cycles, 1 to 16 clocks */
 110#define SLCTAC_RWIDTH(c, n)     (SLCTAC_CLOCKS(c, n, 8))
 111/* Read hold time of control and data signals, 1 to 16 clocks */
 112#define SLCTAC_RHOLD(c, n)      (SLCTAC_CLOCKS(c, n, 4))
 113/* Read setup time of control and data signals, 1 to 16 clocks */
 114#define SLCTAC_RSETUP(c, n)     (SLCTAC_CLOCKS(c, n, 0))
 115
 116/**********************************************************************
 117* slc_ecc register definitions
 118**********************************************************************/
 119/* ECC line party fetch macro */
 120#define SLCECC_TO_LINEPAR(n)    (((n) >> 6) & 0x7FFF)
 121#define SLCECC_TO_COLPAR(n)     ((n) & 0x3F)
 122
 123/*
 124 * DMA requires storage space for the DMA local buffer and the hardware ECC
 125 * storage area. The DMA local buffer is only used if DMA mapping fails
 126 * during runtime.
 127 */
 128#define LPC32XX_DMA_DATA_SIZE           4096
 129#define LPC32XX_ECC_SAVE_SIZE           ((4096 / 256) * 4)
 130
 131/* Number of bytes used for ECC stored in NAND per 256 bytes */
 132#define LPC32XX_SLC_DEV_ECC_BYTES       3
 133
 134/*
 135 * If the NAND base clock frequency can't be fetched, this frequency will be
 136 * used instead as the base. This rate is used to setup the timing registers
 137 * used for NAND accesses.
 138 */
 139#define LPC32XX_DEF_BUS_RATE            133250000
 140
 141/* Milliseconds for DMA FIFO timeout (unlikely anyway) */
 142#define LPC32XX_DMA_TIMEOUT             100
 143
 144/*
 145 * NAND ECC Layout for small page NAND devices
 146 * Note: For large and huge page devices, the default layouts are used
 147 */
 148static int lpc32xx_ooblayout_ecc(struct mtd_info *mtd, int section,
 149                                 struct mtd_oob_region *oobregion)
 150{
 151        if (section)
 152                return -ERANGE;
 153
 154        oobregion->length = 6;
 155        oobregion->offset = 10;
 156
 157        return 0;
 158}
 159
 160static int lpc32xx_ooblayout_free(struct mtd_info *mtd, int section,
 161                                  struct mtd_oob_region *oobregion)
 162{
 163        if (section > 1)
 164                return -ERANGE;
 165
 166        if (!section) {
 167                oobregion->offset = 0;
 168                oobregion->length = 4;
 169        } else {
 170                oobregion->offset = 6;
 171                oobregion->length = 4;
 172        }
 173
 174        return 0;
 175}
 176
 177static const struct mtd_ooblayout_ops lpc32xx_ooblayout_ops = {
 178        .ecc = lpc32xx_ooblayout_ecc,
 179        .free = lpc32xx_ooblayout_free,
 180};
 181
 182static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
 183static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
 184
 185/*
 186 * Small page FLASH BBT descriptors, marker at offset 0, version at offset 6
 187 * Note: Large page devices used the default layout
 188 */
 189static struct nand_bbt_descr bbt_smallpage_main_descr = {
 190        .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
 191                | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
 192        .offs = 0,
 193        .len = 4,
 194        .veroffs = 6,
 195        .maxblocks = 4,
 196        .pattern = bbt_pattern
 197};
 198
 199static struct nand_bbt_descr bbt_smallpage_mirror_descr = {
 200        .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
 201                | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
 202        .offs = 0,
 203        .len = 4,
 204        .veroffs = 6,
 205        .maxblocks = 4,
 206        .pattern = mirror_pattern
 207};
 208
 209/*
 210 * NAND platform configuration structure
 211 */
 212struct lpc32xx_nand_cfg_slc {
 213        uint32_t wdr_clks;
 214        uint32_t wwidth;
 215        uint32_t whold;
 216        uint32_t wsetup;
 217        uint32_t rdr_clks;
 218        uint32_t rwidth;
 219        uint32_t rhold;
 220        uint32_t rsetup;
 221        int wp_gpio;
 222        struct mtd_partition *parts;
 223        unsigned num_parts;
 224};
 225
 226struct lpc32xx_nand_host {
 227        struct nand_chip        nand_chip;
 228        struct lpc32xx_slc_platform_data *pdata;
 229        struct clk              *clk;
