linux/drivers/mtd/spi-nor/spi-nor.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with
   4 * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c
   5 *
   6 * Copyright (C) 2005, Intec Automation Inc.
   7 * Copyright (C) 2014, Freescale Semiconductor, Inc.
   8 */
   9
  10#include <linux/err.h>
  11#include <linux/errno.h>
  12#include <linux/module.h>
  13#include <linux/device.h>
  14#include <linux/mutex.h>
  15#include <linux/math64.h>
  16#include <linux/sizes.h>
  17#include <linux/slab.h>
  18#include <linux/sort.h>
  19
  20#include <linux/mtd/mtd.h>
  21#include <linux/of_platform.h>
  22#include <linux/spi/flash.h>
  23#include <linux/mtd/spi-nor.h>
  24
  25/* Define max times to check status register before we give up. */
  26
  27/*
  28 * For everything but full-chip erase; probably could be much smaller, but kept
  29 * around for safety for now
  30 */
  31#define DEFAULT_READY_WAIT_JIFFIES              (40UL * HZ)
  32
  33/*
  34 * For full-chip erase, calibrated to a 2MB flash (M25P16); should be scaled up
  35 * for larger flash
  36 */
  37#define CHIP_ERASE_2MB_READY_WAIT_JIFFIES       (40UL * HZ)
  38
  39#define SPI_NOR_MAX_ID_LEN      6
  40#define SPI_NOR_MAX_ADDR_WIDTH  4
  41
  42struct spi_nor_read_command {
  43        u8                      num_mode_clocks;
  44        u8                      num_wait_states;
  45        u8                      opcode;
  46        enum spi_nor_protocol   proto;
  47};
  48
  49struct spi_nor_pp_command {
  50        u8                      opcode;
  51        enum spi_nor_protocol   proto;
  52};
  53
  54enum spi_nor_read_command_index {
  55        SNOR_CMD_READ,
  56        SNOR_CMD_READ_FAST,
  57        SNOR_CMD_READ_1_1_1_DTR,
  58
  59        /* Dual SPI */
  60        SNOR_CMD_READ_1_1_2,
  61        SNOR_CMD_READ_1_2_2,
  62        SNOR_CMD_READ_2_2_2,
  63        SNOR_CMD_READ_1_2_2_DTR,
  64
  65        /* Quad SPI */
  66        SNOR_CMD_READ_1_1_4,
  67        SNOR_CMD_READ_1_4_4,
  68        SNOR_CMD_READ_4_4_4,
  69        SNOR_CMD_READ_1_4_4_DTR,
  70
  71        /* Octo SPI */
  72        SNOR_CMD_READ_1_1_8,
  73        SNOR_CMD_READ_1_8_8,
  74        SNOR_CMD_READ_8_8_8,
  75        SNOR_CMD_READ_1_8_8_DTR,
  76
  77        SNOR_CMD_READ_MAX
  78};
  79
  80enum spi_nor_pp_command_index {
  81        SNOR_CMD_PP,
  82
  83        /* Quad SPI */
  84        SNOR_CMD_PP_1_1_4,
  85        SNOR_CMD_PP_1_4_4,
  86        SNOR_CMD_PP_4_4_4,
  87
  88        /* Octo SPI */
  89        SNOR_CMD_PP_1_1_8,
  90        SNOR_CMD_PP_1_8_8,
  91        SNOR_CMD_PP_8_8_8,
  92
  93        SNOR_CMD_PP_MAX
  94};
  95
  96struct spi_nor_flash_parameter {
  97        u64                             size;
  98        u32                             page_size;
  99
 100        struct spi_nor_hwcaps           hwcaps;
 101        struct spi_nor_read_command     reads[SNOR_CMD_READ_MAX];
 102        struct spi_nor_pp_command       page_programs[SNOR_CMD_PP_MAX];
 103
 104        int (*quad_enable)(struct spi_nor *nor);
 105};
 106
 107struct sfdp_parameter_header {
 108        u8              id_lsb;
 109        u8              minor;
 110        u8              major;
 111        u8              length; /* in double words */
 112        u8              parameter_table_pointer[3]; /* byte address */
 113        u8              id_msb;
 114};
 115
 116#define SFDP_PARAM_HEADER_ID(p) (((p)->id_msb << 8) | (p)->id_lsb)
 117#define SFDP_PARAM_HEADER_PTP(p) \
 118        (((p)->parameter_table_pointer[2] << 16) | \
 119         ((p)->parameter_table_pointer[1] <<  8) | \
 120         ((p)->parameter_table_pointer[0] <<  0))
 121
 122#define SFDP_BFPT_ID            0xff00  /* Basic Flash Parameter Table */
 123#define SFDP_SECTOR_MAP_ID      0xff81  /* Sector Map Table */
 124#define SFDP_4BAIT_ID           0xff84  /* 4-byte Address Instruction Table */
 125
 126#define SFDP_SIGNATURE          0x50444653U
 127#define SFDP_JESD216_MAJOR      1
 128#define SFDP_JESD216_MINOR      0
 129#define SFDP_JESD216A_MINOR     5
 130#define SFDP_JESD216B_MINOR     6
 131
 132struct sfdp_header {
 133        u32             signature; /* Ox50444653U <=> "SFDP" */
 134        u8              minor;
 135        u8              major;
 136        u8              nph; /* 0-base number of parameter headers */
 137        u8              unused;
 138
 139        /* Basic Flash Parameter Table. */
 140        struct sfdp_parameter_header    bfpt_header;
 141};
 142
 143/* Basic Flash Parameter Table */
 144
 145/*
 146 * JESD216 rev B defines a Basic Flash Parameter Table of 16 DWORDs.
 147 * They are indexed from 1 but C arrays are indexed from 0.
 148 */
 149#define BFPT_DWORD(i)           ((i) - 1)
 150#define BFPT_DWORD_MAX          16
 151
 152/* The first version of JESB216 defined only 9 DWORDs. */
 153#define BFPT_DWORD_MAX_JESD216                  9
 154
 155/* 1st DWORD. */
 156#define BFPT_DWORD1_FAST_READ_1_1_2             BIT(16)
 157#define BFPT_DWORD1_ADDRESS_BYTES_MASK          GENMASK(18, 17)
 158#define BFPT_DWORD1_ADDRESS_BYTES_3_ONLY        (0x0UL << 17)
 159#define BFPT_DWORD1_ADDRESS_BYTES_3_OR_4        (0x1UL << 17)
 160#define BFPT_DWORD1_ADDRESS_BYTES_4_ONLY        (0x2UL << 17)
 161#define BFPT_DWORD1_DTR                         BIT(19)
 162#define BFPT_DWORD1_FAST_READ_1_2_2             BIT(20)
 163#define BFPT_DWORD1_FAST_READ_1_4_4             BIT(21)
 164#define BFPT_DWORD1_FAST_READ_1_1_4             BIT(22)
 165
 166/* 5th DWORD. */
 167#define BFPT_DWORD5_FAST_READ_2_2_2             BIT(0)
 168#define BFPT_DWORD5_FAST_READ_4_4_4             BIT(4)
 169
 170/* 11th DWORD. */
 171#define BFPT_DWORD11_PAGE_SIZE_SHIFT            4
 172#define BFPT_DWORD11_PAGE_SIZE_MASK             GENMASK(7, 4)
 173
 174/* 15th DWORD. */
 175
 176/*
 177 * (from JESD216 rev B)
 178 * Quad Enable Requirements (QER):
 179 * - 000b: Device does not have a QE bit. Device detects 1-1-4 and 1-4-4
 180 *         reads based on instruction. DQ3/HOLD# functions are hold during
 181 *         instruction phase.
 182 * - 001b: QE is bit 1 of status register 2. It is set via Write Status with
 183 *         two data bytes where bit 1 of the second byte is one.
 184 *         [...]
 185 *         Writing only one byte to the status register has the side-effect of
 186 *         clearing status register 2, including the QE bit. The 100b code is
 187 *         used if writing one byte to the status register does not modify
 188 *         status register 2.
 189 * - 010b: QE is bit 6 of status register 1. It is set via Write Status with
 190 *         one data byte where bit 6 is one.
 191 *         [...]
 192 * - 011b: QE is bit 7 of status register 2. It is set via Write status
 193 *         register 2 instruction 3Eh with one data byte where bit 7 is one.
 194 *         [...]
 195 *         The status register 2 is read using instruction 3Fh.
 196 * - 100b: QE is bit 1 of status register 2. It is set via Write Status with
 197 *         two data bytes where bit 1 of the second byte is one.
 198 *         [...]
 199 *         In contrast to the 001b code, writing one byte to the status
 200 *         register does not modify status register 2.
 201 * - 101b: QE is bit 1 of status register 2. Status register 1 is read using
 202 *         Read Status instruction 05h. Status register2 is read using
 203 *         instruction 35h. QE is set via Writ Status instruction 01h with
 204 *         two data bytes where bit 1 of the second byte is one.
 205 *         [...]
 206 */
 207#define BFPT_DWORD15_QER_MASK                   GENMASK(22, 20)
 208#define BFPT_DWORD15_QER_NONE                   (0x0UL << 20) /* Micron */
 209#define BFPT_DWORD15_QER_SR2_BIT1_BUGGY         (0x1UL << 20)
 210#define BFPT_DWORD15_QER_SR1_BIT6               (0x2UL << 20) /* Macronix */
 211#define BFPT_DWORD15_QER_SR2_BIT7               (0x3UL << 20)
 212#define BFPT_DWORD15_QER_SR2_BIT1_NO_RD         (0x4UL << 20)
 213#define BFPT_DWORD15_QER_SR2_BIT1               (0x5UL << 20) /* Spansion */
 214
 215struct sfdp_bfpt {
 216        u32     dwords[BFPT_DWORD_MAX];
 217};
 218
 219/**
 220 * struct spi_nor_fixups - SPI NOR fixup hooks
 221 * @post_bfpt: called after the BFPT table has been parsed
 222 *
 223 * Those hooks can be used to tweak the SPI NOR configuration when the SFDP
 224 * table is broken or not available.
 225 */
 226struct spi_nor_fixups {
 227        int (*post_bfpt)(struct spi_nor *nor,
 228                         const struct sfdp_parameter_header *bfpt_header,
 229                         const struct sfdp_bfpt *bfpt,
 230                         struct spi_nor_flash_parameter *params);
 231};
 232
 233struct flash_info {
 234        char            *name;
 235
 236        /*
 237         * This array stores the ID bytes.
 238         * The first three bytes are the JEDIC ID.
 239         * JEDEC ID zero means "no ID" (mostly older chips).
 240         */
 241        u8              id[SPI_NOR_MAX_ID_LEN];
 242        u8              id_len;
 243
 244        /* The size listed here is what works with SPINOR_OP_SE, which isn't
 245         * necessarily called a "sector" by the vendor.
 246         */
 247        unsigned        sector_size;
 248        u16             n_sectors;
 249
 250        u16             page_size;
 251        u16             addr_width;
 252
 253        u16             flags;
 254#define SECT_4K                 BIT(0)  /* SPINOR_OP_BE_4K works uniformly */
 255#define SPI_NOR_NO_ERASE        BIT(1)  /* No erase command needed */
 256#define SST_WRITE               BIT(2)  /* use SST byte programming */
 257#define SPI_NOR_NO_FR           BIT(3)  /* Can't do fastread */
 258#define SECT_4K_PMC             BIT(4)  /* SPINOR_OP_BE_4K_PMC works uniformly */
 259#define SPI_NOR_DUAL_READ       BIT(5)  /* Flash supports Dual Read */
 260#define SPI_NOR_QUAD_READ       BIT(6)  /* Flash supports Quad Read */
 261#define USE_FSR                 BIT(7)  /* use flag status register */
 262#define SPI_NOR_HAS_LOCK        BIT(8)  /* Flash supports lock/unlock via SR */
 263#define SPI_NOR_HAS_TB          BIT(9)  /*
 264                                         * Flash SR has Top/Bottom (TB) protect
 265                                         * bit. Must be used with
 266                                         * SPI_NOR_HAS_LOCK.
 267                                         */
 268#define SPI_S3AN                BIT(10) /*
 269                                         * Xilinx Spartan 3AN In-System Flash
 270                                         * (MFR cannot be used for probing
 271                                         * because it has the same value as
 272                                         * ATMEL flashes)
 273                                         */
 274#define SPI_NOR_4B_OPCODES      BIT(11) /*
 275                                         * Use dedicated 4byte address op codes
 276                                         * to support memory size above 128Mib.
 277                                         */
 278#define NO_CHIP_ERASE           BIT(12) /* Chip does not support chip erase */
 279#define SPI_NOR_SKIP_SFDP       BIT(13) /* Skip parsing of SFDP tables */
 280#define USE_CLSR                BIT(14) /* use CLSR command */
 281
 282        /* Part specific fixup hooks. */
 283        const struct spi_nor_fixups *fixups;
 284
 285        int     (*quad_enable)(struct spi_nor *nor);
 286};
 287
 288#define JEDEC_MFR(info) ((info)->id[0])
 289
 290/*
 291 * Read the status register, returning its value in the location
 292 * Return the status register value.
 293 * Returns negative if error occurred.
 294 */
 295static int read_sr(struct spi_nor *nor)
 296{
 297        int ret;
 298        u8 val;
 299
 300        ret = nor->read_reg(nor, SPINOR_OP_RDSR, &val, 1);
 301        if (ret < 0) {
 302                pr_err("error %d reading SR\n", (int) ret);
 303                return ret;
 304        }
 305
 306        return val;
 307}
 308
 309/*
 310 * Read the flag status register, returning its value in the location
 311 * Return the status register value.
 312 * Returns negative if error occurred.
 313 */
 314static int read_fsr(struct spi_nor *nor)
 315{
 316        int ret;
 317        u8 val;
 318
 319        ret = nor->read_reg(nor, SPINOR_OP_RDFSR, &val, 1);
 320        if (ret < 0) {
 321                pr_err("error %d reading FSR\n", ret);
 322                return ret;
 323        }
 324
 325        return val;
 326}
 327
 328/*
 329 * Read configuration register, returning its value in the
 330 * location. Return the configuration register value.
 331 * Returns negative if error occurred.
 332 */
 333static int read_cr(struct spi_nor *nor)
 334{
 335        int ret;
 336        u8 val;
 337
 338        ret = nor->read_reg(nor, SPINOR_OP_RDCR, &val, 1);
 339        if (ret < 0) {
 340                dev_err(nor->dev, "error %d reading CR\n", ret);
 341                return ret;
 342        }
 343
 344        return val;
 345}
 346
 347/*
 348 * Write status register 1 byte
 349 * Returns negative if error occurred.
 350 */
 351static int write_sr(struct spi_nor *nor, u8 val)
 352{
 353        nor->cmd_buf[0] = val;
 354        return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1);
 355}
 356
 357/*
 358 * Set write enable latch with Write Enable command.
 359 * Returns negative if error occurred.
 360 */
 361static int write_enable(struct spi_nor *nor)
 362{
 363        return nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0);
 364}
 365
 366/*
 367 * Send write disable instruction to the chip.
 368 */
 369static int write_disable(struct spi_nor *nor)
 370{
 371        return nor->write_reg(nor, SPINOR_OP_WRDI, NULL, 0);
 372}
 373
 374static struct spi_nor *mtd_to_spi_nor(struct mtd_info *mtd)
 375{
 376        return mtd->priv;
 377}
 378
 379
 380static u8 spi_nor_convert_opcode(u8 opcode, const u8 table[][2], size_t size)
 381{
 382        size_t i;
 383
 384        for (i = 0; i < size; i++)
 385                if (table[i][0] == opcode)
 386                        return table[i][1];
 387
 388        /* No conversion found, keep input op code. */
 389        return opcode;
 390}
 391
 392static u8 spi_nor_convert_3to4_read(u8 opcode)
 393{
 394        static const u8 spi_nor_3to4_read[][2] = {
 395                { SPINOR_OP_READ,       SPINOR_OP_READ_4B },
 396                { SPINOR_OP_READ_FAST,  SPINOR_OP_READ_FAST_4B },
 397                { SPINOR_OP_READ_1_1_2, SPINOR_OP_READ_1_1_2_4B },
 398                { SPINOR_OP_READ_1_2_2, SPINOR_OP_READ_1_2_2_4B },
 399                { SPINOR_OP_READ_1_1_4, SPINOR_OP_READ_1_1_4_4B },
 400                { SPINOR_OP_READ_1_4_4, SPINOR_OP_READ_1_4_4_4B },
 401
 402                { SPINOR_OP_READ_1_1_1_DTR,     SPINOR_OP_READ_1_1_1_DTR_4B },
 403                { SPINOR_OP_READ_1_2_2_DTR,     SPINOR_OP_READ_1_2_2_DTR_4B },
 404                { SPINOR_OP_READ_1_4_4_DTR,     SPINOR_OP_READ_1_4_4_DTR_4B },
 405        };
 406
 407        return spi_nor_convert_opcode(opcode, spi_nor_3to4_read,
 408                                      ARRAY_SIZE(spi_nor_3to4_read));
 409}
 410
 411static u8 spi_nor_convert_3to4_program(u8 opcode)
 412{
 413        static const u8 spi_nor_3to4_program[][2] = {
 414                { SPINOR_OP_PP,         SPINOR_OP_PP_4B },
 415                { SPINOR_OP_PP_1_1_4,   SPINOR_OP_PP_1_1_4_4B },
 416                { SPINOR_OP_PP_1_4_4,   SPINOR_OP_PP_1_4_4_4B },
 417        };
 418
 419        return spi_nor_convert_opcode(opcode, spi_nor_3to4_program,
 420                                      ARRAY_SIZE(spi_nor_3to4_program));
 421}
 422
 423static u8 spi_nor_convert_3to4_erase(u8 opcode)
 424{
 425        static const u8 spi_nor_3to4_erase[][2] = {
 426                { SPINOR_OP_BE_4K,      SPINOR_OP_BE_4K_4B },
 427                { SPINOR_OP_BE_32K,     SPINOR_OP_BE_32K_4B },
 428                { SPINOR_OP_SE,         SPINOR_OP_SE_4B },
 429        };
 430
 431        return spi_nor_convert_opcode(opcode, spi_nor_3to4_erase,
 432                                      ARRAY_SIZE(spi_nor_3to4_erase));
 433}
 434
 435static void spi_nor_set_4byte_opcodes(struct spi_nor *nor)
 436{
 437        /* Do some manufacturer fixups first */
 438        switch (JEDEC_MFR(nor->info)) {
 439        case SNOR_MFR_SPANSION:
 440                /* No small sector erase for 4-byte command set */
 441                nor->erase_opcode = SPINOR_OP_SE;
 442                nor->mtd.erasesize = nor->info->sector_size;
 443                break;
 444
 445        default:
 446                break;
 447        }
 448
 449        nor->read_opcode = spi_nor_convert_3to4_read(nor->read_opcode);
 450        nor->program_opcode = spi_nor_convert_3to4_program(nor->program_opcode);
 451        nor->erase_opcode = spi_nor_convert_3to4_erase(nor->erase_opcode);
 452
 453        if (!spi_nor_has_uniform_erase(nor)) {
 454                struct spi_nor_erase_map *map = &nor->erase_map;
 455                struct spi_nor_erase_type *erase;
 456                int i;
 457
 458                for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
 459                        erase = &map->erase_type[i];
 460                        erase->opcode =
 461                                spi_nor_convert_3to4_erase(erase->opcode);
 462                }
 463        }
 464}
 465
 466/* Enable/disable 4-byte addressing mode. */
 467static int set_4byte(struct spi_nor *nor, bool enable)
 468{
 469        int status;
 470        bool need_wren = false;
 471        u8 cmd;
 472
 473        switch (JEDEC_MFR(nor->info)) {
 474        case SNOR_MFR_ST:
 475        case SNOR_MFR_MICRON:
 476                /* Some Micron need WREN command; all will accept it */
 477                need_wren = true;
 478                /* fall through */
 479        case SNOR_MFR_MACRONIX:
 480        case SNOR_MFR_WINBOND:
 481                if (need_wren)
 482                        write_enable(nor);
 483
 484                cmd = enable ? SPINOR_OP_EN4B : SPINOR_OP_EX4B;
 485                status = nor->write_reg(nor, cmd, NULL, 0);
 486                if (need_wren)
 487                        write_disable(nor);
 488
 489                if (!status && !enable &&
 490                    JEDEC_MFR(nor->info) == SNOR_MFR_WINBOND) {
 491                        /*
 492                         * On Winbond W25Q256FV, leaving 4byte mode causes
 493                         * the Extended Address Register to be set to 1, so all
 494                         * 3-byte-address reads come from the second 16M.
 495                         * We must clear the register to enable normal behavior.
