linux/drivers/net/ethernet/intel/i40e/i40e_txrx.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 2013 - 2018 Intel Corporation. */
   3
   4#include <linux/prefetch.h>
   5#include <linux/bpf_trace.h>
   6#include <net/xdp.h>
   7#include "i40e.h"
   8#include "i40e_trace.h"
   9#include "i40e_prototype.h"
  10#include "i40e_txrx_common.h"
  11#include "i40e_xsk.h"
  12
  13#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
  14/**
  15 * i40e_fdir - Generate a Flow Director descriptor based on fdata
  16 * @tx_ring: Tx ring to send buffer on
  17 * @fdata: Flow director filter data
  18 * @add: Indicate if we are adding a rule or deleting one
  19 *
  20 **/
  21static void i40e_fdir(struct i40e_ring *tx_ring,
  22                      struct i40e_fdir_filter *fdata, bool add)
  23{
  24        struct i40e_filter_program_desc *fdir_desc;
  25        struct i40e_pf *pf = tx_ring->vsi->back;
  26        u32 flex_ptype, dtype_cmd;
  27        u16 i;
  28
  29        /* grab the next descriptor */
  30        i = tx_ring->next_to_use;
  31        fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
  32
  33        i++;
  34        tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
  35
  36        flex_ptype = I40E_TXD_FLTR_QW0_QINDEX_MASK &
  37                     (fdata->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT);
  38
  39        flex_ptype |= I40E_TXD_FLTR_QW0_FLEXOFF_MASK &
  40                      (fdata->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
  41
  42        flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
  43                      (fdata->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
  44
  45        flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
  46                      (fdata->flex_offset << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
  47
  48        /* Use LAN VSI Id if not programmed by user */
  49        flex_ptype |= I40E_TXD_FLTR_QW0_DEST_VSI_MASK &
  50                      ((u32)(fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id) <<
  51                       I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT);
  52
  53        dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
  54
  55        dtype_cmd |= add ?
  56                     I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
  57                     I40E_TXD_FLTR_QW1_PCMD_SHIFT :
  58                     I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
  59                     I40E_TXD_FLTR_QW1_PCMD_SHIFT;
  60
  61        dtype_cmd |= I40E_TXD_FLTR_QW1_DEST_MASK &
  62                     (fdata->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT);
  63
  64        dtype_cmd |= I40E_TXD_FLTR_QW1_FD_STATUS_MASK &
  65                     (fdata->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT);
  66
  67        if (fdata->cnt_index) {
  68                dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
  69                dtype_cmd |= I40E_TXD_FLTR_QW1_CNTINDEX_MASK &
  70                             ((u32)fdata->cnt_index <<
  71                              I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT);
  72        }
  73
  74        fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
  75        fdir_desc->rsvd = cpu_to_le32(0);
  76        fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
  77        fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
  78}
  79
  80#define I40E_FD_CLEAN_DELAY 10
  81/**
  82 * i40e_program_fdir_filter - Program a Flow Director filter
  83 * @fdir_data: Packet data that will be filter parameters
  84 * @raw_packet: the pre-allocated packet buffer for FDir
  85 * @pf: The PF pointer
  86 * @add: True for add/update, False for remove
  87 **/
  88static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
  89                                    u8 *raw_packet, struct i40e_pf *pf,
  90                                    bool add)
  91{
  92        struct i40e_tx_buffer *tx_buf, *first;
  93        struct i40e_tx_desc *tx_desc;
  94        struct i40e_ring *tx_ring;
  95        struct i40e_vsi *vsi;
  96        struct device *dev;
  97        dma_addr_t dma;
  98        u32 td_cmd = 0;
  99        u16 i;
 100
 101        /* find existing FDIR VSI */
 102        vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
 103        if (!vsi)
 104                return -ENOENT;
 105
 106        tx_ring = vsi->tx_rings[0];
 107        dev = tx_ring->dev;
 108
 109        /* we need two descriptors to add/del a filter and we can wait */
 110        for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
 111                if (!i)
 112                        return -EAGAIN;
 113                msleep_interruptible(1);
 114        }
 115
 116        dma = dma_map_single(dev, raw_packet,
 117                             I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
 118        if (dma_mapping_error(dev, dma))
 119                goto dma_fail;
 120
 121        /* grab the next descriptor */
 122        i = tx_ring->next_to_use;
 123        first = &tx_ring->tx_bi[i];
 124        i40e_fdir(tx_ring, fdir_data, add);
 125
 126        /* Now program a dummy descriptor */
 127        i = tx_ring->next_to_use;
 128        tx_desc = I40E_TX_DESC(tx_ring, i);
 129        tx_buf = &tx_ring->tx_bi[i];
 130
 131        tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
 132
 133        memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
 134
 135        /* record length, and DMA address */
 136        dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
 137        dma_unmap_addr_set(tx_buf, dma, dma);
 138
 139        tx_desc->buffer_addr = cpu_to_le64(dma);
 140        td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
 141
 142        tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
 143        tx_buf->raw_buf = (void *)raw_packet;
 144
 145        tx_desc->cmd_type_offset_bsz =
 146                build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
 147
 148        /* Force memory writes to complete before letting h/w
 149         * know there are new descriptors to fetch.
 150         */
 151        wmb();
 152
 153        /* Mark the data descriptor to be watched */
 154        first->next_to_watch = tx_desc;
 155
 156        writel(tx_ring->next_to_use, tx_ring->tail);
 157        return 0;
 158
 159dma_fail:
 160        return -1;
 161}
 162
 163#define IP_HEADER_OFFSET 14
 164#define I40E_UDPIP_DUMMY_PACKET_LEN 42
 165/**
 166 * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters
 167 * @vsi: pointer to the targeted VSI
 168 * @fd_data: the flow director data required for the FDir descriptor
 169 * @add: true adds a filter, false removes it
 170 *
 171 * Returns 0 if the filters were successfully added or removed
 172 **/
 173static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi,
 174                                   struct i40e_fdir_filter *fd_data,
 175                                   bool add)
 176{
 177        struct i40e_pf *pf = vsi->back;
 178        struct udphdr *udp;
 179        struct iphdr *ip;
 180        u8 *raw_packet;
 181        int ret;
 182        static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
 183                0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0,
 184                0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
 185
 186        raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 187        if (!raw_packet)
 188                return -ENOMEM;
 189        memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN);
 190
 191        ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
 192        udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET
 193              + sizeof(struct iphdr));
 194
 195        ip->daddr = fd_data->dst_ip;
 196        udp->dest = fd_data->dst_port;
 197        ip->saddr = fd_data->src_ip;
 198        udp->source = fd_data->src_port;
 199
 200        if (fd_data->flex_filter) {
 201                u8 *payload = raw_packet + I40E_UDPIP_DUMMY_PACKET_LEN;
 202                __be16 pattern = fd_data->flex_word;
 203                u16 off = fd_data->flex_offset;
 204
 205                *((__force __be16 *)(payload + off)) = pattern;
 206        }
 207
 208        fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP;
 209        ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
 210        if (ret) {
 211                dev_info(&pf->pdev->dev,
 212                         "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
 213                         fd_data->pctype, fd_data->fd_id, ret);
 214                /* Free the packet buffer since it wasn't added to the ring */
 215                kfree(raw_packet);
 216                return -EOPNOTSUPP;
 217        } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
 218                if (add)
 219                        dev_info(&pf->pdev->dev,
 220                                 "Filter OK for PCTYPE %d loc = %d\n",
 221                                 fd_data->pctype, fd_data->fd_id);
 222                else
 223                        dev_info(&pf->pdev->dev,
 224                                 "Filter deleted for PCTYPE %d loc = %d\n",
 225                                 fd_data->pctype, fd_data->fd_id);
 226        }
 227
 228        if (add)
 229                pf->fd_udp4_filter_cnt++;
 230        else
 231                pf->fd_udp4_filter_cnt--;
 232
 233        return 0;
 234}
 235
 236#define I40E_TCPIP_DUMMY_PACKET_LEN 54
 237/**
 238 * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters
 239 * @vsi: pointer to the targeted VSI
 240 * @fd_data: the flow director data required for the FDir descriptor
 241 * @add: true adds a filter, false removes it
 242 *
 243 * Returns 0 if the filters were successfully added or removed
 244 **/
 245static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi,
 246                                   struct i40e_fdir_filter *fd_data,
 247                                   bool add)
 248{
 249        struct i40e_pf *pf = vsi->back;
 250        struct tcphdr *tcp;
 251        struct iphdr *ip;
 252        u8 *raw_packet;
 253        int ret;
 254        /* Dummy packet */
 255        static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
 256                0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0,
 257                0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11,
 258                0x0, 0x72, 0, 0, 0, 0};
 259
 260        raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 261        if (!raw_packet)
 262                return -ENOMEM;
 263        memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN);
 264
 265        ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
 266        tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET
 267              + sizeof(struct iphdr));
 268
 269        ip->daddr = fd_data->dst_ip;
 270        tcp->dest = fd_data->dst_port;
 271        ip->saddr = fd_data->src_ip;
 272        tcp->source = fd_data->src_port;
 273
 274        if (fd_data->flex_filter) {
 275                u8 *payload = raw_packet + I40E_TCPIP_DUMMY_PACKET_LEN;
 276                __be16 pattern = fd_data->flex_word;
 277                u16 off = fd_data->flex_offset;
 278
 279                *((__force __be16 *)(payload + off)) = pattern;
 280        }
 281
 282        fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP;
 283        ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
 284        if (ret) {
 285                dev_info(&pf->pdev->dev,
 286                         "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
 287                         fd_data->pctype, fd_data->fd_id, ret);
 288                /* Free the packet buffer since it wasn't added to the ring */
 289                kfree(raw_packet);
 290                return -EOPNOTSUPP;
 291        } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
 292                if (add)
 293                        dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n",
 294                                 fd_data->pctype, fd_data->fd_id);
 295                else
 296                        dev_info(&pf->pdev->dev,
 297                                 "Filter deleted for PCTYPE %d loc = %d\n",
 298                                 fd_data->pctype, fd_data->fd_id);
 299        }
 300
 301        if (add) {
 302                pf->fd_tcp4_filter_cnt++;