 230        void __iomem            *io_base;
 231        struct lpc32xx_nand_cfg_slc *ncfg;
 232
 233        struct completion       comp;
 234        struct dma_chan         *dma_chan;
 235        uint32_t                dma_buf_len;
 236        struct dma_slave_config dma_slave_config;
 237        struct scatterlist      sgl;
 238
 239        /*
 240         * DMA and CPU addresses of ECC work area and data buffer
 241         */
 242        uint32_t                *ecc_buf;
 243        uint8_t                 *data_buf;
 244        dma_addr_t              io_base_dma;
 245};
 246
 247static void lpc32xx_nand_setup(struct lpc32xx_nand_host *host)
 248{
 249        uint32_t clkrate, tmp;
 250
 251        /* Reset SLC controller */
 252        writel(SLCCTRL_SW_RESET, SLC_CTRL(host->io_base));
 253        udelay(1000);
 254
 255        /* Basic setup */
 256        writel(0, SLC_CFG(host->io_base));
 257        writel(0, SLC_IEN(host->io_base));
 258        writel((SLCSTAT_INT_TC | SLCSTAT_INT_RDY_EN),
 259                SLC_ICR(host->io_base));
 260
 261        /* Get base clock for SLC block */
 262        clkrate = clk_get_rate(host->clk);
 263        if (clkrate == 0)
 264                clkrate = LPC32XX_DEF_BUS_RATE;
 265
 266        /* Compute clock setup values */
 267        tmp = SLCTAC_WDR(host->ncfg->wdr_clks) |
 268                SLCTAC_WWIDTH(clkrate, host->ncfg->wwidth) |
 269                SLCTAC_WHOLD(clkrate, host->ncfg->whold) |
 270                SLCTAC_WSETUP(clkrate, host->ncfg->wsetup) |
 271                SLCTAC_RDR(host->ncfg->rdr_clks) |
 272                SLCTAC_RWIDTH(clkrate, host->ncfg->rwidth) |
 273                SLCTAC_RHOLD(clkrate, host->ncfg->rhold) |
 274                SLCTAC_RSETUP(clkrate, host->ncfg->rsetup);
 275        writel(tmp, SLC_TAC(host->io_base));
 276}
 277
 278/*
 279 * Hardware specific access to control lines
 280 */
 281static void lpc32xx_nand_cmd_ctrl(struct nand_chip *chip, int cmd,
 282                                  unsigned int ctrl)
 283{
 284        uint32_t tmp;
 285        struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
 286
 287        /* Does CE state need to be changed? */
 288        tmp = readl(SLC_CFG(host->io_base));
 289        if (ctrl & NAND_NCE)
 290                tmp |= SLCCFG_CE_LOW;
 291        else
 292                tmp &= ~SLCCFG_CE_LOW;
 293        writel(tmp, SLC_CFG(host->io_base));
 294
 295        if (cmd != NAND_CMD_NONE) {
 296                if (ctrl & NAND_CLE)
 297                        writel(cmd, SLC_CMD(host->io_base));
 298                else
 299                        writel(cmd, SLC_ADDR(host->io_base));
 300        }
 301}
 302
 303/*
 304 * Read the Device Ready pin
 305 */
 306static int lpc32xx_nand_device_ready(struct nand_chip *chip)
 307{
 308        struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
 309        int rdy = 0;
 310
 311        if ((readl(SLC_STAT(host->io_base)) & SLCSTAT_NAND_READY) != 0)
 312                rdy = 1;
 313
 314        return rdy;
 315}
 316
 317/*
 318 * Enable NAND write protect
 319 */
 320static void lpc32xx_wp_enable(struct lpc32xx_nand_host *host)
 321{
 322        if (gpio_is_valid(host->ncfg->wp_gpio))
 323                gpio_set_value(host->ncfg->wp_gpio, 0);
 324}
 325
 326/*
 327 * Disable NAND write protect
 328 */
 329static void lpc32xx_wp_disable(struct lpc32xx_nand_host *host)
 330{
 331        if (gpio_is_valid(host->ncfg->wp_gpio))
 332                gpio_set_value(host->ncfg->wp_gpio, 1);
 333}
 334
 335/*
 336 * Prepares SLC for transfers with H/W ECC enabled
 337 */
 338static void lpc32xx_nand_ecc_enable(struct nand_chip *chip, int mode)
 339{
 340        /* Hardware ECC is enabled automatically in hardware as needed */
 341}
 342
 343/*
 344 * Calculates the ECC for the data
 345 */
 346static int lpc32xx_nand_ecc_calculate(struct nand_chip *chip,
 347                                      const unsigned char *buf,
 348                                      unsigned char *code)
 349{
 350        /*
 351         * ECC is calculated automatically in hardware during syndrome read
 352         * and write operations, so it doesn't need to be calculated here.