 496                         */
 497                        write_enable(nor);
 498                        nor->cmd_buf[0] = 0;
 499                        nor->write_reg(nor, SPINOR_OP_WREAR, nor->cmd_buf, 1);
 500                        write_disable(nor);
 501                }
 502
 503                return status;
 504        default:
 505                /* Spansion style */
 506                nor->cmd_buf[0] = enable << 7;
 507                return nor->write_reg(nor, SPINOR_OP_BRWR, nor->cmd_buf, 1);
 508        }
 509}
 510
 511static int s3an_sr_ready(struct spi_nor *nor)
 512{
 513        int ret;
 514        u8 val;
 515
 516        ret = nor->read_reg(nor, SPINOR_OP_XRDSR, &val, 1);
 517        if (ret < 0) {
 518                dev_err(nor->dev, "error %d reading XRDSR\n", (int) ret);
 519                return ret;
 520        }
 521
 522        return !!(val & XSR_RDY);
 523}
 524
 525static int spi_nor_sr_ready(struct spi_nor *nor)
 526{
 527        int sr = read_sr(nor);
 528        if (sr < 0)
 529                return sr;
 530
 531        if (nor->flags & SNOR_F_USE_CLSR && sr & (SR_E_ERR | SR_P_ERR)) {
 532                if (sr & SR_E_ERR)
 533                        dev_err(nor->dev, "Erase Error occurred\n");
 534                else
 535                        dev_err(nor->dev, "Programming Error occurred\n");
 536
 537                nor->write_reg(nor, SPINOR_OP_CLSR, NULL, 0);
 538                return -EIO;
 539        }
 540
 541        return !(sr & SR_WIP);
 542}
 543
 544static int spi_nor_fsr_ready(struct spi_nor *nor)
 545{
 546        int fsr = read_fsr(nor);
 547        if (fsr < 0)
 548                return fsr;
 549
 550        if (fsr & (FSR_E_ERR | FSR_P_ERR)) {
 551                if (fsr & FSR_E_ERR)
 552                        dev_err(nor->dev, "Erase operation failed.\n");
 553                else
 554                        dev_err(nor->dev, "Program operation failed.\n");
 555
 556                if (fsr & FSR_PT_ERR)
 557                        dev_err(nor->dev,
 558                        "Attempted to modify a protected sector.\n");
 559
 560                nor->write_reg(nor, SPINOR_OP_CLFSR, NULL, 0);
 561                return -EIO;
 562        }
 563
 564        return fsr & FSR_READY;
 565}
 566
 567static int spi_nor_ready(struct spi_nor *nor)
 568{
 569        int sr, fsr;
 570
 571        if (nor->flags & SNOR_F_READY_XSR_RDY)
 572                sr = s3an_sr_ready(nor);
 573        else
 574                sr = spi_nor_sr_ready(nor);
 575        if (sr < 0)
 576                return sr;
 577        fsr = nor->flags & SNOR_F_USE_FSR ? spi_nor_fsr_ready(nor) : 1;
 578        if (fsr < 0)
 579                return fsr;
 580        return sr && fsr;
 581}
 582
 583/*
 584 * Service routine to read status register until ready, or timeout occurs.
 585 * Returns non-zero if error.
 586 */
 587static int spi_nor_wait_till_ready_with_timeout(struct spi_nor *nor,
 588                                                unsigned long timeout_jiffies)
 589{
 590        unsigned long deadline;
 591        int timeout = 0, ret;
 592
 593        deadline = jiffies + timeout_jiffies;
 594
 595        while (!timeout) {
 596                if (time_after_eq(jiffies, deadline))
 597                        timeout = 1;
 598
 599                ret = spi_nor_ready(nor);
 600                if (ret < 0)
 601                        return ret;
 602                if (ret)
 603                        return 0;
 604
 605                cond_resched();
 606        }
 607
 608        dev_err(nor->dev, "flash operation timed out\n");
 609
 610        return -ETIMEDOUT;
 611}
 612
 613static int spi_nor_wait_till_ready(struct spi_nor *nor)
 614{
 615        return spi_nor_wait_till_ready_with_timeout(nor,
 616                                                    DEFAULT_READY_WAIT_JIFFIES);
 617}
 618
 619/*
 620 * Erase the whole flash memory
 621 *
 622 * Returns 0 if successful, non-zero otherwise.
 623 */
 624static int erase_chip(struct spi_nor *nor)
 625{
 626        dev_dbg(nor->dev, " %lldKiB\n", (long long)(nor->mtd.size >> 10));
 627
 628        return nor->write_reg(nor, SPINOR_OP_CHIP_ERASE, NULL, 0);
 629}
 630
 631static int spi_nor_lock_and_prep(struct spi_nor *nor, enum spi_nor_ops ops)
 632{
 633        int ret = 0;
 634
 635        mutex_lock(&nor->lock);
 636
 637        if (nor->prepare) {
 638                ret = nor->prepare(nor, ops);
 639                if (ret) {
 640                        dev_err(nor->dev, "failed in the preparation.\n");
 641                        mutex_unlock(&nor->lock);
 642                        return ret;
 643                }
 644        }
 645        return ret;
 646}
 647
 648static void spi_nor_unlock_and_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
 649{
 650        if (nor->unprepare)
 651                nor->unprepare(nor, ops);
 652        mutex_unlock(&nor->lock);
 653}
 654
 655/*
 656 * This code converts an address to the Default Address Mode, that has non
 657 * power of two page sizes. We must support this mode because it is the default
 658 * mode supported by Xilinx tools, it can access the whole flash area and
 659 * changing over to the Power-of-two mode is irreversible and corrupts the
 660 * original data.
 661 * Addr can safely be unsigned int, the biggest S3AN device is smaller than
 662 * 4 MiB.
 663 */
 664static loff_t spi_nor_s3an_addr_convert(struct spi_nor *nor, unsigned int addr)
 665{
 666        unsigned int offset;
 667        unsigned int page;
 668
 669        offset = addr % nor->page_size;
 670        page = addr / nor->page_size;
 671        page <<= (nor->page_size > 512) ? 10 : 9;
 672
 673        return page | offset;
 674}
 675
 676/*
 677 * Initiate the erasure of a single sector
 678 */
 679static int spi_nor_erase_sector(struct spi_nor *nor, u32 addr)
 680{
 681        u8 buf[SPI_NOR_MAX_ADDR_WIDTH];
 682        int i;
 683
 684        if (nor->flags & SNOR_F_S3AN_ADDR_DEFAULT)
 685                addr = spi_nor_s3an_addr_convert(nor, addr);
 686
 687        if (nor->erase)
 688                return nor->erase(nor, addr);
 689
 690        /*
 691         * Default implementation, if driver doesn't have a specialized HW
 692         * control
 693         */
 694        for (i = nor->addr_width - 1; i >= 0; i--) {
 695                buf[i] = addr & 0xff;
 696                addr >>= 8;
 697        }
 698
 699        return nor->write_reg(nor, nor->erase_opcode, buf, nor->addr_width);
 700}
 701
 702/**
 703 * spi_nor_div_by_erase_size() - calculate remainder and update new dividend
 704 * @erase:      pointer to a structure that describes a SPI NOR erase type
 705 * @dividend:   dividend value
 706 * @remainder:  pointer to u32 remainder (will be updated)
 707 *
 708 * Return: the result of the division
 709 */
 710static u64 spi_nor_div_by_erase_size(const struct spi_nor_erase_type *erase,
 711                                     u64 dividend, u32 *remainder)
 712{
 713        /* JEDEC JESD216B Standard imposes erase sizes to be power of 2. */
 714        *remainder = (u32)dividend & erase->size_mask;
 715        return dividend >> erase->size_shift;
 716}
 717
 718/**
 719 * spi_nor_find_best_erase_type() - find the best erase type for the given
 720 *                                  offset in the serial flash memory and the
 721 *                                  number of bytes to erase. The region in
 722 *                                  which the address fits is expected to be
 723 *                                  provided.
 724 * @map:        the erase map of the SPI NOR
 725 * @region:     pointer to a structure that describes a SPI NOR erase region
 726 * @addr:       offset in the serial flash memory
 727 * @len:        number of bytes to erase
 728 *
 729 * Return: a pointer to the best fitted erase type, NULL otherwise.
 730 */
 731static const struct spi_nor_erase_type *
 732spi_nor_find_best_erase_type(const struct spi_nor_erase_map *map,
 733                             const struct spi_nor_erase_region *region,
 734                             u64 addr, u32 len)
 735{
 736        const struct spi_nor_erase_type *erase;
 737        u32 rem;
 738        int i;
 739        u8 erase_mask = region->offset & SNOR_ERASE_TYPE_MASK;
 740
 741        /*
 742         * Erase types are ordered by size, with the biggest erase type at
 743         * index 0.
 744         */
 745        for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
 746                /* Does the erase region support the tested erase type? */
 747                if (!(erase_mask & BIT(i)))
 748                        continue;
 749
 750                erase = &map->erase_type[i];
 751
 752                /* Don't erase more than what the user has asked for. */
 753                if (erase->size > len)
 754                        continue;
 755
 756                /* Alignment is not mandatory for overlaid regions */
 757                if (region->offset & SNOR_OVERLAID_REGION)
 758                        return erase;
 759
 760                spi_nor_div_by_erase_size(erase, addr, &rem);
 761                if (rem)
 762                        continue;
 763                else
 764                        return erase;
 765        }
 766
 767        return NULL;
 768}
 769
 770/**
 771 * spi_nor_region_next() - get the next spi nor region
 772 * @region:     pointer to a structure that describes a SPI NOR erase region
 773 *
 774 * Return: the next spi nor region or NULL if last region.
 775 */
 776static struct spi_nor_erase_region *
 777spi_nor_region_next(struct spi_nor_erase_region *region)
 778{
 779        if (spi_nor_region_is_last(region))
 780                return NULL;
 781        region++;
 782        return region;
 783}
 784
 785/**
 786 * spi_nor_find_erase_region() - find the region of the serial flash memory in
 787 *                               which the offset fits
 788 * @map:        the erase map of the SPI NOR
 789 * @addr:       offset in the serial flash memory
 790 *
 791 * Return: a pointer to the spi_nor_erase_region struct, ERR_PTR(-errno)
 792 *         otherwise.
 793 */
 794static struct spi_nor_erase_region *
 795spi_nor_find_erase_region(const struct spi_nor_erase_map *map, u64 addr)
 796{
 797        struct spi_nor_erase_region *region = map->regions;
 798        u64 region_start = region->offset & ~SNOR_ERASE_FLAGS_MASK;
 799        u64 region_end = region_start + region->size;
 800
 801        while (addr < region_start || addr >= region_end) {
 802                region = spi_nor_region_next(region);
 803                if (!region)
 804                        return ERR_PTR(-EINVAL);
 805
 806                region_start = region->offset & ~SNOR_ERASE_FLAGS_MASK;
 807                region_end = region_start + region->size;
 808        }
 809
 810        return region;
 811}
 812
 813/**
 814 * spi_nor_init_erase_cmd() - initialize an erase command
 815 * @region:     pointer to a structure that describes a SPI NOR erase region
 816 * @erase:      pointer to a structure that describes a SPI NOR erase type
 817 *
 818 * Return: the pointer to the allocated erase command, ERR_PTR(-errno)
 819 *         otherwise.
 820 */
 821static struct spi_nor_erase_command *
 822spi_nor_init_erase_cmd(const struct spi_nor_erase_region *region,
 823                       const struct spi_nor_erase_type *erase)
 824{
 825        struct spi_nor_erase_command *cmd;
 826
 827        cmd = kmalloc(sizeof(*cmd), GFP_KERNEL);
 828        if (!cmd)
 829                return ERR_PTR(-ENOMEM);
 830
 831        INIT_LIST_HEAD(&cmd->list);
 832        cmd->opcode = erase->opcode;
 833        cmd->count = 1;
 834
 835        if (region->offset & SNOR_OVERLAID_REGION)
 836                cmd->size = region->size;
 837        else
 838                cmd->size = erase->size;
 839
 840        return cmd;
 841}
 842
 843/**
 844 * spi_nor_destroy_erase_cmd_list() - destroy erase command list
 845 * @erase_list: list of erase commands
 846 */
 847static void spi_nor_destroy_erase_cmd_list(struct list_head *erase_list)
 848{
 849        struct spi_nor_erase_command *cmd, *next;
 850
 851        list_for_each_entry_safe(cmd, next, erase_list, list) {
 852                list_del(&cmd->list);
 853                kfree(cmd);
 854        }
 855}
 856
 857/**
 858 * spi_nor_init_erase_cmd_list() - initialize erase command list
 859 * @nor:        pointer to a 'struct spi_nor'
 860 * @erase_list: list of erase commands to be executed once we validate that the
 861 *              erase can be performed
 862 * @addr:       offset in the serial flash memory
 863 * @len:        number of bytes to erase
 864 *
 865 * Builds the list of best fitted erase commands and verifies if the erase can
 866 * be performed.
 867 *
 868 * Return: 0 on success, -errno otherwise.
 869 */
 870static int spi_nor_init_erase_cmd_list(struct spi_nor *nor,
 871                                       struct list_head *erase_list,
 872                                       u64 addr, u32 len)
 873{
 874        const struct spi_nor_erase_map *map = &nor->erase_map;
 875        const struct spi_nor_erase_type *erase, *prev_erase = NULL;
 876        struct spi_nor_erase_region *region;
 877        struct spi_nor_erase_command *cmd = NULL;
 878        u64 region_end;
 879        int ret = -EINVAL;
 880
 881        region = spi_nor_find_erase_region(map, addr);
 882        if (IS_ERR(region))
 883                return PTR_ERR(region);
 884
 885        region_end = spi_nor_region_end(region);
 886
 887        while (len) {
 888                erase = spi_nor_find_best_erase_type(map, region, addr, len);
 889                if (!erase)
 890                        goto destroy_erase_cmd_list;
 891
 892                if (prev_erase != erase ||
 893                    region->offset & SNOR_OVERLAID_REGION) {
 894                        cmd = spi_nor_init_erase_cmd(region, erase);
 895                        if (IS_ERR(cmd)) {
 896                                ret = PTR_ERR(cmd);
 897                                goto destroy_erase_cmd_list;
 898                        }
 899
 900                        list_add_tail(&cmd->list, erase_list);
 901                } else {
 902                        cmd->count++;
 903                }
 904
 905                addr += cmd->size;
 906                len -= cmd->size;
 907
 908                if (len && addr >= region_end) {
 909                        region = spi_nor_region_next(region);
 910                        if (!region)
 911                                goto destroy_erase_cmd_list;
 912                        region_end = spi_nor_region_end(region);
 913                }
 914
 915                prev_erase = erase;
 916        }
 917
 918        return 0;
 919
 920destroy_erase_cmd_list:
 921        spi_nor_destroy_erase_cmd_list(erase_list);
 922        return ret;
 923}
 924
 925/**
 926 * spi_nor_erase_multi_sectors() - perform a non-uniform erase
 927 * @nor:        pointer to a 'struct spi_nor'
 928 * @addr:       offset in the serial flash memory
 929 * @len:        number of bytes to erase
 930 *
 931 * Build a list of best fitted erase commands and execute it once we validate
 932 * that the erase can be performed.
 933 *
 934 * Return: 0 on success, -errno otherwise.
 935 */
 936static int spi_nor_erase_multi_sectors(struct spi_nor *nor, u64 addr, u32 len)
 937{
 938        LIST_HEAD(erase_list);
 939        struct spi_nor_erase_command *cmd, *next;
 940        int ret;
 941
 942        ret = spi_nor_init_erase_cmd_list(nor, &erase_list, addr, len);
 943        if (ret)
 944                return ret;
 945
 946        list_for_each_entry_safe(cmd, next, &erase_list, list) {
 947                nor->erase_opcode = cmd->opcode;
 948                while (cmd->count) {
 949                        write_enable(nor);
 950
 951                        ret = spi_nor_erase_sector(nor, addr);
 952                        if (ret)
 953                                goto destroy_erase_cmd_list;
 954
 955                        addr += cmd->size;
 956                        cmd->count--;
 957
 958                        ret = spi_nor_wait_till_ready(nor);
 959                        if (ret)
 960                                goto destroy_erase_cmd_list;
 961                }
 962                list_del(&cmd->list);
 963                kfree(cmd);
 964        }
 965
 966        return 0;
 967
 968destroy_erase_cmd_list:
 969        spi_nor_destroy_erase_cmd_list(&erase_list);
 970        return ret;
 971}
 972
 973/*
 974 * Erase an address range on the nor chip.  The address range may extend
 975 * one or more erase sectors.  Return an error is there is a problem erasing.
 976 */
 977static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr)
 978{
 979        struct spi_nor *nor = mtd_to_spi_nor(mtd);
 980        u32 addr, len;
 981        uint32_t rem;
 982        int ret;
 983
 984        dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr,
 985                        (long long)instr->len);
 986
 987        if (spi_nor_has_uniform_erase(nor)) {
 988                div_u64_rem(instr->len, mtd->erasesize, &rem);
 989                if (rem)
 990                        return -EINVAL;
 991        }
 992
 993        addr = instr->addr;
 994        len = instr->len;
 995
 996        ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_ERASE);
 997        if (ret)
 998                return ret;
 999
1000        /* whole-chip erase? */
1001        if (len == mtd->size && !(nor->flags & SNOR_F_NO_OP_CHIP_ERASE)) {
1002                unsigned long timeout;
1003
1004                write_enable(nor);
1005
1006                if (erase_chip(nor)) {
1007                        ret = -EIO;
1008                        goto erase_err;
1009                }
1010
1011                /*
1012                 * Scale the timeout linearly with the size of the flash, with
1013                 * a minimum calibrated to an old 2MB flash. We could try to
1014                 * pull these from CFI/SFDP, but these values should be good
1015                 * enough for now.
1016                 */
1017                timeout = max(CHIP_ERASE_2MB_READY_WAIT_JIFFIES,
1018                              CHIP_ERASE_2MB_READY_WAIT_JIFFIES *
1019                              (unsigned long)(mtd->size / SZ_2M));
1020                ret = spi_nor_wait_till_ready_with_timeout(nor, timeout);
1021                if (ret)
1022                        goto erase_err;
1023
1024        /* REVISIT in some cases we could speed up erasing large regions
1025         * by using SPINOR_OP_SE instead of SPINOR_OP_BE_4K.  We may have set up
1026         * to use "small sector erase", but that's not always optimal.
1027         */
1028
1029        /* "sector"-at-a-time erase */
1030        } else if (spi_nor_has_uniform_erase(nor)) {
1031                while (len) {
1032                        write_enable(nor);
1033
1034                        ret = spi_nor_erase_sector(nor, addr);
1035                        if (ret)
1036                                goto erase_err;
1037
1038                        addr += mtd->erasesize;
1039                        len -= mtd->erasesize;
1040
1041                        ret = spi_nor_wait_till_ready(nor);
1042                        if (ret)
1043                                goto erase_err;
1044                }
1045
1046        /* erase multiple sectors */
1047        } else {
1048                ret = spi_nor_erase_multi_sectors(nor, addr, len);
1049                if (ret)
1050                        goto erase_err;
1051        }
1052
1053        write_disable(nor);
1054
1055erase_err:
1056        spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_ERASE);
1057
1058        return ret;
1059}
1060
1061/* Write status register and ensure bits in mask match written values */
1062static int write_sr_and_check(struct spi_nor *nor, u8 status_new, u8 mask)
1063{
1064        int ret;
1065
1066        write_enable(nor);
1067        ret = write_sr(nor, status_new);
1068        if (ret)
1069                return ret;
1070
1071        ret = spi_nor_wait_till_ready(nor);
1072        if (ret)
1073                return ret;
1074
1075        ret = read_sr(nor);
1076        if (ret < 0)
1077                return ret;
1078
1079        return ((ret & mask) != (status_new & mask)) ? -EIO : 0;
1080}
1081
1082static void stm_get_locked_range(struct spi_nor *nor, u8 sr, loff_t *ofs,
1083                                 uint64_t *len)
1084{
1085        struct mtd_info *mtd = &nor->mtd;
1086        u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
1087        int shift = ffs(mask) - 1;
1088        int pow;
1089
1090        if (!(sr & mask)) {
1091                /* No protection */
1092                *ofs = 0;
1093                *len = 0;
1094        } else {
1095                pow = ((sr & mask) ^ mask) >> shift;
1096                *len = mtd->size >> pow;
1097                if (nor->flags & SNOR_F_HAS_SR_TB && sr & SR_TB)
1098                        *ofs = 0;
1099                else
1100                        *ofs = mtd->size - *len;
1101        }
1102}
1103
1104/*
1105 * Return 1 if the entire region is locked (if @locked is true) or unlocked (if
1106 * @locked is false); 0 otherwise
1107 */
1108static int stm_check_lock_status_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
1109                                    u8 sr, bool locked)
1110{
1111        loff_t lock_offs;
1112        uint64_t lock_len;
1113
1114        if (!len)
1115                return 1;
1116
1117        stm_get_locked_range(nor, sr, &lock_offs, &lock_len);
1118
1119        if (locked)
1120                /* Requested range is a sub-range of locked range */
1121                return (ofs + len <= lock_offs + lock_len) && (ofs >= lock_offs);
1122        else
1123                /* Requested range does not overlap with locked range */
1124                return (ofs >= lock_offs + lock_len) || (ofs + len <= lock_offs);
1125}
1126
1127static int stm_is_locked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
1128                            u8 sr)
1129{
1130        return stm_check_lock_status_sr(nor, ofs, len, sr, true);
1131}
1132
1133static int stm_is_unlocked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
1134                              u8 sr)
1135{
1136        return stm_check_lock_status_sr(nor, ofs, len, sr, false);
1137}
1138
1139/*
1140 * Lock a region of the flash. Compatible with ST Micro and similar flash.
