linux/drivers/net/ethernet/atheros/alx/main.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2013 Johannes Berg <johannes@sipsolutions.net>
   3 *
   4 *  This file is free software: you may copy, redistribute and/or modify it
   5 *  under the terms of the GNU General Public License as published by the
   6 *  Free Software Foundation, either version 2 of the License, or (at your
   7 *  option) any later version.
   8 *
   9 *  This file is distributed in the hope that it will be useful, but
  10 *  WITHOUT ANY WARRANTY; without even the implied warranty of
  11 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  12 *  General Public License for more details.
  13 *
  14 *  You should have received a copy of the GNU General Public License
  15 *  along with this program.  If not, see <http://www.gnu.org/licenses/>.
  16 *
  17 * This file incorporates work covered by the following copyright and
  18 * permission notice:
  19 *
  20 * Copyright (c) 2012 Qualcomm Atheros, Inc.
  21 *
  22 * Permission to use, copy, modify, and/or distribute this software for any
  23 * purpose with or without fee is hereby granted, provided that the above
  24 * copyright notice and this permission notice appear in all copies.
  25 *
  26 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  27 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  28 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  29 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  30 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  31 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  32 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  33 */
  34
  35#include <linux/module.h>
  36#include <linux/pci.h>
  37#include <linux/interrupt.h>
  38#include <linux/ip.h>
  39#include <linux/ipv6.h>
  40#include <linux/if_vlan.h>
  41#include <linux/mdio.h>
  42#include <linux/aer.h>
  43#include <linux/bitops.h>
  44#include <linux/netdevice.h>
  45#include <linux/etherdevice.h>
  46#include <net/ip6_checksum.h>
  47#include <linux/crc32.h>
  48#include "alx.h"
  49#include "hw.h"
  50#include "reg.h"
  51
  52static const char alx_drv_name[] = "alx";
  53
  54static void alx_free_txbuf(struct alx_tx_queue *txq, int entry)
  55{
  56        struct alx_buffer *txb = &txq->bufs[entry];
  57
  58        if (dma_unmap_len(txb, size)) {
  59                dma_unmap_single(txq->dev,
  60                                 dma_unmap_addr(txb, dma),
  61                                 dma_unmap_len(txb, size),
  62                                 DMA_TO_DEVICE);
  63                dma_unmap_len_set(txb, size, 0);
  64        }
  65
  66        if (txb->skb) {
  67                dev_kfree_skb_any(txb->skb);
  68                txb->skb = NULL;
  69        }
  70}
  71
  72static int alx_refill_rx_ring(struct alx_priv *alx, gfp_t gfp)
  73{
  74        struct alx_rx_queue *rxq = alx->qnapi[0]->rxq;
  75        struct sk_buff *skb;
  76        struct alx_buffer *cur_buf;
  77        dma_addr_t dma;
  78        u16 cur, next, count = 0;
  79
  80        next = cur = rxq->write_idx;
  81        if (++next == alx->rx_ringsz)
  82                next = 0;
  83        cur_buf = &rxq->bufs[cur];
  84
  85        while (!cur_buf->skb && next != rxq->read_idx) {
  86                struct alx_rfd *rfd = &rxq->rfd[cur];
  87
  88                /*
  89                 * When DMA RX address is set to something like
  90                 * 0x....fc0, it will be very likely to cause DMA
  91                 * RFD overflow issue.
  92                 *
  93                 * To work around it, we apply rx skb with 64 bytes
  94                 * longer space, and offset the address whenever
  95                 * 0x....fc0 is detected.
  96                 */
  97                skb = __netdev_alloc_skb(alx->dev, alx->rxbuf_size + 64, gfp);
  98                if (!skb)
  99                        break;
 100
 101                if (((unsigned long)skb->data & 0xfff) == 0xfc0)
 102                        skb_reserve(skb, 64);
 103
 104                dma = dma_map_single(&alx->hw.pdev->dev,
 105                                     skb->data, alx->rxbuf_size,
 106                                     DMA_FROM_DEVICE);
 107                if (dma_mapping_error(&alx->hw.pdev->dev, dma)) {
 108                        dev_kfree_skb(skb);
 109                        break;
 110                }
 111
 112                /* Unfortunately, RX descriptor buffers must be 4-byte
 113                 * aligned, so we can't use IP alignment.
 114                 */
 115                if (WARN_ON(dma & 3)) {
 116                        dev_kfree_skb(skb);
 117                        break;
 118                }
 119
 120                cur_buf->skb = skb;
 121                dma_unmap_len_set(cur_buf, size, alx->rxbuf_size);
 122                dma_unmap_addr_set(cur_buf, dma, dma);
 123                rfd->addr = cpu_to_le64(dma);
 124
 125                cur = next;
 126                if (++next == alx->rx_ringsz)
 127                        next = 0;
 128                cur_buf = &rxq->bufs[cur];
 129                count++;
 130        }
 131
 132        if (count) {
 133                /* flush all updates before updating hardware */
 134                wmb();
 135                rxq->write_idx = cur;
 136                alx_write_mem16(&alx->hw, ALX_RFD_PIDX, cur);
 137        }
 138
 139        return count;
 140}
 141
 142static struct alx_tx_queue *alx_tx_queue_mapping(struct alx_priv *alx,
 143                                                 struct sk_buff *skb)
 144{
 145        unsigned int r_idx = skb->queue_mapping;
 146
 147        if (r_idx >= alx->num_txq)
 148                r_idx = r_idx % alx->num_txq;
 149
 150        return alx->qnapi[r_idx]->txq;
 151}
 152
 153static struct netdev_queue *alx_get_tx_queue(const struct alx_tx_queue *txq)
 154{
 155        return netdev_get_tx_queue(txq->netdev, txq->queue_idx);
 156}
 157
 158static inline int alx_tpd_avail(struct alx_tx_queue *txq)
 159{
 160        if (txq->write_idx >= txq->read_idx)
 161                return txq->count + txq->read_idx - txq->write_idx - 1;
 162        return txq->read_idx - txq->write_idx - 1;
 163}
 164
 165static bool alx_clean_tx_irq(struct alx_tx_queue *txq)
 166{
 167        struct alx_priv *alx;
 168        struct netdev_queue *tx_queue;
 169        u16 hw_read_idx, sw_read_idx;
 170        unsigned int total_bytes = 0, total_packets = 0;
 171        int budget = ALX_DEFAULT_TX_WORK;
 172
 173        alx = netdev_priv(txq->netdev);
 174        tx_queue = alx_get_tx_queue(txq);
 175
 176        sw_read_idx = txq->read_idx;
 177        hw_read_idx = alx_read_mem16(&alx->hw, txq->c_reg);
 178
 179        if (sw_read_idx != hw_read_idx) {
 180                while (sw_read_idx != hw_read_idx && budget > 0) {
 181                        struct sk_buff *skb;
 182
 183                        skb = txq->bufs[sw_read_idx].skb;
 184                        if (skb) {
 185                                total_bytes += skb->len;
 186                                total_packets++;
 187                                budget--;
 188                        }
 189
 190                        alx_free_txbuf(txq, sw_read_idx);
 191
 192                        if (++sw_read_idx == txq->count)
 193                                sw_read_idx = 0;
 194                }
 195                txq->read_idx = sw_read_idx;
 196
 197                netdev_tx_completed_queue(tx_queue, total_packets, total_bytes);
 198        }
 199
 200        if (netif_tx_queue_stopped(tx_queue) && netif_carrier_ok(alx->dev) &&
 201            alx_tpd_avail(txq) > txq->count / 4)
 202                netif_tx_wake_queue(tx_queue);
 203
 204        return sw_read_idx == hw_read_idx;
 205}
 206
 207static void alx_schedule_link_check(struct alx_priv *alx)
 208{
 209        schedule_work(&alx->link_check_wk);
 210}
 211
 212static void alx_schedule_reset(struct alx_priv *alx)
 213{
 214        schedule_work(&alx->reset_wk);
 215}
 216
 217static int alx_clean_rx_irq(struct alx_rx_queue *rxq, int budget)
 218{
 219        struct alx_priv *alx;
 220        struct alx_rrd *rrd;
 221        struct alx_buffer *rxb;
 222        struct sk_buff *skb;
 223        u16 length, rfd_cleaned = 0;
 224        int work = 0;
 225
 226        alx = netdev_priv(rxq->netdev);
 227
 228        while (work < budget) {
 229                rrd = &rxq->rrd[rxq->rrd_read_idx];
 230                if (!(rrd->word3 & cpu_to_le32(1 << RRD_UPDATED_SHIFT)))