 353         */
 354        return 0;
 355}
 356
 357/*
 358 * Read a single byte from NAND device
 359 */
 360static uint8_t lpc32xx_nand_read_byte(struct nand_chip *chip)
 361{
 362        struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
 363
 364        return (uint8_t)readl(SLC_DATA(host->io_base));
 365}
 366
 367/*
 368 * Simple device read without ECC
 369 */
 370static void lpc32xx_nand_read_buf(struct nand_chip *chip, u_char *buf, int len)
 371{
 372        struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
 373
 374        /* Direct device read with no ECC */
 375        while (len-- > 0)
 376                *buf++ = (uint8_t)readl(SLC_DATA(host->io_base));
 377}
 378
 379/*
 380 * Simple device write without ECC
 381 */
 382static void lpc32xx_nand_write_buf(struct nand_chip *chip, const uint8_t *buf,
 383                                   int len)
 384{
 385        struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
 386
 387        /* Direct device write with no ECC */
 388        while (len-- > 0)
 389                writel((uint32_t)*buf++, SLC_DATA(host->io_base));
 390}
 391
 392/*
 393 * Read the OOB data from the device without ECC using FIFO method
 394 */
 395static int lpc32xx_nand_read_oob_syndrome(struct nand_chip *chip, int page)
 396{
 397        struct mtd_info *mtd = nand_to_mtd(chip);
 398
 399        return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
 400}
 401
 402/*
 403 * Write the OOB data to the device without ECC using FIFO method
 404 */
 405static int lpc32xx_nand_write_oob_syndrome(struct nand_chip *chip, int page)
 406{
 407        struct mtd_info *mtd = nand_to_mtd(chip);
 408
 409        return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi,
 410                                 mtd->oobsize);
 411}
 412
 413/*
 414 * Fills in the ECC fields in the OOB buffer with the hardware generated ECC
 415 */
 416static void lpc32xx_slc_ecc_copy(uint8_t *spare, const uint32_t *ecc, int count)
 417{
 418        int i;
 419
 420        for (i = 0; i < (count * 3); i += 3) {
 421                uint32_t ce = ecc[i / 3];
 422                ce = ~(ce << 2) & 0xFFFFFF;
 423                spare[i + 2] = (uint8_t)(ce & 0xFF);
 424                ce >>= 8;
 425                spare[i + 1] = (uint8_t)(ce & 0xFF);
 426                ce >>= 8;
 427                spare[i] = (uint8_t)(ce & 0xFF);
 428        }
 429}
 430
 431static void lpc32xx_dma_complete_func(void *completion)
 432{
 433        complete(completion);
 434}
 435
 436static int lpc32xx_xmit_dma(struct mtd_info *mtd, dma_addr_t dma,
 437                            void *mem, int len, enum dma_transfer_direction dir)
 438{
 439        struct nand_chip *chip = mtd_to_nand(mtd);
 440        struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
 441        struct dma_async_tx_descriptor *desc;
 442        int flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
 443        int res;
 444
 445        host->dma_slave_config.direction = dir;
 446        host->dma_slave_config.src_addr = dma;
 447        host->dma_slave_config.dst_addr = dma;
 448        host->dma_slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 449        host->dma_slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 450        host->dma_slave_config.src_maxburst = 4;
 451        host->dma_slave_config.dst_maxburst = 4;
 452        /* DMA controller does flow control: */
 453        host->dma_slave_config.device_fc = false;
 454        if (dmaengine_slave_config(host->dma_chan, &host->dma_slave_config)) {
 455                dev_err(mtd->dev.parent, "Failed to setup DMA slave\n");
 456                return -ENXIO;
 457        }
 458
 459        sg_init_one(&host->sgl, mem, len);
 460
 461        res = dma_map_sg(host->dma_chan->device->dev, &host->sgl, 1,
 462                         DMA_BIDIRECTIONAL);
 463        if (res != 1) {
 464                dev_err(mtd->dev.parent, "Failed to map sg list\n");
 465                return -ENXIO;
 466        }