1141 * Supports the block protection bits BP{0,1,2} in the status register
1142 * (SR). Does not support these features found in newer SR bitfields:
1143 *   - SEC: sector/block protect - only handle SEC=0 (block protect)
1144 *   - CMP: complement protect - only support CMP=0 (range is not complemented)
1145 *
1146 * Support for the following is provided conditionally for some flash:
1147 *   - TB: top/bottom protect
1148 *
1149 * Sample table portion for 8MB flash (Winbond w25q64fw):
1150 *
1151 *   SEC  |  TB   |  BP2  |  BP1  |  BP0  |  Prot Length  | Protected Portion
1152 *  --------------------------------------------------------------------------
1153 *    X   |   X   |   0   |   0   |   0   |  NONE         | NONE
1154 *    0   |   0   |   0   |   0   |   1   |  128 KB       | Upper 1/64
1155 *    0   |   0   |   0   |   1   |   0   |  256 KB       | Upper 1/32
1156 *    0   |   0   |   0   |   1   |   1   |  512 KB       | Upper 1/16
1157 *    0   |   0   |   1   |   0   |   0   |  1 MB         | Upper 1/8
1158 *    0   |   0   |   1   |   0   |   1   |  2 MB         | Upper 1/4
1159 *    0   |   0   |   1   |   1   |   0   |  4 MB         | Upper 1/2
1160 *    X   |   X   |   1   |   1   |   1   |  8 MB         | ALL
1161 *  ------|-------|-------|-------|-------|---------------|-------------------
1162 *    0   |   1   |   0   |   0   |   1   |  128 KB       | Lower 1/64
1163 *    0   |   1   |   0   |   1   |   0   |  256 KB       | Lower 1/32
1164 *    0   |   1   |   0   |   1   |   1   |  512 KB       | Lower 1/16
1165 *    0   |   1   |   1   |   0   |   0   |  1 MB         | Lower 1/8
1166 *    0   |   1   |   1   |   0   |   1   |  2 MB         | Lower 1/4
1167 *    0   |   1   |   1   |   1   |   0   |  4 MB         | Lower 1/2
1168 *
1169 * Returns negative on errors, 0 on success.
1170 */
1171static int stm_lock(struct spi_nor *nor, loff_t ofs, uint64_t len)
1172{
1173        struct mtd_info *mtd = &nor->mtd;
1174        int status_old, status_new;
1175        u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
1176        u8 shift = ffs(mask) - 1, pow, val;
1177        loff_t lock_len;
1178        bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB;
1179        bool use_top;
1180
1181        status_old = read_sr(nor);
1182        if (status_old < 0)
1183                return status_old;
1184
1185        /* If nothing in our range is unlocked, we don't need to do anything */
1186        if (stm_is_locked_sr(nor, ofs, len, status_old))
1187                return 0;
1188
1189        /* If anything below us is unlocked, we can't use 'bottom' protection */
1190        if (!stm_is_locked_sr(nor, 0, ofs, status_old))
1191                can_be_bottom = false;
1192
1193        /* If anything above us is unlocked, we can't use 'top' protection */
1194        if (!stm_is_locked_sr(nor, ofs + len, mtd->size - (ofs + len),
1195                                status_old))
1196                can_be_top = false;
1197
1198        if (!can_be_bottom && !can_be_top)
1199                return -EINVAL;
1200
1201        /* Prefer top, if both are valid */
1202        use_top = can_be_top;
1203
1204        /* lock_len: length of region that should end up locked */
1205        if (use_top)
1206                lock_len = mtd->size - ofs;
1207        else
1208                lock_len = ofs + len;
1209
1210        /*
1211         * Need smallest pow such that:
1212         *
1213         *   1 / (2^pow) <= (len / size)
1214         *
1215         * so (assuming power-of-2 size) we do:
1216         *
1217         *   pow = ceil(log2(size / len)) = log2(size) - floor(log2(len))
1218         */
1219        pow = ilog2(mtd->size) - ilog2(lock_len);
1220        val = mask - (pow << shift);
1221        if (val & ~mask)
1222                return -EINVAL;
1223        /* Don't "lock" with no region! */
1224        if (!(val & mask))
1225                return -EINVAL;
1226
1227        status_new = (status_old & ~mask & ~SR_TB) | val;
1228
1229        /* Disallow further writes if WP pin is asserted */
1230        status_new |= SR_SRWD;
1231
1232        if (!use_top)
1233                status_new |= SR_TB;
1234
1235        /* Don't bother if they're the same */
1236        if (status_new == status_old)
1237                return 0;
1238
1239        /* Only modify protection if it will not unlock other areas */
1240        if ((status_new & mask) < (status_old & mask))
1241                return -EINVAL;
1242
1243        return write_sr_and_check(nor, status_new, mask);
1244}
1245
1246/*
1247 * Unlock a region of the flash. See stm_lock() for more info
1248 *
1249 * Returns negative on errors, 0 on success.
1250 */
1251static int stm_unlock(struct spi_nor *nor, loff_t ofs, uint64_t len)
1252{
1253        struct mtd_info *mtd = &nor->mtd;
1254        int status_old, status_new;
1255        u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
1256        u8 shift = ffs(mask) - 1, pow, val;
1257        loff_t lock_len;
1258        bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB;
1259        bool use_top;
1260
1261        status_old = read_sr(nor);
1262        if (status_old < 0)
1263                return status_old;
1264
1265        /* If nothing in our range is locked, we don't need to do anything */
1266        if (stm_is_unlocked_sr(nor, ofs, len, status_old))
1267                return 0;
1268
1269        /* If anything below us is locked, we can't use 'top' protection */
1270        if (!stm_is_unlocked_sr(nor, 0, ofs, status_old))
1271                can_be_top = false;
1272
1273        /* If anything above us is locked, we can't use 'bottom' protection */
1274        if (!stm_is_unlocked_sr(nor, ofs + len, mtd->size - (ofs + len),
1275                                status_old))
1276                can_be_bottom = false;
1277
1278        if (!can_be_bottom && !can_be_top)
1279                return -EINVAL;
1280
1281        /* Prefer top, if both are valid */
1282        use_top = can_be_top;
1283
1284        /* lock_len: length of region that should remain locked */
1285        if (use_top)
1286                lock_len = mtd->size - (ofs + len);
1287        else
1288                lock_len = ofs;
1289
1290        /*
1291         * Need largest pow such that:
1292         *
1293         *   1 / (2^pow) >= (len / size)
1294         *
1295         * so (assuming power-of-2 size) we do:
1296         *
1297         *   pow = floor(log2(size / len)) = log2(size) - ceil(log2(len))
1298         */
1299        pow = ilog2(mtd->size) - order_base_2(lock_len);
1300        if (lock_len == 0) {
1301                val = 0; /* fully unlocked */
1302        } else {
1303                val = mask - (pow << shift);
1304                /* Some power-of-two sizes are not supported */
1305                if (val & ~mask)
1306                        return -EINVAL;
1307        }
1308
1309        status_new = (status_old & ~mask & ~SR_TB) | val;
1310
1311        /* Don't protect status register if we're fully unlocked */
1312        if (lock_len == 0)
1313                status_new &= ~SR_SRWD;
1314
1315        if (!use_top)
1316                status_new |= SR_TB;
1317
1318        /* Don't bother if they're the same */
1319        if (status_new == status_old)
1320                return 0;
1321
1322        /* Only modify protection if it will not lock other areas */
1323        if ((status_new & mask) > (status_old & mask))
1324                return -EINVAL;
1325
1326        return write_sr_and_check(nor, status_new, mask);
1327}
1328
1329/*
1330 * Check if a region of the flash is (completely) locked. See stm_lock() for
1331 * more info.
1332 *
1333 * Returns 1 if entire region is locked, 0 if any portion is unlocked, and
1334 * negative on errors.
1335 */
1336static int stm_is_locked(struct spi_nor *nor, loff_t ofs, uint64_t len)
1337{
1338        int status;
1339
1340        status = read_sr(nor);
1341        if (status < 0)
1342                return status;
1343
1344        return stm_is_locked_sr(nor, ofs, len, status);
1345}
1346
1347static int spi_nor_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1348{
1349        struct spi_nor *nor = mtd_to_spi_nor(mtd);
1350        int ret;
1351
1352        ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_LOCK);
1353        if (ret)
1354                return ret;
1355
1356        ret = nor->flash_lock(nor, ofs, len);
1357
1358        spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_UNLOCK);
1359        return ret;
1360}
1361
1362static int spi_nor_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1363{
1364        struct spi_nor *nor = mtd_to_spi_nor(mtd);
1365        int ret;
1366
1367        ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_UNLOCK);
1368        if (ret)
1369                return ret;
1370
1371        ret = nor->flash_unlock(nor, ofs, len);
1372
1373        spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_LOCK);
1374        return ret;
1375}
1376
1377static int spi_nor_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1378{
1379        struct spi_nor *nor = mtd_to_spi_nor(mtd);
1380        int ret;
1381
1382        ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_UNLOCK);
1383        if (ret)
1384                return ret;
1385
1386        ret = nor->flash_is_locked(nor, ofs, len);
1387
1388        spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_LOCK);
1389        return ret;
1390}
1391
1392/*
1393 * Write status Register and configuration register with 2 bytes
1394 * The first byte will be written to the status register, while the
1395 * second byte will be written to the configuration register.
1396 * Return negative if error occurred.
1397 */
1398static int write_sr_cr(struct spi_nor *nor, u8 *sr_cr)
1399{
1400        int ret;
1401
1402        write_enable(nor);
1403
1404        ret = nor->write_reg(nor, SPINOR_OP_WRSR, sr_cr, 2);
1405        if (ret < 0) {
1406                dev_err(nor->dev,
1407                        "error while writing configuration register\n");
1408                return -EINVAL;
1409        }
1410
1411        ret = spi_nor_wait_till_ready(nor);
1412        if (ret) {
1413                dev_err(nor->dev,
1414                        "timeout while writing configuration register\n");
1415                return ret;
1416        }
1417
1418        return 0;
1419}
1420
1421/**
1422 * macronix_quad_enable() - set QE bit in Status Register.
1423 * @nor:        pointer to a 'struct spi_nor'
1424 *
1425 * Set the Quad Enable (QE) bit in the Status Register.
1426 *
1427 * bit 6 of the Status Register is the QE bit for Macronix like QSPI memories.
1428 *
1429 * Return: 0 on success, -errno otherwise.
1430 */
1431static int macronix_quad_enable(struct spi_nor *nor)
1432{
1433        int ret, val;
1434
1435        val = read_sr(nor);
1436        if (val < 0)
1437                return val;
1438        if (val & SR_QUAD_EN_MX)
1439                return 0;
1440
1441        write_enable(nor);
1442
1443        write_sr(nor, val | SR_QUAD_EN_MX);
1444
1445        ret = spi_nor_wait_till_ready(nor);
1446        if (ret)
1447                return ret;
1448
1449        ret = read_sr(nor);
1450        if (!(ret > 0 && (ret & SR_QUAD_EN_MX))) {
1451                dev_err(nor->dev, "Macronix Quad bit not set\n");
1452                return -EINVAL;
1453        }
1454
1455        return 0;
1456}
1457
1458/**
1459 * spansion_quad_enable() - set QE bit in Configuraiton Register.
1460 * @nor:        pointer to a 'struct spi_nor'
1461 *
1462 * Set the Quad Enable (QE) bit in the Configuration Register.
1463 * This function is kept for legacy purpose because it has been used for a
1464 * long time without anybody complaining but it should be considered as
1465 * deprecated and maybe buggy.
1466 * First, this function doesn't care about the previous values of the Status
1467 * and Configuration Registers when it sets the QE bit (bit 1) in the
1468 * Configuration Register: all other bits are cleared, which may have unwanted
1469 * side effects like removing some block protections.
1470 * Secondly, it uses the Read Configuration Register (35h) instruction though
1471 * some very old and few memories don't support this instruction. If a pull-up
1472 * resistor is present on the MISO/IO1 line, we might still be able to pass the
1473 * "read back" test because the QSPI memory doesn't recognize the command,
1474 * so leaves the MISO/IO1 line state unchanged, hence read_cr() returns 0xFF.
1475 *
1476 * bit 1 of the Configuration Register is the QE bit for Spansion like QSPI
1477 * memories.
1478 *
1479 * Return: 0 on success, -errno otherwise.
1480 */
1481static int spansion_quad_enable(struct spi_nor *nor)
1482{
1483        u8 sr_cr[2] = {0, CR_QUAD_EN_SPAN};
1484        int ret;
1485
1486        ret = write_sr_cr(nor, sr_cr);
1487        if (ret)
1488                return ret;
1489
1490        /* read back and check it */
1491        ret = read_cr(nor);
1492        if (!(ret > 0 && (ret & CR_QUAD_EN_SPAN))) {
1493                dev_err(nor->dev, "Spansion Quad bit not set\n");
1494                return -EINVAL;
1495        }
1496
1497        return 0;
1498}
1499
1500/**
1501 * spansion_no_read_cr_quad_enable() - set QE bit in Configuration Register.
1502 * @nor:        pointer to a 'struct spi_nor'
1503 *
1504 * Set the Quad Enable (QE) bit in the Configuration Register.
1505 * This function should be used with QSPI memories not supporting the Read
1506 * Configuration Register (35h) instruction.
1507 *
1508 * bit 1 of the Configuration Register is the QE bit for Spansion like QSPI
1509 * memories.
1510 *
1511 * Return: 0 on success, -errno otherwise.
1512 */
1513static int spansion_no_read_cr_quad_enable(struct spi_nor *nor)
1514{
1515        u8 sr_cr[2];
1516        int ret;
1517
1518        /* Keep the current value of the Status Register. */
1519        ret = read_sr(nor);
1520        if (ret < 0) {
1521                dev_err(nor->dev, "error while reading status register\n");
1522                return -EINVAL;
1523        }
1524        sr_cr[0] = ret;
1525        sr_cr[1] = CR_QUAD_EN_SPAN;
1526
1527        return write_sr_cr(nor, sr_cr);
1528}
1529
1530/**
1531 * spansion_read_cr_quad_enable() - set QE bit in Configuration Register.
1532 * @nor:        pointer to a 'struct spi_nor'
1533 *
1534 * Set the Quad Enable (QE) bit in the Configuration Register.
1535 * This function should be used with QSPI memories supporting the Read
1536 * Configuration Register (35h) instruction.
1537 *
1538 * bit 1 of the Configuration Register is the QE bit for Spansion like QSPI
1539 * memories.
1540 *
1541 * Return: 0 on success, -errno otherwise.
1542 */
1543static int spansion_read_cr_quad_enable(struct spi_nor *nor)
1544{
1545        struct device *dev = nor->dev;
1546        u8 sr_cr[2];
1547        int ret;
1548
1549        /* Check current Quad Enable bit value. */
1550        ret = read_cr(nor);
1551        if (ret < 0) {
1552                dev_err(dev, "error while reading configuration register\n");
1553                return -EINVAL;
1554        }
1555
1556        if (ret & CR_QUAD_EN_SPAN)
1557                return 0;
1558
1559        sr_cr[1] = ret | CR_QUAD_EN_SPAN;
1560
1561        /* Keep the current value of the Status Register. */
1562        ret = read_sr(nor);
1563        if (ret < 0) {
1564                dev_err(dev, "error while reading status register\n");
1565                return -EINVAL;
1566        }
1567        sr_cr[0] = ret;
1568
1569        ret = write_sr_cr(nor, sr_cr);
1570        if (ret)
1571                return ret;
1572
1573        /* Read back and check it. */
1574        ret = read_cr(nor);
1575        if (!(ret > 0 && (ret & CR_QUAD_EN_SPAN))) {
1576                dev_err(nor->dev, "Spansion Quad bit not set\n");
1577                return -EINVAL;
1578        }
1579
1580        return 0;
1581}
1582
1583/**
1584 * sr2_bit7_quad_enable() - set QE bit in Status Register 2.
1585 * @nor:        pointer to a 'struct spi_nor'
1586 *
1587 * Set the Quad Enable (QE) bit in the Status Register 2.
1588 *
1589 * This is one of the procedures to set the QE bit described in the SFDP
1590 * (JESD216 rev B) specification but no manufacturer using this procedure has
1591 * been identified yet, hence the name of the function.
1592 *
1593 * Return: 0 on success, -errno otherwise.
1594 */
1595static int sr2_bit7_quad_enable(struct spi_nor *nor)
1596{
1597        u8 sr2;
1598        int ret;
1599
1600        /* Check current Quad Enable bit value. */
1601        ret = nor->read_reg(nor, SPINOR_OP_RDSR2, &sr2, 1);
1602        if (ret)
1603                return ret;
1604        if (sr2 & SR2_QUAD_EN_BIT7)
1605                return 0;
1606
1607        /* Update the Quad Enable bit. */
1608        sr2 |= SR2_QUAD_EN_BIT7;
1609
1610        write_enable(nor);
1611
1612        ret = nor->write_reg(nor, SPINOR_OP_WRSR2, &sr2, 1);
1613        if (ret < 0) {
1614                dev_err(nor->dev, "error while writing status register 2\n");
1615                return -EINVAL;
1616        }
1617
1618        ret = spi_nor_wait_till_ready(nor);
1619        if (ret < 0) {
1620                dev_err(nor->dev, "timeout while writing status register 2\n");
1621                return ret;
1622        }
1623
1624        /* Read back and check it. */
1625        ret = nor->read_reg(nor, SPINOR_OP_RDSR2, &sr2, 1);
1626        if (!(ret > 0 && (sr2 & SR2_QUAD_EN_BIT7))) {
1627                dev_err(nor->dev, "SR2 Quad bit not set\n");
1628                return -EINVAL;
1629        }
1630
1631        return 0;
1632}
1633
1634/* Used when the "_ext_id" is two bytes at most */
1635#define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags)      \
1636                .id = {                                                 \
1637                        ((_jedec_id) >> 16) & 0xff,                     \
1638                        ((_jedec_id) >> 8) & 0xff,                      \
1639                        (_jedec_id) & 0xff,                             \
1640                        ((_ext_id) >> 8) & 0xff,                        \
1641                        (_ext_id) & 0xff,                               \
1642                        },                                              \
1643                .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),       \
1644                .sector_size = (_sector_size),                          \
1645                .n_sectors = (_n_sectors),                              \
1646                .page_size = 256,                                       \
1647                .flags = (_flags),
1648
1649#define INFO6(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags)     \
1650                .id = {                                                 \
1651                        ((_jedec_id) >> 16) & 0xff,                     \
1652                        ((_jedec_id) >> 8) & 0xff,                      \
1653                        (_jedec_id) & 0xff,                             \
1654                        ((_ext_id) >> 16) & 0xff,                       \
1655                        ((_ext_id) >> 8) & 0xff,                        \
1656                        (_ext_id) & 0xff,                               \
1657                        },                                              \
1658                .id_len = 6,                                            \
1659                .sector_size = (_sector_size),                          \
1660                .n_sectors = (_n_sectors),                              \
1661                .page_size = 256,                                       \
1662                .flags = (_flags),
1663
1664#define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width, _flags)   \
1665                .sector_size = (_sector_size),                          \
1666                .n_sectors = (_n_sectors),                              \
1667                .page_size = (_page_size),                              \
1668                .addr_width = (_addr_width),                            \
1669                .flags = (_flags),
1670
1671#define S3AN_INFO(_jedec_id, _n_sectors, _page_size)                    \
1672                .id = {                                                 \
1673                        ((_jedec_id) >> 16) & 0xff,                     \
1674                        ((_jedec_id) >> 8) & 0xff,                      \
1675                        (_jedec_id) & 0xff                              \
1676                        },                                              \
1677                .id_len = 3,                                            \
1678                .sector_size = (8*_page_size),                          \
1679                .n_sectors = (_n_sectors),                              \
1680                .page_size = _page_size,                                \
1681                .addr_width = 3,                                        \
1682                .flags = SPI_NOR_NO_FR | SPI_S3AN,
1683
1684static int
1685mx25l25635_post_bfpt_fixups(struct spi_nor *nor,
1686                            const struct sfdp_parameter_header *bfpt_header,
1687                            const struct sfdp_bfpt *bfpt,
1688                            struct spi_nor_flash_parameter *params)
1689{
1690        /*
1691         * MX25L25635F supports 4B opcodes but MX25L25635E does not.
1692         * Unfortunately, Macronix has re-used the same JEDEC ID for both
1693         * variants which prevents us from defining a new entry in the parts
1694         * table.
1695         * We need a way to differentiate MX25L25635E and MX25L25635F, and it
1696         * seems that the F version advertises support for Fast Read 4-4-4 in
1697         * its BFPT table.
1698         */
1699        if (bfpt->dwords[BFPT_DWORD(5)] & BFPT_DWORD5_FAST_READ_4_4_4)
1700                nor->flags |= SNOR_F_4B_OPCODES;
1701
1702        return 0;
1703}
1704
1705static struct spi_nor_fixups mx25l25635_fixups = {
1706        .post_bfpt = mx25l25635_post_bfpt_fixups,
1707};
1708
1709/* NOTE: double check command sets and memory organization when you add
1710 * more nor chips.  This current list focusses on newer chips, which
1711 * have been converging on command sets which including JEDEC ID.
1712 *
1713 * All newly added entries should describe *hardware* and should use SECT_4K
1714 * (or SECT_4K_PMC) if hardware supports erasing 4 KiB sectors. For usage
1715 * scenarios excluding small sectors there is config option that can be
1716 * disabled: CONFIG_MTD_SPI_NOR_USE_4K_SECTORS.
1717 * For historical (and compatibility) reasons (before we got above config) some
1718 * old entries may be missing 4K flag.