 303                if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
 304                    I40E_DEBUG_FD & pf->hw.debug_mask)
 305                        dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
 306                set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
 307        } else {
 308                pf->fd_tcp4_filter_cnt--;
 309        }
 310
 311        return 0;
 312}
 313
 314#define I40E_SCTPIP_DUMMY_PACKET_LEN 46
 315/**
 316 * i40e_add_del_fdir_sctpv4 - Add/Remove SCTPv4 Flow Director filters for
 317 * a specific flow spec
 318 * @vsi: pointer to the targeted VSI
 319 * @fd_data: the flow director data required for the FDir descriptor
 320 * @add: true adds a filter, false removes it
 321 *
 322 * Returns 0 if the filters were successfully added or removed
 323 **/
 324static int i40e_add_del_fdir_sctpv4(struct i40e_vsi *vsi,
 325                                    struct i40e_fdir_filter *fd_data,
 326                                    bool add)
 327{
 328        struct i40e_pf *pf = vsi->back;
 329        struct sctphdr *sctp;
 330        struct iphdr *ip;
 331        u8 *raw_packet;
 332        int ret;
 333        /* Dummy packet */
 334        static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
 335                0x45, 0, 0, 0x20, 0, 0, 0x40, 0, 0x40, 0x84, 0, 0, 0, 0, 0, 0,
 336                0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
 337
 338        raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 339        if (!raw_packet)
 340                return -ENOMEM;
 341        memcpy(raw_packet, packet, I40E_SCTPIP_DUMMY_PACKET_LEN);
 342
 343        ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
 344        sctp = (struct sctphdr *)(raw_packet + IP_HEADER_OFFSET
 345              + sizeof(struct iphdr));
 346
 347        ip->daddr = fd_data->dst_ip;
 348        sctp->dest = fd_data->dst_port;
 349        ip->saddr = fd_data->src_ip;
 350        sctp->source = fd_data->src_port;
 351
 352        if (fd_data->flex_filter) {
 353                u8 *payload = raw_packet + I40E_SCTPIP_DUMMY_PACKET_LEN;
 354                __be16 pattern = fd_data->flex_word;
 355                u16 off = fd_data->flex_offset;
 356
 357                *((__force __be16 *)(payload + off)) = pattern;
 358        }
 359
 360        fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_SCTP;
 361        ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
 362        if (ret) {
 363                dev_info(&pf->pdev->dev,
 364                         "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
 365                         fd_data->pctype, fd_data->fd_id, ret);
 366                /* Free the packet buffer since it wasn't added to the ring */
 367                kfree(raw_packet);
 368                return -EOPNOTSUPP;
 369        } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
 370                if (add)
 371                        dev_info(&pf->pdev->dev,
 372                                 "Filter OK for PCTYPE %d loc = %d\n",
 373                                 fd_data->pctype, fd_data->fd_id);
 374                else
 375                        dev_info(&pf->pdev->dev,
 376                                 "Filter deleted for PCTYPE %d loc = %d\n",
 377                                 fd_data->pctype, fd_data->fd_id);
 378        }
 379
 380        if (add)
 381                pf->fd_sctp4_filter_cnt++;
 382        else
 383                pf->fd_sctp4_filter_cnt--;
 384
 385        return 0;
 386}
 387
 388#define I40E_IP_DUMMY_PACKET_LEN 34
 389/**
 390 * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for
 391 * a specific flow spec
 392 * @vsi: pointer to the targeted VSI
 393 * @fd_data: the flow director data required for the FDir descriptor
 394 * @add: true adds a filter, false removes it
 395 *
 396 * Returns 0 if the filters were successfully added or removed
 397 **/
 398static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi,
 399                                  struct i40e_fdir_filter *fd_data,
 400                                  bool add)
 401{
 402        struct i40e_pf *pf = vsi->back;
 403        struct iphdr *ip;
 404        u8 *raw_packet;
 405        int ret;
 406        int i;
 407        static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
 408                0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0,
 409                0, 0, 0, 0};
 410
 411        for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
 412             i <= I40E_FILTER_PCTYPE_FRAG_IPV4; i++) {
 413                raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 414                if (!raw_packet)
 415                        return -ENOMEM;
 416                memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN);
 417                ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
 418
 419                ip->saddr = fd_data->src_ip;
 420                ip->daddr = fd_data->dst_ip;
 421                ip->protocol = 0;
 422
 423                if (fd_data->flex_filter) {
 424                        u8 *payload = raw_packet + I40E_IP_DUMMY_PACKET_LEN;
 425                        __be16 pattern = fd_data->flex_word;
 426                        u16 off = fd_data->flex_offset;
 427
 428                        *((__force __be16 *)(payload + off)) = pattern;
 429                }
 430
 431                fd_data->pctype = i;
 432                ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
 433                if (ret) {
 434                        dev_info(&pf->pdev->dev,
 435                                 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
 436                                 fd_data->pctype, fd_data->fd_id, ret);
 437                        /* The packet buffer wasn't added to the ring so we
 438                         * need to free it now.
 439                         */
 440                        kfree(raw_packet);
 441                        return -EOPNOTSUPP;
 442                } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
 443                        if (add)
 444                                dev_info(&pf->pdev->dev,
 445                                         "Filter OK for PCTYPE %d loc = %d\n",
 446                                         fd_data->pctype, fd_data->fd_id);
 447                        else
 448                                dev_info(&pf->pdev->dev,
 449                                         "Filter deleted for PCTYPE %d loc = %d\n",
 450                                         fd_data->pctype, fd_data->fd_id);
 451                }
 452        }
 453
 454        if (add)
 455                pf->fd_ip4_filter_cnt++;
 456        else
 457                pf->fd_ip4_filter_cnt--;
 458
 459        return 0;
 460}
 461
 462/**
 463 * i40e_add_del_fdir - Build raw packets to add/del fdir filter
 464 * @vsi: pointer to the targeted VSI
 465 * @input: filter to add or delete
 466 * @add: true adds a filter, false removes it
 467 *
 468 **/
 469int i40e_add_del_fdir(struct i40e_vsi *vsi,
 470                      struct i40e_fdir_filter *input, bool add)
 471{
 472        struct i40e_pf *pf = vsi->back;
 473        int ret;
 474
 475        switch (input->flow_type & ~FLOW_EXT) {
 476        case TCP_V4_FLOW:
 477                ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
 478                break;
 479        case UDP_V4_FLOW:
 480                ret = i40e_add_del_fdir_udpv4(vsi, input, add);
 481                break;
 482        case SCTP_V4_FLOW:
 483                ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
 484                break;
 485        case IP_USER_FLOW:
 486                switch (input->ip4_proto) {
 487                case IPPROTO_TCP:
 488                        ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
 489                        break;
 490                case IPPROTO_UDP:
 491                        ret = i40e_add_del_fdir_udpv4(vsi, input, add);
 492                        break;
 493                case IPPROTO_SCTP:
 494                        ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
 495                        break;
 496                case IPPROTO_IP:
 497                        ret = i40e_add_del_fdir_ipv4(vsi, input, add);
 498                        break;
 499                default:
 500                        /* We cannot support masking based on protocol */
 501                        dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n",
 502                                 input->ip4_proto);
 503                        return -EINVAL;
 504                }
 505                break;
 506        default:
 507                dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n",
 508                         input->flow_type);
 509                return -EINVAL;
 510        }
 511
 512        /* The buffer allocated here will be normally be freed by
 513         * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit
 514         * completion. In the event of an error adding the buffer to the FDIR
 515         * ring, it will immediately be freed. It may also be freed by
 516         * i40e_clean_tx_ring() when closing the VSI.
 517         */
 518        return ret;
 519}
 520
 521/**
 522 * i40e_fd_handle_status - check the Programming Status for FD
 523 * @rx_ring: the Rx ring for this descriptor
 524 * @rx_desc: the Rx descriptor for programming Status, not a packet descriptor.
 525 * @prog_id: the id originally used for programming
 526 *
 527 * This is used to verify if the FD programming or invalidation
 528 * requested by SW to the HW is successful or not and take actions accordingly.
 529 **/
 530void i40e_fd_handle_status(struct i40e_ring *rx_ring,
 531                           union i40e_rx_desc *rx_desc, u8 prog_id)
 532{
 533        struct i40e_pf *pf = rx_ring->vsi->back;
 534        struct pci_dev *pdev = pf->pdev;
 535        u32 fcnt_prog, fcnt_avail;
 536        u32 error;
 537        u64 qw;
 538
 539        qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
 540        error = (qw & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
 541                I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
 542
 543        if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
 544                pf->fd_inv = le32_to_cpu(rx_desc->wb.qword0.hi_dword.fd_id);
 545                if ((rx_desc->wb.qword0.hi_dword.fd_id != 0) ||
 546                    (I40E_DEBUG_FD & pf->hw.debug_mask))
 547                        dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
 548                                 pf->fd_inv);
 549
 550                /* Check if the programming error is for ATR.
 551                 * If so, auto disable ATR and set a state for
 552                 * flush in progress. Next time we come here if flush is in
 553                 * progress do nothing, once flush is complete the state will
 554                 * be cleared.
 555                 */
 556                if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state))
 557                        return;
 558
 559                pf->fd_add_err++;
 560                /* store the current atr filter count */
 561                pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
 562
 563                if ((rx_desc->wb.qword0.hi_dword.fd_id == 0) &&
 564                    test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) {
 565                        /* These set_bit() calls aren't atomic with the
 566                         * test_bit() here, but worse case we potentially
 567                         * disable ATR and queue a flush right after SB
 568                         * support is re-enabled. That shouldn't cause an
 569                         * issue in practice
 570                         */
 571                        set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
 572                        set_bit(__I40E_FD_FLUSH_REQUESTED, pf->state);
 573                }
 574
 575                /* filter programming failed most likely due to table full */
 576                fcnt_prog = i40e_get_global_fd_count(pf);
 577                fcnt_avail = pf->fdir_pf_filter_count;
 578                /* If ATR is running fcnt_prog can quickly change,
 579                 * if we are very close to full, it makes sense to disable
 580                 * FD ATR/SB and then re-enable it when there is room.