 231                        break;
 232                rrd->word3 &= ~cpu_to_le32(1 << RRD_UPDATED_SHIFT);
 233
 234                if (ALX_GET_FIELD(le32_to_cpu(rrd->word0),
 235                                  RRD_SI) != rxq->read_idx ||
 236                    ALX_GET_FIELD(le32_to_cpu(rrd->word0),
 237                                  RRD_NOR) != 1) {
 238                        alx_schedule_reset(alx);
 239                        return work;
 240                }
 241
 242                rxb = &rxq->bufs[rxq->read_idx];
 243                dma_unmap_single(rxq->dev,
 244                                 dma_unmap_addr(rxb, dma),
 245                                 dma_unmap_len(rxb, size),
 246                                 DMA_FROM_DEVICE);
 247                dma_unmap_len_set(rxb, size, 0);
 248                skb = rxb->skb;
 249                rxb->skb = NULL;
 250
 251                if (rrd->word3 & cpu_to_le32(1 << RRD_ERR_RES_SHIFT) ||
 252                    rrd->word3 & cpu_to_le32(1 << RRD_ERR_LEN_SHIFT)) {
 253                        rrd->word3 = 0;
 254                        dev_kfree_skb_any(skb);
 255                        goto next_pkt;
 256                }
 257
 258                length = ALX_GET_FIELD(le32_to_cpu(rrd->word3),
 259                                       RRD_PKTLEN) - ETH_FCS_LEN;
 260                skb_put(skb, length);
 261                skb->protocol = eth_type_trans(skb, rxq->netdev);
 262
 263                skb_checksum_none_assert(skb);
 264                if (alx->dev->features & NETIF_F_RXCSUM &&
 265                    !(rrd->word3 & (cpu_to_le32(1 << RRD_ERR_L4_SHIFT) |
 266                                    cpu_to_le32(1 << RRD_ERR_IPV4_SHIFT)))) {
 267                        switch (ALX_GET_FIELD(le32_to_cpu(rrd->word2),
 268                                              RRD_PID)) {
 269                        case RRD_PID_IPV6UDP:
 270                        case RRD_PID_IPV4UDP:
 271                        case RRD_PID_IPV4TCP:
 272                        case RRD_PID_IPV6TCP:
 273                                skb->ip_summed = CHECKSUM_UNNECESSARY;
 274                                break;
 275                        }
 276                }
 277
 278                napi_gro_receive(&rxq->np->napi, skb);
 279                work++;
 280
 281next_pkt:
 282                if (++rxq->read_idx == rxq->count)
 283                        rxq->read_idx = 0;
 284                if (++rxq->rrd_read_idx == rxq->count)
 285                        rxq->rrd_read_idx = 0;
 286
 287                if (++rfd_cleaned > ALX_RX_ALLOC_THRESH)
 288                        rfd_cleaned -= alx_refill_rx_ring(alx, GFP_ATOMIC);
 289        }
 290
 291        if (rfd_cleaned)
 292                alx_refill_rx_ring(alx, GFP_ATOMIC);
 293
 294        return work;
 295}
 296
 297static int alx_poll(struct napi_struct *napi, int budget)
 298{
 299        struct alx_napi *np = container_of(napi, struct alx_napi, napi);
 300        struct alx_priv *alx = np->alx;
 301        struct alx_hw *hw = &alx->hw;
 302        unsigned long flags;
 303        bool tx_complete = true;
 304        int work = 0;
 305
 306        if (np->txq)
 307                tx_complete = alx_clean_tx_irq(np->txq);
 308        if (np->rxq)
 309                work = alx_clean_rx_irq(np->rxq, budget);
 310
 311        if (!tx_complete || work == budget)
 312                return budget;
 313
 314        napi_complete_done(&np->napi, work);
 315
 316        /* enable interrupt */
 317        if (alx->hw.pdev->msix_enabled) {
 318                alx_mask_msix(hw, np->vec_idx, false);
 319        } else {
 320                spin_lock_irqsave(&alx->irq_lock, flags);
 321                alx->int_mask |= ALX_ISR_TX_Q0 | ALX_ISR_RX_Q0;
 322                alx_write_mem32(hw, ALX_IMR, alx->int_mask);
 323                spin_unlock_irqrestore(&alx->irq_lock, flags);
 324        }
 325
 326        alx_post_write(hw);
 327
 328        return work;
 329}
 330
 331static bool alx_intr_handle_misc(struct alx_priv *alx, u32 intr)
 332{
 333        struct alx_hw *hw = &alx->hw;
 334
 335        if (intr & ALX_ISR_FATAL) {
 336                netif_warn(alx, hw, alx->dev,
 337                           "fatal interrupt 0x%x, resetting\n", intr);
 338                alx_schedule_reset(alx);
 339                return true;
 340        }
 341
 342        if (intr & ALX_ISR_ALERT)
 343                netdev_warn(alx->dev, "alert interrupt: 0x%x\n", intr);
 344
 345        if (intr & ALX_ISR_PHY) {
 346                /* suppress PHY interrupt, because the source
 347                 * is from PHY internal. only the internal status
 348                 * is cleared, the interrupt status could be cleared.
 349                 */
 350                alx->int_mask &= ~ALX_ISR_PHY;
 351                alx_write_mem32(hw, ALX_IMR, alx->int_mask);
 352                alx_schedule_link_check(alx);
 353        }
 354
 355        return false;
 356}
 357
 358static irqreturn_t alx_intr_handle(struct alx_priv *alx, u32 intr)
 359{
 360        struct alx_hw *hw = &alx->hw;
 361
 362        spin_lock(&alx->irq_lock);
 363
 364        /* ACK interrupt */
 365        alx_write_mem32(hw, ALX_ISR, intr | ALX_ISR_DIS);
 366        intr &= alx->int_mask;
 367
 368        if (alx_intr_handle_misc(alx, intr))
 369                goto out;
 370
 371        if (intr & (ALX_ISR_TX_Q0 | ALX_ISR_RX_Q0)) {
 372                napi_schedule(&alx->qnapi[0]->napi);
 373                /* mask rx/tx interrupt, enable them when napi complete */
 374                alx->int_mask &= ~ALX_ISR_ALL_QUEUES;
 375                alx_write_mem32(hw, ALX_IMR, alx->int_mask);
 376        }
 377
 378        alx_write_mem32(hw, ALX_ISR, 0);
 379
 380 out:
 381        spin_unlock(&alx->irq_lock);
 382        return IRQ_HANDLED;
 383}
 384
 385static irqreturn_t alx_intr_msix_ring(int irq, void *data)
 386{
 387        struct alx_napi *np = data;
 388        struct alx_hw *hw = &np->alx->hw;
 389
 390        /* mask interrupt to ACK chip */
 391        alx_mask_msix(hw, np->vec_idx, true);
 392        /* clear interrupt status */
 393        alx_write_mem32(hw, ALX_ISR, np->vec_mask);
 394
 395        napi_schedule(&np->napi);
 396
 397        return IRQ_HANDLED;
 398}
 399
 400static irqreturn_t alx_intr_msix_misc(int irq, void *data)
 401{
 402        struct alx_priv *alx = data;
 403        struct alx_hw *hw = &alx->hw;
 404        u32 intr;
 405
 406        /* mask interrupt to ACK chip */
 407        alx_mask_msix(hw, 0, true);
 408
 409        /* read interrupt status */
 410        intr = alx_read_mem32(hw, ALX_ISR);
 411        intr &= (alx->int_mask & ~ALX_ISR_ALL_QUEUES);
 412
 413        if (alx_intr_handle_misc(alx, intr))
 414                return IRQ_HANDLED;
 415
 416        /* clear interrupt status */
 417        alx_write_mem32(hw, ALX_ISR, intr);
 418
 419        /* enable interrupt again */
 420        alx_mask_msix(hw, 0, false);
 421
 422        return IRQ_HANDLED;
 423}
 424
 425static irqreturn_t alx_intr_msi(int irq, void *data)
 426{
 427        struct alx_priv *alx = data;
 428
 429        return alx_intr_handle(alx, alx_read_mem32(&alx->hw, ALX_ISR));
 430}
 431
 432static irqreturn_t alx_intr_legacy(int irq, void *data)
 433{
 434        struct alx_priv *alx = data;
 435        struct alx_hw *hw = &alx->hw;
 436        u32 intr;
 437
 438        intr = alx_read_mem32(hw, ALX_ISR);
 439
 440        if (intr & ALX_ISR_DIS || !(intr & alx->int_mask))
 441                return IRQ_NONE;
 442
 443        return alx_intr_handle(alx, intr);
 444}
 445
 446static const u16 txring_header_reg[] = {ALX_TPD_PRI0_ADDR_LO,
 447                                        ALX_TPD_PRI1_ADDR_LO,
 448                                        ALX_TPD_PRI2_ADDR_LO,
 449                                        ALX_TPD_PRI3_ADDR_LO};
 450
 451static void alx_init_ring_ptrs(struct alx_priv *alx)
 452{
 453        struct alx_hw *hw = &alx->hw;
 454        u32 addr_hi = ((u64)alx->descmem.dma) >> 32;
 455        struct alx_napi *np;
 456        int i;
 457
 458        for (i = 0; i < alx->num_napi; i++) {
 459                np = alx->qnapi[i];
 460                if (np->txq) {
 461                        np->txq->read_idx = 0;
 462                        np->txq->write_idx = 0;
 463                        alx_write_mem32(hw,
 464                                        txring_header_reg[np->txq->queue_idx],