1719 */
1720static const struct flash_info spi_nor_ids[] = {
1721        /* Atmel -- some are (confusingly) marketed as "DataFlash" */
1722        { "at25fs010",  INFO(0x1f6601, 0, 32 * 1024,   4, SECT_4K) },
1723        { "at25fs040",  INFO(0x1f6604, 0, 64 * 1024,   8, SECT_4K) },
1724
1725        { "at25df041a", INFO(0x1f4401, 0, 64 * 1024,   8, SECT_4K) },
1726        { "at25df321",  INFO(0x1f4700, 0, 64 * 1024,  64, SECT_4K) },
1727        { "at25df321a", INFO(0x1f4701, 0, 64 * 1024,  64, SECT_4K) },
1728        { "at25df641",  INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) },
1729
1730        { "at26f004",   INFO(0x1f0400, 0, 64 * 1024,  8, SECT_4K) },
1731        { "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) },
1732        { "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) },
1733        { "at26df321",  INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) },
1734
1735        { "at45db081d", INFO(0x1f2500, 0, 64 * 1024, 16, SECT_4K) },
1736
1737        /* EON -- en25xxx */
1738        { "en25f32",    INFO(0x1c3116, 0, 64 * 1024,   64, SECT_4K) },
1739        { "en25p32",    INFO(0x1c2016, 0, 64 * 1024,   64, 0) },
1740        { "en25q32b",   INFO(0x1c3016, 0, 64 * 1024,   64, 0) },
1741        { "en25p64",    INFO(0x1c2017, 0, 64 * 1024,  128, 0) },
1742        { "en25q64",    INFO(0x1c3017, 0, 64 * 1024,  128, SECT_4K) },
1743        { "en25qh32",   INFO(0x1c7016, 0, 64 * 1024,   64, 0) },
1744        { "en25qh128",  INFO(0x1c7018, 0, 64 * 1024,  256, 0) },
1745        { "en25qh256",  INFO(0x1c7019, 0, 64 * 1024,  512, 0) },
1746        { "en25s64",    INFO(0x1c3817, 0, 64 * 1024,  128, SECT_4K) },
1747
1748        /* ESMT */
1749        { "f25l32pa", INFO(0x8c2016, 0, 64 * 1024, 64, SECT_4K | SPI_NOR_HAS_LOCK) },
1750        { "f25l32qa", INFO(0x8c4116, 0, 64 * 1024, 64, SECT_4K | SPI_NOR_HAS_LOCK) },
1751        { "f25l64qa", INFO(0x8c4117, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_HAS_LOCK) },
1752
1753        /* Everspin */
1754        { "mr25h128", CAT25_INFO( 16 * 1024, 1, 256, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
1755        { "mr25h256", CAT25_INFO( 32 * 1024, 1, 256, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
1756        { "mr25h10",  CAT25_INFO(128 * 1024, 1, 256, 3, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
1757        { "mr25h40",  CAT25_INFO(512 * 1024, 1, 256, 3, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
1758
1759        /* Fujitsu */
1760        { "mb85rs1mt", INFO(0x047f27, 0, 128 * 1024, 1, SPI_NOR_NO_ERASE) },
1761
1762        /* GigaDevice */
1763        {
1764                "gd25q16", INFO(0xc84015, 0, 64 * 1024,  32,
1765                        SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
1766                        SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
1767        },
1768        {
1769                "gd25q32", INFO(0xc84016, 0, 64 * 1024,  64,
1770                        SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
1771                        SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
1772        },
1773        {
1774                "gd25lq32", INFO(0xc86016, 0, 64 * 1024, 64,
1775                        SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
1776                        SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
1777        },
1778        {
1779                "gd25q64", INFO(0xc84017, 0, 64 * 1024, 128,
1780                        SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
1781                        SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
1782        },
1783        {
1784                "gd25lq64c", INFO(0xc86017, 0, 64 * 1024, 128,
1785                        SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
1786                        SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
1787        },
1788        {
1789                "gd25q128", INFO(0xc84018, 0, 64 * 1024, 256,
1790                        SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
1791                        SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
1792        },
1793        {
1794                "gd25q256", INFO(0xc84019, 0, 64 * 1024, 512,
1795                        SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
1796                        SPI_NOR_4B_OPCODES | SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
1797                        .quad_enable = macronix_quad_enable,
1798        },
1799
1800        /* Intel/Numonyx -- xxxs33b */
1801        { "160s33b",  INFO(0x898911, 0, 64 * 1024,  32, 0) },
1802        { "320s33b",  INFO(0x898912, 0, 64 * 1024,  64, 0) },
1803        { "640s33b",  INFO(0x898913, 0, 64 * 1024, 128, 0) },
1804
1805        /* ISSI */
1806        { "is25cd512",  INFO(0x7f9d20, 0, 32 * 1024,   2, SECT_4K) },
1807        { "is25lq040b", INFO(0x9d4013, 0, 64 * 1024,   8,
1808                        SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
1809        { "is25lp016d", INFO(0x9d6015, 0, 64 * 1024,  32,
1810                        SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
1811        { "is25lp080d", INFO(0x9d6014, 0, 64 * 1024,  16,
1812                        SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
1813        { "is25lp032",  INFO(0x9d6016, 0, 64 * 1024,  64,
1814                        SECT_4K | SPI_NOR_DUAL_READ) },
1815        { "is25lp064",  INFO(0x9d6017, 0, 64 * 1024, 128,
1816                        SECT_4K | SPI_NOR_DUAL_READ) },
1817        { "is25lp128",  INFO(0x9d6018, 0, 64 * 1024, 256,
1818                        SECT_4K | SPI_NOR_DUAL_READ) },
1819        { "is25lp256",  INFO(0x9d6019, 0, 64 * 1024, 512,
1820                        SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
1821                        SPI_NOR_4B_OPCODES) },
1822        { "is25wp032",  INFO(0x9d7016, 0, 64 * 1024,  64,
1823                        SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
1824        { "is25wp064",  INFO(0x9d7017, 0, 64 * 1024, 128,
1825                        SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
1826        { "is25wp128",  INFO(0x9d7018, 0, 64 * 1024, 256,
1827                        SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
1828
1829        /* Macronix */
1830        { "mx25l512e",   INFO(0xc22010, 0, 64 * 1024,   1, SECT_4K) },
1831        { "mx25l2005a",  INFO(0xc22012, 0, 64 * 1024,   4, SECT_4K) },
1832        { "mx25l4005a",  INFO(0xc22013, 0, 64 * 1024,   8, SECT_4K) },
1833        { "mx25l8005",   INFO(0xc22014, 0, 64 * 1024,  16, 0) },
1834        { "mx25l1606e",  INFO(0xc22015, 0, 64 * 1024,  32, SECT_4K) },
1835        { "mx25l3205d",  INFO(0xc22016, 0, 64 * 1024,  64, SECT_4K) },
1836        { "mx25l3255e",  INFO(0xc29e16, 0, 64 * 1024,  64, SECT_4K) },
1837        { "mx25l6405d",  INFO(0xc22017, 0, 64 * 1024, 128, SECT_4K) },
1838        { "mx25u2033e",  INFO(0xc22532, 0, 64 * 1024,   4, SECT_4K) },
1839        { "mx25u4035",   INFO(0xc22533, 0, 64 * 1024,   8, SECT_4K) },
1840        { "mx25u8035",   INFO(0xc22534, 0, 64 * 1024,  16, SECT_4K) },
1841        { "mx25u6435f",  INFO(0xc22537, 0, 64 * 1024, 128, SECT_4K) },
1842        { "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
1843        { "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
1844        { "mx25u12835f", INFO(0xc22538, 0, 64 * 1024, 256,
1845                         SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
1846        { "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512,
1847                         SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
1848                         .fixups = &mx25l25635_fixups },
1849        { "mx25u25635f", INFO(0xc22539, 0, 64 * 1024, 512, SECT_4K | SPI_NOR_4B_OPCODES) },
1850        { "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) },
1851        { "mx66l51235l", INFO(0xc2201a, 0, 64 * 1024, 1024, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) },
1852        { "mx66u51235f", INFO(0xc2253a, 0, 64 * 1024, 1024, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) },
1853        { "mx66l1g45g",  INFO(0xc2201b, 0, 64 * 1024, 2048, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
1854        { "mx66l1g55g",  INFO(0xc2261b, 0, 64 * 1024, 2048, SPI_NOR_QUAD_READ) },
1855
1856        /* Micron <--> ST Micro */
1857        { "n25q016a",    INFO(0x20bb15, 0, 64 * 1024,   32, SECT_4K | SPI_NOR_QUAD_READ) },
1858        { "n25q032",     INFO(0x20ba16, 0, 64 * 1024,   64, SPI_NOR_QUAD_READ) },
1859        { "n25q032a",    INFO(0x20bb16, 0, 64 * 1024,   64, SPI_NOR_QUAD_READ) },
1860        { "n25q064",     INFO(0x20ba17, 0, 64 * 1024,  128, SECT_4K | SPI_NOR_QUAD_READ) },
1861        { "n25q064a",    INFO(0x20bb17, 0, 64 * 1024,  128, SECT_4K | SPI_NOR_QUAD_READ) },
1862        { "n25q128a11",  INFO(0x20bb18, 0, 64 * 1024,  256, SECT_4K | SPI_NOR_QUAD_READ) },
1863        { "n25q128a13",  INFO(0x20ba18, 0, 64 * 1024,  256, SECT_4K | SPI_NOR_QUAD_READ) },
1864        { "n25q256a",    INFO(0x20ba19, 0, 64 * 1024,  512, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
1865        { "n25q256ax1",  INFO(0x20bb19, 0, 64 * 1024,  512, SECT_4K | SPI_NOR_QUAD_READ) },
1866        { "n25q512a",    INFO(0x20bb20, 0, 64 * 1024, 1024, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
1867        { "n25q512ax3",  INFO(0x20ba20, 0, 64 * 1024, 1024, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
1868        { "n25q00",      INFO(0x20ba21, 0, 64 * 1024, 2048, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ | NO_CHIP_ERASE) },
1869        { "n25q00a",     INFO(0x20bb21, 0, 64 * 1024, 2048, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ | NO_CHIP_ERASE) },
1870        { "mt25qu02g",   INFO(0x20bb22, 0, 64 * 1024, 4096, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ | NO_CHIP_ERASE) },
1871
1872        /* Micron */
1873        {
1874                "mt35xu512aba", INFO(0x2c5b1a, 0, 128 * 1024, 512,
1875                        SECT_4K | USE_FSR | SPI_NOR_4B_OPCODES)
1876        },
1877
1878        /* PMC */
1879        { "pm25lv512",   INFO(0,        0, 32 * 1024,    2, SECT_4K_PMC) },
1880        { "pm25lv010",   INFO(0,        0, 32 * 1024,    4, SECT_4K_PMC) },
1881        { "pm25lq032",   INFO(0x7f9d46, 0, 64 * 1024,   64, SECT_4K) },
1882
1883        /* Spansion/Cypress -- single (large) sector size only, at least
1884         * for the chips listed here (without boot sectors).
1885         */
1886        { "s25sl032p",  INFO(0x010215, 0x4d00,  64 * 1024,  64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
1887        { "s25sl064p",  INFO(0x010216, 0x4d00,  64 * 1024, 128, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
1888        { "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, USE_CLSR) },
1889        { "s25fl256s1", INFO(0x010219, 0x4d01,  64 * 1024, 512, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | USE_CLSR) },
1890        { "s25fl512s",  INFO(0x010220, 0x4d00, 256 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | USE_CLSR) },
1891        { "s70fl01gs",  INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) },
1892        { "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024,  64, 0) },
1893        { "s25sl12801", INFO(0x012018, 0x0301,  64 * 1024, 256, 0) },
1894        { "s25fl128s",  INFO6(0x012018, 0x4d0180, 64 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | USE_CLSR) },
1895        { "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024,  64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | USE_CLSR) },
1896        { "s25fl129p1", INFO(0x012018, 0x4d01,  64 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | USE_CLSR) },
1897        { "s25sl004a",  INFO(0x010212,      0,  64 * 1024,   8, 0) },
1898        { "s25sl008a",  INFO(0x010213,      0,  64 * 1024,  16, 0) },
1899        { "s25sl016a",  INFO(0x010214,      0,  64 * 1024,  32, 0) },
1900        { "s25sl032a",  INFO(0x010215,      0,  64 * 1024,  64, 0) },
1901        { "s25sl064a",  INFO(0x010216,      0,  64 * 1024, 128, 0) },
1902        { "s25fl004k",  INFO(0xef4013,      0,  64 * 1024,   8, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
1903        { "s25fl008k",  INFO(0xef4014,      0,  64 * 1024,  16, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
1904        { "s25fl016k",  INFO(0xef4015,      0,  64 * 1024,  32, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
1905        { "s25fl064k",  INFO(0xef4017,      0,  64 * 1024, 128, SECT_4K) },
1906        { "s25fl116k",  INFO(0x014015,      0,  64 * 1024,  32, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
1907        { "s25fl132k",  INFO(0x014016,      0,  64 * 1024,  64, SECT_4K) },
1908        { "s25fl164k",  INFO(0x014017,      0,  64 * 1024, 128, SECT_4K) },
1909        { "s25fl204k",  INFO(0x014013,      0,  64 * 1024,   8, SECT_4K | SPI_NOR_DUAL_READ) },
1910        { "s25fl208k",  INFO(0x014014,      0,  64 * 1024,  16, SECT_4K | SPI_NOR_DUAL_READ) },
1911        { "s25fl064l",  INFO(0x016017,      0,  64 * 1024, 128, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) },
1912        { "s25fl128l",  INFO(0x016018,      0,  64 * 1024, 256, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) },
1913        { "s25fl256l",  INFO(0x016019,      0,  64 * 1024, 512, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) },
1914
1915        /* SST -- large erase sizes are "overlays", "sectors" are 4K */
1916        { "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024,  8, SECT_4K | SST_WRITE) },
1917        { "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
1918        { "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K | SST_WRITE) },
1919        { "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K | SST_WRITE) },
1920        { "sst25vf064c", INFO(0xbf254b, 0, 64 * 1024, 128, SECT_4K) },
1921        { "sst25wf512",  INFO(0xbf2501, 0, 64 * 1024,  1, SECT_4K | SST_WRITE) },
1922        { "sst25wf010",  INFO(0xbf2502, 0, 64 * 1024,  2, SECT_4K | SST_WRITE) },
1923        { "sst25wf020",  INFO(0xbf2503, 0, 64 * 1024,  4, SECT_4K | SST_WRITE) },
1924        { "sst25wf020a", INFO(0x621612, 0, 64 * 1024,  4, SECT_4K) },
1925        { "sst25wf040b", INFO(0x621613, 0, 64 * 1024,  8, SECT_4K) },
1926        { "sst25wf040",  INFO(0xbf2504, 0, 64 * 1024,  8, SECT_4K | SST_WRITE) },
1927        { "sst25wf080",  INFO(0xbf2505, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
1928        { "sst26vf064b", INFO(0xbf2643, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
1929
1930        /* ST Microelectronics -- newer production may have feature updates */
1931        { "m25p05",  INFO(0x202010,  0,  32 * 1024,   2, 0) },
1932        { "m25p10",  INFO(0x202011,  0,  32 * 1024,   4, 0) },
1933        { "m25p20",  INFO(0x202012,  0,  64 * 1024,   4, 0) },
1934        { "m25p40",  INFO(0x202013,  0,  64 * 1024,   8, 0) },
1935        { "m25p80",  INFO(0x202014,  0,  64 * 1024,  16, 0) },
1936        { "m25p16",  INFO(0x202015,  0,  64 * 1024,  32, 0) },
1937        { "m25p32",  INFO(0x202016,  0,  64 * 1024,  64, 0) },
1938        { "m25p64",  INFO(0x202017,  0,  64 * 1024, 128, 0) },
1939        { "m25p128", INFO(0x202018,  0, 256 * 1024,  64, 0) },
1940
1941        { "m25p05-nonjedec",  INFO(0, 0,  32 * 1024,   2, 0) },
1942        { "m25p10-nonjedec",  INFO(0, 0,  32 * 1024,   4, 0) },
1943        { "m25p20-nonjedec",  INFO(0, 0,  64 * 1024,   4, 0) },
1944        { "m25p40-nonjedec",  INFO(0, 0,  64 * 1024,   8, 0) },
1945        { "m25p80-nonjedec",  INFO(0, 0,  64 * 1024,  16, 0) },
1946        { "m25p16-nonjedec",  INFO(0, 0,  64 * 1024,  32, 0) },
1947        { "m25p32-nonjedec",  INFO(0, 0,  64 * 1024,  64, 0) },
1948        { "m25p64-nonjedec",  INFO(0, 0,  64 * 1024, 128, 0) },
1949        { "m25p128-nonjedec", INFO(0, 0, 256 * 1024,  64, 0) },
1950
1951        { "m45pe10", INFO(0x204011,  0, 64 * 1024,    2, 0) },
1952        { "m45pe80", INFO(0x204014,  0, 64 * 1024,   16, 0) },
1953        { "m45pe16", INFO(0x204015,  0, 64 * 1024,   32, 0) },
1954
1955        { "m25pe20", INFO(0x208012,  0, 64 * 1024,  4,       0) },
1956        { "m25pe80", INFO(0x208014,  0, 64 * 1024, 16,       0) },
1957        { "m25pe16", INFO(0x208015,  0, 64 * 1024, 32, SECT_4K) },
1958
1959        { "m25px16",    INFO(0x207115,  0, 64 * 1024, 32, SECT_4K) },
1960        { "m25px32",    INFO(0x207116,  0, 64 * 1024, 64, SECT_4K) },
1961        { "m25px32-s0", INFO(0x207316,  0, 64 * 1024, 64, SECT_4K) },
1962        { "m25px32-s1", INFO(0x206316,  0, 64 * 1024, 64, SECT_4K) },
1963        { "m25px64",    INFO(0x207117,  0, 64 * 1024, 128, 0) },
1964        { "m25px80",    INFO(0x207114,  0, 64 * 1024, 16, 0) },
1965
1966        /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
1967        { "w25x05", INFO(0xef3010, 0, 64 * 1024,  1,  SECT_4K) },
1968        { "w25x10", INFO(0xef3011, 0, 64 * 1024,  2,  SECT_4K) },
1969        { "w25x20", INFO(0xef3012, 0, 64 * 1024,  4,  SECT_4K) },
1970        { "w25x40", INFO(0xef3013, 0, 64 * 1024,  8,  SECT_4K) },
1971        { "w25x80", INFO(0xef3014, 0, 64 * 1024,  16, SECT_4K) },
1972        { "w25x16", INFO(0xef3015, 0, 64 * 1024,  32, SECT_4K) },
1973        {
1974                "w25q16dw", INFO(0xef6015, 0, 64 * 1024,  32,
1975                        SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
1976                        SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
1977        },
1978        { "w25x32", INFO(0xef3016, 0, 64 * 1024,  64, SECT_4K) },
1979        { "w25q20cl", INFO(0xef4012, 0, 64 * 1024,  4, SECT_4K) },
1980        { "w25q20bw", INFO(0xef5012, 0, 64 * 1024,  4, SECT_4K) },
1981        { "w25q20ew", INFO(0xef6012, 0, 64 * 1024,  4, SECT_4K) },
1982        { "w25q32", INFO(0xef4016, 0, 64 * 1024,  64, SECT_4K) },
1983        {
1984                "w25q32dw", INFO(0xef6016, 0, 64 * 1024,  64,
1985                        SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
1986                        SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
1987        },
1988        {
1989                "w25q32jv", INFO(0xef7016, 0, 64 * 1024,  64,
1990                        SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
1991                        SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
1992        },
1993        { "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) },
1994        { "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
1995        {
1996                "w25q64dw", INFO(0xef6017, 0, 64 * 1024, 128,
1997                        SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
1998                        SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
1999        },
2000        {
2001                "w25q128fw", INFO(0xef6018, 0, 64 * 1024, 256,
2002                        SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
2003                        SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
2004        },
2005        {
2006                "w25q128jv", INFO(0xef7018, 0, 64 * 1024, 256,
2007                        SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
2008                        SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
2009        },
2010        { "w25q80", INFO(0xef5014, 0, 64 * 1024,  16, SECT_4K) },
2011        { "w25q80bl", INFO(0xef4014, 0, 64 * 1024,  16, SECT_4K) },
2012        { "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) },
2013        { "w25q256", INFO(0xef4019, 0, 64 * 1024, 512, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2014        { "w25m512jv", INFO(0xef7119, 0, 64 * 1024, 1024,
2015                        SECT_4K | SPI_NOR_QUAD_READ | SPI_NOR_DUAL_READ) },
2016
2017        /* Catalyst / On Semiconductor -- non-JEDEC */
2018        { "cat25c11", CAT25_INFO(  16, 8, 16, 1, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
2019        { "cat25c03", CAT25_INFO(  32, 8, 16, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
2020        { "cat25c09", CAT25_INFO( 128, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
2021        { "cat25c17", CAT25_INFO( 256, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
2022        { "cat25128", CAT25_INFO(2048, 8, 64, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
2023
2024        /* Xilinx S3AN Internal Flash */
2025        { "3S50AN", S3AN_INFO(0x1f2200, 64, 264) },
2026        { "3S200AN", S3AN_INFO(0x1f2400, 256, 264) },
2027        { "3S400AN", S3AN_INFO(0x1f2400, 256, 264) },
2028        { "3S700AN", S3AN_INFO(0x1f2500, 512, 264) },
2029        { "3S1400AN", S3AN_INFO(0x1f2600, 512, 528) },
2030
2031        /* XMC (Wuhan Xinxin Semiconductor Manufacturing Corp.) */
2032        { "XM25QH64A", INFO(0x207017, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2033        { "XM25QH128A", INFO(0x207018, 0, 64 * 1024, 256, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2034        { },
2035};
2036
2037static const struct flash_info *spi_nor_read_id(struct spi_nor *nor)
2038{
2039        int                     tmp;
2040        u8                      id[SPI_NOR_MAX_ID_LEN];
2041        const struct flash_info *info;
2042
2043        tmp = nor->read_reg(nor, SPINOR_OP_RDID, id, SPI_NOR_MAX_ID_LEN);
2044        if (tmp < 0) {
2045                dev_dbg(nor->dev, "error %d reading JEDEC ID\n", tmp);
2046                return ERR_PTR(tmp);
2047        }
2048
2049        for (tmp = 0; tmp < ARRAY_SIZE(spi_nor_ids) - 1; tmp++) {
2050                info = &spi_nor_ids[tmp];
2051                if (info->id_len) {
2052                        if (!memcmp(info->id, id, info->id_len))
2053                                return &spi_nor_ids[tmp];
2054                }
2055        }
2056        dev_err(nor->dev, "unrecognized JEDEC id bytes: %02x, %02x, %02x\n",
2057                id[0], id[1], id[2]);
2058        return ERR_PTR(-ENODEV);
2059}
2060
2061static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len,
2062                        size_t *retlen, u_char *buf)
2063{
2064        struct spi_nor *nor = mtd_to_spi_nor(mtd);
2065        int ret;
2066
2067        dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len);
2068
2069        ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_READ);
2070        if (ret)
2071                return ret;
2072
2073        while (len) {
2074                loff_t addr = from;
2075
2076                if (nor->flags & SNOR_F_S3AN_ADDR_DEFAULT)
2077                        addr = spi_nor_s3an_addr_convert(nor, addr);
2078
2079                ret = nor->read(nor, addr, len, buf);
2080                if (ret == 0) {
2081                        /* We shouldn't see 0-length reads */
2082                        ret = -EIO;
2083                        goto read_err;
2084                }
2085                if (ret < 0)
2086                        goto read_err;
2087
2088                WARN_ON(ret > len);
2089                *retlen += ret;
2090                buf += ret;
2091                from += ret;
2092                len -= ret;
2093        }
2094        ret = 0;
2095
2096read_err:
2097        spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_READ);
2098        return ret;
2099}
2100
2101static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
2102                size_t *retlen, const u_char *buf)
2103{
2104        struct spi_nor *nor = mtd_to_spi_nor(mtd);
2105        size_t actual;
2106        int ret;
2107
2108        dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
2109
2110        ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE);
2111        if (ret)
2112                return ret;
2113
2114        write_enable(nor);
2115
2116        nor->sst_write_second = false;
2117
2118        actual = to % 2;
2119        /* Start write from odd address. */
2120        if (actual) {
2121                nor->program_opcode = SPINOR_OP_BP;
2122
2123                /* write one byte. */
2124                ret = nor->write(nor, to, 1, buf);
2125                if (ret < 0)
2126                        goto sst_write_err;
2127                WARN(ret != 1, "While writing 1 byte written %i bytes\n",
2128                     (int)ret);
2129                ret = spi_nor_wait_till_ready(nor);
2130                if (ret)
2131                        goto sst_write_err;
2132        }
2133        to += actual;
2134
2135        /* Write out most of the data here. */
2136        for (; actual < len - 1; actual += 2) {
2137                nor->program_opcode = SPINOR_OP_AAI_WP;
2138
2139                /* write two bytes. */
2140                ret = nor->write(nor, to, 2, buf + actual);
2141                if (ret < 0)
2142                        goto sst_write_err;
2143                WARN(ret != 2, "While writing 2 bytes written %i bytes\n",
2144                     (int)ret);
2145                ret = spi_nor_wait_till_ready(nor);
2146                if (ret)
2147                        goto sst_write_err;
2148                to += 2;
2149                nor->sst_write_second = true;
2150        }
2151        nor->sst_write_second = false;
2152
2153        write_disable(nor);
2154        ret = spi_nor_wait_till_ready(nor);
2155        if (ret)
2156                goto sst_write_err;
2157
2158        /* Write out trailing byte if it exists. */
2159        if (actual != len) {
2160                write_enable(nor);
2161
2162                nor->program_opcode = SPINOR_OP_BP;
2163                ret = nor->write(nor, to, 1, buf + actual);
2164                if (ret < 0)
2165                        goto sst_write_err;
2166                WARN(ret != 1, "While writing 1 byte written %i bytes\n",
2167                     (int)ret);
2168                ret = spi_nor_wait_till_ready(nor);
2169                if (ret)
2170                        goto sst_write_err;
2171                write_disable(nor);
2172                actual += 1;
2173        }
2174sst_write_err:
2175        *retlen += actual;
2176        spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE);
2177        return ret;
2178}
2179
2180/*
2181 * Write an address range to the nor chip.  Data must be written in
2182 * FLASH_PAGESIZE chunks.  The address range may be any size provided
2183 * it is within the physical boundaries.