 581                 */
 582                if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
 583                        if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
 584                            !test_and_set_bit(__I40E_FD_SB_AUTO_DISABLED,
 585                                              pf->state))
 586                                if (I40E_DEBUG_FD & pf->hw.debug_mask)
 587                                        dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
 588                }
 589        } else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
 590                if (I40E_DEBUG_FD & pf->hw.debug_mask)
 591                        dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
 592                                 rx_desc->wb.qword0.hi_dword.fd_id);
 593        }
 594}
 595
 596/**
 597 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
 598 * @ring:      the ring that owns the buffer
 599 * @tx_buffer: the buffer to free
 600 **/
 601static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
 602                                            struct i40e_tx_buffer *tx_buffer)
 603{
 604        if (tx_buffer->skb) {
 605                if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
 606                        kfree(tx_buffer->raw_buf);
 607                else if (ring_is_xdp(ring))
 608                        xdp_return_frame(tx_buffer->xdpf);
 609                else
 610                        dev_kfree_skb_any(tx_buffer->skb);
 611                if (dma_unmap_len(tx_buffer, len))
 612                        dma_unmap_single(ring->dev,
 613                                         dma_unmap_addr(tx_buffer, dma),
 614                                         dma_unmap_len(tx_buffer, len),
 615                                         DMA_TO_DEVICE);
 616        } else if (dma_unmap_len(tx_buffer, len)) {
 617                dma_unmap_page(ring->dev,
 618                               dma_unmap_addr(tx_buffer, dma),
 619                               dma_unmap_len(tx_buffer, len),
 620                               DMA_TO_DEVICE);
 621        }
 622
 623        tx_buffer->next_to_watch = NULL;
 624        tx_buffer->skb = NULL;
 625        dma_unmap_len_set(tx_buffer, len, 0);
 626        /* tx_buffer must be completely set up in the transmit path */
 627}
 628
 629/**
 630 * i40e_clean_tx_ring - Free any empty Tx buffers
 631 * @tx_ring: ring to be cleaned
 632 **/
 633void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
 634{
 635        unsigned long bi_size;
 636        u16 i;
 637
 638        if (ring_is_xdp(tx_ring) && tx_ring->xsk_umem) {
 639                i40e_xsk_clean_tx_ring(tx_ring);
 640        } else {
 641                /* ring already cleared, nothing to do */
 642                if (!tx_ring->tx_bi)
 643                        return;
 644
 645                /* Free all the Tx ring sk_buffs */
 646                for (i = 0; i < tx_ring->count; i++)
 647                        i40e_unmap_and_free_tx_resource(tx_ring,
 648                                                        &tx_ring->tx_bi[i]);
 649        }
 650
 651        bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
 652        memset(tx_ring->tx_bi, 0, bi_size);
 653
 654        /* Zero out the descriptor ring */
 655        memset(tx_ring->desc, 0, tx_ring->size);
 656
 657        tx_ring->next_to_use = 0;
 658        tx_ring->next_to_clean = 0;
 659
 660        if (!tx_ring->netdev)
 661                return;
 662
 663        /* cleanup Tx queue statistics */
 664        netdev_tx_reset_queue(txring_txq(tx_ring));
 665}
 666
 667/**
 668 * i40e_free_tx_resources - Free Tx resources per queue
 669 * @tx_ring: Tx descriptor ring for a specific queue
 670 *
 671 * Free all transmit software resources
 672 **/
 673void i40e_free_tx_resources(struct i40e_ring *tx_ring)
 674{
 675        i40e_clean_tx_ring(tx_ring);
 676        kfree(tx_ring->tx_bi);
 677        tx_ring->tx_bi = NULL;
 678
 679        if (tx_ring->desc) {
 680                dma_free_coherent(tx_ring->dev, tx_ring->size,
 681                                  tx_ring->desc, tx_ring->dma);
 682                tx_ring->desc = NULL;
 683        }
 684}
 685
 686/**
 687 * i40e_get_tx_pending - how many tx descriptors not processed
 688 * @ring: the ring of descriptors
 689 * @in_sw: use SW variables
 690 *
 691 * Since there is no access to the ring head register
 692 * in XL710, we need to use our local copies
 693 **/
 694u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw)
 695{
 696        u32 head, tail;
 697
 698        if (!in_sw) {
 699                head = i40e_get_head(ring);
 700                tail = readl(ring->tail);
 701        } else {
 702                head = ring->next_to_clean;
 703                tail = ring->next_to_use;
 704        }
 705
 706        if (head != tail)
 707                return (head < tail) ?
 708                        tail - head : (tail + ring->count - head);
 709
 710        return 0;
 711}
 712
 713/**
 714 * i40e_detect_recover_hung - Function to detect and recover hung_queues
 715 * @vsi:  pointer to vsi struct with tx queues
 716 *
 717 * VSI has netdev and netdev has TX queues. This function is to check each of
 718 * those TX queues if they are hung, trigger recovery by issuing SW interrupt.
 719 **/
 720void i40e_detect_recover_hung(struct i40e_vsi *vsi)
 721{
 722        struct i40e_ring *tx_ring = NULL;
 723        struct net_device *netdev;
 724        unsigned int i;
 725        int packets;
 726
 727        if (!vsi)
 728                return;
 729
 730        if (test_bit(__I40E_VSI_DOWN, vsi->state))
 731                return;
 732
 733        netdev = vsi->netdev;
 734        if (!netdev)
 735                return;
 736
 737        if (!netif_carrier_ok(netdev))
 738                return;
 739
 740        for (i = 0; i < vsi->num_queue_pairs; i++) {
 741                tx_ring = vsi->tx_rings[i];
 742                if (tx_ring && tx_ring->desc) {
 743                        /* If packet counter has not changed the queue is
 744                         * likely stalled, so force an interrupt for this
 745                         * queue.
 746                         *
 747                         * prev_pkt_ctr would be negative if there was no
 748                         * pending work.
 749                         */
 750                        packets = tx_ring->stats.packets & INT_MAX;
 751                        if (tx_ring->tx_stats.prev_pkt_ctr == packets) {
 752                                i40e_force_wb(vsi, tx_ring->q_vector);
 753                                continue;
 754                        }
 755
 756                        /* Memory barrier between read of packet count and call
 757                         * to i40e_get_tx_pending()
 758                         */
 759                        smp_rmb();
 760                        tx_ring->tx_stats.prev_pkt_ctr =
 761                            i40e_get_tx_pending(tx_ring, true) ? packets : -1;
 762                }
 763        }
 764}
 765
 766/**
 767 * i40e_clean_tx_irq - Reclaim resources after transmit completes
 768 * @vsi: the VSI we care about
 769 * @tx_ring: Tx ring to clean
 770 * @napi_budget: Used to determine if we are in netpoll
 771 *
 772 * Returns true if there's any budget left (e.g. the clean is finished)
 773 **/
 774static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
 775                              struct i40e_ring *tx_ring, int napi_budget)
 776{
 777        u16 i = tx_ring->next_to_clean;
 778        struct i40e_tx_buffer *tx_buf;
 779        struct i40e_tx_desc *tx_head;
 780        struct i40e_tx_desc *tx_desc;
 781        unsigned int total_bytes = 0, total_packets = 0;
 782        unsigned int budget = vsi->work_limit;
 783
 784        tx_buf = &tx_ring->tx_bi[i];
 785        tx_desc = I40E_TX_DESC(tx_ring, i);
 786        i -= tx_ring->count;
 787
 788        tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
 789
 790        do {
 791                struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
 792
 793                /* if next_to_watch is not set then there is no work pending */
 794                if (!eop_desc)
 795                        break;
 796
 797                /* prevent any other reads prior to eop_desc */
 798                smp_rmb();
 799
 800                i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
 801                /* we have caught up to head, no work left to do */
 802                if (tx_head == tx_desc)
 803                        break;
 804
 805                /* clear next_to_watch to prevent false hangs */
 806                tx_buf->next_to_watch = NULL;
 807
 808                /* update the statistics for this packet */
 809                total_bytes += tx_buf->bytecount;
 810                total_packets += tx_buf->gso_segs;
 811
 812                /* free the skb/XDP data */
 813                if (ring_is_xdp(tx_ring))
 814                        xdp_return_frame(tx_buf->xdpf);
 815                else
 816                        napi_consume_skb(tx_buf->skb, napi_budget);
 817
 818                /* unmap skb header data */
 819                dma_unmap_single(tx_ring->dev,
 820                                 dma_unmap_addr(tx_buf, dma),
 821                                 dma_unmap_len(tx_buf, len),
 822                                 DMA_TO_DEVICE);
 823
 824                /* clear tx_buffer data */
 825                tx_buf->skb = NULL;
 826                dma_unmap_len_set(tx_buf, len, 0);
 827
 828                /* unmap remaining buffers */
 829                while (tx_desc != eop_desc) {
 830                        i40e_trace(clean_tx_irq_unmap,
 831                                   tx_ring, tx_desc, tx_buf);
 832
 833                        tx_buf++;
 834                        tx_desc++;
 835                        i++;
 836                        if (unlikely(!i)) {
 837                                i -= tx_ring->count;
 838                                tx_buf = tx_ring->tx_bi;
 839                                tx_desc = I40E_TX_DESC(tx_ring, 0);
 840                        }
 841
 842                        /* unmap any remaining paged data */
 843                        if (dma_unmap_len(tx_buf, len)) {
 844                                dma_unmap_page(tx_ring->dev,
 845                                               dma_unmap_addr(tx_buf, dma),
 846                                               dma_unmap_len(tx_buf, len),
 847                                               DMA_TO_DEVICE);
 848                                dma_unmap_len_set(tx_buf, len, 0);
 849                        }
 850                }
 851
 852                /* move us one more past the eop_desc for start of next pkt */
 853                tx_buf++;
 854                tx_desc++;
 855                i++;
 856                if (unlikely(!i)) {
 857                        i -= tx_ring->count;
 858                        tx_buf = tx_ring->tx_bi;
 859                        tx_desc = I40E_TX_DESC(tx_ring, 0);
 860                }
 861
 862                prefetch(tx_desc);
 863
 864                /* update budget accounting */
 865                budget--;
 866        } while (likely(budget));
 867
 868        i += tx_ring->count;
 869        tx_ring->next_to_clean = i;
 870        i40e_update_tx_stats(tx_ring, total_packets, total_bytes);
 871        i40e_arm_wb(tx_ring, vsi, budget);
 872
 873        if (ring_is_xdp(tx_ring))
 874                return !!budget;
 875
 876        /* notify netdev of completed buffers */
 877        netdev_tx_completed_queue(txring_txq(tx_ring),
 878                                  total_packets, total_bytes);
 879
 880#define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
 881        if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
 882                     (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
 883                /* Make sure that anybody stopping the queue after this
 884                 * sees the new next_to_clean.
 885                 */
 886                smp_mb();
 887                if (__netif_subqueue_stopped(tx_ring->netdev,
 888                                             tx_ring->queue_index) &&
 889                   !test_bit(__I40E_VSI_DOWN, vsi->state)) {
 890                        netif_wake_subqueue(tx_ring->netdev,
 891                                            tx_ring->queue_index);
 892                        ++tx_ring->tx_stats.restart_queue;
 893                }
 894        }
 895
 896        return !!budget;
 897}
 898
 899/**
 900 * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
 901 * @vsi: the VSI we care about
 902 * @q_vector: the vector on which to enable writeback
 903 *
 904 **/
 905static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
 906                                  struct i40e_q_vector *q_vector)
 907{
 908        u16 flags = q_vector->tx.ring[0].flags;
 909        u32 val;
 910
 911        if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
 912                return;
 913
 914        if (q_vector->arm_wb_state)
 915                return;
 916
 917        if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
 918                val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
 919                      I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
 920
 921                wr32(&vsi->back->hw,
 922                     I40E_PFINT_DYN_CTLN(q_vector->reg_idx),
 923                     val);
 924        } else {
 925                val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
 926                      I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
 927
 928                wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
 929        }
 930        q_vector->arm_wb_state = true;
 931}
 932
 933/**
 934 * i40e_force_wb - Issue SW Interrupt so HW does a wb
 935 * @vsi: the VSI we care about
 936 * @q_vector: the vector  on which to force writeback
 937 *
 938 **/
 939void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
 940{
 941        if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
 942                u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
 943                          I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
 944                          I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
 945                          I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
 946                          /* allow 00 to be written to the index */
 947
 948                wr32(&vsi->back->hw,
 949                     I40E_PFINT_DYN_CTLN(q_vector->reg_idx), val);
 950        } else {
 951                u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
 952                          I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
 953                          I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
 954                          I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
 955                        /* allow 00 to be written to the index */
 956
 957                wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
 958        }
 959}
 960
 961static inline bool i40e_container_is_rx(struct i40e_q_vector *q_vector,
 962                                        struct i40e_ring_container *rc)
 963{
 964        return &q_vector->rx == rc;
 965}
 966
 967static inline unsigned int i40e_itr_divisor(struct i40e_q_vector *q_vector)
 968{
 969        unsigned int divisor;
 970
 971        switch (q_vector->vsi->back->hw.phy.link_info.link_speed) {
 972        case I40E_LINK_SPEED_40GB:
 973                divisor = I40E_ITR_ADAPTIVE_MIN_INC * 1024;
 974                break;
 975        case I40E_LINK_SPEED_25GB:
 976        case I40E_LINK_SPEED_20GB:
 977                divisor = I40E_ITR_ADAPTIVE_MIN_INC * 512;
 978                break;
 979        default:
 980        case I40E_LINK_SPEED_10GB:
 981                divisor = I40E_ITR_ADAPTIVE_MIN_INC * 256;
 982                break;
 983        case I40E_LINK_SPEED_1GB:
 984        case I40E_LINK_SPEED_100MB:
 985                divisor = I40E_ITR_ADAPTIVE_MIN_INC * 32;
 986                break;
 987        }
 988
 989        return divisor;
 990}
 991
 992/**
 993 * i40e_update_itr - update the dynamic ITR value based on statistics
 994 * @q_vector: structure containing interrupt and ring information
 995 * @rc: structure containing ring performance data
 996 *
 997 * Stores a new ITR value based on packets and byte
 998 * counts during the last interrupt.  The advantage of per interrupt
 999 * computation is faster updates and more accurate ITR for the current
1000 * traffic pattern.  Constants in this function were computed
1001 * based on theoretical maximum wire speed and thresholds were set based
1002 * on testing data as well as attempting to minimize response time
1003 * while increasing bulk throughput.