 467        desc = dmaengine_prep_slave_sg(host->dma_chan, &host->sgl, 1, dir,
 468                                       flags);
 469        if (!desc) {
 470                dev_err(mtd->dev.parent, "Failed to prepare slave sg\n");
 471                goto out1;
 472        }
 473
 474        init_completion(&host->comp);
 475        desc->callback = lpc32xx_dma_complete_func;
 476        desc->callback_param = &host->comp;
 477
 478        dmaengine_submit(desc);
 479        dma_async_issue_pending(host->dma_chan);
 480
 481        wait_for_completion_timeout(&host->comp, msecs_to_jiffies(1000));
 482
 483        dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
 484                     DMA_BIDIRECTIONAL);
 485
 486        return 0;
 487out1:
 488        dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
 489                     DMA_BIDIRECTIONAL);
 490        return -ENXIO;
 491}
 492
 493/*
 494 * DMA read/write transfers with ECC support
 495 */
 496static int lpc32xx_xfer(struct mtd_info *mtd, uint8_t *buf, int eccsubpages,
 497                        int read)
 498{
 499        struct nand_chip *chip = mtd_to_nand(mtd);
 500        struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
 501        int i, status = 0;
 502        unsigned long timeout;
 503        int res;
 504        enum dma_transfer_direction dir =
 505                read ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV;
 506        uint8_t *dma_buf;
 507        bool dma_mapped;
 508
 509        if ((void *)buf <= high_memory) {
 510                dma_buf = buf;
 511                dma_mapped = true;
 512        } else {
 513                dma_buf = host->data_buf;
 514                dma_mapped = false;
 515                if (!read)
 516                        memcpy(host->data_buf, buf, mtd->writesize);
 517        }
 518
 519        if (read) {
 520                writel(readl(SLC_CFG(host->io_base)) |
 521                       SLCCFG_DMA_DIR | SLCCFG_ECC_EN | SLCCFG_DMA_ECC |
 522                       SLCCFG_DMA_BURST, SLC_CFG(host->io_base));
 523        } else {
 524                writel((readl(SLC_CFG(host->io_base)) |
 525                        SLCCFG_ECC_EN | SLCCFG_DMA_ECC | SLCCFG_DMA_BURST) &
 526                       ~SLCCFG_DMA_DIR,
 527                        SLC_CFG(host->io_base));
 528        }
 529
 530        /* Clear initial ECC */
 531        writel(SLCCTRL_ECC_CLEAR, SLC_CTRL(host->io_base));
 532
 533        /* Transfer size is data area only */
 534        writel(mtd->writesize, SLC_TC(host->io_base));
 535
 536        /* Start transfer in the NAND controller */
 537        writel(readl(SLC_CTRL(host->io_base)) | SLCCTRL_DMA_START,
 538               SLC_CTRL(host->io_base));
 539
 540        for (i = 0; i < chip->ecc.steps; i++) {
 541                /* Data */
 542                res = lpc32xx_xmit_dma(mtd, SLC_DMA_DATA(host->io_base_dma),
 543                                       dma_buf + i * chip->ecc.size,
 544                                       mtd->writesize / chip->ecc.steps, dir);
 545                if (res)
 546                        return res;
 547
 548                /* Always _read_ ECC */
 549                if (i == chip->ecc.steps - 1)
 550                        break;
 551                if (!read) /* ECC availability delayed on write */
 552                        udelay(10);
 553                res = lpc32xx_xmit_dma(mtd, SLC_ECC(host->io_base_dma),
 554                                       &host->ecc_buf[i], 4, DMA_DEV_TO_MEM);
 555                if (res)
 556                        return res;
 557        }
 558
 559        /*
 560         * According to NXP, the DMA can be finished here, but the NAND
 561         * controller may still have buffered data. After porting to using the
 562         * dmaengine DMA driver (amba-pl080), the condition (DMA_FIFO empty)
 563         * appears to be always true, according to tests. Keeping the check for
 564         * safety reasons for now.