2184 */
2185static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len,
2186        size_t *retlen, const u_char *buf)
2187{
2188        struct spi_nor *nor = mtd_to_spi_nor(mtd);
2189        size_t page_offset, page_remain, i;
2190        ssize_t ret;
2191
2192        dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
2193
2194        ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE);
2195        if (ret)
2196                return ret;
2197
2198        for (i = 0; i < len; ) {
2199                ssize_t written;
2200                loff_t addr = to + i;
2201
2202                /*
2203                 * If page_size is a power of two, the offset can be quickly
2204                 * calculated with an AND operation. On the other cases we
2205                 * need to do a modulus operation (more expensive).
2206                 * Power of two numbers have only one bit set and we can use
2207                 * the instruction hweight32 to detect if we need to do a
2208                 * modulus (do_div()) or not.
2209                 */
2210                if (hweight32(nor->page_size) == 1) {
2211                        page_offset = addr & (nor->page_size - 1);
2212                } else {
2213                        uint64_t aux = addr;
2214
2215                        page_offset = do_div(aux, nor->page_size);
2216                }
2217                /* the size of data remaining on the first page */
2218                page_remain = min_t(size_t,
2219                                    nor->page_size - page_offset, len - i);
2220
2221                if (nor->flags & SNOR_F_S3AN_ADDR_DEFAULT)
2222                        addr = spi_nor_s3an_addr_convert(nor, addr);
2223
2224                write_enable(nor);
2225                ret = nor->write(nor, addr, page_remain, buf + i);
2226                if (ret < 0)
2227                        goto write_err;
2228                written = ret;
2229
2230                ret = spi_nor_wait_till_ready(nor);
2231                if (ret)
2232                        goto write_err;
2233                *retlen += written;
2234                i += written;
2235        }
2236
2237write_err:
2238        spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE);
2239        return ret;
2240}
2241
2242static int spi_nor_check(struct spi_nor *nor)
2243{
2244        if (!nor->dev || !nor->read || !nor->write ||
2245                !nor->read_reg || !nor->write_reg) {
2246                pr_err("spi-nor: please fill all the necessary fields!\n");
2247                return -EINVAL;
2248        }
2249
2250        return 0;
2251}
2252
2253static int s3an_nor_scan(struct spi_nor *nor)
2254{
2255        int ret;
2256        u8 val;
2257
2258        ret = nor->read_reg(nor, SPINOR_OP_XRDSR, &val, 1);
2259        if (ret < 0) {
2260                dev_err(nor->dev, "error %d reading XRDSR\n", (int) ret);
2261                return ret;
2262        }
2263
2264        nor->erase_opcode = SPINOR_OP_XSE;
2265        nor->program_opcode = SPINOR_OP_XPP;
2266        nor->read_opcode = SPINOR_OP_READ;
2267        nor->flags |= SNOR_F_NO_OP_CHIP_ERASE;
2268
2269        /*
2270         * This flashes have a page size of 264 or 528 bytes (known as
2271         * Default addressing mode). It can be changed to a more standard
2272         * Power of two mode where the page size is 256/512. This comes
2273         * with a price: there is 3% less of space, the data is corrupted
2274         * and the page size cannot be changed back to default addressing
2275         * mode.
2276         *
2277         * The current addressing mode can be read from the XRDSR register
2278         * and should not be changed, because is a destructive operation.
2279         */
2280        if (val & XSR_PAGESIZE) {
2281                /* Flash in Power of 2 mode */
2282                nor->page_size = (nor->page_size == 264) ? 256 : 512;
2283                nor->mtd.writebufsize = nor->page_size;
2284                nor->mtd.size = 8 * nor->page_size * nor->info->n_sectors;
2285                nor->mtd.erasesize = 8 * nor->page_size;
2286        } else {
2287                /* Flash in Default addressing mode */
2288                nor->flags |= SNOR_F_S3AN_ADDR_DEFAULT;
2289        }
2290
2291        return 0;
2292}
2293
2294static void
2295spi_nor_set_read_settings(struct spi_nor_read_command *read,
2296                          u8 num_mode_clocks,
2297                          u8 num_wait_states,
2298                          u8 opcode,
2299                          enum spi_nor_protocol proto)
2300{
2301        read->num_mode_clocks = num_mode_clocks;
2302        read->num_wait_states = num_wait_states;
2303        read->opcode = opcode;
2304        read->proto = proto;
2305}
2306
2307static void
2308spi_nor_set_pp_settings(struct spi_nor_pp_command *pp,
2309                        u8 opcode,
2310                        enum spi_nor_protocol proto)
2311{
2312        pp->opcode = opcode;
2313        pp->proto = proto;
2314}
2315
2316static int spi_nor_hwcaps2cmd(u32 hwcaps, const int table[][2], size_t size)
2317{
2318        size_t i;
2319
2320        for (i = 0; i < size; i++)
2321                if (table[i][0] == (int)hwcaps)
2322                        return table[i][1];
2323
2324        return -EINVAL;
2325}
2326
2327static int spi_nor_hwcaps_read2cmd(u32 hwcaps)
2328{
2329        static const int hwcaps_read2cmd[][2] = {
2330                { SNOR_HWCAPS_READ,             SNOR_CMD_READ },
2331                { SNOR_HWCAPS_READ_FAST,        SNOR_CMD_READ_FAST },
2332                { SNOR_HWCAPS_READ_1_1_1_DTR,   SNOR_CMD_READ_1_1_1_DTR },
2333                { SNOR_HWCAPS_READ_1_1_2,       SNOR_CMD_READ_1_1_2 },
2334                { SNOR_HWCAPS_READ_1_2_2,       SNOR_CMD_READ_1_2_2 },
2335                { SNOR_HWCAPS_READ_2_2_2,       SNOR_CMD_READ_2_2_2 },
2336                { SNOR_HWCAPS_READ_1_2_2_DTR,   SNOR_CMD_READ_1_2_2_DTR },
2337                { SNOR_HWCAPS_READ_1_1_4,       SNOR_CMD_READ_1_1_4 },
2338                { SNOR_HWCAPS_READ_1_4_4,       SNOR_CMD_READ_1_4_4 },
2339                { SNOR_HWCAPS_READ_4_4_4,       SNOR_CMD_READ_4_4_4 },
2340                { SNOR_HWCAPS_READ_1_4_4_DTR,   SNOR_CMD_READ_1_4_4_DTR },
2341                { SNOR_HWCAPS_READ_1_1_8,       SNOR_CMD_READ_1_1_8 },
2342                { SNOR_HWCAPS_READ_1_8_8,       SNOR_CMD_READ_1_8_8 },
2343                { SNOR_HWCAPS_READ_8_8_8,       SNOR_CMD_READ_8_8_8 },
2344                { SNOR_HWCAPS_READ_1_8_8_DTR,   SNOR_CMD_READ_1_8_8_DTR },
2345        };
2346
2347        return spi_nor_hwcaps2cmd(hwcaps, hwcaps_read2cmd,
2348                                  ARRAY_SIZE(hwcaps_read2cmd));
2349}
2350
2351static int spi_nor_hwcaps_pp2cmd(u32 hwcaps)
2352{
2353        static const int hwcaps_pp2cmd[][2] = {
2354                { SNOR_HWCAPS_PP,               SNOR_CMD_PP },
2355                { SNOR_HWCAPS_PP_1_1_4,         SNOR_CMD_PP_1_1_4 },
2356                { SNOR_HWCAPS_PP_1_4_4,         SNOR_CMD_PP_1_4_4 },
2357                { SNOR_HWCAPS_PP_4_4_4,         SNOR_CMD_PP_4_4_4 },
2358                { SNOR_HWCAPS_PP_1_1_8,         SNOR_CMD_PP_1_1_8 },
2359                { SNOR_HWCAPS_PP_1_8_8,         SNOR_CMD_PP_1_8_8 },
2360                { SNOR_HWCAPS_PP_8_8_8,         SNOR_CMD_PP_8_8_8 },
2361        };
2362
2363        return spi_nor_hwcaps2cmd(hwcaps, hwcaps_pp2cmd,
2364                                  ARRAY_SIZE(hwcaps_pp2cmd));
2365}
2366
2367/*
2368 * Serial Flash Discoverable Parameters (SFDP) parsing.
2369 */
2370
2371/**
2372 * spi_nor_read_raw() - raw read of serial flash memory. read_opcode,
2373 *                      addr_width and read_dummy members of the struct spi_nor
2374 *                      should be previously
2375 * set.
2376 * @nor:        pointer to a 'struct spi_nor'
2377 * @addr:       offset in the serial flash memory
2378 * @len:        number of bytes to read
2379 * @buf:        buffer where the data is copied into (dma-safe memory)
2380 *
2381 * Return: 0 on success, -errno otherwise.
2382 */
2383static int spi_nor_read_raw(struct spi_nor *nor, u32 addr, size_t len, u8 *buf)
2384{
2385        int ret;
2386
2387        while (len) {
2388                ret = nor->read(nor, addr, len, buf);
2389                if (!ret || ret > len)
2390                        return -EIO;
2391                if (ret < 0)
2392                        return ret;
2393
2394                buf += ret;
2395                addr += ret;
2396                len -= ret;
2397        }
2398        return 0;
2399}
2400
2401/**
2402 * spi_nor_read_sfdp() - read Serial Flash Discoverable Parameters.
2403 * @nor:        pointer to a 'struct spi_nor'
2404 * @addr:       offset in the SFDP area to start reading data from
2405 * @len:        number of bytes to read
2406 * @buf:        buffer where the SFDP data are copied into (dma-safe memory)
2407 *
2408 * Whatever the actual numbers of bytes for address and dummy cycles are
2409 * for (Fast) Read commands, the Read SFDP (5Ah) instruction is always
2410 * followed by a 3-byte address and 8 dummy clock cycles.
2411 *
2412 * Return: 0 on success, -errno otherwise.
2413 */
2414static int spi_nor_read_sfdp(struct spi_nor *nor, u32 addr,
2415                             size_t len, void *buf)
2416{
2417        u8 addr_width, read_opcode, read_dummy;
2418        int ret;
2419
2420        read_opcode = nor->read_opcode;
2421        addr_width = nor->addr_width;
2422        read_dummy = nor->read_dummy;
2423
2424        nor->read_opcode = SPINOR_OP_RDSFDP;
2425        nor->addr_width = 3;
2426        nor->read_dummy = 8;
2427
2428        ret = spi_nor_read_raw(nor, addr, len, buf);
2429
2430        nor->read_opcode = read_opcode;
2431        nor->addr_width = addr_width;
2432        nor->read_dummy = read_dummy;
2433
2434        return ret;
2435}
2436
2437/**
2438 * spi_nor_read_sfdp_dma_unsafe() - read Serial Flash Discoverable Parameters.
2439 * @nor:        pointer to a 'struct spi_nor'
2440 * @addr:       offset in the SFDP area to start reading data from
2441 * @len:        number of bytes to read
2442 * @buf:        buffer where the SFDP data are copied into
2443 *
2444 * Wrap spi_nor_read_sfdp() using a kmalloc'ed bounce buffer as @buf is now not
2445 * guaranteed to be dma-safe.
2446 *
2447 * Return: -ENOMEM if kmalloc() fails, the return code of spi_nor_read_sfdp()
2448 *          otherwise.
2449 */
2450static int spi_nor_read_sfdp_dma_unsafe(struct spi_nor *nor, u32 addr,
2451                                        size_t len, void *buf)
2452{
2453        void *dma_safe_buf;
2454        int ret;
2455
2456        dma_safe_buf = kmalloc(len, GFP_KERNEL);
2457        if (!dma_safe_buf)
2458                return -ENOMEM;
2459
2460        ret = spi_nor_read_sfdp(nor, addr, len, dma_safe_buf);
2461        memcpy(buf, dma_safe_buf, len);
2462        kfree(dma_safe_buf);
2463
2464        return ret;
2465}
2466
2467/* Fast Read settings. */
2468
2469static void
2470spi_nor_set_read_settings_from_bfpt(struct spi_nor_read_command *read,
2471                                    u16 half,
2472                                    enum spi_nor_protocol proto)
2473{
2474        read->num_mode_clocks = (half >> 5) & 0x07;
2475        read->num_wait_states = (half >> 0) & 0x1f;
2476        read->opcode = (half >> 8) & 0xff;
2477        read->proto = proto;
2478}
2479
2480struct sfdp_bfpt_read {
2481        /* The Fast Read x-y-z hardware capability in params->hwcaps.mask. */
2482        u32                     hwcaps;
2483
2484        /*
2485         * The <supported_bit> bit in <supported_dword> BFPT DWORD tells us
2486         * whether the Fast Read x-y-z command is supported.
2487         */
2488        u32                     supported_dword;
2489        u32                     supported_bit;
2490
2491        /*
2492         * The half-word at offset <setting_shift> in <setting_dword> BFPT DWORD
2493         * encodes the op code, the number of mode clocks and the number of wait
2494         * states to be used by Fast Read x-y-z command.
2495         */
2496        u32                     settings_dword;
2497        u32                     settings_shift;
2498
2499        /* The SPI protocol for this Fast Read x-y-z command. */
2500        enum spi_nor_protocol   proto;
2501};
2502
2503static const struct sfdp_bfpt_read sfdp_bfpt_reads[] = {
2504        /* Fast Read 1-1-2 */
2505        {
2506                SNOR_HWCAPS_READ_1_1_2,
2507                BFPT_DWORD(1), BIT(16), /* Supported bit */
2508                BFPT_DWORD(4), 0,       /* Settings */
2509                SNOR_PROTO_1_1_2,
2510        },
2511
2512        /* Fast Read 1-2-2 */
2513        {
2514                SNOR_HWCAPS_READ_1_2_2,
2515                BFPT_DWORD(1), BIT(20), /* Supported bit */
2516                BFPT_DWORD(4), 16,      /* Settings */
2517                SNOR_PROTO_1_2_2,
2518        },
2519
2520        /* Fast Read 2-2-2 */
2521        {
2522                SNOR_HWCAPS_READ_2_2_2,
2523                BFPT_DWORD(5),  BIT(0), /* Supported bit */
2524                BFPT_DWORD(6), 16,      /* Settings */
2525                SNOR_PROTO_2_2_2,
2526        },
2527
2528        /* Fast Read 1-1-4 */
2529        {
2530                SNOR_HWCAPS_READ_1_1_4,
2531                BFPT_DWORD(1), BIT(22), /* Supported bit */
2532                BFPT_DWORD(3), 16,      /* Settings */
2533                SNOR_PROTO_1_1_4,
2534        },
2535
2536        /* Fast Read 1-4-4 */
2537        {
2538                SNOR_HWCAPS_READ_1_4_4,
2539                BFPT_DWORD(1), BIT(21), /* Supported bit */
2540                BFPT_DWORD(3), 0,       /* Settings */
2541                SNOR_PROTO_1_4_4,
2542        },
2543
2544        /* Fast Read 4-4-4 */
2545        {
2546                SNOR_HWCAPS_READ_4_4_4,
2547                BFPT_DWORD(5), BIT(4),  /* Supported bit */
2548                BFPT_DWORD(7), 16,      /* Settings */
2549                SNOR_PROTO_4_4_4,
2550        },
2551};
2552
2553struct sfdp_bfpt_erase {
2554        /*
2555         * The half-word at offset <shift> in DWORD <dwoard> encodes the
2556         * op code and erase sector size to be used by Sector Erase commands.
2557         */
2558        u32                     dword;
2559        u32                     shift;
2560};
2561
2562static const struct sfdp_bfpt_erase sfdp_bfpt_erases[] = {
2563        /* Erase Type 1 in DWORD8 bits[15:0] */
2564        {BFPT_DWORD(8), 0},
2565
2566        /* Erase Type 2 in DWORD8 bits[31:16] */
2567        {BFPT_DWORD(8), 16},
2568
2569        /* Erase Type 3 in DWORD9 bits[15:0] */
2570        {BFPT_DWORD(9), 0},
2571
2572        /* Erase Type 4 in DWORD9 bits[31:16] */
2573        {BFPT_DWORD(9), 16},
2574};
2575
2576/**
2577 * spi_nor_set_erase_type() - set a SPI NOR erase type
2578 * @erase:      pointer to a structure that describes a SPI NOR erase type
2579 * @size:       the size of the sector/block erased by the erase type
2580 * @opcode:     the SPI command op code to erase the sector/block
2581 */
2582static void spi_nor_set_erase_type(struct spi_nor_erase_type *erase,
2583                                   u32 size, u8 opcode)
2584{
2585        erase->size = size;
2586        erase->opcode = opcode;
2587        /* JEDEC JESD216B Standard imposes erase sizes to be power of 2. */
2588        erase->size_shift = ffs(erase->size) - 1;
2589        erase->size_mask = (1 << erase->size_shift) - 1;
2590}
2591
2592/**
2593 * spi_nor_set_erase_settings_from_bfpt() - set erase type settings from BFPT
2594 * @erase:      pointer to a structure that describes a SPI NOR erase type
2595 * @size:       the size of the sector/block erased by the erase type
2596 * @opcode:     the SPI command op code to erase the sector/block
2597 * @i:          erase type index as sorted in the Basic Flash Parameter Table
2598 *
2599 * The supported Erase Types will be sorted at init in ascending order, with
2600 * the smallest Erase Type size being the first member in the erase_type array
2601 * of the spi_nor_erase_map structure. Save the Erase Type index as sorted in
2602 * the Basic Flash Parameter Table since it will be used later on to
2603 * synchronize with the supported Erase Types defined in SFDP optional tables.