1004 **/
1005static void i40e_update_itr(struct i40e_q_vector *q_vector,
1006                            struct i40e_ring_container *rc)
1007{
1008        unsigned int avg_wire_size, packets, bytes, itr;
1009        unsigned long next_update = jiffies;
1010
1011        /* If we don't have any rings just leave ourselves set for maximum
1012         * possible latency so we take ourselves out of the equation.
1013         */
1014        if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting))
1015                return;
1016
1017        /* For Rx we want to push the delay up and default to low latency.
1018         * for Tx we want to pull the delay down and default to high latency.
1019         */
1020        itr = i40e_container_is_rx(q_vector, rc) ?
1021              I40E_ITR_ADAPTIVE_MIN_USECS | I40E_ITR_ADAPTIVE_LATENCY :
1022              I40E_ITR_ADAPTIVE_MAX_USECS | I40E_ITR_ADAPTIVE_LATENCY;
1023
1024        /* If we didn't update within up to 1 - 2 jiffies we can assume
1025         * that either packets are coming in so slow there hasn't been
1026         * any work, or that there is so much work that NAPI is dealing
1027         * with interrupt moderation and we don't need to do anything.
1028         */
1029        if (time_after(next_update, rc->next_update))
1030                goto clear_counts;
1031
1032        /* If itr_countdown is set it means we programmed an ITR within
1033         * the last 4 interrupt cycles. This has a side effect of us
1034         * potentially firing an early interrupt. In order to work around
1035         * this we need to throw out any data received for a few
1036         * interrupts following the update.
1037         */
1038        if (q_vector->itr_countdown) {
1039                itr = rc->target_itr;
1040                goto clear_counts;
1041        }
1042
1043        packets = rc->total_packets;
1044        bytes = rc->total_bytes;
1045
1046        if (i40e_container_is_rx(q_vector, rc)) {
1047                /* If Rx there are 1 to 4 packets and bytes are less than
1048                 * 9000 assume insufficient data to use bulk rate limiting
1049                 * approach unless Tx is already in bulk rate limiting. We
1050                 * are likely latency driven.
1051                 */
1052                if (packets && packets < 4 && bytes < 9000 &&
1053                    (q_vector->tx.target_itr & I40E_ITR_ADAPTIVE_LATENCY)) {
1054                        itr = I40E_ITR_ADAPTIVE_LATENCY;
1055                        goto adjust_by_size;
1056                }
1057        } else if (packets < 4) {
1058                /* If we have Tx and Rx ITR maxed and Tx ITR is running in
1059                 * bulk mode and we are receiving 4 or fewer packets just
1060                 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
1061                 * that the Rx can relax.
1062                 */
1063                if (rc->target_itr == I40E_ITR_ADAPTIVE_MAX_USECS &&
1064                    (q_vector->rx.target_itr & I40E_ITR_MASK) ==
1065                     I40E_ITR_ADAPTIVE_MAX_USECS)
1066                        goto clear_counts;
1067        } else if (packets > 32) {
1068                /* If we have processed over 32 packets in a single interrupt
1069                 * for Tx assume we need to switch over to "bulk" mode.
1070                 */
1071                rc->target_itr &= ~I40E_ITR_ADAPTIVE_LATENCY;
1072        }
1073
1074        /* We have no packets to actually measure against. This means
1075         * either one of the other queues on this vector is active or
1076         * we are a Tx queue doing TSO with too high of an interrupt rate.
1077         *
1078         * Between 4 and 56 we can assume that our current interrupt delay
1079         * is only slightly too low. As such we should increase it by a small
1080         * fixed amount.
1081         */
1082        if (packets < 56) {
1083                itr = rc->target_itr + I40E_ITR_ADAPTIVE_MIN_INC;
1084                if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1085                        itr &= I40E_ITR_ADAPTIVE_LATENCY;
1086                        itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1087                }
1088                goto clear_counts;
1089        }
1090
1091        if (packets <= 256) {
1092                itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
1093                itr &= I40E_ITR_MASK;
1094
1095                /* Between 56 and 112 is our "goldilocks" zone where we are
1096                 * working out "just right". Just report that our current
1097                 * ITR is good for us.
1098                 */
1099                if (packets <= 112)
1100                        goto clear_counts;
1101
1102                /* If packet count is 128 or greater we are likely looking
1103                 * at a slight overrun of the delay we want. Try halving
1104                 * our delay to see if that will cut the number of packets
1105                 * in half per interrupt.
1106                 */
1107                itr /= 2;
1108                itr &= I40E_ITR_MASK;
1109                if (itr < I40E_ITR_ADAPTIVE_MIN_USECS)
1110                        itr = I40E_ITR_ADAPTIVE_MIN_USECS;
1111
1112                goto clear_counts;
1113        }
1114
1115        /* The paths below assume we are dealing with a bulk ITR since
1116         * number of packets is greater than 256. We are just going to have
1117         * to compute a value and try to bring the count under control,
1118         * though for smaller packet sizes there isn't much we can do as
1119         * NAPI polling will likely be kicking in sooner rather than later.
1120         */
1121        itr = I40E_ITR_ADAPTIVE_BULK;
1122
1123adjust_by_size:
1124        /* If packet counts are 256 or greater we can assume we have a gross
1125         * overestimation of what the rate should be. Instead of trying to fine
1126         * tune it just use the formula below to try and dial in an exact value
1127         * give the current packet size of the frame.
1128         */
1129        avg_wire_size = bytes / packets;
1130
1131        /* The following is a crude approximation of:
1132         *  wmem_default / (size + overhead) = desired_pkts_per_int
1133         *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1134         *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1135         *
1136         * Assuming wmem_default is 212992 and overhead is 640 bytes per
1137         * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1138         * formula down to
1139         *
1140         *  (170 * (size + 24)) / (size + 640) = ITR
1141         *
1142         * We first do some math on the packet size and then finally bitshift
1143         * by 8 after rounding up. We also have to account for PCIe link speed
1144         * difference as ITR scales based on this.
1145         */
1146        if (avg_wire_size <= 60) {
1147                /* Start at 250k ints/sec */
1148                avg_wire_size = 4096;
1149        } else if (avg_wire_size <= 380) {
1150                /* 250K ints/sec to 60K ints/sec */
1151                avg_wire_size *= 40;
1152                avg_wire_size += 1696;
1153        } else if (avg_wire_size <= 1084) {
1154                /* 60K ints/sec to 36K ints/sec */
1155                avg_wire_size *= 15;
1156                avg_wire_size += 11452;
1157        } else if (avg_wire_size <= 1980) {
1158                /* 36K ints/sec to 30K ints/sec */
1159                avg_wire_size *= 5;
1160                avg_wire_size += 22420;
1161        } else {
1162                /* plateau at a limit of 30K ints/sec */
1163                avg_wire_size = 32256;
1164        }
1165
1166        /* If we are in low latency mode halve our delay which doubles the
1167         * rate to somewhere between 100K to 16K ints/sec
1168         */
1169        if (itr & I40E_ITR_ADAPTIVE_LATENCY)
1170                avg_wire_size /= 2;
1171
1172        /* Resultant value is 256 times larger than it needs to be. This
1173         * gives us room to adjust the value as needed to either increase
1174         * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
1175         *
1176         * Use addition as we have already recorded the new latency flag
1177         * for the ITR value.
1178         */
1179        itr += DIV_ROUND_UP(avg_wire_size, i40e_itr_divisor(q_vector)) *
1180               I40E_ITR_ADAPTIVE_MIN_INC;
1181
1182        if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1183                itr &= I40E_ITR_ADAPTIVE_LATENCY;
1184                itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1185        }
1186
1187clear_counts:
1188        /* write back value */
1189        rc->target_itr = itr;
1190
1191        /* next update should occur within next jiffy */
1192        rc->next_update = next_update + 1;
1193
1194        rc->total_bytes = 0;
1195        rc->total_packets = 0;
1196}
1197
1198/**
1199 * i40e_reuse_rx_page - page flip buffer and store it back on the ring
1200 * @rx_ring: rx descriptor ring to store buffers on
1201 * @old_buff: donor buffer to have page reused
1202 *
1203 * Synchronizes page for reuse by the adapter
1204 **/
1205static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
1206                               struct i40e_rx_buffer *old_buff)
1207{
1208        struct i40e_rx_buffer *new_buff;
1209        u16 nta = rx_ring->next_to_alloc;
1210
1211        new_buff = &rx_ring->rx_bi[nta];
1212
1213        /* update, and store next to alloc */
1214        nta++;
1215        rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1216
1217        /* transfer page from old buffer to new buffer */
1218        new_buff->dma           = old_buff->dma;
1219        new_buff->page          = old_buff->page;
1220        new_buff->page_offset   = old_buff->page_offset;
1221        new_buff->pagecnt_bias  = old_buff->pagecnt_bias;
1222
1223        rx_ring->rx_stats.page_reuse_count++;
1224
1225        /* clear contents of buffer_info */
1226        old_buff->page = NULL;
1227}
1228
1229/**
1230 * i40e_rx_is_programming_status - check for programming status descriptor
1231 * @qw: qword representing status_error_len in CPU ordering
1232 *
1233 * The value of in the descriptor length field indicate if this
1234 * is a programming status descriptor for flow director or FCoE
1235 * by the value of I40E_RX_PROG_STATUS_DESC_LENGTH, otherwise
1236 * it is a packet descriptor.