 465                                        np->txq->tpd_dma);
 466                }
 467
 468                if (np->rxq) {
 469                        np->rxq->read_idx = 0;
 470                        np->rxq->write_idx = 0;
 471                        np->rxq->rrd_read_idx = 0;
 472                        alx_write_mem32(hw, ALX_RRD_ADDR_LO, np->rxq->rrd_dma);
 473                        alx_write_mem32(hw, ALX_RFD_ADDR_LO, np->rxq->rfd_dma);
 474                }
 475        }
 476
 477        alx_write_mem32(hw, ALX_TX_BASE_ADDR_HI, addr_hi);
 478        alx_write_mem32(hw, ALX_TPD_RING_SZ, alx->tx_ringsz);
 479
 480        alx_write_mem32(hw, ALX_RX_BASE_ADDR_HI, addr_hi);
 481        alx_write_mem32(hw, ALX_RRD_RING_SZ, alx->rx_ringsz);
 482        alx_write_mem32(hw, ALX_RFD_RING_SZ, alx->rx_ringsz);
 483        alx_write_mem32(hw, ALX_RFD_BUF_SZ, alx->rxbuf_size);
 484
 485        /* load these pointers into the chip */
 486        alx_write_mem32(hw, ALX_SRAM9, ALX_SRAM_LOAD_PTR);
 487}
 488
 489static void alx_free_txring_buf(struct alx_tx_queue *txq)
 490{
 491        int i;
 492
 493        if (!txq->bufs)
 494                return;
 495
 496        for (i = 0; i < txq->count; i++)
 497                alx_free_txbuf(txq, i);
 498
 499        memset(txq->bufs, 0, txq->count * sizeof(struct alx_buffer));
 500        memset(txq->tpd, 0, txq->count * sizeof(struct alx_txd));
 501        txq->write_idx = 0;
 502        txq->read_idx = 0;
 503
 504        netdev_tx_reset_queue(alx_get_tx_queue(txq));
 505}
 506
 507static void alx_free_rxring_buf(struct alx_rx_queue *rxq)
 508{
 509        struct alx_buffer *cur_buf;
 510        u16 i;
 511
 512        if (!rxq->bufs)
 513                return;
 514
 515        for (i = 0; i < rxq->count; i++) {
 516                cur_buf = rxq->bufs + i;
 517                if (cur_buf->skb) {
 518                        dma_unmap_single(rxq->dev,
 519                                         dma_unmap_addr(cur_buf, dma),
 520                                         dma_unmap_len(cur_buf, size),
 521                                         DMA_FROM_DEVICE);
 522                        dev_kfree_skb(cur_buf->skb);
 523                        cur_buf->skb = NULL;
 524                        dma_unmap_len_set(cur_buf, size, 0);
 525                        dma_unmap_addr_set(cur_buf, dma, 0);
 526                }
 527        }
 528
 529        rxq->write_idx = 0;
 530        rxq->read_idx = 0;
 531        rxq->rrd_read_idx = 0;
 532}
 533
 534static void alx_free_buffers(struct alx_priv *alx)
 535{
 536        int i;
 537
 538        for (i = 0; i < alx->num_txq; i++)
 539                if (alx->qnapi[i] && alx->qnapi[i]->txq)
 540                        alx_free_txring_buf(alx->qnapi[i]->txq);
 541
 542        if (alx->qnapi[0] && alx->qnapi[0]->rxq)
 543                alx_free_rxring_buf(alx->qnapi[0]->rxq);
 544}
 545
 546static int alx_reinit_rings(struct alx_priv *alx)
 547{
 548        alx_free_buffers(alx);
 549
 550        alx_init_ring_ptrs(alx);
 551
 552        if (!alx_refill_rx_ring(alx, GFP_KERNEL))
 553                return -ENOMEM;
 554
 555        return 0;
 556}
 557
 558static void alx_add_mc_addr(struct alx_hw *hw, const u8 *addr, u32 *mc_hash)
 559{
 560        u32 crc32, bit, reg;
 561
 562        crc32 = ether_crc(ETH_ALEN, addr);
 563        reg = (crc32 >> 31) & 0x1;
 564        bit = (crc32 >> 26) & 0x1F;
 565
 566        mc_hash[reg] |= BIT(bit);
 567}
 568
 569static void __alx_set_rx_mode(struct net_device *netdev)
 570{
 571        struct alx_priv *alx = netdev_priv(netdev);
 572        struct alx_hw *hw = &alx->hw;
 573        struct netdev_hw_addr *ha;
 574        u32 mc_hash[2] = {};
 575
 576        if (!(netdev->flags & IFF_ALLMULTI)) {
 577                netdev_for_each_mc_addr(ha, netdev)
 578                        alx_add_mc_addr(hw, ha->addr, mc_hash);
 579
 580                alx_write_mem32(hw, ALX_HASH_TBL0, mc_hash[0]);
 581                alx_write_mem32(hw, ALX_HASH_TBL1, mc_hash[1]);
 582        }
 583
 584        hw->rx_ctrl &= ~(ALX_MAC_CTRL_MULTIALL_EN | ALX_MAC_CTRL_PROMISC_EN);
 585        if (netdev->flags & IFF_PROMISC)
 586                hw->rx_ctrl |= ALX_MAC_CTRL_PROMISC_EN;
 587        if (netdev->flags & IFF_ALLMULTI)
 588                hw->rx_ctrl |= ALX_MAC_CTRL_MULTIALL_EN;
 589
 590        alx_write_mem32(hw, ALX_MAC_CTRL, hw->rx_ctrl);
 591}
 592
 593static void alx_set_rx_mode(struct net_device *netdev)
 594{
 595        __alx_set_rx_mode(netdev);
 596}
 597
 598static int alx_set_mac_address(struct net_device *netdev, void *data)
 599{
 600        struct alx_priv *alx = netdev_priv(netdev);
 601        struct alx_hw *hw = &alx->hw;
 602        struct sockaddr *addr = data;
 603
 604        if (!is_valid_ether_addr(addr->sa_data))
 605                return -EADDRNOTAVAIL;
 606
 607        if (netdev->addr_assign_type & NET_ADDR_RANDOM)
 608                netdev->addr_assign_type ^= NET_ADDR_RANDOM;
 609
 610        memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
 611        memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
 612        alx_set_macaddr(hw, hw->mac_addr);
 613
 614        return 0;
 615}
 616
 617static int alx_alloc_tx_ring(struct alx_priv *alx, struct alx_tx_queue *txq,
 618                             int offset)
 619{
 620        txq->bufs = kcalloc(txq->count, sizeof(struct alx_buffer), GFP_KERNEL);
 621        if (!txq->bufs)
 622                return -ENOMEM;
 623
 624        txq->tpd = alx->descmem.virt + offset;
 625        txq->tpd_dma = alx->descmem.dma + offset;
 626        offset += sizeof(struct alx_txd) * txq->count;
 627
 628        return offset;
 629}
 630
 631static int alx_alloc_rx_ring(struct alx_priv *alx, struct alx_rx_queue *rxq,
 632                             int offset)
 633{
 634        rxq->bufs = kcalloc(rxq->count, sizeof(struct alx_buffer), GFP_KERNEL);
 635        if (!rxq->bufs)
 636                return -ENOMEM;
 637
 638        rxq->rrd = alx->descmem.virt + offset;
 639        rxq->rrd_dma = alx->descmem.dma + offset;
 640        offset += sizeof(struct alx_rrd) * rxq->count;
 641
 642        rxq->rfd = alx->descmem.virt + offset;
 643        rxq->rfd_dma = alx->descmem.dma + offset;
 644        offset += sizeof(struct alx_rfd) * rxq->count;
 645
 646        return offset;
 647}
 648
 649static int alx_alloc_rings(struct alx_priv *alx)
 650{
 651        int i, offset = 0;
 652
 653        /* physical tx/rx ring descriptors
 654         *
 655         * Allocate them as a single chunk because they must not cross a
 656         * 4G boundary (hardware has a single register for high 32 bits
 657         * of addresses only)
 658         */
 659        alx->descmem.size = sizeof(struct alx_txd) * alx->tx_ringsz *
 660                            alx->num_txq +
 661                            sizeof(struct alx_rrd) * alx->rx_ringsz +
 662                            sizeof(struct alx_rfd) * alx->rx_ringsz;
 663        alx->descmem.virt = dma_alloc_coherent(&alx->hw.pdev->dev,
 664                                               alx->descmem.size,
 665                                               &alx->descmem.dma, GFP_KERNEL);
 666        if (!alx->descmem.virt)
 667                return -ENOMEM;
 668
 669        /* alignment requirements */
 670        BUILD_BUG_ON(sizeof(struct alx_txd) % 8);
 671        BUILD_BUG_ON(sizeof(struct alx_rrd) % 8);
 672
 673        for (i = 0; i < alx->num_txq; i++) {
 674                offset = alx_alloc_tx_ring(alx, alx->qnapi[i]->txq, offset);
 675                if (offset < 0) {
 676                        netdev_err(alx->dev, "Allocation of tx buffer failed!\n");
 677                        return -ENOMEM;
 678                }
 679        }
 680
 681        offset = alx_alloc_rx_ring(alx, alx->qnapi[0]->rxq, offset);
 682        if (offset < 0) {
 683                netdev_err(alx->dev, "Allocation of rx buffer failed!\n");
 684                return -ENOMEM;
 685        }
 686
 687        return 0;
 688}
 689
 690static void alx_free_rings(struct alx_priv *alx)
 691{
 692        int i;
 693
 694        alx_free_buffers(alx);
 695
 696        for (i = 0; i < alx->num_txq; i++)
 697                if (alx->qnapi[i] && alx->qnapi[i]->txq)
 698                        kfree(alx->qnapi[i]->txq->bufs);
 699
 700        if (alx->qnapi[0] && alx->qnapi[0]->rxq)
 701                kfree(alx->qnapi[0]->rxq->bufs);
 702
 703        if (alx->descmem.virt)
 704                dma_free_coherent(&alx->hw.pdev->dev,