2604 */
2605static void
2606spi_nor_set_erase_settings_from_bfpt(struct spi_nor_erase_type *erase,
2607                                     u32 size, u8 opcode, u8 i)
2608{
2609        erase->idx = i;
2610        spi_nor_set_erase_type(erase, size, opcode);
2611}
2612
2613/**
2614 * spi_nor_map_cmp_erase_type() - compare the map's erase types by size
2615 * @l:  member in the left half of the map's erase_type array
2616 * @r:  member in the right half of the map's erase_type array
2617 *
2618 * Comparison function used in the sort() call to sort in ascending order the
2619 * map's erase types, the smallest erase type size being the first member in the
2620 * sorted erase_type array.
2621 *
2622 * Return: the result of @l->size - @r->size
2623 */
2624static int spi_nor_map_cmp_erase_type(const void *l, const void *r)
2625{
2626        const struct spi_nor_erase_type *left = l, *right = r;
2627
2628        return left->size - right->size;
2629}
2630
2631/**
2632 * spi_nor_sort_erase_mask() - sort erase mask
2633 * @map:        the erase map of the SPI NOR
2634 * @erase_mask: the erase type mask to be sorted
2635 *
2636 * Replicate the sort done for the map's erase types in BFPT: sort the erase
2637 * mask in ascending order with the smallest erase type size starting from
2638 * BIT(0) in the sorted erase mask.
2639 *
2640 * Return: sorted erase mask.
2641 */
2642static u8 spi_nor_sort_erase_mask(struct spi_nor_erase_map *map, u8 erase_mask)
2643{
2644        struct spi_nor_erase_type *erase_type = map->erase_type;
2645        int i;
2646        u8 sorted_erase_mask = 0;
2647
2648        if (!erase_mask)
2649                return 0;
2650
2651        /* Replicate the sort done for the map's erase types. */
2652        for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++)
2653                if (erase_type[i].size && erase_mask & BIT(erase_type[i].idx))
2654                        sorted_erase_mask |= BIT(i);
2655
2656        return sorted_erase_mask;
2657}
2658
2659/**
2660 * spi_nor_regions_sort_erase_types() - sort erase types in each region
2661 * @map:        the erase map of the SPI NOR
2662 *
2663 * Function assumes that the erase types defined in the erase map are already
2664 * sorted in ascending order, with the smallest erase type size being the first
2665 * member in the erase_type array. It replicates the sort done for the map's
2666 * erase types. Each region's erase bitmask will indicate which erase types are
2667 * supported from the sorted erase types defined in the erase map.
2668 * Sort the all region's erase type at init in order to speed up the process of
2669 * finding the best erase command at runtime.
2670 */
2671static void spi_nor_regions_sort_erase_types(struct spi_nor_erase_map *map)
2672{
2673        struct spi_nor_erase_region *region = map->regions;
2674        u8 region_erase_mask, sorted_erase_mask;
2675
2676        while (region) {
2677                region_erase_mask = region->offset & SNOR_ERASE_TYPE_MASK;
2678
2679                sorted_erase_mask = spi_nor_sort_erase_mask(map,
2680                                                            region_erase_mask);
2681
2682                /* Overwrite erase mask. */
2683                region->offset = (region->offset & ~SNOR_ERASE_TYPE_MASK) |
2684                                 sorted_erase_mask;
2685
2686                region = spi_nor_region_next(region);
2687        }
2688}
2689
2690/**
2691 * spi_nor_init_uniform_erase_map() - Initialize uniform erase map
2692 * @map:                the erase map of the SPI NOR
2693 * @erase_mask:         bitmask encoding erase types that can erase the entire
2694 *                      flash memory
2695 * @flash_size:         the spi nor flash memory size
2696 */
2697static void spi_nor_init_uniform_erase_map(struct spi_nor_erase_map *map,
2698                                           u8 erase_mask, u64 flash_size)
2699{
2700        /* Offset 0 with erase_mask and SNOR_LAST_REGION bit set */
2701        map->uniform_region.offset = (erase_mask & SNOR_ERASE_TYPE_MASK) |
2702                                     SNOR_LAST_REGION;
2703        map->uniform_region.size = flash_size;
2704        map->regions = &map->uniform_region;
2705        map->uniform_erase_type = erase_mask;
2706}
2707
2708static int
2709spi_nor_post_bfpt_fixups(struct spi_nor *nor,
2710                         const struct sfdp_parameter_header *bfpt_header,
2711                         const struct sfdp_bfpt *bfpt,
2712                         struct spi_nor_flash_parameter *params)
2713{
2714        if (nor->info->fixups && nor->info->fixups->post_bfpt)
2715                return nor->info->fixups->post_bfpt(nor, bfpt_header, bfpt,
2716                                                    params);
2717
2718        return 0;
2719}
2720
2721/**
2722 * spi_nor_parse_bfpt() - read and parse the Basic Flash Parameter Table.
2723 * @nor:                pointer to a 'struct spi_nor'
2724 * @bfpt_header:        pointer to the 'struct sfdp_parameter_header' describing
2725 *                      the Basic Flash Parameter Table length and version
2726 * @params:             pointer to the 'struct spi_nor_flash_parameter' to be
2727 *                      filled
2728 *
2729 * The Basic Flash Parameter Table is the main and only mandatory table as
2730 * defined by the SFDP (JESD216) specification.
2731 * It provides us with the total size (memory density) of the data array and
2732 * the number of address bytes for Fast Read, Page Program and Sector Erase
2733 * commands.
2734 * For Fast READ commands, it also gives the number of mode clock cycles and
2735 * wait states (regrouped in the number of dummy clock cycles) for each
2736 * supported instruction op code.
2737 * For Page Program, the page size is now available since JESD216 rev A, however
2738 * the supported instruction op codes are still not provided.
2739 * For Sector Erase commands, this table stores the supported instruction op
2740 * codes and the associated sector sizes.
2741 * Finally, the Quad Enable Requirements (QER) are also available since JESD216
2742 * rev A. The QER bits encode the manufacturer dependent procedure to be
2743 * executed to set the Quad Enable (QE) bit in some internal register of the
2744 * Quad SPI memory. Indeed the QE bit, when it exists, must be set before
2745 * sending any Quad SPI command to the memory. Actually, setting the QE bit
2746 * tells the memory to reassign its WP# and HOLD#/RESET# pins to functions IO2
2747 * and IO3 hence enabling 4 (Quad) I/O lines.
2748 *
2749 * Return: 0 on success, -errno otherwise.
2750 */
2751static int spi_nor_parse_bfpt(struct spi_nor *nor,
2752                              const struct sfdp_parameter_header *bfpt_header,
2753                              struct spi_nor_flash_parameter *params)
2754{
2755        struct spi_nor_erase_map *map = &nor->erase_map;
2756        struct spi_nor_erase_type *erase_type = map->erase_type;
2757        struct sfdp_bfpt bfpt;
2758        size_t len;
2759        int i, cmd, err;
2760        u32 addr;
2761        u16 half;
2762        u8 erase_mask;
2763
2764        /* JESD216 Basic Flash Parameter Table length is at least 9 DWORDs. */
2765        if (bfpt_header->length < BFPT_DWORD_MAX_JESD216)
2766                return -EINVAL;
2767
2768        /* Read the Basic Flash Parameter Table. */
2769        len = min_t(size_t, sizeof(bfpt),
2770                    bfpt_header->length * sizeof(u32));
2771        addr = SFDP_PARAM_HEADER_PTP(bfpt_header);
2772        memset(&bfpt, 0, sizeof(bfpt));
2773        err = spi_nor_read_sfdp_dma_unsafe(nor,  addr, len, &bfpt);
2774        if (err < 0)
2775                return err;
2776
2777        /* Fix endianness of the BFPT DWORDs. */
2778        for (i = 0; i < BFPT_DWORD_MAX; i++)
2779                bfpt.dwords[i] = le32_to_cpu(bfpt.dwords[i]);
2780
2781        /* Number of address bytes. */
2782        switch (bfpt.dwords[BFPT_DWORD(1)] & BFPT_DWORD1_ADDRESS_BYTES_MASK) {
2783        case BFPT_DWORD1_ADDRESS_BYTES_3_ONLY:
2784                nor->addr_width = 3;
2785                break;
2786
2787        case BFPT_DWORD1_ADDRESS_BYTES_4_ONLY:
2788                nor->addr_width = 4;
2789                break;
2790
2791        default:
2792                break;
2793        }
2794
2795        /* Flash Memory Density (in bits). */
2796        params->size = bfpt.dwords[BFPT_DWORD(2)];
2797        if (params->size & BIT(31)) {
2798                params->size &= ~BIT(31);
2799
2800                /*
2801                 * Prevent overflows on params->size. Anyway, a NOR of 2^64
2802                 * bits is unlikely to exist so this error probably means
2803                 * the BFPT we are reading is corrupted/wrong.
2804                 */
2805                if (params->size > 63)
2806                        return -EINVAL;
2807
2808                params->size = 1ULL << params->size;
2809        } else {
2810                params->size++;
2811        }
2812        params->size >>= 3; /* Convert to bytes. */
2813
2814        /* Fast Read settings. */
2815        for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_reads); i++) {
2816                const struct sfdp_bfpt_read *rd = &sfdp_bfpt_reads[i];
2817                struct spi_nor_read_command *read;
2818
2819                if (!(bfpt.dwords[rd->supported_dword] & rd->supported_bit)) {
2820                        params->hwcaps.mask &= ~rd->hwcaps;
2821                        continue;
2822                }
2823
2824                params->hwcaps.mask |= rd->hwcaps;
2825                cmd = spi_nor_hwcaps_read2cmd(rd->hwcaps);
2826                read = &params->reads[cmd];
2827                half = bfpt.dwords[rd->settings_dword] >> rd->settings_shift;
2828                spi_nor_set_read_settings_from_bfpt(read, half, rd->proto);
2829        }
2830
2831        /*
2832         * Sector Erase settings. Reinitialize the uniform erase map using the
2833         * Erase Types defined in the bfpt table.
2834         */
2835        erase_mask = 0;
2836        memset(&nor->erase_map, 0, sizeof(nor->erase_map));
2837        for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_erases); i++) {
2838                const struct sfdp_bfpt_erase *er = &sfdp_bfpt_erases[i];
2839                u32 erasesize;
2840                u8 opcode;
2841
2842                half = bfpt.dwords[er->dword] >> er->shift;
2843                erasesize = half & 0xff;
2844
2845                /* erasesize == 0 means this Erase Type is not supported. */
2846                if (!erasesize)
2847                        continue;
2848
2849                erasesize = 1U << erasesize;
2850                opcode = (half >> 8) & 0xff;
2851                erase_mask |= BIT(i);
2852                spi_nor_set_erase_settings_from_bfpt(&erase_type[i], erasesize,
2853                                                     opcode, i);
2854        }
2855        spi_nor_init_uniform_erase_map(map, erase_mask, params->size);
2856        /*
2857         * Sort all the map's Erase Types in ascending order with the smallest
2858         * erase size being the first member in the erase_type array.
2859         */
2860        sort(erase_type, SNOR_ERASE_TYPE_MAX, sizeof(erase_type[0]),
2861             spi_nor_map_cmp_erase_type, NULL);
2862        /*
2863         * Sort the erase types in the uniform region in order to update the
2864         * uniform_erase_type bitmask. The bitmask will be used later on when
2865         * selecting the uniform erase.
2866         */
2867        spi_nor_regions_sort_erase_types(map);
2868        map->uniform_erase_type = map->uniform_region.offset &
2869                                  SNOR_ERASE_TYPE_MASK;
2870
2871        /* Stop here if not JESD216 rev A or later. */
2872        if (bfpt_header->length < BFPT_DWORD_MAX)
2873                return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt,
2874                                                params);
2875
2876        /* Page size: this field specifies 'N' so the page size = 2^N bytes. */
2877        params->page_size = bfpt.dwords[BFPT_DWORD(11)];
2878        params->page_size &= BFPT_DWORD11_PAGE_SIZE_MASK;
2879        params->page_size >>= BFPT_DWORD11_PAGE_SIZE_SHIFT;
2880        params->page_size = 1U << params->page_size;
2881
2882        /* Quad Enable Requirements. */
2883        switch (bfpt.dwords[BFPT_DWORD(15)] & BFPT_DWORD15_QER_MASK) {
2884        case BFPT_DWORD15_QER_NONE:
2885                params->quad_enable = NULL;
2886                break;
2887
2888        case BFPT_DWORD15_QER_SR2_BIT1_BUGGY:
2889        case BFPT_DWORD15_QER_SR2_BIT1_NO_RD:
2890                params->quad_enable = spansion_no_read_cr_quad_enable;
2891                break;
2892
2893        case BFPT_DWORD15_QER_SR1_BIT6:
2894                params->quad_enable = macronix_quad_enable;
2895                break;
2896
2897        case BFPT_DWORD15_QER_SR2_BIT7:
2898                params->quad_enable = sr2_bit7_quad_enable;
2899                break;
2900
2901        case BFPT_DWORD15_QER_SR2_BIT1:
2902                params->quad_enable = spansion_read_cr_quad_enable;
2903                break;
2904
2905        default:
2906                return -EINVAL;
2907        }
2908
2909        return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt, params);
2910}
2911
2912#define SMPT_CMD_ADDRESS_LEN_MASK               GENMASK(23, 22)
2913#define SMPT_CMD_ADDRESS_LEN_0                  (0x0UL << 22)
2914#define SMPT_CMD_ADDRESS_LEN_3                  (0x1UL << 22)
2915#define SMPT_CMD_ADDRESS_LEN_4                  (0x2UL << 22)
2916#define SMPT_CMD_ADDRESS_LEN_USE_CURRENT        (0x3UL << 22)
2917
2918#define SMPT_CMD_READ_DUMMY_MASK                GENMASK(19, 16)
2919#define SMPT_CMD_READ_DUMMY_SHIFT               16
2920#define SMPT_CMD_READ_DUMMY(_cmd) \
2921        (((_cmd) & SMPT_CMD_READ_DUMMY_MASK) >> SMPT_CMD_READ_DUMMY_SHIFT)
2922#define SMPT_CMD_READ_DUMMY_IS_VARIABLE         0xfUL
2923
2924#define SMPT_CMD_READ_DATA_MASK                 GENMASK(31, 24)
2925#define SMPT_CMD_READ_DATA_SHIFT                24
2926#define SMPT_CMD_READ_DATA(_cmd) \
2927        (((_cmd) & SMPT_CMD_READ_DATA_MASK) >> SMPT_CMD_READ_DATA_SHIFT)
2928
2929#define SMPT_CMD_OPCODE_MASK                    GENMASK(15, 8)
2930#define SMPT_CMD_OPCODE_SHIFT                   8
2931#define SMPT_CMD_OPCODE(_cmd) \
2932        (((_cmd) & SMPT_CMD_OPCODE_MASK) >> SMPT_CMD_OPCODE_SHIFT)
2933
2934#define SMPT_MAP_REGION_COUNT_MASK              GENMASK(23, 16)
2935#define SMPT_MAP_REGION_COUNT_SHIFT             16
2936#define SMPT_MAP_REGION_COUNT(_header) \
2937        ((((_header) & SMPT_MAP_REGION_COUNT_MASK) >> \
2938          SMPT_MAP_REGION_COUNT_SHIFT) + 1)
2939
2940#define SMPT_MAP_ID_MASK                        GENMASK(15, 8)
2941#define SMPT_MAP_ID_SHIFT                       8
2942#define SMPT_MAP_ID(_header) \
2943        (((_header) & SMPT_MAP_ID_MASK) >> SMPT_MAP_ID_SHIFT)
2944
2945#define SMPT_MAP_REGION_SIZE_MASK               GENMASK(31, 8)
2946#define SMPT_MAP_REGION_SIZE_SHIFT              8
2947#define SMPT_MAP_REGION_SIZE(_region) \
2948        (((((_region) & SMPT_MAP_REGION_SIZE_MASK) >> \
2949           SMPT_MAP_REGION_SIZE_SHIFT) + 1) * 256)
2950
2951#define SMPT_MAP_REGION_ERASE_TYPE_MASK         GENMASK(3, 0)
2952#define SMPT_MAP_REGION_ERASE_TYPE(_region) \
2953        ((_region) & SMPT_MAP_REGION_ERASE_TYPE_MASK)
2954
2955#define SMPT_DESC_TYPE_MAP                      BIT(1)
2956#define SMPT_DESC_END                           BIT(0)
2957
2958/**
2959 * spi_nor_smpt_addr_width() - return the address width used in the
2960 *                             configuration detection command.
2961 * @nor:        pointer to a 'struct spi_nor'
2962 * @settings:   configuration detection command descriptor, dword1
2963 */
2964static u8 spi_nor_smpt_addr_width(const struct spi_nor *nor, const u32 settings)
2965{
2966        switch (settings & SMPT_CMD_ADDRESS_LEN_MASK) {
2967        case SMPT_CMD_ADDRESS_LEN_0:
2968                return 0;
2969        case SMPT_CMD_ADDRESS_LEN_3:
2970                return 3;
2971        case SMPT_CMD_ADDRESS_LEN_4:
2972                return 4;
2973        case SMPT_CMD_ADDRESS_LEN_USE_CURRENT:
2974                /* fall through */
2975        default:
2976                return nor->addr_width;
2977        }
2978}
2979
2980/**
2981 * spi_nor_smpt_read_dummy() - return the configuration detection command read
2982 *                             latency, in clock cycles.
2983 * @nor:        pointer to a 'struct spi_nor'
2984 * @settings:   configuration detection command descriptor, dword1
2985 *
2986 * Return: the number of dummy cycles for an SMPT read
2987 */
2988static u8 spi_nor_smpt_read_dummy(const struct spi_nor *nor, const u32 settings)
2989{
2990        u8 read_dummy = SMPT_CMD_READ_DUMMY(settings);
2991
2992        if (read_dummy == SMPT_CMD_READ_DUMMY_IS_VARIABLE)
2993                return nor->read_dummy;
2994        return read_dummy;
2995}
2996
2997/**
2998 * spi_nor_get_map_in_use() - get the configuration map in use
2999 * @nor:        pointer to a 'struct spi_nor'
3000 * @smpt:       pointer to the sector map parameter table
3001 * @smpt_len:   sector map parameter table length
3002 *
3003 * Return: pointer to the map in use, ERR_PTR(-errno) otherwise.
3004 */
3005static const u32 *spi_nor_get_map_in_use(struct spi_nor *nor, const u32 *smpt,
3006                                         u8 smpt_len)
3007{
3008        const u32 *ret;
3009        u8 *buf;
3010        u32 addr;
3011        int err;
3012        u8 i;
3013        u8 addr_width, read_opcode, read_dummy;
3014        u8 read_data_mask, map_id;
3015
3016        /* Use a kmalloc'ed bounce buffer to guarantee it is DMA-able. */
3017        buf = kmalloc(sizeof(*buf), GFP_KERNEL);
3018        if (!buf)
3019                return ERR_PTR(-ENOMEM);
3020
3021        addr_width = nor->addr_width;
3022        read_dummy = nor->read_dummy;
3023        read_opcode = nor->read_opcode;
3024
3025        map_id = 0;
3026        /* Determine if there are any optional Detection Command Descriptors */
3027        for (i = 0; i < smpt_len; i += 2) {
3028                if (smpt[i] & SMPT_DESC_TYPE_MAP)
3029                        break;
3030
3031                read_data_mask = SMPT_CMD_READ_DATA(smpt[i]);
3032                nor->addr_width = spi_nor_smpt_addr_width(nor, smpt[i]);
3033                nor->read_dummy = spi_nor_smpt_read_dummy(nor, smpt[i]);
3034                nor->read_opcode = SMPT_CMD_OPCODE(smpt[i]);
3035                addr = smpt[i + 1];
3036
3037                err = spi_nor_read_raw(nor, addr, 1, buf);
3038                if (err) {
3039                        ret = ERR_PTR(err);
3040                        goto out;
3041                }
3042
3043                /*
3044                 * Build an index value that is used to select the Sector Map
3045                 * Configuration that is currently in use.
3046                 */
3047                map_id = map_id << 1 | !!(*buf & read_data_mask);
3048        }
3049
3050        /*
3051         * If command descriptors are provided, they always precede map
3052         * descriptors in the table. There is no need to start the iteration
3053         * over smpt array all over again.
3054         *
3055         * Find the matching configuration map.
3056         */
3057        ret = ERR_PTR(-EINVAL);
3058        while (i < smpt_len) {
3059                if (SMPT_MAP_ID(smpt[i]) == map_id) {
3060                        ret = smpt + i;
3061                        break;
3062                }
3063
3064                /*
3065                 * If there are no more configuration map descriptors and no
3066                 * configuration ID matched the configuration identifier, the
3067                 * sector address map is unknown.