1237 **/
1238static inline bool i40e_rx_is_programming_status(u64 qw)
1239{
1240        /* The Rx filter programming status and SPH bit occupy the same
1241         * spot in the descriptor. Since we don't support packet split we
1242         * can just reuse the bit as an indication that this is a
1243         * programming status descriptor.
1244         */
1245        return qw & I40E_RXD_QW1_LENGTH_SPH_MASK;
1246}
1247
1248/**
1249 * i40e_clean_programming_status - try clean the programming status descriptor
1250 * @rx_ring: the rx ring that has this descriptor
1251 * @rx_desc: the rx descriptor written back by HW
1252 * @qw: qword representing status_error_len in CPU ordering
1253 *
1254 * Flow director should handle FD_FILTER_STATUS to check its filter programming
1255 * status being successful or not and take actions accordingly. FCoE should
1256 * handle its context/filter programming/invalidation status and take actions.
1257 *
1258 * Returns an i40e_rx_buffer to reuse if the cleanup occurred, otherwise NULL.
1259 **/
1260struct i40e_rx_buffer *i40e_clean_programming_status(
1261        struct i40e_ring *rx_ring,
1262        union i40e_rx_desc *rx_desc,
1263        u64 qw)
1264{
1265        struct i40e_rx_buffer *rx_buffer;
1266        u32 ntc;
1267        u8 id;
1268
1269        if (!i40e_rx_is_programming_status(qw))
1270                return NULL;
1271
1272        ntc = rx_ring->next_to_clean;
1273
1274        /* fetch, update, and store next to clean */
1275        rx_buffer = &rx_ring->rx_bi[ntc++];
1276        ntc = (ntc < rx_ring->count) ? ntc : 0;
1277        rx_ring->next_to_clean = ntc;
1278
1279        prefetch(I40E_RX_DESC(rx_ring, ntc));
1280
1281        id = (qw & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
1282                  I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
1283
1284        if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
1285                i40e_fd_handle_status(rx_ring, rx_desc, id);
1286
1287        return rx_buffer;
1288}
1289
1290/**
1291 * i40e_setup_tx_descriptors - Allocate the Tx descriptors
1292 * @tx_ring: the tx ring to set up
1293 *
1294 * Return 0 on success, negative on error
1295 **/
1296int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
1297{
1298        struct device *dev = tx_ring->dev;
1299        int bi_size;
1300
1301        if (!dev)
1302                return -ENOMEM;
1303
1304        /* warn if we are about to overwrite the pointer */
1305        WARN_ON(tx_ring->tx_bi);
1306        bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
1307        tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
1308        if (!tx_ring->tx_bi)
1309                goto err;
1310
1311        u64_stats_init(&tx_ring->syncp);
1312
1313        /* round up to nearest 4K */
1314        tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1315        /* add u32 for head writeback, align after this takes care of
1316         * guaranteeing this is at least one cache line in size
1317         */
1318        tx_ring->size += sizeof(u32);
1319        tx_ring->size = ALIGN(tx_ring->size, 4096);
1320        tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
1321                                           &tx_ring->dma, GFP_KERNEL);
1322        if (!tx_ring->desc) {
1323                dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
1324                         tx_ring->size);
1325                goto err;
1326        }
1327
1328        tx_ring->next_to_use = 0;
1329        tx_ring->next_to_clean = 0;
1330        tx_ring->tx_stats.prev_pkt_ctr = -1;
1331        return 0;
1332
1333err:
1334        kfree(tx_ring->tx_bi);
1335        tx_ring->tx_bi = NULL;
1336        return -ENOMEM;
1337}
1338
1339/**
1340 * i40e_clean_rx_ring - Free Rx buffers
1341 * @rx_ring: ring to be cleaned
1342 **/
1343void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1344{
1345        unsigned long bi_size;
1346        u16 i;
1347
1348        /* ring already cleared, nothing to do */
1349        if (!rx_ring->rx_bi)
1350                return;
1351
1352        if (rx_ring->skb) {
1353                dev_kfree_skb(rx_ring->skb);
1354                rx_ring->skb = NULL;
1355        }
1356
1357        if (rx_ring->xsk_umem) {
1358                i40e_xsk_clean_rx_ring(rx_ring);
1359                goto skip_free;
1360        }
1361
1362        /* Free all the Rx ring sk_buffs */
1363        for (i = 0; i < rx_ring->count; i++) {
1364                struct i40e_rx_buffer *rx_bi = &rx_ring->rx_bi[i];
1365
1366                if (!rx_bi->page)
1367                        continue;
1368
1369                /* Invalidate cache lines that may have been written to by
1370                 * device so that we avoid corrupting memory.
1371                 */
1372                dma_sync_single_range_for_cpu(rx_ring->dev,
1373                                              rx_bi->dma,
1374                                              rx_bi->page_offset,
1375                                              rx_ring->rx_buf_len,
1376                                              DMA_FROM_DEVICE);
1377
1378                /* free resources associated with mapping */
1379                dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
1380                                     i40e_rx_pg_size(rx_ring),
1381                                     DMA_FROM_DEVICE,
1382                                     I40E_RX_DMA_ATTR);
1383
1384                __page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
1385
1386                rx_bi->page = NULL;
1387                rx_bi->page_offset = 0;
1388        }
1389
1390skip_free:
1391        bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1392        memset(rx_ring->rx_bi, 0, bi_size);
1393
1394        /* Zero out the descriptor ring */
1395        memset(rx_ring->desc, 0, rx_ring->size);
1396
1397        rx_ring->next_to_alloc = 0;
1398        rx_ring->next_to_clean = 0;
1399        rx_ring->next_to_use = 0;
1400}
1401
1402/**
1403 * i40e_free_rx_resources - Free Rx resources
1404 * @rx_ring: ring to clean the resources from
1405 *
1406 * Free all receive software resources
1407 **/
1408void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1409{
1410        i40e_clean_rx_ring(rx_ring);
1411        if (rx_ring->vsi->type == I40E_VSI_MAIN)
1412                xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
1413        rx_ring->xdp_prog = NULL;
1414        kfree(rx_ring->rx_bi);
1415        rx_ring->rx_bi = NULL;
1416
1417        if (rx_ring->desc) {
1418                dma_free_coherent(rx_ring->dev, rx_ring->size,
1419                                  rx_ring->desc, rx_ring->dma);
1420                rx_ring->desc = NULL;
1421        }
1422}
1423
1424/**
1425 * i40e_setup_rx_descriptors - Allocate Rx descriptors
1426 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1427 *
1428 * Returns 0 on success, negative on failure
1429 **/
1430int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1431{
1432        struct device *dev = rx_ring->dev;
1433        int err = -ENOMEM;
1434        int bi_size;
1435
1436        /* warn if we are about to overwrite the pointer */
1437        WARN_ON(rx_ring->rx_bi);
1438        bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1439        rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
1440        if (!rx_ring->rx_bi)
1441                goto err;
1442
1443        u64_stats_init(&rx_ring->syncp);
1444
1445        /* Round up to nearest 4K */
1446        rx_ring->size = rx_ring->count * sizeof(union i40e_32byte_rx_desc);
1447        rx_ring->size = ALIGN(rx_ring->size, 4096);
1448        rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1449                                           &rx_ring->dma, GFP_KERNEL);
1450
1451        if (!rx_ring->desc) {
1452                dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1453                         rx_ring->size);
1454                goto err;
1455        }
1456
1457        rx_ring->next_to_alloc = 0;
1458        rx_ring->next_to_clean = 0;
1459        rx_ring->next_to_use = 0;
1460
1461        /* XDP RX-queue info only needed for RX rings exposed to XDP */
1462        if (rx_ring->vsi->type == I40E_VSI_MAIN) {
1463                err = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
1464                                       rx_ring->queue_index);
1465                if (err < 0)
1466                        goto err;
1467        }
1468
1469        rx_ring->xdp_prog = rx_ring->vsi->xdp_prog;
1470
1471        return 0;
1472err:
1473        kfree(rx_ring->rx_bi);
1474        rx_ring->rx_bi = NULL;
1475        return err;
1476}
1477
1478/**
1479 * i40e_release_rx_desc - Store the new tail and head values
1480 * @rx_ring: ring to bump
1481 * @val: new head index
1482 **/
1483void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1484{
1485        rx_ring->next_to_use = val;
1486
1487        /* update next to alloc since we have filled the ring */
1488        rx_ring->next_to_alloc = val;
1489
1490        /* Force memory writes to complete before letting h/w
1491         * know there are new descriptors to fetch.  (Only
1492         * applicable for weak-ordered memory model archs,
1493         * such as IA-64).
1494         */
1495        wmb();
1496        writel(val, rx_ring->tail);
1497}
1498
1499/**
1500 * i40e_rx_offset - Return expected offset into page to access data
1501 * @rx_ring: Ring we are requesting offset of
1502 *
1503 * Returns the offset value for ring into the data buffer.
1504 */
1505static inline unsigned int i40e_rx_offset(struct i40e_ring *rx_ring)
1506{
1507        return ring_uses_build_skb(rx_ring) ? I40E_SKB_PAD : 0;
1508}
1509
1510/**
1511 * i40e_alloc_mapped_page - recycle or make a new page
1512 * @rx_ring: ring to use
1513 * @bi: rx_buffer struct to modify
1514 *
1515 * Returns true if the page was successfully allocated or
1516 * reused.
1517 **/
1518static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
1519                                   struct i40e_rx_buffer *bi)
1520{
1521        struct page *page = bi->page;
1522        dma_addr_t dma;
1523
1524        /* since we are recycling buffers we should seldom need to alloc */
1525        if (likely(page)) {
1526                rx_ring->rx_stats.page_reuse_count++;
1527                return true;
1528        }
1529
1530        /* alloc new page for storage */
1531        page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
1532        if (unlikely(!page)) {
1533                rx_ring->rx_stats.alloc_page_failed++;
1534                return false;
1535        }
1536
1537        /* map page for use */
1538        dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1539                                 i40e_rx_pg_size(rx_ring),
1540                                 DMA_FROM_DEVICE,
1541                                 I40E_RX_DMA_ATTR);
1542
1543        /* if mapping failed free memory back to system since
1544         * there isn't much point in holding memory we can't use
1545         */
1546        if (dma_mapping_error(rx_ring->dev, dma)) {
1547                __free_pages(page, i40e_rx_pg_order(rx_ring));
1548                rx_ring->rx_stats.alloc_page_failed++;
1549                return false;
1550        }
1551
1552        bi->dma = dma;
1553        bi->page = page;
1554        bi->page_offset = i40e_rx_offset(rx_ring);
1555        page_ref_add(page, USHRT_MAX - 1);
1556        bi->pagecnt_bias = USHRT_MAX;
1557
1558        return true;
1559}
1560
1561/**
1562 * i40e_alloc_rx_buffers - Replace used receive buffers
1563 * @rx_ring: ring to place buffers on
1564 * @cleaned_count: number of buffers to replace
1565 *
1566 * Returns false if all allocations were successful, true if any fail
1567 **/
1568bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1569{
1570        u16 ntu = rx_ring->next_to_use;
1571        union i40e_rx_desc *rx_desc;
1572        struct i40e_rx_buffer *bi;
1573
1574        /* do nothing if no valid netdev defined */
1575        if (!rx_ring->netdev || !cleaned_count)
1576                return false;
1577
1578        rx_desc = I40E_RX_DESC(rx_ring, ntu);
1579        bi = &rx_ring->rx_bi[ntu];
1580
1581        do {
1582                if (!i40e_alloc_mapped_page(rx_ring, bi))
1583                        goto no_buffers;
1584
1585                /* sync the buffer for use by the device */
1586                dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1587                                                 bi->page_offset,
1588                                                 rx_ring->rx_buf_len,
1589                                                 DMA_FROM_DEVICE);
1590
1591                /* Refresh the desc even if buffer_addrs didn't change
1592                 * because each write-back erases this info.