 705                                  alx->descmem.size,
 706                                  alx->descmem.virt,
 707                                  alx->descmem.dma);
 708}
 709
 710static void alx_free_napis(struct alx_priv *alx)
 711{
 712        struct alx_napi *np;
 713        int i;
 714
 715        for (i = 0; i < alx->num_napi; i++) {
 716                np = alx->qnapi[i];
 717                if (!np)
 718                        continue;
 719
 720                netif_napi_del(&np->napi);
 721                kfree(np->txq);
 722                kfree(np->rxq);
 723                kfree(np);
 724                alx->qnapi[i] = NULL;
 725        }
 726}
 727
 728static const u16 tx_pidx_reg[] = {ALX_TPD_PRI0_PIDX, ALX_TPD_PRI1_PIDX,
 729                                  ALX_TPD_PRI2_PIDX, ALX_TPD_PRI3_PIDX};
 730static const u16 tx_cidx_reg[] = {ALX_TPD_PRI0_CIDX, ALX_TPD_PRI1_CIDX,
 731                                  ALX_TPD_PRI2_CIDX, ALX_TPD_PRI3_CIDX};
 732static const u32 tx_vect_mask[] = {ALX_ISR_TX_Q0, ALX_ISR_TX_Q1,
 733                                   ALX_ISR_TX_Q2, ALX_ISR_TX_Q3};
 734static const u32 rx_vect_mask[] = {ALX_ISR_RX_Q0, ALX_ISR_RX_Q1,
 735                                   ALX_ISR_RX_Q2, ALX_ISR_RX_Q3,
 736                                   ALX_ISR_RX_Q4, ALX_ISR_RX_Q5,
 737                                   ALX_ISR_RX_Q6, ALX_ISR_RX_Q7};
 738
 739static int alx_alloc_napis(struct alx_priv *alx)
 740{
 741        struct alx_napi *np;
 742        struct alx_rx_queue *rxq;
 743        struct alx_tx_queue *txq;
 744        int i;
 745
 746        alx->int_mask &= ~ALX_ISR_ALL_QUEUES;
 747
 748        /* allocate alx_napi structures */
 749        for (i = 0; i < alx->num_napi; i++) {
 750                np = kzalloc(sizeof(struct alx_napi), GFP_KERNEL);
 751                if (!np)
 752                        goto err_out;
 753
 754                np->alx = alx;
 755                netif_napi_add(alx->dev, &np->napi, alx_poll, 64);
 756                alx->qnapi[i] = np;
 757        }
 758
 759        /* allocate tx queues */
 760        for (i = 0; i < alx->num_txq; i++) {
 761                np = alx->qnapi[i];
 762                txq = kzalloc(sizeof(*txq), GFP_KERNEL);
 763                if (!txq)
 764                        goto err_out;
 765
 766                np->txq = txq;
 767                txq->p_reg = tx_pidx_reg[i];
 768                txq->c_reg = tx_cidx_reg[i];
 769                txq->queue_idx = i;
 770                txq->count = alx->tx_ringsz;
 771                txq->netdev = alx->dev;
 772                txq->dev = &alx->hw.pdev->dev;
 773                np->vec_mask |= tx_vect_mask[i];
 774                alx->int_mask |= tx_vect_mask[i];
 775        }
 776
 777        /* allocate rx queues */
 778        np = alx->qnapi[0];
 779        rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
 780        if (!rxq)
 781                goto err_out;
 782
 783        np->rxq = rxq;
 784        rxq->np = alx->qnapi[0];
 785        rxq->queue_idx = 0;
 786        rxq->count = alx->rx_ringsz;
 787        rxq->netdev = alx->dev;
 788        rxq->dev = &alx->hw.pdev->dev;
 789        np->vec_mask |= rx_vect_mask[0];
 790        alx->int_mask |= rx_vect_mask[0];
 791
 792        return 0;
 793
 794err_out:
 795        netdev_err(alx->dev, "error allocating internal structures\n");
 796        alx_free_napis(alx);
 797        return -ENOMEM;
 798}
 799
 800static const int txq_vec_mapping_shift[] = {
 801        0, ALX_MSI_MAP_TBL1_TXQ0_SHIFT,
 802        0, ALX_MSI_MAP_TBL1_TXQ1_SHIFT,
 803        1, ALX_MSI_MAP_TBL2_TXQ2_SHIFT,
 804        1, ALX_MSI_MAP_TBL2_TXQ3_SHIFT,
 805};
 806
 807static void alx_config_vector_mapping(struct alx_priv *alx)
 808{
 809        struct alx_hw *hw = &alx->hw;
 810        u32 tbl[2] = {0, 0};
 811        int i, vector, idx, shift;
 812
 813        if (alx->hw.pdev->msix_enabled) {
 814                /* tx mappings */
 815                for (i = 0, vector = 1; i < alx->num_txq; i++, vector++) {
 816                        idx = txq_vec_mapping_shift[i * 2];
 817                        shift = txq_vec_mapping_shift[i * 2 + 1];
 818                        tbl[idx] |= vector << shift;
 819                }
 820
 821                /* rx mapping */
 822                tbl[0] |= 1 << ALX_MSI_MAP_TBL1_RXQ0_SHIFT;
 823        }
 824
 825        alx_write_mem32(hw, ALX_MSI_MAP_TBL1, tbl[0]);
 826        alx_write_mem32(hw, ALX_MSI_MAP_TBL2, tbl[1]);
 827        alx_write_mem32(hw, ALX_MSI_ID_MAP, 0);
 828}
 829
 830static int alx_enable_msix(struct alx_priv *alx)
 831{
 832        int err, num_vec, num_txq, num_rxq;
 833
 834        num_txq = min_t(int, num_online_cpus(), ALX_MAX_TX_QUEUES);
 835        num_rxq = 1;
 836        num_vec = max_t(int, num_txq, num_rxq) + 1;
 837
 838        err = pci_alloc_irq_vectors(alx->hw.pdev, num_vec, num_vec,
 839                        PCI_IRQ_MSIX);
 840        if (err < 0) {
 841                netdev_warn(alx->dev, "Enabling MSI-X interrupts failed!\n");
 842                return err;
 843        }
 844
 845        alx->num_vec = num_vec;
 846        alx->num_napi = num_vec - 1;
 847        alx->num_txq = num_txq;
 848        alx->num_rxq = num_rxq;
 849
 850        return err;
 851}
 852
 853static int alx_request_msix(struct alx_priv *alx)
 854{
 855        struct net_device *netdev = alx->dev;
 856        int i, err, vector = 0, free_vector = 0;
 857
 858        err = request_irq(pci_irq_vector(alx->hw.pdev, 0), alx_intr_msix_misc,
 859                          0, netdev->name, alx);
 860        if (err)
 861                goto out_err;
 862
 863        for (i = 0; i < alx->num_napi; i++) {
 864                struct alx_napi *np = alx->qnapi[i];
 865
 866                vector++;
 867
 868                if (np->txq && np->rxq)
 869                        sprintf(np->irq_lbl, "%s-TxRx-%u", netdev->name,
 870                                np->txq->queue_idx);
 871                else if (np->txq)
 872                        sprintf(np->irq_lbl, "%s-tx-%u", netdev->name,
 873                                np->txq->queue_idx);
 874                else if (np->rxq)
 875                        sprintf(np->irq_lbl, "%s-rx-%u", netdev->name,
 876                                np->rxq->queue_idx);
 877                else
 878                        sprintf(np->irq_lbl, "%s-unused", netdev->name);
 879
 880                np->vec_idx = vector;
 881                err = request_irq(pci_irq_vector(alx->hw.pdev, vector),
 882                                  alx_intr_msix_ring, 0, np->irq_lbl, np);
 883                if (err)
 884                        goto out_free;
 885        }
 886        return 0;
 887
 888out_free:
 889        free_irq(pci_irq_vector(alx->hw.pdev, free_vector++), alx);
 890
 891        vector--;
 892        for (i = 0; i < vector; i++)
 893                free_irq(pci_irq_vector(alx->hw.pdev,free_vector++),
 894                         alx->qnapi[i]);
 895
 896out_err:
 897        return err;
 898}
 899
 900static int alx_init_intr(struct alx_priv *alx)
 901{
 902        int ret;
 903
 904        ret = pci_alloc_irq_vectors(alx->hw.pdev, 1, 1,
 905                        PCI_IRQ_MSI | PCI_IRQ_LEGACY);
 906        if (ret < 0)
 907                return ret;
 908
 909        alx->num_vec = 1;
 910        alx->num_napi = 1;
 911        alx->num_txq = 1;
 912        alx->num_rxq = 1;
 913        return 0;
 914}
 915
 916static void alx_irq_enable(struct alx_priv *alx)
 917{
 918        struct alx_hw *hw = &alx->hw;
 919        int i;
 920
 921        /* level-1 interrupt switch */
 922        alx_write_mem32(hw, ALX_ISR, 0);
 923        alx_write_mem32(hw, ALX_IMR, alx->int_mask);
 924        alx_post_write(hw);
 925
 926        if (alx->hw.pdev->msix_enabled) {
 927                /* enable all msix irqs */
 928                for (i = 0; i < alx->num_vec; i++)
 929                        alx_mask_msix(hw, i, false);
 930        }
 931}
 932
 933static void alx_irq_disable(struct alx_priv *alx)
 934{
 935        struct alx_hw *hw = &alx->hw;
 936        int i;
 937
 938        alx_write_mem32(hw, ALX_ISR, ALX_ISR_DIS);
 939        alx_write_mem32(hw, ALX_IMR, 0);
 940        alx_post_write(hw);
 941
 942        if (alx->hw.pdev->msix_enabled) {
 943                for (i = 0; i < alx->num_vec; i++) {
 944                        alx_mask_msix(hw, i, true);
 945                        synchronize_irq(pci_irq_vector(alx->hw.pdev, i));