3068                 */
3069                if (smpt[i] & SMPT_DESC_END)
3070                        break;
3071
3072                /* increment the table index to the next map */
3073                i += SMPT_MAP_REGION_COUNT(smpt[i]) + 1;
3074        }
3075
3076        /* fall through */
3077out:
3078        kfree(buf);
3079        nor->addr_width = addr_width;
3080        nor->read_dummy = read_dummy;
3081        nor->read_opcode = read_opcode;
3082        return ret;
3083}
3084
3085/**
3086 * spi_nor_region_check_overlay() - set overlay bit when the region is overlaid
3087 * @region:     pointer to a structure that describes a SPI NOR erase region
3088 * @erase:      pointer to a structure that describes a SPI NOR erase type
3089 * @erase_type: erase type bitmask
3090 */
3091static void
3092spi_nor_region_check_overlay(struct spi_nor_erase_region *region,
3093                             const struct spi_nor_erase_type *erase,
3094                             const u8 erase_type)
3095{
3096        int i;
3097
3098        for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
3099                if (!(erase_type & BIT(i)))
3100                        continue;
3101                if (region->size & erase[i].size_mask) {
3102                        spi_nor_region_mark_overlay(region);
3103                        return;
3104                }
3105        }
3106}
3107
3108/**
3109 * spi_nor_init_non_uniform_erase_map() - initialize the non-uniform erase map
3110 * @nor:        pointer to a 'struct spi_nor'
3111 * @smpt:       pointer to the sector map parameter table
3112 *
3113 * Return: 0 on success, -errno otherwise.
3114 */
3115static int spi_nor_init_non_uniform_erase_map(struct spi_nor *nor,
3116                                              const u32 *smpt)
3117{
3118        struct spi_nor_erase_map *map = &nor->erase_map;
3119        struct spi_nor_erase_type *erase = map->erase_type;
3120        struct spi_nor_erase_region *region;
3121        u64 offset;
3122        u32 region_count;
3123        int i, j;
3124        u8 uniform_erase_type, save_uniform_erase_type;
3125        u8 erase_type, regions_erase_type;
3126
3127        region_count = SMPT_MAP_REGION_COUNT(*smpt);
3128        /*
3129         * The regions will be freed when the driver detaches from the
3130         * device.
3131         */
3132        region = devm_kcalloc(nor->dev, region_count, sizeof(*region),
3133                              GFP_KERNEL);
3134        if (!region)
3135                return -ENOMEM;
3136        map->regions = region;
3137
3138        uniform_erase_type = 0xff;
3139        regions_erase_type = 0;
3140        offset = 0;
3141        /* Populate regions. */
3142        for (i = 0; i < region_count; i++) {
3143                j = i + 1; /* index for the region dword */
3144                region[i].size = SMPT_MAP_REGION_SIZE(smpt[j]);
3145                erase_type = SMPT_MAP_REGION_ERASE_TYPE(smpt[j]);
3146                region[i].offset = offset | erase_type;
3147
3148                spi_nor_region_check_overlay(&region[i], erase, erase_type);
3149
3150                /*
3151                 * Save the erase types that are supported in all regions and
3152                 * can erase the entire flash memory.
3153                 */
3154                uniform_erase_type &= erase_type;
3155
3156                /*
3157                 * regions_erase_type mask will indicate all the erase types
3158                 * supported in this configuration map.
3159                 */
3160                regions_erase_type |= erase_type;
3161
3162                offset = (region[i].offset & ~SNOR_ERASE_FLAGS_MASK) +
3163                         region[i].size;
3164        }
3165
3166        save_uniform_erase_type = map->uniform_erase_type;
3167        map->uniform_erase_type = spi_nor_sort_erase_mask(map,
3168                                                          uniform_erase_type);
3169
3170        if (!regions_erase_type) {
3171                /*
3172                 * Roll back to the previous uniform_erase_type mask, SMPT is
3173                 * broken.
3174                 */
3175                map->uniform_erase_type = save_uniform_erase_type;
3176                return -EINVAL;
3177        }
3178
3179        /*
3180         * BFPT advertises all the erase types supported by all the possible
3181         * map configurations. Mask out the erase types that are not supported
3182         * by the current map configuration.
3183         */
3184        for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++)
3185                if (!(regions_erase_type & BIT(erase[i].idx)))
3186                        spi_nor_set_erase_type(&erase[i], 0, 0xFF);
3187
3188        spi_nor_region_mark_end(&region[i - 1]);
3189
3190        return 0;
3191}
3192
3193/**
3194 * spi_nor_parse_smpt() - parse Sector Map Parameter Table
3195 * @nor:                pointer to a 'struct spi_nor'
3196 * @smpt_header:        sector map parameter table header
3197 *
3198 * This table is optional, but when available, we parse it to identify the
3199 * location and size of sectors within the main data array of the flash memory
3200 * device and to identify which Erase Types are supported by each sector.
3201 *
3202 * Return: 0 on success, -errno otherwise.
3203 */
3204static int spi_nor_parse_smpt(struct spi_nor *nor,
3205                              const struct sfdp_parameter_header *smpt_header)
3206{
3207        const u32 *sector_map;
3208        u32 *smpt;
3209        size_t len;
3210        u32 addr;
3211        int i, ret;
3212
3213        /* Read the Sector Map Parameter Table. */
3214        len = smpt_header->length * sizeof(*smpt);
3215        smpt = kmalloc(len, GFP_KERNEL);
3216        if (!smpt)
3217                return -ENOMEM;
3218
3219        addr = SFDP_PARAM_HEADER_PTP(smpt_header);
3220        ret = spi_nor_read_sfdp(nor, addr, len, smpt);
3221        if (ret)
3222                goto out;
3223
3224        /* Fix endianness of the SMPT DWORDs. */
3225        for (i = 0; i < smpt_header->length; i++)
3226                smpt[i] = le32_to_cpu(smpt[i]);
3227
3228        sector_map = spi_nor_get_map_in_use(nor, smpt, smpt_header->length);
3229        if (IS_ERR(sector_map)) {
3230                ret = PTR_ERR(sector_map);
3231                goto out;
3232        }
3233
3234        ret = spi_nor_init_non_uniform_erase_map(nor, sector_map);
3235        if (ret)
3236                goto out;
3237
3238        spi_nor_regions_sort_erase_types(&nor->erase_map);
3239        /* fall through */
3240out:
3241        kfree(smpt);
3242        return ret;
3243}
3244
3245#define SFDP_4BAIT_DWORD_MAX    2
3246
3247struct sfdp_4bait {
3248        /* The hardware capability. */
3249        u32             hwcaps;
3250
3251        /*
3252         * The <supported_bit> bit in DWORD1 of the 4BAIT tells us whether
3253         * the associated 4-byte address op code is supported.
3254         */
3255        u32             supported_bit;
3256};
3257
3258/**
3259 * spi_nor_parse_4bait() - parse the 4-Byte Address Instruction Table
3260 * @nor:                pointer to a 'struct spi_nor'.
3261 * @param_header:       pointer to the 'struct sfdp_parameter_header' describing
3262 *                      the 4-Byte Address Instruction Table length and version.
3263 * @params:             pointer to the 'struct spi_nor_flash_parameter' to be.
3264 *
3265 * Return: 0 on success, -errno otherwise.
3266 */
3267static int spi_nor_parse_4bait(struct spi_nor *nor,
3268                               const struct sfdp_parameter_header *param_header,
3269                               struct spi_nor_flash_parameter *params)
3270{
3271        static const struct sfdp_4bait reads[] = {
3272                { SNOR_HWCAPS_READ,             BIT(0) },
3273                { SNOR_HWCAPS_READ_FAST,        BIT(1) },
3274                { SNOR_HWCAPS_READ_1_1_2,       BIT(2) },
3275                { SNOR_HWCAPS_READ_1_2_2,       BIT(3) },
3276                { SNOR_HWCAPS_READ_1_1_4,       BIT(4) },
3277                { SNOR_HWCAPS_READ_1_4_4,       BIT(5) },
3278                { SNOR_HWCAPS_READ_1_1_1_DTR,   BIT(13) },
3279                { SNOR_HWCAPS_READ_1_2_2_DTR,   BIT(14) },
3280                { SNOR_HWCAPS_READ_1_4_4_DTR,   BIT(15) },
3281        };
3282        static const struct sfdp_4bait programs[] = {
3283                { SNOR_HWCAPS_PP,               BIT(6) },
3284                { SNOR_HWCAPS_PP_1_1_4,         BIT(7) },
3285                { SNOR_HWCAPS_PP_1_4_4,         BIT(8) },
3286        };
3287        static const struct sfdp_4bait erases[SNOR_ERASE_TYPE_MAX] = {
3288                { 0u /* not used */,            BIT(9) },
3289                { 0u /* not used */,            BIT(10) },
3290                { 0u /* not used */,            BIT(11) },
3291                { 0u /* not used */,            BIT(12) },
3292        };
3293        struct spi_nor_pp_command *params_pp = params->page_programs;
3294        struct spi_nor_erase_map *map = &nor->erase_map;
3295        struct spi_nor_erase_type *erase_type = map->erase_type;
3296        u32 *dwords;
3297        size_t len;
3298        u32 addr, discard_hwcaps, read_hwcaps, pp_hwcaps, erase_mask;
3299        int i, ret;
3300
3301        if (param_header->major != SFDP_JESD216_MAJOR ||
3302            param_header->length < SFDP_4BAIT_DWORD_MAX)
3303                return -EINVAL;
3304
3305        /* Read the 4-byte Address Instruction Table. */
3306        len = sizeof(*dwords) * SFDP_4BAIT_DWORD_MAX;
3307
3308        /* Use a kmalloc'ed bounce buffer to guarantee it is DMA-able. */
3309        dwords = kmalloc(len, GFP_KERNEL);
3310        if (!dwords)
3311                return -ENOMEM;
3312
3313        addr = SFDP_PARAM_HEADER_PTP(param_header);
3314        ret = spi_nor_read_sfdp(nor, addr, len, dwords);
3315        if (ret)
3316                return ret;
3317
3318        /* Fix endianness of the 4BAIT DWORDs. */
3319        for (i = 0; i < SFDP_4BAIT_DWORD_MAX; i++)
3320                dwords[i] = le32_to_cpu(dwords[i]);
3321
3322        /*
3323         * Compute the subset of (Fast) Read commands for which the 4-byte
3324         * version is supported.
3325         */
3326        discard_hwcaps = 0;
3327        read_hwcaps = 0;
3328        for (i = 0; i < ARRAY_SIZE(reads); i++) {
3329                const struct sfdp_4bait *read = &reads[i];
3330
3331                discard_hwcaps |= read->hwcaps;
3332                if ((params->hwcaps.mask & read->hwcaps) &&
3333                    (dwords[0] & read->supported_bit))
3334                        read_hwcaps |= read->hwcaps;
3335        }
3336
3337        /*
3338         * Compute the subset of Page Program commands for which the 4-byte
3339         * version is supported.
3340         */
3341        pp_hwcaps = 0;
3342        for (i = 0; i < ARRAY_SIZE(programs); i++) {
3343                const struct sfdp_4bait *program = &programs[i];
3344
3345                /*
3346                 * The 4 Byte Address Instruction (Optional) Table is the only
3347                 * SFDP table that indicates support for Page Program Commands.
3348                 * Bypass the params->hwcaps.mask and consider 4BAIT the biggest
3349                 * authority for specifying Page Program support.
3350                 */
3351                discard_hwcaps |= program->hwcaps;
3352                if (dwords[0] & program->supported_bit)
3353                        pp_hwcaps |= program->hwcaps;
3354        }
3355
3356        /*
3357         * Compute the subset of Sector Erase commands for which the 4-byte
3358         * version is supported.
3359         */
3360        erase_mask = 0;
3361        for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
3362                const struct sfdp_4bait *erase = &erases[i];
3363
3364                if (dwords[0] & erase->supported_bit)
3365                        erase_mask |= BIT(i);
3366        }
3367
3368        /* Replicate the sort done for the map's erase types in BFPT. */
3369        erase_mask = spi_nor_sort_erase_mask(map, erase_mask);
3370
3371        /*
3372         * We need at least one 4-byte op code per read, program and erase
3373         * operation; the .read(), .write() and .erase() hooks share the
3374         * nor->addr_width value.
3375         */
3376        if (!read_hwcaps || !pp_hwcaps || !erase_mask)
3377                goto out;
3378
3379        /*
3380         * Discard all operations from the 4-byte instruction set which are
3381         * not supported by this memory.
3382         */
3383        params->hwcaps.mask &= ~discard_hwcaps;
3384        params->hwcaps.mask |= (read_hwcaps | pp_hwcaps);
3385
3386        /* Use the 4-byte address instruction set. */
3387        for (i = 0; i < SNOR_CMD_READ_MAX; i++) {
3388                struct spi_nor_read_command *read_cmd = &params->reads[i];
3389
3390                read_cmd->opcode = spi_nor_convert_3to4_read(read_cmd->opcode);
3391        }
3392
3393        /* 4BAIT is the only SFDP table that indicates page program support. */
3394        if (pp_hwcaps & SNOR_HWCAPS_PP)
3395                spi_nor_set_pp_settings(&params_pp[SNOR_CMD_PP],
3396                                        SPINOR_OP_PP_4B, SNOR_PROTO_1_1_1);
3397        if (pp_hwcaps & SNOR_HWCAPS_PP_1_1_4)
3398                spi_nor_set_pp_settings(&params_pp[SNOR_CMD_PP_1_1_4],
3399                                        SPINOR_OP_PP_1_1_4_4B,
3400                                        SNOR_PROTO_1_1_4);
3401        if (pp_hwcaps & SNOR_HWCAPS_PP_1_4_4)
3402                spi_nor_set_pp_settings(&params_pp[SNOR_CMD_PP_1_4_4],
3403                                        SPINOR_OP_PP_1_4_4_4B,
3404                                        SNOR_PROTO_1_4_4);
3405
3406        for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
3407                if (erase_mask & BIT(i))
3408                        erase_type[i].opcode = (dwords[1] >>
3409                                                erase_type[i].idx * 8) & 0xFF;
3410                else
3411                        spi_nor_set_erase_type(&erase_type[i], 0u, 0xFF);
3412        }
3413
3414        /*
3415         * We set SNOR_F_HAS_4BAIT in order to skip spi_nor_set_4byte_opcodes()
3416         * later because we already did the conversion to 4byte opcodes. Also,
3417         * this latest function implements a legacy quirk for the erase size of
3418         * Spansion memory. However this quirk is no longer needed with new
3419         * SFDP compliant memories.
3420         */
3421        nor->addr_width = 4;
3422        nor->flags |= SNOR_F_4B_OPCODES | SNOR_F_HAS_4BAIT;
3423
3424        /* fall through */
3425out:
3426        kfree(dwords);
3427        return ret;
3428}
3429
3430/**
3431 * spi_nor_parse_sfdp() - parse the Serial Flash Discoverable Parameters.
3432 * @nor:                pointer to a 'struct spi_nor'
3433 * @params:             pointer to the 'struct spi_nor_flash_parameter' to be
3434 *                      filled
3435 *
3436 * The Serial Flash Discoverable Parameters are described by the JEDEC JESD216
3437 * specification. This is a standard which tends to supported by almost all
3438 * (Q)SPI memory manufacturers. Those hard-coded tables allow us to learn at
3439 * runtime the main parameters needed to perform basic SPI flash operations such
3440 * as Fast Read, Page Program or Sector Erase commands.
3441 *
3442 * Return: 0 on success, -errno otherwise.
3443 */
3444static int spi_nor_parse_sfdp(struct spi_nor *nor,
3445                              struct spi_nor_flash_parameter *params)
3446{
3447        const struct sfdp_parameter_header *param_header, *bfpt_header;
3448        struct sfdp_parameter_header *param_headers = NULL;
3449        struct sfdp_header header;
3450        struct device *dev = nor->dev;
3451        size_t psize;
3452        int i, err;
3453
3454        /* Get the SFDP header. */
3455        err = spi_nor_read_sfdp_dma_unsafe(nor, 0, sizeof(header), &header);
3456        if (err < 0)
3457                return err;
3458
3459        /* Check the SFDP header version. */
3460        if (le32_to_cpu(header.signature) != SFDP_SIGNATURE ||
3461            header.major != SFDP_JESD216_MAJOR)
3462                return -EINVAL;
3463
3464        /*
3465         * Verify that the first and only mandatory parameter header is a
3466         * Basic Flash Parameter Table header as specified in JESD216.
3467         */
3468        bfpt_header = &header.bfpt_header;
3469        if (SFDP_PARAM_HEADER_ID(bfpt_header) != SFDP_BFPT_ID ||
3470            bfpt_header->major != SFDP_JESD216_MAJOR)
3471                return -EINVAL;
3472
3473        /*
3474         * Allocate memory then read all parameter headers with a single
3475         * Read SFDP command. These parameter headers will actually be parsed
3476         * twice: a first time to get the latest revision of the basic flash
3477         * parameter table, then a second time to handle the supported optional
3478         * tables.
3479         * Hence we read the parameter headers once for all to reduce the
3480         * processing time. Also we use kmalloc() instead of devm_kmalloc()
3481         * because we don't need to keep these parameter headers: the allocated
3482         * memory is always released with kfree() before exiting this function.
3483         */
3484        if (header.nph) {
3485                psize = header.nph * sizeof(*param_headers);
3486
3487                param_headers = kmalloc(psize, GFP_KERNEL);
3488                if (!param_headers)
3489                        return -ENOMEM;
3490
3491                err = spi_nor_read_sfdp(nor, sizeof(header),
3492                                        psize, param_headers);
3493                if (err < 0) {
3494                        dev_err(dev, "failed to read SFDP parameter headers\n");
3495                        goto exit;
3496                }
3497        }
3498
3499        /*
3500         * Check other parameter headers to get the latest revision of
3501         * the basic flash parameter table.
3502         */
3503        for (i = 0; i < header.nph; i++) {
3504                param_header = &param_headers[i];
3505
3506                if (SFDP_PARAM_HEADER_ID(param_header) == SFDP_BFPT_ID &&
3507                    param_header->major == SFDP_JESD216_MAJOR &&
3508                    (param_header->minor > bfpt_header->minor ||
3509                     (param_header->minor == bfpt_header->minor &&
3510                      param_header->length > bfpt_header->length)))
3511                        bfpt_header = param_header;
3512        }
3513
3514        err = spi_nor_parse_bfpt(nor, bfpt_header, params);
3515        if (err)
3516                goto exit;
3517
3518        /* Parse optional parameter tables. */
3519        for (i = 0; i < header.nph; i++) {
3520                param_header = &param_headers[i];
3521
3522                switch (SFDP_PARAM_HEADER_ID(param_header)) {
3523                case SFDP_SECTOR_MAP_ID:
3524                        err = spi_nor_parse_smpt(nor, param_header);
3525                        break;
3526
3527                case SFDP_4BAIT_ID:
3528                        err = spi_nor_parse_4bait(nor, param_header, params);
3529                        break;
3530
3531                default:
3532                        break;
3533                }
3534
3535                if (err) {
3536                        dev_warn(dev, "Failed to parse optional parameter table: %04x\n",
3537                                 SFDP_PARAM_HEADER_ID(param_header));
3538                        /*
3539                         * Let's not drop all information we extracted so far
3540                         * if optional table parsers fail. In case of failing,
3541                         * each optional parser is responsible to roll back to
3542                         * the previously known spi_nor data.
3543                         */
3544                        err = 0;
3545                }
3546        }
3547
3548exit:
3549        kfree(param_headers);
3550        return err;
3551}
3552
3553static int spi_nor_init_params(struct spi_nor *nor,
3554                               struct spi_nor_flash_parameter *params)
3555{
3556        struct spi_nor_erase_map *map = &nor->erase_map;
3557        const struct flash_info *info = nor->info;
3558        u8 i, erase_mask;
3559
3560        /* Set legacy flash parameters as default. */
3561        memset(params, 0, sizeof(*params));
3562
3563        /* Set SPI NOR sizes. */
3564        params->size = (u64)info->sector_size * info->n_sectors;
3565        params->page_size = info->page_size;
3566
3567        /* (Fast) Read settings. */
3568        params->hwcaps.mask |= SNOR_HWCAPS_READ;
3569        spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ],
3570                                  0, 0, SPINOR_OP_READ,
3571                                  SNOR_PROTO_1_1_1);
3572
3573        if (!(info->flags & SPI_NOR_NO_FR)) {
3574                params->hwcaps.mask |= SNOR_HWCAPS_READ_FAST;
3575                spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_FAST],
3576                                          0, 8, SPINOR_OP_READ_FAST,
3577                                          SNOR_PROTO_1_1_1);
3578        }
3579
3580        if (info->flags & SPI_NOR_DUAL_READ) {
3581                params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_2;
3582                spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_2],
3583                                          0, 8, SPINOR_OP_READ_1_1_2,
3584                                          SNOR_PROTO_1_1_2);
3585        }
3586
3587        if (info->flags & SPI_NOR_QUAD_READ) {
3588                params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_4;
3589                spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_4],
3590                                          0, 8, SPINOR_OP_READ_1_1_4,
3591                                          SNOR_PROTO_1_1_4);
3592        }
3593
3594        /* Page Program settings. */
3595        params->hwcaps.mask |= SNOR_HWCAPS_PP;
3596        spi_nor_set_pp_settings(&params->page_programs[SNOR_CMD_PP],
3597                                SPINOR_OP_PP, SNOR_PROTO_1_1_1);
3598
3599        /*
3600         * Sector Erase settings. Sort Erase Types in ascending order, with the
3601         * smallest erase size starting at BIT(0).