1593                 */
1594                rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1595
1596                rx_desc++;
1597                bi++;
1598                ntu++;
1599                if (unlikely(ntu == rx_ring->count)) {
1600                        rx_desc = I40E_RX_DESC(rx_ring, 0);
1601                        bi = rx_ring->rx_bi;
1602                        ntu = 0;
1603                }
1604
1605                /* clear the status bits for the next_to_use descriptor */
1606                rx_desc->wb.qword1.status_error_len = 0;
1607
1608                cleaned_count--;
1609        } while (cleaned_count);
1610
1611        if (rx_ring->next_to_use != ntu)
1612                i40e_release_rx_desc(rx_ring, ntu);
1613
1614        return false;
1615
1616no_buffers:
1617        if (rx_ring->next_to_use != ntu)
1618                i40e_release_rx_desc(rx_ring, ntu);
1619
1620        /* make sure to come back via polling to try again after
1621         * allocation failure
1622         */
1623        return true;
1624}
1625
1626/**
1627 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1628 * @vsi: the VSI we care about
1629 * @skb: skb currently being received and modified
1630 * @rx_desc: the receive descriptor
1631 **/
1632static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1633                                    struct sk_buff *skb,
1634                                    union i40e_rx_desc *rx_desc)
1635{
1636        struct i40e_rx_ptype_decoded decoded;
1637        u32 rx_error, rx_status;
1638        bool ipv4, ipv6;
1639        u8 ptype;
1640        u64 qword;
1641
1642        qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1643        ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
1644        rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1645                   I40E_RXD_QW1_ERROR_SHIFT;
1646        rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1647                    I40E_RXD_QW1_STATUS_SHIFT;
1648        decoded = decode_rx_desc_ptype(ptype);
1649
1650        skb->ip_summed = CHECKSUM_NONE;
1651
1652        skb_checksum_none_assert(skb);
1653
1654        /* Rx csum enabled and ip headers found? */
1655        if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1656                return;
1657
1658        /* did the hardware decode the packet and checksum? */
1659        if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1660                return;
1661
1662        /* both known and outer_ip must be set for the below code to work */
1663        if (!(decoded.known && decoded.outer_ip))
1664                return;
1665
1666        ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1667               (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
1668        ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1669               (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
1670
1671        if (ipv4 &&
1672            (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1673                         BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1674                goto checksum_fail;
1675
1676        /* likely incorrect csum if alternate IP extension headers found */
1677        if (ipv6 &&
1678            rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1679                /* don't increment checksum err here, non-fatal err */
1680                return;
1681
1682        /* there was some L4 error, count error and punt packet to the stack */
1683        if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1684                goto checksum_fail;
1685
1686        /* handle packets that were not able to be checksummed due
1687         * to arrival speed, in this case the stack can compute
1688         * the csum.
1689         */
1690        if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1691                return;
1692
1693        /* If there is an outer header present that might contain a checksum
1694         * we need to bump the checksum level by 1 to reflect the fact that
1695         * we are indicating we validated the inner checksum.
1696         */
1697        if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT)
1698                skb->csum_level = 1;
1699
1700        /* Only report checksum unnecessary for TCP, UDP, or SCTP */
1701        switch (decoded.inner_prot) {
1702        case I40E_RX_PTYPE_INNER_PROT_TCP:
1703        case I40E_RX_PTYPE_INNER_PROT_UDP:
1704        case I40E_RX_PTYPE_INNER_PROT_SCTP:
1705                skb->ip_summed = CHECKSUM_UNNECESSARY;
1706                /* fall though */
1707        default:
1708                break;
1709        }
1710
1711        return;
1712
1713checksum_fail:
1714        vsi->back->hw_csum_rx_error++;
1715}
1716
1717/**
1718 * i40e_ptype_to_htype - get a hash type
1719 * @ptype: the ptype value from the descriptor
1720 *
1721 * Returns a hash type to be used by skb_set_hash
1722 **/
1723static inline int i40e_ptype_to_htype(u8 ptype)
1724{
1725        struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1726
1727        if (!decoded.known)
1728                return PKT_HASH_TYPE_NONE;
1729
1730        if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1731            decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1732                return PKT_HASH_TYPE_L4;
1733        else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1734                 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1735                return PKT_HASH_TYPE_L3;
1736        else
1737                return PKT_HASH_TYPE_L2;
1738}
1739
1740/**
1741 * i40e_rx_hash - set the hash value in the skb
1742 * @ring: descriptor ring
1743 * @rx_desc: specific descriptor
1744 * @skb: skb currently being received and modified
1745 * @rx_ptype: Rx packet type
1746 **/
1747static inline void i40e_rx_hash(struct i40e_ring *ring,
1748                                union i40e_rx_desc *rx_desc,
1749                                struct sk_buff *skb,
1750                                u8 rx_ptype)
1751{
1752        u32 hash;
1753        const __le64 rss_mask =
1754                cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1755                            I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1756
1757        if (!(ring->netdev->features & NETIF_F_RXHASH))
1758                return;
1759
1760        if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1761                hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1762                skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
1763        }
1764}
1765
1766/**
1767 * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
1768 * @rx_ring: rx descriptor ring packet is being transacted on
1769 * @rx_desc: pointer to the EOP Rx descriptor
1770 * @skb: pointer to current skb being populated
1771 * @rx_ptype: the packet type decoded by hardware
1772 *
1773 * This function checks the ring, descriptor, and packet information in
1774 * order to populate the hash, checksum, VLAN, protocol, and
1775 * other fields within the skb.
1776 **/
1777void i40e_process_skb_fields(struct i40e_ring *rx_ring,
1778                             union i40e_rx_desc *rx_desc, struct sk_buff *skb)
1779{
1780        u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1781        u32 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1782                        I40E_RXD_QW1_STATUS_SHIFT;
1783        u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
1784        u32 tsyn = (rx_status & I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1785                   I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT;
1786        u8 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1787                      I40E_RXD_QW1_PTYPE_SHIFT;
1788
1789        if (unlikely(tsynvalid))
1790                i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1791
1792        i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1793
1794        i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
1795
1796        skb_record_rx_queue(skb, rx_ring->queue_index);
1797
1798        if (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
1799                u16 vlan_tag = rx_desc->wb.qword0.lo_dword.l2tag1;
1800
1801                __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1802                                       le16_to_cpu(vlan_tag));
1803        }
1804
1805        /* modifies the skb - consumes the enet header */
1806        skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1807}
1808
1809/**
1810 * i40e_cleanup_headers - Correct empty headers
1811 * @rx_ring: rx descriptor ring packet is being transacted on
1812 * @skb: pointer to current skb being fixed
1813 * @rx_desc: pointer to the EOP Rx descriptor
1814 *
1815 * Also address the case where we are pulling data in on pages only
1816 * and as such no data is present in the skb header.
1817 *
1818 * In addition if skb is not at least 60 bytes we need to pad it so that
1819 * it is large enough to qualify as a valid Ethernet frame.
1820 *
1821 * Returns true if an error was encountered and skb was freed.
1822 **/
1823static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb,
1824                                 union i40e_rx_desc *rx_desc)
1825
1826{
1827        /* XDP packets use error pointer so abort at this point */
1828        if (IS_ERR(skb))
1829                return true;
1830
1831        /* ERR_MASK will only have valid bits if EOP set, and
1832         * what we are doing here is actually checking
1833         * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1834         * the error field
1835         */
1836        if (unlikely(i40e_test_staterr(rx_desc,
1837                                       BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1838                dev_kfree_skb_any(skb);
1839                return true;
1840        }
1841
1842        /* if eth_skb_pad returns an error the skb was freed */
1843        if (eth_skb_pad(skb))
1844                return true;
1845
1846        return false;
1847}
1848
1849/**
1850 * i40e_page_is_reusable - check if any reuse is possible
1851 * @page: page struct to check
1852 *
1853 * A page is not reusable if it was allocated under low memory
1854 * conditions, or it's not in the same NUMA node as this CPU.
1855 */
1856static inline bool i40e_page_is_reusable(struct page *page)
1857{
1858        return (page_to_nid(page) == numa_mem_id()) &&
1859                !page_is_pfmemalloc(page);
1860}
1861
1862/**
1863 * i40e_can_reuse_rx_page - Determine if this page can be reused by
1864 * the adapter for another receive
1865 *
1866 * @rx_buffer: buffer containing the page
1867 *
1868 * If page is reusable, rx_buffer->page_offset is adjusted to point to
1869 * an unused region in the page.
1870 *
1871 * For small pages, @truesize will be a constant value, half the size
1872 * of the memory at page.  We'll attempt to alternate between high and
1873 * low halves of the page, with one half ready for use by the hardware
1874 * and the other half being consumed by the stack.  We use the page
1875 * ref count to determine whether the stack has finished consuming the
1876 * portion of this page that was passed up with a previous packet.  If
1877 * the page ref count is >1, we'll assume the "other" half page is
1878 * still busy, and this page cannot be reused.
1879 *
1880 * For larger pages, @truesize will be the actual space used by the
1881 * received packet (adjusted upward to an even multiple of the cache
1882 * line size).  This will advance through the page by the amount
1883 * actually consumed by the received packets while there is still
1884 * space for a buffer.  Each region of larger pages will be used at
1885 * most once, after which the page will not be reused.
1886 *
1887 * In either case, if the page is reusable its refcount is increased.
1888 **/
1889static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer)
1890{
1891        unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1892        struct page *page = rx_buffer->page;
1893
1894        /* Is any reuse possible? */
1895        if (unlikely(!i40e_page_is_reusable(page)))
1896                return false;
1897
1898#if (PAGE_SIZE < 8192)
1899        /* if we are only owner of page we can reuse it */
1900        if (unlikely((page_count(page) - pagecnt_bias) > 1))
1901                return false;
1902#else
1903#define I40E_LAST_OFFSET \
1904        (SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
1905        if (rx_buffer->page_offset > I40E_LAST_OFFSET)
1906                return false;
1907#endif
1908
1909        /* If we have drained the page fragment pool we need to update
1910         * the pagecnt_bias and page count so that we fully restock the
1911         * number of references the driver holds.