 565         */
 566        if (readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO) {
 567                dev_warn(mtd->dev.parent, "FIFO not empty!\n");
 568                timeout = jiffies + msecs_to_jiffies(LPC32XX_DMA_TIMEOUT);
 569                while ((readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO) &&
 570                       time_before(jiffies, timeout))
 571                        cpu_relax();
 572                if (!time_before(jiffies, timeout)) {
 573                        dev_err(mtd->dev.parent, "FIFO held data too long\n");
 574                        status = -EIO;
 575                }
 576        }
 577
 578        /* Read last calculated ECC value */
 579        if (!read)
 580                udelay(10);
 581        host->ecc_buf[chip->ecc.steps - 1] =
 582                readl(SLC_ECC(host->io_base));
 583
 584        /* Flush DMA */
 585        dmaengine_terminate_all(host->dma_chan);
 586
 587        if (readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO ||
 588            readl(SLC_TC(host->io_base))) {
 589                /* Something is left in the FIFO, something is wrong */
 590                dev_err(mtd->dev.parent, "DMA FIFO failure\n");
 591                status = -EIO;
 592        }
 593
 594        /* Stop DMA & HW ECC */
 595        writel(readl(SLC_CTRL(host->io_base)) & ~SLCCTRL_DMA_START,
 596               SLC_CTRL(host->io_base));
 597        writel(readl(SLC_CFG(host->io_base)) &
 598               ~(SLCCFG_DMA_DIR | SLCCFG_ECC_EN | SLCCFG_DMA_ECC |
 599                 SLCCFG_DMA_BURST), SLC_CFG(host->io_base));
 600
 601        if (!dma_mapped && read)
 602                memcpy(buf, host->data_buf, mtd->writesize);
 603
 604        return status;
 605}
 606
 607/*
 608 * Read the data and OOB data from the device, use ECC correction with the
 609 * data, disable ECC for the OOB data
 610 */
 611static int lpc32xx_nand_read_page_syndrome(struct nand_chip *chip, uint8_t *buf,
 612                                           int oob_required, int page)
 613{
 614        struct mtd_info *mtd = nand_to_mtd(chip);
 615        struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
 616        struct mtd_oob_region oobregion = { };
 617        int stat, i, status, error;
 618        uint8_t *oobecc, tmpecc[LPC32XX_ECC_SAVE_SIZE];
 619
 620        /* Issue read command */
 621        nand_read_page_op(chip, page, 0, NULL, 0);
 622
 623        /* Read data and oob, calculate ECC */
 624        status = lpc32xx_xfer(mtd, buf, chip->ecc.steps, 1);
 625
 626        /* Get OOB data */
 627        chip->legacy.read_buf(chip, chip->oob_poi, mtd->oobsize);
 628
 629        /* Convert to stored ECC format */
 630        lpc32xx_slc_ecc_copy(tmpecc, (uint32_t *) host->ecc_buf, chip->ecc.steps);
 631
 632        /* Pointer to ECC data retrieved from NAND spare area */
 633        error = mtd_ooblayout_ecc(mtd, 0, &oobregion);
 634        if (error)
 635                return error;
 636
 637        oobecc = chip->oob_poi + oobregion.offset;
 638
 639        for (i = 0; i < chip->ecc.steps; i++) {
 640                stat = chip->ecc.correct(chip, buf, oobecc,
 641                                         &tmpecc[i * chip->ecc.bytes]);
 642                if (stat < 0)
 643                        mtd->ecc_stats.failed++;
 644                else
 645                        mtd->ecc_stats.corrected += stat;
 646
 647                buf += chip->ecc.size;
 648                oobecc += chip->ecc.bytes;
 649        }
 650
 651        return status;
 652}
 653
 654/*
 655 * Read the data and OOB data from the device, no ECC correction with the
 656 * data or OOB data
 657 */
 658static int lpc32xx_nand_read_page_raw_syndrome(struct nand_chip *chip,
 659                                               uint8_t *buf, int oob_required,
 660                                               int page)
 661{
 662        struct mtd_info *mtd = nand_to_mtd(chip);
 663
 664        /* Issue read command */
 665        nand_read_page_op(chip, page, 0, NULL, 0);
 666
 667        /* Raw reads can just use the FIFO interface */
 668        chip->legacy.read_buf(chip, buf, chip->ecc.size * chip->ecc.steps);
 669        chip->legacy.read_buf(chip, chip->oob_poi, mtd->oobsize);
 670
 671        return 0;
 672}
 673
 674/*
 675 * Write the data and OOB data to the device, use ECC with the data,
 676 * disable ECC for the OOB data
 677 */
 678static int lpc32xx_nand_write_page_syndrome(struct nand_chip *chip,
 679                                            const uint8_t *buf,
 680                                            int oob_required, int page)
 681{
 682        struct mtd_info *mtd = nand_to_mtd(chip);
 683        struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
 684        struct mtd_oob_region oobregion = { };
 685        uint8_t *pb;