 946                }
 947        } else {
 948                synchronize_irq(pci_irq_vector(alx->hw.pdev, 0));
 949        }
 950}
 951
 952static int alx_realloc_resources(struct alx_priv *alx)
 953{
 954        int err;
 955
 956        alx_free_rings(alx);
 957        alx_free_napis(alx);
 958        pci_free_irq_vectors(alx->hw.pdev);
 959
 960        err = alx_init_intr(alx);
 961        if (err)
 962                return err;
 963
 964        err = alx_alloc_napis(alx);
 965        if (err)
 966                return err;
 967
 968        err = alx_alloc_rings(alx);
 969        if (err)
 970                return err;
 971
 972        return 0;
 973}
 974
 975static int alx_request_irq(struct alx_priv *alx)
 976{
 977        struct pci_dev *pdev = alx->hw.pdev;
 978        struct alx_hw *hw = &alx->hw;
 979        int err;
 980        u32 msi_ctrl;
 981
 982        msi_ctrl = (hw->imt >> 1) << ALX_MSI_RETRANS_TM_SHIFT;
 983
 984        if (alx->hw.pdev->msix_enabled) {
 985                alx_write_mem32(hw, ALX_MSI_RETRANS_TIMER, msi_ctrl);
 986                err = alx_request_msix(alx);
 987                if (!err)
 988                        goto out;
 989
 990                /* msix request failed, realloc resources */
 991                err = alx_realloc_resources(alx);
 992                if (err)
 993                        goto out;
 994        }
 995
 996        if (alx->hw.pdev->msi_enabled) {
 997                alx_write_mem32(hw, ALX_MSI_RETRANS_TIMER,
 998                                msi_ctrl | ALX_MSI_MASK_SEL_LINE);
 999                err = request_irq(pci_irq_vector(pdev, 0), alx_intr_msi, 0,
1000                                  alx->dev->name, alx);
1001                if (!err)
1002                        goto out;
1003
1004                /* fall back to legacy interrupt */
1005                pci_free_irq_vectors(alx->hw.pdev);
1006        }
1007
1008        alx_write_mem32(hw, ALX_MSI_RETRANS_TIMER, 0);
1009        err = request_irq(pci_irq_vector(pdev, 0), alx_intr_legacy, IRQF_SHARED,
1010                          alx->dev->name, alx);
1011out:
1012        if (!err)
1013                alx_config_vector_mapping(alx);
1014        else
1015                netdev_err(alx->dev, "IRQ registration failed!\n");
1016        return err;
1017}
1018
1019static void alx_free_irq(struct alx_priv *alx)
1020{
1021        struct pci_dev *pdev = alx->hw.pdev;
1022        int i;
1023
1024        free_irq(pci_irq_vector(pdev, 0), alx);
1025        if (alx->hw.pdev->msix_enabled) {
1026                for (i = 0; i < alx->num_napi; i++)
1027                        free_irq(pci_irq_vector(pdev, i + 1), alx->qnapi[i]);
1028        }
1029
1030        pci_free_irq_vectors(pdev);
1031}
1032
1033static int alx_identify_hw(struct alx_priv *alx)
1034{
1035        struct alx_hw *hw = &alx->hw;
1036        int rev = alx_hw_revision(hw);
1037
1038        if (rev > ALX_REV_C0)
1039                return -EINVAL;
1040
1041        hw->max_dma_chnl = rev >= ALX_REV_B0 ? 4 : 2;
1042
1043        return 0;
1044}
1045
1046static int alx_init_sw(struct alx_priv *alx)
1047{
1048        struct pci_dev *pdev = alx->hw.pdev;
1049        struct alx_hw *hw = &alx->hw;
1050        int err;
1051
1052        err = alx_identify_hw(alx);
1053        if (err) {
1054                dev_err(&pdev->dev, "unrecognized chip, aborting\n");
1055                return err;
1056        }
1057
1058        alx->hw.lnk_patch =
1059                pdev->device == ALX_DEV_ID_AR8161 &&
1060                pdev->subsystem_vendor == PCI_VENDOR_ID_ATTANSIC &&
1061                pdev->subsystem_device == 0x0091 &&
1062                pdev->revision == 0;
1063
1064        hw->smb_timer = 400;
1065        hw->mtu = alx->dev->mtu;
1066        alx->rxbuf_size = ALX_MAX_FRAME_LEN(hw->mtu);
1067        /* MTU range: 34 - 9256 */
1068        alx->dev->min_mtu = 34;
1069        alx->dev->max_mtu = ALX_MAX_FRAME_LEN(ALX_MAX_FRAME_SIZE);
1070        alx->tx_ringsz = 256;
1071        alx->rx_ringsz = 512;
1072        hw->imt = 200;
1073        alx->int_mask = ALX_ISR_MISC;
1074        hw->dma_chnl = hw->max_dma_chnl;
1075        hw->ith_tpd = alx->tx_ringsz / 3;
1076        hw->link_speed = SPEED_UNKNOWN;
1077        hw->duplex = DUPLEX_UNKNOWN;
1078        hw->adv_cfg = ADVERTISED_Autoneg |
1079                      ADVERTISED_10baseT_Half |
1080                      ADVERTISED_10baseT_Full |
1081                      ADVERTISED_100baseT_Full |
1082                      ADVERTISED_100baseT_Half |
1083                      ADVERTISED_1000baseT_Full;
1084        hw->flowctrl = ALX_FC_ANEG | ALX_FC_RX | ALX_FC_TX;
1085
1086        hw->rx_ctrl = ALX_MAC_CTRL_WOLSPED_SWEN |
1087                      ALX_MAC_CTRL_MHASH_ALG_HI5B |
1088                      ALX_MAC_CTRL_BRD_EN |
1089                      ALX_MAC_CTRL_PCRCE |
1090                      ALX_MAC_CTRL_CRCE |
1091                      ALX_MAC_CTRL_RXFC_EN |
1092                      ALX_MAC_CTRL_TXFC_EN |
1093                      7 << ALX_MAC_CTRL_PRMBLEN_SHIFT;
1094
1095        return err;
1096}
1097
1098
1099static netdev_features_t alx_fix_features(struct net_device *netdev,
1100                                          netdev_features_t features)
1101{
1102        if (netdev->mtu > ALX_MAX_TSO_PKT_SIZE)
1103                features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
1104
1105        return features;
1106}
1107
1108static void alx_netif_stop(struct alx_priv *alx)
1109{
1110        int i;
1111
1112        netif_trans_update(alx->dev);
1113        if (netif_carrier_ok(alx->dev)) {
1114                netif_carrier_off(alx->dev);
1115                netif_tx_disable(alx->dev);
1116                for (i = 0; i < alx->num_napi; i++)
1117                        napi_disable(&alx->qnapi[i]->napi);
1118        }
1119}
1120
1121static void alx_halt(struct alx_priv *alx)
1122{
1123        struct alx_hw *hw = &alx->hw;
1124
1125        alx_netif_stop(alx);
1126        hw->link_speed = SPEED_UNKNOWN;
1127        hw->duplex = DUPLEX_UNKNOWN;
1128
1129        alx_reset_mac(hw);
1130
1131        /* disable l0s/l1 */
1132        alx_enable_aspm(hw, false, false);
1133        alx_irq_disable(alx);
1134        alx_free_buffers(alx);
1135}
1136
1137static void alx_configure(struct alx_priv *alx)
1138{
1139        struct alx_hw *hw = &alx->hw;
1140
1141        alx_configure_basic(hw);
1142        alx_disable_rss(hw);
1143        __alx_set_rx_mode(alx->dev);
1144
1145        alx_write_mem32(hw, ALX_MAC_CTRL, hw->rx_ctrl);
1146}
1147
1148static void alx_activate(struct alx_priv *alx)
1149{
1150        /* hardware setting lost, restore it */
1151        alx_reinit_rings(alx);
1152        alx_configure(alx);
1153
1154        /* clear old interrupts */
1155        alx_write_mem32(&alx->hw, ALX_ISR, ~(u32)ALX_ISR_DIS);
1156
1157        alx_irq_enable(alx);
1158
1159        alx_schedule_link_check(alx);
1160}
1161
1162static void alx_reinit(struct alx_priv *alx)
1163{
1164        ASSERT_RTNL();
1165
1166        alx_halt(alx);
1167        alx_activate(alx);
1168}
1169
1170static int alx_change_mtu(struct net_device *netdev, int mtu)
1171{
1172        struct alx_priv *alx = netdev_priv(netdev);
1173        int max_frame = ALX_MAX_FRAME_LEN(mtu);
1174
1175        netdev->mtu = mtu;
1176        alx->hw.mtu = mtu;
1177        alx->rxbuf_size = max(max_frame, ALX_DEF_RXBUF_SIZE);
1178        netdev_update_features(netdev);
1179        if (netif_running(netdev))
1180                alx_reinit(alx);
1181        return 0;
1182}
1183
1184static void alx_netif_start(struct alx_priv *alx)
1185{
1186        int i;
1187
1188        netif_tx_wake_all_queues(alx->dev);
1189        for (i = 0; i < alx->num_napi; i++)
1190                napi_enable(&alx->qnapi[i]->napi);
1191        netif_carrier_on(alx->dev);
1192}
1193
1194static int __alx_open(struct alx_priv *alx, bool resume)
1195{
1196        int err;
1197
1198        err = alx_enable_msix(alx);
1199        if (err < 0) {
1200                err = alx_init_intr(alx);
1201                if (err)
1202                        return err;
1203        }
1204
1205        if (!resume)
1206                netif_carrier_off(alx->dev);
1207
1208        err = alx_alloc_napis(alx);
1209        if (err)
1210                goto out_disable_adv_intr;
1211
1212        err = alx_alloc_rings(alx);
1213        if (err)
1214                goto out_free_rings;
1215
1216        alx_configure(alx);
1217
1218        err = alx_request_irq(alx);