1912         */
1913        if (unlikely(pagecnt_bias == 1)) {
1914                page_ref_add(page, USHRT_MAX - 1);
1915                rx_buffer->pagecnt_bias = USHRT_MAX;
1916        }
1917
1918        return true;
1919}
1920
1921/**
1922 * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff
1923 * @rx_ring: rx descriptor ring to transact packets on
1924 * @rx_buffer: buffer containing page to add
1925 * @skb: sk_buff to place the data into
1926 * @size: packet length from rx_desc
1927 *
1928 * This function will add the data contained in rx_buffer->page to the skb.
1929 * It will just attach the page as a frag to the skb.
1930 *
1931 * The function will then update the page offset.
1932 **/
1933static void i40e_add_rx_frag(struct i40e_ring *rx_ring,
1934                             struct i40e_rx_buffer *rx_buffer,
1935                             struct sk_buff *skb,
1936                             unsigned int size)
1937{
1938#if (PAGE_SIZE < 8192)
1939        unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1940#else
1941        unsigned int truesize = SKB_DATA_ALIGN(size + i40e_rx_offset(rx_ring));
1942#endif
1943
1944        skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1945                        rx_buffer->page_offset, size, truesize);
1946
1947        /* page is being used so we must update the page offset */
1948#if (PAGE_SIZE < 8192)
1949        rx_buffer->page_offset ^= truesize;
1950#else
1951        rx_buffer->page_offset += truesize;
1952#endif
1953}
1954
1955/**
1956 * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
1957 * @rx_ring: rx descriptor ring to transact packets on
1958 * @size: size of buffer to add to skb
1959 *
1960 * This function will pull an Rx buffer from the ring and synchronize it
1961 * for use by the CPU.
1962 */
1963static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
1964                                                 const unsigned int size)
1965{
1966        struct i40e_rx_buffer *rx_buffer;
1967
1968        rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean];
1969        prefetchw(rx_buffer->page);
1970
1971        /* we are reusing so sync this buffer for CPU use */
1972        dma_sync_single_range_for_cpu(rx_ring->dev,
1973                                      rx_buffer->dma,
1974                                      rx_buffer->page_offset,
1975                                      size,
1976                                      DMA_FROM_DEVICE);
1977
1978        /* We have pulled a buffer for use, so decrement pagecnt_bias */
1979        rx_buffer->pagecnt_bias--;
1980
1981        return rx_buffer;
1982}
1983
1984/**
1985 * i40e_construct_skb - Allocate skb and populate it
1986 * @rx_ring: rx descriptor ring to transact packets on
1987 * @rx_buffer: rx buffer to pull data from
1988 * @xdp: xdp_buff pointing to the data
1989 *
1990 * This function allocates an skb.  It then populates it with the page
1991 * data from the current receive descriptor, taking care to set up the
1992 * skb correctly.
1993 */
1994static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
1995                                          struct i40e_rx_buffer *rx_buffer,
1996                                          struct xdp_buff *xdp)
1997{
1998        unsigned int size = xdp->data_end - xdp->data;
1999#if (PAGE_SIZE < 8192)
2000        unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
2001#else
2002        unsigned int truesize = SKB_DATA_ALIGN(size);
2003#endif
2004        unsigned int headlen;
2005        struct sk_buff *skb;
2006
2007        /* prefetch first cache line of first page */
2008        prefetch(xdp->data);
2009#if L1_CACHE_BYTES < 128
2010        prefetch(xdp->data + L1_CACHE_BYTES);
2011#endif
2012        /* Note, we get here by enabling legacy-rx via:
2013         *
2014         *    ethtool --set-priv-flags <dev> legacy-rx on
2015         *
2016         * In this mode, we currently get 0 extra XDP headroom as
2017         * opposed to having legacy-rx off, where we process XDP
2018         * packets going to stack via i40e_build_skb(). The latter
2019         * provides us currently with 192 bytes of headroom.
2020         *
2021         * For i40e_construct_skb() mode it means that the
2022         * xdp->data_meta will always point to xdp->data, since
2023         * the helper cannot expand the head. Should this ever
2024         * change in future for legacy-rx mode on, then lets also
2025         * add xdp->data_meta handling here.
2026         */
2027
2028        /* allocate a skb to store the frags */
2029        skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
2030                               I40E_RX_HDR_SIZE,
2031                               GFP_ATOMIC | __GFP_NOWARN);
2032        if (unlikely(!skb))
2033                return NULL;
2034
2035        /* Determine available headroom for copy */
2036        headlen = size;
2037        if (headlen > I40E_RX_HDR_SIZE)
2038                headlen = eth_get_headlen(xdp->data, I40E_RX_HDR_SIZE);
2039
2040        /* align pull length to size of long to optimize memcpy performance */
2041        memcpy(__skb_put(skb, headlen), xdp->data,
2042               ALIGN(headlen, sizeof(long)));
2043
2044        /* update all of the pointers */
2045        size -= headlen;
2046        if (size) {
2047                skb_add_rx_frag(skb, 0, rx_buffer->page,
2048                                rx_buffer->page_offset + headlen,
2049                                size, truesize);
2050
2051                /* buffer is used by skb, update page_offset */
2052#if (PAGE_SIZE < 8192)
2053                rx_buffer->page_offset ^= truesize;
2054#else
2055                rx_buffer->page_offset += truesize;
2056#endif
2057        } else {
2058                /* buffer is unused, reset bias back to rx_buffer */
2059                rx_buffer->pagecnt_bias++;
2060        }
2061
2062        return skb;
2063}
2064
2065/**
2066 * i40e_build_skb - Build skb around an existing buffer
2067 * @rx_ring: Rx descriptor ring to transact packets on
2068 * @rx_buffer: Rx buffer to pull data from
2069 * @xdp: xdp_buff pointing to the data
2070 *
2071 * This function builds an skb around an existing Rx buffer, taking care
2072 * to set up the skb correctly and avoid any memcpy overhead.
2073 */
2074static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
2075                                      struct i40e_rx_buffer *rx_buffer,
2076                                      struct xdp_buff *xdp)
2077{
2078        unsigned int metasize = xdp->data - xdp->data_meta;
2079#if (PAGE_SIZE < 8192)
2080        unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
2081#else
2082        unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
2083                                SKB_DATA_ALIGN(xdp->data_end -
2084                                               xdp->data_hard_start);
2085#endif
2086        struct sk_buff *skb;
2087
2088        /* Prefetch first cache line of first page. If xdp->data_meta
2089         * is unused, this points exactly as xdp->data, otherwise we
2090         * likely have a consumer accessing first few bytes of meta
2091         * data, and then actual data.
2092         */
2093        prefetch(xdp->data_meta);
2094#if L1_CACHE_BYTES < 128
2095        prefetch(xdp->data_meta + L1_CACHE_BYTES);
2096#endif
2097        /* build an skb around the page buffer */
2098        skb = build_skb(xdp->data_hard_start, truesize);
2099        if (unlikely(!skb))
2100                return NULL;
2101
2102        /* update pointers within the skb to store the data */
2103        skb_reserve(skb, xdp->data - xdp->data_hard_start);
2104        __skb_put(skb, xdp->data_end - xdp->data);
2105        if (metasize)
2106                skb_metadata_set(skb, metasize);
2107
2108        /* buffer is used by skb, update page_offset */
2109#if (PAGE_SIZE < 8192)
2110        rx_buffer->page_offset ^= truesize;
2111#else
2112        rx_buffer->page_offset += truesize;
2113#endif
2114
2115        return skb;
2116}
2117
2118/**
2119 * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
2120 * @rx_ring: rx descriptor ring to transact packets on
2121 * @rx_buffer: rx buffer to pull data from
2122 *
2123 * This function will clean up the contents of the rx_buffer.  It will
2124 * either recycle the buffer or unmap it and free the associated resources.
2125 */
2126static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
2127                               struct i40e_rx_buffer *rx_buffer)
2128{
2129        if (i40e_can_reuse_rx_page(rx_buffer)) {
2130                /* hand second half of page back to the ring */
2131                i40e_reuse_rx_page(rx_ring, rx_buffer);
2132        } else {
2133                /* we are not reusing the buffer so unmap it */
2134                dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2135                                     i40e_rx_pg_size(rx_ring),
2136                                     DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
2137                __page_frag_cache_drain(rx_buffer->page,
2138                                        rx_buffer->pagecnt_bias);
2139                /* clear contents of buffer_info */
2140                rx_buffer->page = NULL;
2141        }
2142}
2143
2144/**
2145 * i40e_is_non_eop - process handling of non-EOP buffers
2146 * @rx_ring: Rx ring being processed
2147 * @rx_desc: Rx descriptor for current buffer
2148 * @skb: Current socket buffer containing buffer in progress
2149 *
2150 * This function updates next to clean.  If the buffer is an EOP buffer
2151 * this function exits returning false, otherwise it will place the
2152 * sk_buff in the next buffer to be chained and return true indicating
2153 * that this is in fact a non-EOP buffer.