 686        int error;
 687
 688        nand_prog_page_begin_op(chip, page, 0, NULL, 0);
 689
 690        /* Write data, calculate ECC on outbound data */
 691        error = lpc32xx_xfer(mtd, (uint8_t *)buf, chip->ecc.steps, 0);
 692        if (error)
 693                return error;
 694
 695        /*
 696         * The calculated ECC needs some manual work done to it before
 697         * committing it to NAND. Process the calculated ECC and place
 698         * the resultant values directly into the OOB buffer. */
 699        error = mtd_ooblayout_ecc(mtd, 0, &oobregion);
 700        if (error)
 701                return error;
 702
 703        pb = chip->oob_poi + oobregion.offset;
 704        lpc32xx_slc_ecc_copy(pb, (uint32_t *)host->ecc_buf, chip->ecc.steps);
 705
 706        /* Write ECC data to device */
 707        chip->legacy.write_buf(chip, chip->oob_poi, mtd->oobsize);
 708
 709        return nand_prog_page_end_op(chip);
 710}
 711
 712/*
 713 * Write the data and OOB data to the device, no ECC correction with the
 714 * data or OOB data
 715 */
 716static int lpc32xx_nand_write_page_raw_syndrome(struct nand_chip *chip,
 717                                                const uint8_t *buf,
 718                                                int oob_required, int page)
 719{
 720        struct mtd_info *mtd = nand_to_mtd(chip);
 721
 722        /* Raw writes can just use the FIFO interface */
 723        nand_prog_page_begin_op(chip, page, 0, buf,
 724                                chip->ecc.size * chip->ecc.steps);
 725        chip->legacy.write_buf(chip, chip->oob_poi, mtd->oobsize);
 726
 727        return nand_prog_page_end_op(chip);
 728}
 729
 730static int lpc32xx_nand_dma_setup(struct lpc32xx_nand_host *host)
 731{
 732        struct mtd_info *mtd = nand_to_mtd(&host->nand_chip);
 733        dma_cap_mask_t mask;
 734
 735        if (!host->pdata || !host->pdata->dma_filter) {
 736                dev_err(mtd->dev.parent, "no DMA platform data\n");
 737                return -ENOENT;
 738        }
 739
 740        dma_cap_zero(mask);
 741        dma_cap_set(DMA_SLAVE, mask);
 742        host->dma_chan = dma_request_channel(mask, host->pdata->dma_filter,
 743                                             "nand-slc");
 744        if (!host->dma_chan) {
 745                dev_err(mtd->dev.parent, "Failed to request DMA channel\n");
 746                return -EBUSY;
 747        }
 748
 749        return 0;
 750}
 751
 752static struct lpc32xx_nand_cfg_slc *lpc32xx_parse_dt(struct device *dev)
 753{
 754        struct lpc32xx_nand_cfg_slc *ncfg;
 755        struct device_node *np = dev->of_node;
 756
 757        ncfg = devm_kzalloc(dev, sizeof(*ncfg), GFP_KERNEL);
 758        if (!ncfg)
 759                return NULL;
 760
 761        of_property_read_u32(np, "nxp,wdr-clks", &ncfg->wdr_clks);
 762        of_property_read_u32(np, "nxp,wwidth", &ncfg->wwidth);
 763        of_property_read_u32(np, "nxp,whold", &ncfg->whold);
 764        of_property_read_u32(np, "nxp,wsetup", &ncfg->wsetup);
 765        of_property_read_u32(np, "nxp,rdr-clks", &ncfg->rdr_clks);
 766        of_property_read_u32(np, "nxp,rwidth", &ncfg->rwidth);
 767        of_property_read_u32(np, "nxp,rhold", &ncfg->rhold);
 768        of_property_read_u32(np, "nxp,rsetup", &ncfg->rsetup);
 769
 770        if (!ncfg->wdr_clks || !ncfg->wwidth || !ncfg->whold ||
 771            !ncfg->wsetup || !ncfg->rdr_clks || !ncfg->rwidth ||
 772            !ncfg->rhold || !ncfg->rsetup) {
 773                dev_err(dev, "chip parameters not specified correctly\n");
 774                return NULL;
 775        }
 776
 777        ncfg->wp_gpio = of_get_named_gpio(np, "gpios", 0);
 778
 779        return ncfg;
 780}
 781
 782static int lpc32xx_nand_attach_chip(struct nand_chip *chip)
 783{
 784        struct mtd_info *mtd = nand_to_mtd(chip);
 785        struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
 786
 787        /* OOB and ECC CPU and DMA work areas */
 788        host->ecc_buf = (uint32_t *)(host->data_buf + LPC32XX_DMA_DATA_SIZE);
 789
 790        /*
 791         * Small page FLASH has a unique OOB layout, but large and huge
 792         * page FLASH use the standard layout. Small page FLASH uses a
 793         * custom BBT marker layout.
 794         */
 795        if (mtd->writesize <= 512)
 796                mtd_set_ooblayout(mtd, &lpc32xx_ooblayout_ops);
 797
 798        /* These sizes remain the same regardless of page size */
 799        chip->ecc.size = 256;
 800        chip->ecc.bytes = LPC32XX_SLC_DEV_ECC_BYTES;
 801        chip->ecc.prepad = 0;
 802        chip->ecc.postpad = 0;
 803
 804        /*
 805         * Use a custom BBT marker setup for small page FLASH that
 806         * won't interfere with the ECC layout. Large and huge page
 807         * FLASH use the standard layout.