1219        if (err)
1220                goto out_free_rings;
1221
1222        /* must be called after alx_request_irq because the chip stops working
1223         * if we copy the dma addresses in alx_init_ring_ptrs twice when
1224         * requesting msi-x interrupts failed
1225         */
1226        alx_reinit_rings(alx);
1227
1228        netif_set_real_num_tx_queues(alx->dev, alx->num_txq);
1229        netif_set_real_num_rx_queues(alx->dev, alx->num_rxq);
1230
1231        /* clear old interrupts */
1232        alx_write_mem32(&alx->hw, ALX_ISR, ~(u32)ALX_ISR_DIS);
1233
1234        alx_irq_enable(alx);
1235
1236        if (!resume)
1237                netif_tx_start_all_queues(alx->dev);
1238
1239        alx_schedule_link_check(alx);
1240        return 0;
1241
1242out_free_rings:
1243        alx_free_rings(alx);
1244        alx_free_napis(alx);
1245out_disable_adv_intr:
1246        pci_free_irq_vectors(alx->hw.pdev);
1247        return err;
1248}
1249
1250static void __alx_stop(struct alx_priv *alx)
1251{
1252        alx_halt(alx);
1253        alx_free_irq(alx);
1254        alx_free_rings(alx);
1255        alx_free_napis(alx);
1256}
1257
1258static const char *alx_speed_desc(struct alx_hw *hw)
1259{
1260        switch (alx_speed_to_ethadv(hw->link_speed, hw->duplex)) {
1261        case ADVERTISED_1000baseT_Full:
1262                return "1 Gbps Full";
1263        case ADVERTISED_100baseT_Full:
1264                return "100 Mbps Full";
1265        case ADVERTISED_100baseT_Half:
1266                return "100 Mbps Half";
1267        case ADVERTISED_10baseT_Full:
1268                return "10 Mbps Full";
1269        case ADVERTISED_10baseT_Half:
1270                return "10 Mbps Half";
1271        default:
1272                return "Unknown speed";
1273        }
1274}
1275
1276static void alx_check_link(struct alx_priv *alx)
1277{
1278        struct alx_hw *hw = &alx->hw;
1279        unsigned long flags;
1280        int old_speed;
1281        int err;
1282
1283        /* clear PHY internal interrupt status, otherwise the main
1284         * interrupt status will be asserted forever
1285         */
1286        alx_clear_phy_intr(hw);
1287
1288        old_speed = hw->link_speed;
1289        err = alx_read_phy_link(hw);
1290        if (err < 0)
1291                goto reset;
1292
1293        spin_lock_irqsave(&alx->irq_lock, flags);
1294        alx->int_mask |= ALX_ISR_PHY;
1295        alx_write_mem32(hw, ALX_IMR, alx->int_mask);
1296        spin_unlock_irqrestore(&alx->irq_lock, flags);
1297
1298        if (old_speed == hw->link_speed)
1299                return;
1300
1301        if (hw->link_speed != SPEED_UNKNOWN) {
1302                netif_info(alx, link, alx->dev,
1303                           "NIC Up: %s\n", alx_speed_desc(hw));
1304                alx_post_phy_link(hw);
1305                alx_enable_aspm(hw, true, true);
1306                alx_start_mac(hw);
1307
1308                if (old_speed == SPEED_UNKNOWN)
1309                        alx_netif_start(alx);
1310        } else {
1311                /* link is now down */
1312                alx_netif_stop(alx);
1313                netif_info(alx, link, alx->dev, "Link Down\n");
1314                err = alx_reset_mac(hw);
1315                if (err)
1316                        goto reset;
1317                alx_irq_disable(alx);
1318
1319                /* MAC reset causes all HW settings to be lost, restore all */
1320                err = alx_reinit_rings(alx);
1321                if (err)
1322                        goto reset;
1323                alx_configure(alx);
1324                alx_enable_aspm(hw, false, true);
1325                alx_post_phy_link(hw);
1326                alx_irq_enable(alx);
1327        }
1328
1329        return;
1330
1331reset:
1332        alx_schedule_reset(alx);
1333}
1334
1335static int alx_open(struct net_device *netdev)
1336{
1337        return __alx_open(netdev_priv(netdev), false);
1338}
1339
1340static int alx_stop(struct net_device *netdev)
1341{
1342        __alx_stop(netdev_priv(netdev));
1343        return 0;
1344}
1345
1346static void alx_link_check(struct work_struct *work)
1347{
1348        struct alx_priv *alx;
1349
1350        alx = container_of(work, struct alx_priv, link_check_wk);
1351
1352        rtnl_lock();
1353        alx_check_link(alx);
1354        rtnl_unlock();
1355}
1356
1357static void alx_reset(struct work_struct *work)
1358{
1359        struct alx_priv *alx = container_of(work, struct alx_priv, reset_wk);
1360
1361        rtnl_lock();
1362        alx_reinit(alx);
1363        rtnl_unlock();
1364}
1365
1366static int alx_tpd_req(struct sk_buff *skb)
1367{
1368        int num;
1369
1370        num = skb_shinfo(skb)->nr_frags + 1;
1371        /* we need one extra descriptor for LSOv2 */
1372        if (skb_is_gso(skb) && skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6)
1373                num++;
1374
1375        return num;
1376}
1377
1378static int alx_tx_csum(struct sk_buff *skb, struct alx_txd *first)
1379{
1380        u8 cso, css;
1381
1382        if (skb->ip_summed != CHECKSUM_PARTIAL)
1383                return 0;
1384
1385        cso = skb_checksum_start_offset(skb);
1386        if (cso & 1)
1387                return -EINVAL;
1388
1389        css = cso + skb->csum_offset;
1390        first->word1 |= cpu_to_le32((cso >> 1) << TPD_CXSUMSTART_SHIFT);
1391        first->word1 |= cpu_to_le32((css >> 1) << TPD_CXSUMOFFSET_SHIFT);
1392        first->word1 |= cpu_to_le32(1 << TPD_CXSUM_EN_SHIFT);
1393
1394        return 0;
1395}
1396
1397static int alx_tso(struct sk_buff *skb, struct alx_txd *first)
1398{
1399        int err;
1400
1401        if (skb->ip_summed != CHECKSUM_PARTIAL)
1402                return 0;
1403
1404        if (!skb_is_gso(skb))
1405                return 0;
1406
1407        err = skb_cow_head(skb, 0);
1408        if (err < 0)
1409                return err;
1410
1411        if (skb->protocol == htons(ETH_P_IP)) {
1412                struct iphdr *iph = ip_hdr(skb);
1413
1414                iph->check = 0;
1415                tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
1416                                                         0, IPPROTO_TCP, 0);
1417                first->word1 |= 1 << TPD_IPV4_SHIFT;
1418        } else if (skb_is_gso_v6(skb)) {
1419                ipv6_hdr(skb)->payload_len = 0;
1420                tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
1421                                                       &ipv6_hdr(skb)->daddr,
1422                                                       0, IPPROTO_TCP, 0);
1423                /* LSOv2: the first TPD only provides the packet length */
1424                first->adrl.l.pkt_len = skb->len;
1425                first->word1 |= 1 << TPD_LSO_V2_SHIFT;
1426        }
1427
1428        first->word1 |= 1 << TPD_LSO_EN_SHIFT;
1429        first->word1 |= (skb_transport_offset(skb) &
1430                         TPD_L4HDROFFSET_MASK) << TPD_L4HDROFFSET_SHIFT;
1431        first->word1 |= (skb_shinfo(skb)->gso_size &
1432                         TPD_MSS_MASK) << TPD_MSS_SHIFT;
1433        return 1;
1434}
1435
1436static int alx_map_tx_skb(struct alx_tx_queue *txq, struct sk_buff *skb)
1437{
1438        struct alx_txd *tpd, *first_tpd;
1439        dma_addr_t dma;
1440        int maplen, f, first_idx = txq->write_idx;
1441
1442        first_tpd = &txq->tpd[txq->write_idx];
1443        tpd = first_tpd;
1444
1445        if (tpd->word1 & (1 << TPD_LSO_V2_SHIFT)) {
1446                if (++txq->write_idx == txq->count)
1447                        txq->write_idx = 0;
1448
1449                tpd = &txq->tpd[txq->write_idx];
1450                tpd->len = first_tpd->len;
1451                tpd->vlan_tag = first_tpd->vlan_tag;
1452                tpd->word1 = first_tpd->word1;
1453        }
1454
1455        maplen = skb_headlen(skb);
1456        dma = dma_map_single(txq->dev, skb->data, maplen,
1457                             DMA_TO_DEVICE);
1458        if (dma_mapping_error(txq->dev, dma))
1459                goto err_dma;
1460
1461        dma_unmap_len_set(&txq->bufs[txq->write_idx], size, maplen);
1462        dma_unmap_addr_set(&txq->bufs[txq->write_idx], dma, dma);
1463
1464        tpd->adrl.addr = cpu_to_le64(dma);
1465        tpd->len = cpu_to_le16(maplen);
1466
1467        for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
1468                struct skb_frag_struct *frag;
1469
1470                frag = &skb_shinfo(skb)->frags[f];
1471