3602         */
3603        erase_mask = 0;
3604        i = 0;
3605        if (info->flags & SECT_4K_PMC) {
3606                erase_mask |= BIT(i);
3607                spi_nor_set_erase_type(&map->erase_type[i], 4096u,
3608                                       SPINOR_OP_BE_4K_PMC);
3609                i++;
3610        } else if (info->flags & SECT_4K) {
3611                erase_mask |= BIT(i);
3612                spi_nor_set_erase_type(&map->erase_type[i], 4096u,
3613                                       SPINOR_OP_BE_4K);
3614                i++;
3615        }
3616        erase_mask |= BIT(i);
3617        spi_nor_set_erase_type(&map->erase_type[i], info->sector_size,
3618                               SPINOR_OP_SE);
3619        spi_nor_init_uniform_erase_map(map, erase_mask, params->size);
3620
3621        /* Select the procedure to set the Quad Enable bit. */
3622        if (params->hwcaps.mask & (SNOR_HWCAPS_READ_QUAD |
3623                                   SNOR_HWCAPS_PP_QUAD)) {
3624                switch (JEDEC_MFR(info)) {
3625                case SNOR_MFR_MACRONIX:
3626                        params->quad_enable = macronix_quad_enable;
3627                        break;
3628
3629                case SNOR_MFR_ST:
3630                case SNOR_MFR_MICRON:
3631                        break;
3632
3633                default:
3634                        /* Kept only for backward compatibility purpose. */
3635                        params->quad_enable = spansion_quad_enable;
3636                        break;
3637                }
3638
3639                /*
3640                 * Some manufacturer like GigaDevice may use different
3641                 * bit to set QE on different memories, so the MFR can't
3642                 * indicate the quad_enable method for this case, we need
3643                 * set it in flash info list.
3644                 */
3645                if (info->quad_enable)
3646                        params->quad_enable = info->quad_enable;
3647        }
3648
3649        if ((info->flags & (SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)) &&
3650            !(info->flags & SPI_NOR_SKIP_SFDP)) {
3651                struct spi_nor_flash_parameter sfdp_params;
3652                struct spi_nor_erase_map prev_map;
3653
3654                memcpy(&sfdp_params, params, sizeof(sfdp_params));
3655                memcpy(&prev_map, &nor->erase_map, sizeof(prev_map));
3656
3657                if (spi_nor_parse_sfdp(nor, &sfdp_params)) {
3658                        nor->addr_width = 0;
3659                        nor->flags &= ~SNOR_F_4B_OPCODES;
3660                        /* restore previous erase map */
3661                        memcpy(&nor->erase_map, &prev_map,
3662                               sizeof(nor->erase_map));
3663                } else {
3664                        memcpy(params, &sfdp_params, sizeof(*params));
3665                }
3666        }
3667
3668        return 0;
3669}
3670
3671static int spi_nor_select_read(struct spi_nor *nor,
3672                               const struct spi_nor_flash_parameter *params,
3673                               u32 shared_hwcaps)
3674{
3675        int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_READ_MASK) - 1;
3676        const struct spi_nor_read_command *read;
3677
3678        if (best_match < 0)
3679                return -EINVAL;
3680
3681        cmd = spi_nor_hwcaps_read2cmd(BIT(best_match));
3682        if (cmd < 0)
3683                return -EINVAL;
3684
3685        read = &params->reads[cmd];
3686        nor->read_opcode = read->opcode;
3687        nor->read_proto = read->proto;
3688
3689        /*
3690         * In the spi-nor framework, we don't need to make the difference
3691         * between mode clock cycles and wait state clock cycles.
3692         * Indeed, the value of the mode clock cycles is used by a QSPI
3693         * flash memory to know whether it should enter or leave its 0-4-4
3694         * (Continuous Read / XIP) mode.
3695         * eXecution In Place is out of the scope of the mtd sub-system.
3696         * Hence we choose to merge both mode and wait state clock cycles
3697         * into the so called dummy clock cycles.
3698         */
3699        nor->read_dummy = read->num_mode_clocks + read->num_wait_states;
3700        return 0;
3701}
3702
3703static int spi_nor_select_pp(struct spi_nor *nor,
3704                             const struct spi_nor_flash_parameter *params,
3705                             u32 shared_hwcaps)
3706{
3707        int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_PP_MASK) - 1;
3708        const struct spi_nor_pp_command *pp;
3709
3710        if (best_match < 0)
3711                return -EINVAL;
3712
3713        cmd = spi_nor_hwcaps_pp2cmd(BIT(best_match));
3714        if (cmd < 0)
3715                return -EINVAL;
3716
3717        pp = &params->page_programs[cmd];
3718        nor->program_opcode = pp->opcode;
3719        nor->write_proto = pp->proto;
3720        return 0;
3721}
3722
3723/**
3724 * spi_nor_select_uniform_erase() - select optimum uniform erase type
3725 * @map:                the erase map of the SPI NOR
3726 * @wanted_size:        the erase type size to search for. Contains the value of
3727 *                      info->sector_size or of the "small sector" size in case
3728 *                      CONFIG_MTD_SPI_NOR_USE_4K_SECTORS is defined.
3729 *
3730 * Once the optimum uniform sector erase command is found, disable all the
3731 * other.
3732 *
3733 * Return: pointer to erase type on success, NULL otherwise.
3734 */
3735static const struct spi_nor_erase_type *
3736spi_nor_select_uniform_erase(struct spi_nor_erase_map *map,
3737                             const u32 wanted_size)
3738{
3739        const struct spi_nor_erase_type *tested_erase, *erase = NULL;
3740        int i;
3741        u8 uniform_erase_type = map->uniform_erase_type;
3742
3743        for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
3744                if (!(uniform_erase_type & BIT(i)))
3745                        continue;
3746
3747                tested_erase = &map->erase_type[i];
3748
3749                /*
3750                 * If the current erase size is the one, stop here:
3751                 * we have found the right uniform Sector Erase command.
3752                 */
3753                if (tested_erase->size == wanted_size) {
3754                        erase = tested_erase;
3755                        break;
3756                }
3757
3758                /*
3759                 * Otherwise, the current erase size is still a valid canditate.
3760                 * Select the biggest valid candidate.
3761                 */
3762                if (!erase && tested_erase->size)
3763                        erase = tested_erase;
3764                        /* keep iterating to find the wanted_size */
3765        }
3766
3767        if (!erase)
3768                return NULL;
3769
3770        /* Disable all other Sector Erase commands. */
3771        map->uniform_erase_type &= ~SNOR_ERASE_TYPE_MASK;
3772        map->uniform_erase_type |= BIT(erase - map->erase_type);
3773        return erase;
3774}
3775
3776static int spi_nor_select_erase(struct spi_nor *nor, u32 wanted_size)
3777{
3778        struct spi_nor_erase_map *map = &nor->erase_map;
3779        const struct spi_nor_erase_type *erase = NULL;
3780        struct mtd_info *mtd = &nor->mtd;
3781        int i;
3782
3783        /*
3784         * The previous implementation handling Sector Erase commands assumed
3785         * that the SPI flash memory has an uniform layout then used only one
3786         * of the supported erase sizes for all Sector Erase commands.
3787         * So to be backward compatible, the new implementation also tries to
3788         * manage the SPI flash memory as uniform with a single erase sector
3789         * size, when possible.
3790         */
3791#ifdef CONFIG_MTD_SPI_NOR_USE_4K_SECTORS
3792        /* prefer "small sector" erase if possible */
3793        wanted_size = 4096u;
3794#endif
3795
3796        if (spi_nor_has_uniform_erase(nor)) {
3797                erase = spi_nor_select_uniform_erase(map, wanted_size);
3798                if (!erase)
3799                        return -EINVAL;
3800                nor->erase_opcode = erase->opcode;
3801                mtd->erasesize = erase->size;
3802                return 0;
3803        }
3804
3805        /*
3806         * For non-uniform SPI flash memory, set mtd->erasesize to the
3807         * maximum erase sector size. No need to set nor->erase_opcode.
3808         */
3809        for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
3810                if (map->erase_type[i].size) {
3811                        erase = &map->erase_type[i];
3812                        break;
3813                }
3814        }
3815
3816        if (!erase)
3817                return -EINVAL;
3818
3819        mtd->erasesize = erase->size;
3820        return 0;
3821}
3822
3823static int spi_nor_setup(struct spi_nor *nor,
3824                         const struct spi_nor_flash_parameter *params,
3825                         const struct spi_nor_hwcaps *hwcaps)
3826{
3827        u32 ignored_mask, shared_mask;
3828        bool enable_quad_io;
3829        int err;
3830
3831        /*
3832         * Keep only the hardware capabilities supported by both the SPI
3833         * controller and the SPI flash memory.
3834         */
3835        shared_mask = hwcaps->mask & params->hwcaps.mask;
3836
3837        /* SPI n-n-n protocols are not supported yet. */
3838        ignored_mask = (SNOR_HWCAPS_READ_2_2_2 |
3839                        SNOR_HWCAPS_READ_4_4_4 |
3840                        SNOR_HWCAPS_READ_8_8_8 |
3841                        SNOR_HWCAPS_PP_4_4_4 |
3842                        SNOR_HWCAPS_PP_8_8_8);
3843        if (shared_mask & ignored_mask) {
3844                dev_dbg(nor->dev,
3845                        "SPI n-n-n protocols are not supported yet.\n");
3846                shared_mask &= ~ignored_mask;
3847        }
3848
3849        /* Select the (Fast) Read command. */
3850        err = spi_nor_select_read(nor, params, shared_mask);
3851        if (err) {
3852                dev_err(nor->dev,
3853                        "can't select read settings supported by both the SPI controller and memory.\n");
3854                return err;
3855        }
3856
3857        /* Select the Page Program command. */
3858        err = spi_nor_select_pp(nor, params, shared_mask);
3859        if (err) {
3860                dev_err(nor->dev,
3861                        "can't select write settings supported by both the SPI controller and memory.\n");
3862                return err;
3863        }
3864
3865        /* Select the Sector Erase command. */
3866        err = spi_nor_select_erase(nor, nor->info->sector_size);
3867        if (err) {
3868                dev_err(nor->dev,
3869                        "can't select erase settings supported by both the SPI controller and memory.\n");
3870                return err;
3871        }
3872
3873        /* Enable Quad I/O if needed. */
3874        enable_quad_io = (spi_nor_get_protocol_width(nor->read_proto) == 4 ||
3875                          spi_nor_get_protocol_width(nor->write_proto) == 4);
3876        if (enable_quad_io && params->quad_enable)
3877                nor->quad_enable = params->quad_enable;
3878        else
3879                nor->quad_enable = NULL;
3880
3881        return 0;
3882}
3883
3884static int spi_nor_init(struct spi_nor *nor)
3885{
3886        int err;
3887
3888        /*
3889         * Atmel, SST, Intel/Numonyx, and others serial NOR tend to power up
3890         * with the software protection bits set
3891         */
3892        if (JEDEC_MFR(nor->info) == SNOR_MFR_ATMEL ||
3893            JEDEC_MFR(nor->info) == SNOR_MFR_INTEL ||
3894            JEDEC_MFR(nor->info) == SNOR_MFR_SST ||
3895            nor->info->flags & SPI_NOR_HAS_LOCK) {
3896                write_enable(nor);
3897                write_sr(nor, 0);
3898                spi_nor_wait_till_ready(nor);
3899        }
3900
3901        if (nor->quad_enable) {
3902                err = nor->quad_enable(nor);
3903                if (err) {
3904                        dev_err(nor->dev, "quad mode not supported\n");
3905                        return err;
3906                }
3907        }
3908
3909        if (nor->addr_width == 4 && !(nor->flags & SNOR_F_4B_OPCODES)) {
3910                /*
3911                 * If the RESET# pin isn't hooked up properly, or the system
3912                 * otherwise doesn't perform a reset command in the boot
3913                 * sequence, it's impossible to 100% protect against unexpected
3914                 * reboots (e.g., crashes). Warn the user (or hopefully, system
3915                 * designer) that this is bad.
3916                 */
3917                WARN_ONCE(nor->flags & SNOR_F_BROKEN_RESET,
3918                          "enabling reset hack; may not recover from unexpected reboots\n");
3919                set_4byte(nor, true);
3920        }
3921
3922        return 0;
3923}
3924
3925/* mtd resume handler */
3926static void spi_nor_resume(struct mtd_info *mtd)
3927{
3928        struct spi_nor *nor = mtd_to_spi_nor(mtd);
3929        struct device *dev = nor->dev;
3930        int ret;
3931
3932        /* re-initialize the nor chip */
3933        ret = spi_nor_init(nor);
3934        if (ret)
3935                dev_err(dev, "resume() failed\n");
3936}
3937
3938void spi_nor_restore(struct spi_nor *nor)
3939{
3940        /* restore the addressing mode */
3941        if (nor->addr_width == 4 && !(nor->flags & SNOR_F_4B_OPCODES) &&
3942            nor->flags & SNOR_F_BROKEN_RESET)
3943                set_4byte(nor, false);
3944}
3945EXPORT_SYMBOL_GPL(spi_nor_restore);
3946
3947static const struct flash_info *spi_nor_match_id(const char *name)
3948{
3949        const struct flash_info *id = spi_nor_ids;
3950
3951        while (id->name) {
3952                if (!strcmp(name, id->name))
3953                        return id;
3954                id++;
3955        }
3956        return NULL;
3957}
3958
3959int spi_nor_scan(struct spi_nor *nor, const char *name,
3960                 const struct spi_nor_hwcaps *hwcaps)
3961{
3962        struct spi_nor_flash_parameter params;
3963        const struct flash_info *info = NULL;
3964        struct device *dev = nor->dev;
3965        struct mtd_info *mtd = &nor->mtd;
3966        struct device_node *np = spi_nor_get_flash_node(nor);
3967        int ret;
3968        int i;
3969
3970        ret = spi_nor_check(nor);
3971        if (ret)
3972                return ret;
3973
3974        /* Reset SPI protocol for all commands. */
3975        nor->reg_proto = SNOR_PROTO_1_1_1;
3976        nor->read_proto = SNOR_PROTO_1_1_1;
3977        nor->write_proto = SNOR_PROTO_1_1_1;
3978
3979        if (name)
3980                info = spi_nor_match_id(name);
3981        /* Try to auto-detect if chip name wasn't specified or not found */
3982        if (!info)
3983                info = spi_nor_read_id(nor);
3984        if (IS_ERR_OR_NULL(info))
3985                return -ENOENT;
3986
3987        /*
3988         * If caller has specified name of flash model that can normally be
3989         * detected using JEDEC, let's verify it.
3990         */
3991        if (name && info->id_len) {
3992                const struct flash_info *jinfo;
3993
3994                jinfo = spi_nor_read_id(nor);
3995                if (IS_ERR(jinfo)) {
3996                        return PTR_ERR(jinfo);
3997                } else if (jinfo != info) {
3998                        /*
3999                         * JEDEC knows better, so overwrite platform ID. We
4000                         * can't trust partitions any longer, but we'll let
4001                         * mtd apply them anyway, since some partitions may be
4002                         * marked read-only, and we don't want to lose that
4003                         * information, even if it's not 100% accurate.
4004                         */
4005                        dev_warn(dev, "found %s, expected %s\n",
4006                                 jinfo->name, info->name);
4007                        info = jinfo;
4008                }
4009        }
4010
4011        nor->info = info;
4012
4013        mutex_init(&nor->lock);
4014
4015        /*
4016         * Make sure the XSR_RDY flag is set before calling
4017         * spi_nor_wait_till_ready(). Xilinx S3AN share MFR
4018         * with Atmel spi-nor
4019         */
4020        if (info->flags & SPI_S3AN)
4021                nor->flags |=  SNOR_F_READY_XSR_RDY;
4022
4023        /* Parse the Serial Flash Discoverable Parameters table. */
4024        ret = spi_nor_init_params(nor, &params);
4025        if (ret)
4026                return ret;
4027
4028        if (!mtd->name)
4029                mtd->name = dev_name(dev);
4030        mtd->priv = nor;
4031        mtd->type = MTD_NORFLASH;
4032        mtd->writesize = 1;
4033        mtd->flags = MTD_CAP_NORFLASH;
4034        mtd->size = params.size;
4035        mtd->_erase = spi_nor_erase;
4036        mtd->_read = spi_nor_read;
4037        mtd->_resume = spi_nor_resume;
4038
4039        /* NOR protection support for STmicro/Micron chips and similar */
4040        if (JEDEC_MFR(info) == SNOR_MFR_ST ||
4041            JEDEC_MFR(info) == SNOR_MFR_MICRON ||
4042            info->flags & SPI_NOR_HAS_LOCK) {
4043                nor->flash_lock = stm_lock;
4044                nor->flash_unlock = stm_unlock;
4045                nor->flash_is_locked = stm_is_locked;
4046        }
4047
4048        if (nor->flash_lock && nor->flash_unlock && nor->flash_is_locked) {
4049                mtd->_lock = spi_nor_lock;
4050                mtd->_unlock = spi_nor_unlock;
4051                mtd->_is_locked = spi_nor_is_locked;
4052        }
4053
4054        /* sst nor chips use AAI word program */
4055        if (info->flags & SST_WRITE)
4056                mtd->_write = sst_write;
4057        else
4058                mtd->_write = spi_nor_write;
4059
4060        if (info->flags & USE_FSR)
4061                nor->flags |= SNOR_F_USE_FSR;
4062        if (info->flags & SPI_NOR_HAS_TB)
4063                nor->flags |= SNOR_F_HAS_SR_TB;
4064        if (info->flags & NO_CHIP_ERASE)
4065                nor->flags |= SNOR_F_NO_OP_CHIP_ERASE;
4066        if (info->flags & USE_CLSR)
4067                nor->flags |= SNOR_F_USE_CLSR;
4068
4069        if (info->flags & SPI_NOR_NO_ERASE)
4070                mtd->flags |= MTD_NO_ERASE;
4071
4072        mtd->dev.parent = dev;
4073        nor->page_size = params.page_size;
4074        mtd->writebufsize = nor->page_size;
4075
4076        if (np) {
4077                /* If we were instantiated by DT, use it */
4078                if (of_property_read_bool(np, "m25p,fast-read"))
4079                        params.hwcaps.mask |= SNOR_HWCAPS_READ_FAST;
4080                else
4081                        params.hwcaps.mask &= ~SNOR_HWCAPS_READ_FAST;
4082        } else {
4083                /* If we weren't instantiated by DT, default to fast-read */
4084                params.hwcaps.mask |= SNOR_HWCAPS_READ_FAST;
4085        }
4086
4087        if (of_property_read_bool(np, "broken-flash-reset"))
4088                nor->flags |= SNOR_F_BROKEN_RESET;
4089
4090        /* Some devices cannot do fast-read, no matter what DT tells us */
4091        if (info->flags & SPI_NOR_NO_FR)
4092                params.hwcaps.mask &= ~SNOR_HWCAPS_READ_FAST;
4093
4094        /*
4095         * Configure the SPI memory:
4096         * - select op codes for (Fast) Read, Page Program and Sector Erase.
4097         * - set the number of dummy cycles (mode cycles + wait states).
4098         * - set the SPI protocols for register and memory accesses.
4099         * - set the Quad Enable bit if needed (required by SPI x-y-4 protos).
4100         */
4101        ret = spi_nor_setup(nor, &params, hwcaps);
4102        if (ret)
4103                return ret;
4104
4105        if (nor->addr_width) {
4106                /* already configured from SFDP */
4107        } else if (info->addr_width) {
4108                nor->addr_width = info->addr_width;
4109        } else if (mtd->size > 0x1000000) {
4110                /* enable 4-byte addressing if the device exceeds 16MiB */
4111                nor->addr_width = 4;
4112        } else {
4113                nor->addr_width = 3;
4114        }
4115
4116        if (info->flags & SPI_NOR_4B_OPCODES ||
4117            (JEDEC_MFR(info) == SNOR_MFR_SPANSION && mtd->size > SZ_16M))
4118                nor->flags |= SNOR_F_4B_OPCODES;
4119
4120        if (nor->addr_width == 4 && nor->flags & SNOR_F_4B_OPCODES &&
4121            !(nor->flags & SNOR_F_HAS_4BAIT))
4122                spi_nor_set_4byte_opcodes(nor);
4123
4124        if (nor->addr_width > SPI_NOR_MAX_ADDR_WIDTH) {
4125                dev_err(dev, "address width is too large: %u\n",
4126                        nor->addr_width);
4127                return -EINVAL;
4128        }
4129
4130        if (info->flags & SPI_S3AN) {
4131                ret = s3an_nor_scan(nor);
4132                if (ret)
4133                        return ret;
4134        }
4135
4136        /* Send all the required SPI flash commands to initialize device */
4137        ret = spi_nor_init(nor);
4138        if (ret)
4139                return ret;
4140
4141        dev_info(dev, "%s (%lld Kbytes)\n", info->name,
4142                        (long long)mtd->size >> 10);
4143
4144        dev_dbg(dev,
4145                "mtd .name = %s, .size = 0x%llx (%lldMiB), "
4146                ".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
4147                mtd->name, (long long)mtd->size, (long long)(mtd->size >> 20),
4148                mtd->erasesize, mtd->erasesize / 1024, mtd->numeraseregions);
4149
4150        if (mtd->numeraseregions)
4151                for (i = 0; i < mtd->numeraseregions; i++)
4152                        dev_dbg(dev,
4153                                "mtd.eraseregions[%d] = { .offset = 0x%llx, "
4154                                ".erasesize = 0x%.8x (%uKiB), "
4155                                ".numblocks = %d }\n",
4156                                i, (long long)mtd->eraseregions[i].offset,
4157                                mtd->eraseregions[i].erasesize,
4158                                mtd->eraseregions[i].erasesize / 1024,
4159                                mtd->eraseregions[i].numblocks);
4160        return 0;
4161}
4162EXPORT_SYMBOL_GPL(spi_nor_scan);
4163
4164MODULE_LICENSE("GPL v2");
4165MODULE_AUTHOR("Huang Shijie <shijie8@gmail.com>");
4166MODULE_AUTHOR("Mike Lavender");
4167MODULE_DESCRIPTION("framework for SPI NOR");
4168