 808         */
 809        if ((chip->bbt_options & NAND_BBT_USE_FLASH) &&
 810            mtd->writesize <= 512) {
 811                chip->bbt_td = &bbt_smallpage_main_descr;
 812                chip->bbt_md = &bbt_smallpage_mirror_descr;
 813        }
 814
 815        return 0;
 816}
 817
 818static const struct nand_controller_ops lpc32xx_nand_controller_ops = {
 819        .attach_chip = lpc32xx_nand_attach_chip,
 820};
 821
 822/*
 823 * Probe for NAND controller
 824 */
 825static int lpc32xx_nand_probe(struct platform_device *pdev)
 826{
 827        struct lpc32xx_nand_host *host;
 828        struct mtd_info *mtd;
 829        struct nand_chip *chip;
 830        struct resource *rc;
 831        int res;
 832
 833        /* Allocate memory for the device structure (and zero it) */
 834        host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
 835        if (!host)
 836                return -ENOMEM;
 837
 838        rc = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 839        host->io_base = devm_ioremap_resource(&pdev->dev, rc);
 840        if (IS_ERR(host->io_base))
 841                return PTR_ERR(host->io_base);
 842
 843        host->io_base_dma = rc->start;
 844        if (pdev->dev.of_node)
 845                host->ncfg = lpc32xx_parse_dt(&pdev->dev);
 846        if (!host->ncfg) {
 847                dev_err(&pdev->dev,
 848                        "Missing or bad NAND config from device tree\n");
 849                return -ENOENT;
 850        }
 851        if (host->ncfg->wp_gpio == -EPROBE_DEFER)
 852                return -EPROBE_DEFER;
 853        if (gpio_is_valid(host->ncfg->wp_gpio) && devm_gpio_request(&pdev->dev,
 854                        host->ncfg->wp_gpio, "NAND WP")) {
 855                dev_err(&pdev->dev, "GPIO not available\n");
 856                return -EBUSY;
 857        }
 858        lpc32xx_wp_disable(host);
 859
 860        host->pdata = dev_get_platdata(&pdev->dev);
 861
 862        chip = &host->nand_chip;
 863        mtd = nand_to_mtd(chip);
 864        nand_set_controller_data(chip, host);
 865        nand_set_flash_node(chip, pdev->dev.of_node);
 866        mtd->owner = THIS_MODULE;
 867        mtd->dev.parent = &pdev->dev;
 868
 869        /* Get NAND clock */
 870        host->clk = devm_clk_get(&pdev->dev, NULL);
 871        if (IS_ERR(host->clk)) {
 872                dev_err(&pdev->dev, "Clock failure\n");
 873                res = -ENOENT;
 874                goto enable_wp;
 875        }
 876        res = clk_prepare_enable(host->clk);
 877        if (res)
 878                goto enable_wp;
 879
 880        /* Set NAND IO addresses and command/ready functions */
 881        chip->legacy.IO_ADDR_R = SLC_DATA(host->io_base);
 882        chip->legacy.IO_ADDR_W = SLC_DATA(host->io_base);
 883        chip->legacy.cmd_ctrl = lpc32xx_nand_cmd_ctrl;
 884        chip->legacy.dev_ready = lpc32xx_nand_device_ready;
 885        chip->legacy.chip_delay = 20; /* 20us command delay time */
 886
 887        /* Init NAND controller */
 888        lpc32xx_nand_setup(host);
 889
 890        platform_set_drvdata(pdev, host);
 891
 892        /* NAND callbacks for LPC32xx SLC hardware */
 893        chip->ecc.mode = NAND_ECC_HW_SYNDROME;
 894        chip->legacy.read_byte = lpc32xx_nand_read_byte;
 895        chip->legacy.read_buf = lpc32xx_nand_read_buf;
 896        chip->legacy.write_buf = lpc32xx_nand_write_buf;
 897        chip->ecc.read_page_raw = lpc32xx_nand_read_page_raw_syndrome;
 898        chip->ecc.read_page = lpc32xx_nand_read_page_syndrome;
 899        chip->ecc.write_page_raw = lpc32xx_nand_write_page_raw_syndrome;
 900        chip->ecc.write_page = lpc32xx_nand_write_page_syndrome;
 901        chip->ecc.write_oob = lpc32xx_nand_write_oob_syndrome;
 902        chip->ecc.read_oob = lpc32xx_nand_read_oob_syndrome;
 903        chip->ecc.calculate = lpc32xx_nand_ecc_calculate;
 904        chip->ecc.correct = nand_correct_data;
 905        chip->ecc.strength = 1;
 906        chip->ecc.hwctl = lpc32xx_nand_ecc_enable;
 907
 908        /*