1472                if (++txq->write_idx == txq->count)
1473                        txq->write_idx = 0;
1474                tpd = &txq->tpd[txq->write_idx];
1475
1476                tpd->word1 = first_tpd->word1;
1477
1478                maplen = skb_frag_size(frag);
1479                dma = skb_frag_dma_map(txq->dev, frag, 0,
1480                                       maplen, DMA_TO_DEVICE);
1481                if (dma_mapping_error(txq->dev, dma))
1482                        goto err_dma;
1483                dma_unmap_len_set(&txq->bufs[txq->write_idx], size, maplen);
1484                dma_unmap_addr_set(&txq->bufs[txq->write_idx], dma, dma);
1485
1486                tpd->adrl.addr = cpu_to_le64(dma);
1487                tpd->len = cpu_to_le16(maplen);
1488        }
1489
1490        /* last TPD, set EOP flag and store skb */
1491        tpd->word1 |= cpu_to_le32(1 << TPD_EOP_SHIFT);
1492        txq->bufs[txq->write_idx].skb = skb;
1493
1494        if (++txq->write_idx == txq->count)
1495                txq->write_idx = 0;
1496
1497        return 0;
1498
1499err_dma:
1500        f = first_idx;
1501        while (f != txq->write_idx) {
1502                alx_free_txbuf(txq, f);
1503                if (++f == txq->count)
1504                        f = 0;
1505        }
1506        return -ENOMEM;
1507}
1508
1509static netdev_tx_t alx_start_xmit_ring(struct sk_buff *skb,
1510                                       struct alx_tx_queue *txq)
1511{
1512        struct alx_priv *alx;
1513        struct alx_txd *first;
1514        int tso;
1515
1516        alx = netdev_priv(txq->netdev);
1517
1518        if (alx_tpd_avail(txq) < alx_tpd_req(skb)) {
1519                netif_tx_stop_queue(alx_get_tx_queue(txq));
1520                goto drop;
1521        }
1522
1523        first = &txq->tpd[txq->write_idx];
1524        memset(first, 0, sizeof(*first));
1525
1526        tso = alx_tso(skb, first);
1527        if (tso < 0)
1528                goto drop;
1529        else if (!tso && alx_tx_csum(skb, first))
1530                goto drop;
1531
1532        if (alx_map_tx_skb(txq, skb) < 0)
1533                goto drop;
1534
1535        netdev_tx_sent_queue(alx_get_tx_queue(txq), skb->len);
1536
1537        /* flush updates before updating hardware */
1538        wmb();
1539        alx_write_mem16(&alx->hw, txq->p_reg, txq->write_idx);
1540
1541        if (alx_tpd_avail(txq) < txq->count / 8)
1542                netif_tx_stop_queue(alx_get_tx_queue(txq));
1543
1544        return NETDEV_TX_OK;
1545
1546drop:
1547        dev_kfree_skb_any(skb);
1548        return NETDEV_TX_OK;
1549}
1550
1551static netdev_tx_t alx_start_xmit(struct sk_buff *skb,
1552                                  struct net_device *netdev)
1553{
1554        struct alx_priv *alx = netdev_priv(netdev);
1555        return alx_start_xmit_ring(skb, alx_tx_queue_mapping(alx, skb));
1556}
1557
1558static void alx_tx_timeout(struct net_device *dev)
1559{
1560        struct alx_priv *alx = netdev_priv(dev);
1561
1562        alx_schedule_reset(alx);
1563}
1564
1565static int alx_mdio_read(struct net_device *netdev,
1566                         int prtad, int devad, u16 addr)
1567{
1568        struct alx_priv *alx = netdev_priv(netdev);
1569        struct alx_hw *hw = &alx->hw;
1570        u16 val;
1571        int err;
1572
1573        if (prtad != hw->mdio.prtad)
1574                return -EINVAL;
1575
1576        if (devad == MDIO_DEVAD_NONE)
1577                err = alx_read_phy_reg(hw, addr, &val);
1578        else
1579                err = alx_read_phy_ext(hw, devad, addr, &val);
1580
1581        if (err)
1582                return err;
1583        return val;
1584}
1585
1586static int alx_mdio_write(struct net_device *netdev,
1587                          int prtad, int devad, u16 addr, u16 val)
1588{
1589        struct alx_priv *alx = netdev_priv(netdev);
1590        struct alx_hw *hw = &alx->hw;
1591
1592        if (prtad != hw->mdio.prtad)
1593                return -EINVAL;
1594
1595        if (devad == MDIO_DEVAD_NONE)
1596                return alx_write_phy_reg(hw, addr, val);
1597
1598        return alx_write_phy_ext(hw, devad, addr, val);
1599}
1600
1601static int alx_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
1602{
1603        struct alx_priv *alx = netdev_priv(netdev);
1604
1605        if (!netif_running(netdev))
1606                return -EAGAIN;
1607
1608        return mdio_mii_ioctl(&alx->hw.mdio, if_mii(ifr), cmd);
1609}
1610
1611#ifdef CONFIG_NET_POLL_CONTROLLER
1612static void alx_poll_controller(struct net_device *netdev)
1613{
1614        struct alx_priv *alx = netdev_priv(netdev);
1615        int i;
1616
1617        if (alx->hw.pdev->msix_enabled) {
1618                alx_intr_msix_misc(0, alx);
1619                for (i = 0; i < alx->num_txq; i++)
1620                        alx_intr_msix_ring(0, alx->qnapi[i]);
1621        } else if (alx->hw.pdev->msi_enabled)
1622                alx_intr_msi(0, alx);
1623        else
1624                alx_intr_legacy(0, alx);
1625}
1626#endif
1627
1628static void alx_get_stats64(struct net_device *dev,
1629                            struct rtnl_link_stats64 *net_stats)
1630{
1631        struct alx_priv *alx = netdev_priv(dev);
1632        struct alx_hw_stats *hw_stats = &alx->hw.stats;
1633
1634        spin_lock(&alx->stats_lock);
1635
1636        alx_update_hw_stats(&alx->hw);
1637
1638        net_stats->tx_bytes   = hw_stats->tx_byte_cnt;
1639        net_stats->rx_bytes   = hw_stats->rx_byte_cnt;
1640        net_stats->multicast  = hw_stats->rx_mcast;
1641        net_stats->collisions = hw_stats->tx_single_col +
1642                                hw_stats->tx_multi_col +
1643                                hw_stats->tx_late_col +
1644                                hw_stats->tx_abort_col;
1645
1646        net_stats->rx_errors  = hw_stats->rx_frag +
1647                                hw_stats->rx_fcs_err +
1648                                hw_stats->rx_len_err +
1649                                hw_stats->rx_ov_sz +
1650                                hw_stats->rx_ov_rrd +
1651                                hw_stats->rx_align_err +
1652                                hw_stats->rx_ov_rxf;
1653
1654        net_stats->rx_fifo_errors   = hw_stats->rx_ov_rxf;
1655        net_stats->rx_length_errors = hw_stats->rx_len_err;
1656        net_stats->rx_crc_errors    = hw_stats->rx_fcs_err;
1657        net_stats->rx_frame_errors  = hw_stats->rx_align_err;
1658        net_stats->rx_dropped       = hw_stats->rx_ov_rrd;
1659
1660        net_stats->tx_errors = hw_stats->tx_late_col +
1661                               hw_stats->tx_abort_col +
1662                               hw_stats->tx_underrun +
1663                               hw_stats->tx_trunc;
1664
1665        net_stats->tx_aborted_errors = hw_stats->tx_abort_col;
1666        net_stats->tx_fifo_errors    = hw_stats->tx_underrun;
1667        net_stats->tx_window_errors  = hw_stats->tx_late_col;
1668
1669        net_stats->tx_packets = hw_stats->tx_ok + net_stats->tx_errors;
1670        net_stats->rx_packets = hw_stats->rx_ok + net_stats->rx_errors;
1671
1672        spin_unlock(&alx->stats_lock);
1673}
1674
1675static const struct net_device_ops alx_netdev_ops = {
1676        .ndo_open               = alx_open,
1677        .ndo_stop               = alx_stop,
1678        .ndo_start_xmit         = alx_start_xmit,
1679        .ndo_get_stats64        = alx_get_stats64,
1680        .ndo_set_rx_mode        = alx_set_rx_mode,
1681        .ndo_validate_addr      = eth_validate_addr,
1682        .ndo_set_mac_address    = alx_set_mac_address,
1683        .ndo_change_mtu         = alx_change_mtu,
1684        .ndo_do_ioctl           = alx_ioctl,
1685        .ndo_tx_timeout         = alx_tx_timeout,
1686        .ndo_fix_features       = alx_fix_features,
1687#ifdef CONFIG_NET_POLL_CONTROLLER
1688        .ndo_poll_controller    = alx_poll_controller,
1689#endif
1690};
1691
1692static int alx_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1693{
1694        struct net_device *netdev;
1695        struct alx_priv *alx;
1696        struct alx_hw *hw;
1697        bool phy_configured;
1698        int err;
1699
1700        err = pci_enable_device_mem(pdev);
1701        if (err)
1702                return err;
1703
1704        /* The alx chip can DMA to 64-bit addresses, but it uses a single
1705         * shared register for the high 32 bits, so only a single, aligned,
1706         * 4 GB physical address range can be used for descriptors.