 909         * Allocate a large enough buffer for a single huge page plus
 910         * extra space for the spare area and ECC storage area
 911         */
 912        host->dma_buf_len = LPC32XX_DMA_DATA_SIZE + LPC32XX_ECC_SAVE_SIZE;
 913        host->data_buf = devm_kzalloc(&pdev->dev, host->dma_buf_len,
 914                                      GFP_KERNEL);
 915        if (host->data_buf == NULL) {
 916                res = -ENOMEM;
 917                goto unprepare_clk;
 918        }
 919
 920        res = lpc32xx_nand_dma_setup(host);
 921        if (res) {
 922                res = -EIO;
 923                goto unprepare_clk;
 924        }
 925
 926        /* Find NAND device */
 927        chip->legacy.dummy_controller.ops = &lpc32xx_nand_controller_ops;
 928        res = nand_scan(chip, 1);
 929        if (res)
 930                goto release_dma;
 931
 932        mtd->name = "nxp_lpc3220_slc";
 933        res = mtd_device_register(mtd, host->ncfg->parts,
 934                                  host->ncfg->num_parts);
 935        if (res)
 936                goto cleanup_nand;
 937
 938        return 0;
 939
 940cleanup_nand:
 941        nand_cleanup(chip);
 942release_dma:
 943        dma_release_channel(host->dma_chan);
 944unprepare_clk:
 945        clk_disable_unprepare(host->clk);
 946enable_wp:
 947        lpc32xx_wp_enable(host);
 948
 949        return res;
 950}
 951
 952/*
 953 * Remove NAND device.
 954 */
 955static int lpc32xx_nand_remove(struct platform_device *pdev)
 956{
 957        uint32_t tmp;
 958        struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
 959
 960        nand_release(&host->nand_chip);
 961        dma_release_channel(host->dma_chan);
 962
 963        /* Force CE high */
 964        tmp = readl(SLC_CTRL(host->io_base));
 965        tmp &= ~SLCCFG_CE_LOW;
 966        writel(tmp, SLC_CTRL(host->io_base));
 967
 968        clk_disable_unprepare(host->clk);
 969        lpc32xx_wp_enable(host);
 970
 971        return 0;
 972}
 973
 974#ifdef CONFIG_PM
 975static int lpc32xx_nand_resume(struct platform_device *pdev)
 976{
 977        struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
 978        int ret;
 979
 980        /* Re-enable NAND clock */
 981        ret = clk_prepare_enable(host->clk);
 982        if (ret)
 983                return ret;
 984
 985        /* Fresh init of NAND controller */
 986        lpc32xx_nand_setup(host);
 987
 988        /* Disable write protect */
 989        lpc32xx_wp_disable(host);
 990
 991        return 0;
 992}
 993
 994static int lpc32xx_nand_suspend(struct platform_device *pdev, pm_message_t pm)
 995{
 996        uint32_t tmp;
 997        struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
 998
 999        /* Force CE high */
1000        tmp = readl(SLC_CTRL(host->io_base));
1001        tmp &= ~SLCCFG_CE_LOW;
1002        writel(tmp, SLC_CTRL(host->io_base));
1003
1004        /* Enable write protect for safety */
1005        lpc32xx_wp_enable(host);
1006
1007        /* Disable clock */
1008        clk_disable_unprepare(host->clk);
1009
1010        return 0;
1011}
1012
1013#else
1014#define lpc32xx_nand_resume NULL
1015#define lpc32xx_nand_suspend NULL
1016#endif
1017
1018static const struct of_device_id lpc32xx_nand_match[] = {
1019        { .compatible = "nxp,lpc3220-slc" },
1020        { /* sentinel */ },
1021};
1022MODULE_DEVICE_TABLE(of, lpc32xx_nand_match);
1023
1024static struct platform_driver lpc32xx_nand_driver = {
1025        .probe          = lpc32xx_nand_probe,
1026        .remove         = lpc32xx_nand_remove,
1027        .resume         = lpc32xx_nand_resume,
1028        .suspend        = lpc32xx_nand_suspend,
1029        .driver         = {
1030                .name   = LPC32XX_MODNAME,
1031                .of_match_table = lpc32xx_nand_match,
1032        },
1033};
1034
1035module_platform_driver(lpc32xx_nand_driver);
1036
1037MODULE_LICENSE("GPL");
1038MODULE_AUTHOR("Kevin Wells <kevin.wells@nxp.com>");
1039MODULE_AUTHOR("Roland Stigge <stigge@antcom.de>");
1040MODULE_DESCRIPTION("NAND driver for the NXP LPC32XX SLC controller");
1041