1707         */
1708        if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
1709                dev_dbg(&pdev->dev, "DMA to 64-BIT addresses\n");
1710        } else {
1711                err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1712                if (err) {
1713                        dev_err(&pdev->dev, "No usable DMA config, aborting\n");
1714                        goto out_pci_disable;
1715                }
1716        }
1717
1718        err = pci_request_mem_regions(pdev, alx_drv_name);
1719        if (err) {
1720                dev_err(&pdev->dev,
1721                        "pci_request_mem_regions failed\n");
1722                goto out_pci_disable;
1723        }
1724
1725        pci_enable_pcie_error_reporting(pdev);
1726        pci_set_master(pdev);
1727
1728        if (!pdev->pm_cap) {
1729                dev_err(&pdev->dev,
1730                        "Can't find power management capability, aborting\n");
1731                err = -EIO;
1732                goto out_pci_release;
1733        }
1734
1735        netdev = alloc_etherdev_mqs(sizeof(*alx),
1736                                    ALX_MAX_TX_QUEUES, 1);
1737        if (!netdev) {
1738                err = -ENOMEM;
1739                goto out_pci_release;
1740        }
1741
1742        SET_NETDEV_DEV(netdev, &pdev->dev);
1743        alx = netdev_priv(netdev);
1744        spin_lock_init(&alx->hw.mdio_lock);
1745        spin_lock_init(&alx->irq_lock);
1746        spin_lock_init(&alx->stats_lock);
1747        alx->dev = netdev;
1748        alx->hw.pdev = pdev;
1749        alx->msg_enable = NETIF_MSG_LINK | NETIF_MSG_HW | NETIF_MSG_IFUP |
1750                          NETIF_MSG_TX_ERR | NETIF_MSG_RX_ERR | NETIF_MSG_WOL;
1751        hw = &alx->hw;
1752        pci_set_drvdata(pdev, alx);
1753
1754        hw->hw_addr = pci_ioremap_bar(pdev, 0);
1755        if (!hw->hw_addr) {
1756                dev_err(&pdev->dev, "cannot map device registers\n");
1757                err = -EIO;
1758                goto out_free_netdev;
1759        }
1760
1761        netdev->netdev_ops = &alx_netdev_ops;
1762        netdev->ethtool_ops = &alx_ethtool_ops;
1763        netdev->irq = pci_irq_vector(pdev, 0);
1764        netdev->watchdog_timeo = ALX_WATCHDOG_TIME;
1765
1766        if (ent->driver_data & ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG)
1767                pdev->dev_flags |= PCI_DEV_FLAGS_MSI_INTX_DISABLE_BUG;
1768
1769        err = alx_init_sw(alx);
1770        if (err) {
1771                dev_err(&pdev->dev, "net device private data init failed\n");
1772                goto out_unmap;
1773        }
1774
1775        alx_reset_pcie(hw);
1776
1777        phy_configured = alx_phy_configured(hw);
1778
1779        if (!phy_configured)
1780                alx_reset_phy(hw);
1781
1782        err = alx_reset_mac(hw);
1783        if (err) {
1784                dev_err(&pdev->dev, "MAC Reset failed, error = %d\n", err);
1785                goto out_unmap;
1786        }
1787
1788        /* setup link to put it in a known good starting state */
1789        if (!phy_configured) {
1790                err = alx_setup_speed_duplex(hw, hw->adv_cfg, hw->flowctrl);
1791                if (err) {
1792                        dev_err(&pdev->dev,
1793                                "failed to configure PHY speed/duplex (err=%d)\n",
1794                                err);
1795                        goto out_unmap;
1796                }
1797        }
1798
1799        netdev->hw_features = NETIF_F_SG |
1800                              NETIF_F_HW_CSUM |
1801                              NETIF_F_RXCSUM |
1802                              NETIF_F_TSO |
1803                              NETIF_F_TSO6;
1804
1805        if (alx_get_perm_macaddr(hw, hw->perm_addr)) {
1806                dev_warn(&pdev->dev,
1807                         "Invalid permanent address programmed, using random one\n");
1808                eth_hw_addr_random(netdev);
1809                memcpy(hw->perm_addr, netdev->dev_addr, netdev->addr_len);
1810        }
1811
1812        memcpy(hw->mac_addr, hw->perm_addr, ETH_ALEN);
1813        memcpy(netdev->dev_addr, hw->mac_addr, ETH_ALEN);
1814        memcpy(netdev->perm_addr, hw->perm_addr, ETH_ALEN);
1815
1816        hw->mdio.prtad = 0;
1817        hw->mdio.mmds = 0;
1818        hw->mdio.dev = netdev;
1819        hw->mdio.mode_support = MDIO_SUPPORTS_C45 |
1820                                MDIO_SUPPORTS_C22 |
1821                                MDIO_EMULATE_C22;
1822        hw->mdio.mdio_read = alx_mdio_read;
1823        hw->mdio.mdio_write = alx_mdio_write;
1824
1825        if (!alx_get_phy_info(hw)) {
1826                dev_err(&pdev->dev, "failed to identify PHY\n");
1827                err = -EIO;
1828                goto out_unmap;
1829        }
1830
1831        INIT_WORK(&alx->link_check_wk, alx_link_check);
1832        INIT_WORK(&alx->reset_wk, alx_reset);
1833        netif_carrier_off(netdev);
1834
1835        err = register_netdev(netdev);
1836        if (err) {
1837                dev_err(&pdev->dev, "register netdevice failed\n");
1838                goto out_unmap;
1839        }
1840
1841        netdev_info(netdev,
1842                    "Qualcomm Atheros AR816x/AR817x Ethernet [%pM]\n",
1843                    netdev->dev_addr);
1844
1845        return 0;
1846
1847out_unmap:
1848        iounmap(hw->hw_addr);
1849out_free_netdev:
1850        free_netdev(netdev);
1851out_pci_release:
1852        pci_release_mem_regions(pdev);
1853out_pci_disable:
1854        pci_disable_device(pdev);
1855        return err;
1856}
1857
1858static void alx_remove(struct pci_dev *pdev)
1859{
1860        struct alx_priv *alx = pci_get_drvdata(pdev);
1861        struct alx_hw *hw = &alx->hw;
1862
1863        cancel_work_sync(&alx->link_check_wk);
1864        cancel_work_sync(&alx->reset_wk);
1865
1866        /* restore permanent mac address */
1867        alx_set_macaddr(hw, hw->perm_addr);
1868
1869        unregister_netdev(alx->dev);
1870        iounmap(hw->hw_addr);
1871        pci_release_mem_regions(pdev);
1872
1873        pci_disable_pcie_error_reporting(pdev);
1874        pci_disable_device(pdev);
1875
1876        free_netdev(alx->dev);
1877}
1878
1879#ifdef CONFIG_PM_SLEEP
1880static int alx_suspend(struct device *dev)
1881{
1882        struct pci_dev *pdev = to_pci_dev(dev);
1883        struct alx_priv *alx = pci_get_drvdata(pdev);
1884
1885        if (!netif_running(alx->dev))
1886                return 0;
1887        netif_device_detach(alx->dev);
1888        __alx_stop(alx);
1889        return 0;
1890}
1891
1892static int alx_resume(struct device *dev)
1893{
1894        struct pci_dev *pdev = to_pci_dev(dev);
1895        struct alx_priv *alx = pci_get_drvdata(pdev);
1896        struct alx_hw *hw = &alx->hw;
1897        int err;
1898
1899        alx_reset_phy(hw);
1900
1901        if (!netif_running(alx->dev))
1902                return 0;
1903        netif_device_attach(alx->dev);
1904
1905        rtnl_lock();
1906        err = __alx_open(alx, true);
1907        rtnl_unlock();
1908
1909        return err;
1910}
1911
1912static SIMPLE_DEV_PM_OPS(alx_pm_ops, alx_suspend, alx_resume);
1913#define ALX_PM_OPS      (&alx_pm_ops)
1914#else
1915#define ALX_PM_OPS      NULL
1916#endif
1917
1918
1919static pci_ers_result_t alx_pci_error_detected(struct pci_dev *pdev,
1920                                               pci_channel_state_t state)
1921{
1922        struct alx_priv *alx = pci_get_drvdata(pdev);
1923        struct net_device *netdev = alx->dev;
1924        pci_ers_result_t rc = PCI_ERS_RESULT_NEED_RESET;
1925
1926        dev_info(&pdev->dev, "pci error detected\n");
1927
1928        rtnl_lock();
1929
1930        if (netif_running(netdev)) {
1931                netif_device_detach(netdev);
1932                alx_halt(alx);
1933        }
1934
1935        if (state == pci_channel_io_perm_failure)
1936                rc = PCI_ERS_RESULT_DISCONNECT;
1937        else
1938                pci_disable_device(pdev);
1939
1940        rtnl_unlock();
1941
1942        return rc;
1943}
1944
1945static pci_ers_result_t alx_pci_error_slot_reset(struct pci_dev *pdev)
1946{
1947        struct alx_priv *alx = pci_get_drvdata(pdev);
1948        struct alx_hw *hw = &alx->hw;
1949        pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT;
1950
1951        dev_info(&pdev->dev, "pci error slot reset\n");
1952
1953        rtnl_lock();
1954
1955        if (pci_enable_device(pdev)) {
1956                dev_err(&pdev->dev, "Failed to re-enable PCI device after reset\n");
1957                goto out;
1958        }
1959
1960        pci_set_master(pdev);
1961
1962        alx_reset_pcie(hw);
1963        if (!alx_reset_mac(hw))
1964                rc = PCI_ERS_RESULT_RECOVERED;
1965out:
1966        rtnl_unlock();
1967
1968        return rc;
1969}
1970
1971static void alx_pci_error_resume(struct pci_dev *pdev)
1972{
1973        struct alx_priv *alx = pci_get_drvdata(pdev);
1974        struct net_device *netdev = alx->dev;
1975
1976        dev_info(&pdev->dev, "pci error resume\n");
1977
1978        rtnl_lock();
1979
1980        if (netif_running(netdev)) {
1981                alx_activate(alx);
1982                netif_device_attach(netdev);
1983        }
1984
1985        rtnl_unlock();
1986}
1987
1988static const struct pci_error_handlers alx_err_handlers = {
1989        .error_detected = alx_pci_error_detected,
1990        .slot_reset     = alx_pci_error_slot_reset,
1991        .resume         = alx_pci_error_resume,
1992};
1993
1994static const struct pci_device_id alx_pci_tbl[] = {
1995        { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8161),
1996          .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
1997        { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_E2200),
1998          .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
1999        { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_E2400),
2000          .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
2001        { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_E2500),
2002          .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
2003        { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8162),
2004          .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
2005        { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8171) },
2006        { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8172) },
2007        {}
2008};
2009
2010static struct pci_driver alx_driver = {
2011        .name        = alx_drv_name,
2012        .id_table    = alx_pci_tbl,
2013        .probe       = alx_probe,
2014        .remove      = alx_remove,
2015        .err_handler = &alx_err_handlers,
2016        .driver.pm   = ALX_PM_OPS,
2017};
2018
2019module_pci_driver(alx_driver);
2020MODULE_DEVICE_TABLE(pci, alx_pci_tbl);
2021MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
2022MODULE_AUTHOR("Qualcomm Corporation, <nic-devel@qualcomm.com>");
2023MODULE_DESCRIPTION(
2024        "Qualcomm Atheros(R) AR816x/AR817x PCI-E Ethernet Network Driver");
2025MODULE_LICENSE("GPL");
2026