2154 **/
2155static bool i40e_is_non_eop(struct i40e_ring *rx_ring,
2156                            union i40e_rx_desc *rx_desc,
2157                            struct sk_buff *skb)
2158{
2159        u32 ntc = rx_ring->next_to_clean + 1;
2160
2161        /* fetch, update, and store next to clean */
2162        ntc = (ntc < rx_ring->count) ? ntc : 0;
2163        rx_ring->next_to_clean = ntc;
2164
2165        prefetch(I40E_RX_DESC(rx_ring, ntc));
2166
2167        /* if we are the last buffer then there is nothing else to do */
2168#define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
2169        if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
2170                return false;
2171
2172        rx_ring->rx_stats.non_eop_descs++;
2173
2174        return true;
2175}
2176
2177static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
2178                              struct i40e_ring *xdp_ring);
2179
2180int i40e_xmit_xdp_tx_ring(struct xdp_buff *xdp, struct i40e_ring *xdp_ring)
2181{
2182        struct xdp_frame *xdpf = convert_to_xdp_frame(xdp);
2183
2184        if (unlikely(!xdpf))
2185                return I40E_XDP_CONSUMED;
2186
2187        return i40e_xmit_xdp_ring(xdpf, xdp_ring);
2188}
2189
2190/**
2191 * i40e_run_xdp - run an XDP program
2192 * @rx_ring: Rx ring being processed
2193 * @xdp: XDP buffer containing the frame
2194 **/
2195static struct sk_buff *i40e_run_xdp(struct i40e_ring *rx_ring,
2196                                    struct xdp_buff *xdp)
2197{
2198        int err, result = I40E_XDP_PASS;
2199        struct i40e_ring *xdp_ring;
2200        struct bpf_prog *xdp_prog;
2201        u32 act;
2202
2203        rcu_read_lock();
2204        xdp_prog = READ_ONCE(rx_ring->xdp_prog);
2205
2206        if (!xdp_prog)
2207                goto xdp_out;
2208
2209        prefetchw(xdp->data_hard_start); /* xdp_frame write */
2210
2211        act = bpf_prog_run_xdp(xdp_prog, xdp);
2212        switch (act) {
2213        case XDP_PASS:
2214                break;
2215        case XDP_TX:
2216                xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2217                result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring);
2218                break;
2219        case XDP_REDIRECT:
2220                err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
2221                result = !err ? I40E_XDP_REDIR : I40E_XDP_CONSUMED;
2222                break;
2223        default:
2224                bpf_warn_invalid_xdp_action(act);
2225                /* fall through */
2226        case XDP_ABORTED:
2227                trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
2228                /* fall through -- handle aborts by dropping packet */
2229        case XDP_DROP:
2230                result = I40E_XDP_CONSUMED;
2231                break;
2232        }
2233xdp_out:
2234        rcu_read_unlock();
2235        return ERR_PTR(-result);
2236}
2237
2238/**
2239 * i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region
2240 * @rx_ring: Rx ring
2241 * @rx_buffer: Rx buffer to adjust
2242 * @size: Size of adjustment
2243 **/
2244static void i40e_rx_buffer_flip(struct i40e_ring *rx_ring,
2245                                struct i40e_rx_buffer *rx_buffer,
2246                                unsigned int size)
2247{
2248#if (PAGE_SIZE < 8192)
2249        unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
2250
2251        rx_buffer->page_offset ^= truesize;
2252#else
2253        unsigned int truesize = SKB_DATA_ALIGN(i40e_rx_offset(rx_ring) + size);
2254
2255        rx_buffer->page_offset += truesize;
2256#endif
2257}
2258
2259/**
2260 * i40e_xdp_ring_update_tail - Updates the XDP Tx ring tail register
2261 * @xdp_ring: XDP Tx ring
2262 *
2263 * This function updates the XDP Tx ring tail register.
2264 **/
2265void i40e_xdp_ring_update_tail(struct i40e_ring *xdp_ring)
2266{
2267        /* Force memory writes to complete before letting h/w
2268         * know there are new descriptors to fetch.
2269         */
2270        wmb();
2271        writel_relaxed(xdp_ring->next_to_use, xdp_ring->tail);
2272}
2273
2274/**
2275 * i40e_update_rx_stats - Update Rx ring statistics
2276 * @rx_ring: rx descriptor ring
2277 * @total_rx_bytes: number of bytes received
2278 * @total_rx_packets: number of packets received
2279 *
2280 * This function updates the Rx ring statistics.
2281 **/
2282void i40e_update_rx_stats(struct i40e_ring *rx_ring,
2283                          unsigned int total_rx_bytes,
2284                          unsigned int total_rx_packets)
2285{
2286        u64_stats_update_begin(&rx_ring->syncp);
2287        rx_ring->stats.packets += total_rx_packets;
2288        rx_ring->stats.bytes += total_rx_bytes;
2289        u64_stats_update_end(&rx_ring->syncp);
2290        rx_ring->q_vector->rx.total_packets += total_rx_packets;
2291        rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
2292}
2293
2294/**
2295 * i40e_finalize_xdp_rx - Bump XDP Tx tail and/or flush redirect map
2296 * @rx_ring: Rx ring
2297 * @xdp_res: Result of the receive batch
2298 *
2299 * This function bumps XDP Tx tail and/or flush redirect map, and
2300 * should be called when a batch of packets has been processed in the
2301 * napi loop.
2302 **/
2303void i40e_finalize_xdp_rx(struct i40e_ring *rx_ring, unsigned int xdp_res)
2304{
2305        if (xdp_res & I40E_XDP_REDIR)
2306                xdp_do_flush_map();
2307
2308        if (xdp_res & I40E_XDP_TX) {
2309                struct i40e_ring *xdp_ring =
2310                        rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2311
2312                i40e_xdp_ring_update_tail(xdp_ring);
2313        }
2314}
2315
2316/**
2317 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
2318 * @rx_ring: rx descriptor ring to transact packets on
2319 * @budget: Total limit on number of packets to process
2320 *
2321 * This function provides a "bounce buffer" approach to Rx interrupt
2322 * processing.  The advantage to this is that on systems that have
2323 * expensive overhead for IOMMU access this provides a means of avoiding
2324 * it by maintaining the mapping of the page to the system.
2325 *
2326 * Returns amount of work completed
2327 **/
2328static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
2329{
2330        unsigned int total_rx_bytes = 0, total_rx_packets = 0;
2331        struct sk_buff *skb = rx_ring->skb;
2332        u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
2333        unsigned int xdp_xmit = 0;
2334        bool failure = false;
2335        struct xdp_buff xdp;
2336
2337        xdp.rxq = &rx_ring->xdp_rxq;
2338
2339        while (likely(total_rx_packets < (unsigned int)budget)) {
2340                struct i40e_rx_buffer *rx_buffer;
2341                union i40e_rx_desc *rx_desc;
2342                unsigned int size;
2343                u64 qword;
2344
2345                /* return some buffers to hardware, one at a time is too slow */
2346                if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
2347                        failure = failure ||
2348                                  i40e_alloc_rx_buffers(rx_ring, cleaned_count);
2349                        cleaned_count = 0;
2350                }
2351
2352                rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);
2353
2354                /* status_error_len will always be zero for unused descriptors
2355                 * because it's cleared in cleanup, and overlaps with hdr_addr
2356                 * which is always zero because packet split isn't used, if the
2357                 * hardware wrote DD then the length will be non-zero
2358                 */
2359                qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
2360
2361                /* This memory barrier is needed to keep us from reading
2362                 * any other fields out of the rx_desc until we have
2363                 * verified the descriptor has been written back.
2364                 */
2365                dma_rmb();
2366
2367                rx_buffer = i40e_clean_programming_status(rx_ring, rx_desc,
2368                                                          qword);
2369                if (unlikely(rx_buffer)) {
2370                        i40e_reuse_rx_page(rx_ring, rx_buffer);
2371                        cleaned_count++;
2372                        continue;
2373                }
2374
2375                size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
2376                       I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
2377                if (!size)
2378                        break;
2379
2380                i40e_trace(clean_rx_irq, rx_ring, rx_desc, skb);
2381                rx_buffer = i40e_get_rx_buffer(rx_ring, size);
2382
2383                /* retrieve a buffer from the ring */
2384                if (!skb) {
2385                        xdp.data = page_address(rx_buffer->page) +
2386                                   rx_buffer->page_offset;
2387                        xdp.data_meta = xdp.data;
2388                        xdp.data_hard_start = xdp.data -
2389                                              i40e_rx_offset(rx_ring);
2390                        xdp.data_end = xdp.data + size;
2391
2392                        skb = i40e_run_xdp(rx_ring, &xdp);
2393                }
2394
2395                if (IS_ERR(skb)) {
2396                        unsigned int xdp_res = -PTR_ERR(skb);
2397
2398                        if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) {
2399                                xdp_xmit |= xdp_res;
2400                                i40e_rx_buffer_flip(rx_ring, rx_buffer, size);
2401                        } else {
2402                                rx_buffer->pagecnt_bias++;
2403                        }
2404                        total_rx_bytes += size;
2405                        total_rx_packets++;
2406                } else if (skb) {
2407                        i40e_add_rx_frag(rx_ring, rx_buffer, skb, size);
2408                } else if (ring_uses_build_skb(rx_ring)) {
2409                        skb = i40e_build_skb(rx_ring, rx_buffer, &xdp);
2410                } else {
2411                        skb = i40e_construct_skb(rx_ring, rx_buffer, &xdp);
2412                }
2413
2414                /* exit if we failed to retrieve a buffer */
2415                if (!skb) {
2416                        rx_ring->rx_stats.alloc_buff_failed++;
2417                        rx_buffer->pagecnt_bias++;
2418                        break;
2419                }
2420
2421                i40e_put_rx_buffer(rx_ring, rx_buffer);
2422                cleaned_count++;
2423
2424                if (i40e_is_non_eop(rx_ring, rx_desc, skb))
2425                        continue;
2426
2427                if (i40e_cleanup_headers(rx_ring, skb, rx_desc)) {
2428                        skb = NULL;
2429                        continue;
2430                }
2431
2432                /* probably a little skewed due to removing CRC */
2433                total_rx_bytes += skb->len;
2434
2435                /* populate checksum, VLAN, and protocol */
2436                i40e_process_skb_fields(rx_ring, rx_desc, skb);
2437
2438                i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb);
2439                napi_gro_receive(&rx_ring->q_vector->napi, skb);
2440                skb = NULL;
2441
2442                /* update budget accounting */
2443                total_rx_packets++;
2444        }
2445
2446        i40e_finalize_xdp_rx(rx_ring, xdp_xmit);
2447        rx_ring->skb = skb;
2448
2449        i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets);
2450
2451        /* guarantee a trip back through this routine if there was a failure */
2452        return failure ? budget : (int)total_rx_packets;
2453}
2454
2455static inline u32 i40e_buildreg_itr(const int type, u16 itr)
2456{
2457        u32 val;
2458
2459        /* We don't bother with setting the CLEARPBA bit as the data sheet
2460         * points out doing so is "meaningless since it was already
2461         * auto-cleared". The auto-clearing happens when the interrupt is
2462         * asserted.
2463         *
2464         * Hardware errata 28 for also indicates that writing to a
2465         * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
2466         * an event in the PBA anyway so we need to rely on the automask
2467         * to hold pending events for us until the interrupt is re-enabled
2468         *
2469         * The itr value is reported in microseconds, and the register
2470         * value is recorded in 2 microsecond units. For this reason we
2471         * only need to shift by the interval shift - 1 instead of the
2472         * full value.
2473         */
2474        itr &= I40E_ITR_MASK;
2475
2476        val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
2477              (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
2478              (itr << (I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT - 1));
2479
2480        return val;
2481}
2482
2483/* a small macro to shorten up some long lines */
2484#define INTREG I40E_PFINT_DYN_CTLN
2485
2486/* The act of updating the ITR will cause it to immediately trigger. In order
2487 * to prevent this from throwing off adaptive update statistics we defer the
2488 * update so that it can only happen so often. So after either Tx or Rx are
2489 * updated we make the adaptive scheme wait until either the ITR completely
2490 * expires via the next_update expiration or we have been through at least
2491 * 3 interrupts.
2492 */
2493#define ITR_COUNTDOWN_START 3
2494
2495/**
2496 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
2497 * @vsi: the VSI we care about
2498 * @q_vector: q_vector for which itr is being updated and interrupt enabled
2499 *
2500 **/
2501static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
2502                                          struct i40e_q_vector *q_vector)
2503{
2504        struct i40e_hw *hw = &vsi->back->hw;
2505        u32 intval;
2506
2507        /* If we don't have MSIX, then we only need to re-enable icr0 */
2508        if (!(vsi->back->flags & I40E_FLAG_MSIX_ENABLED)) {
2509                i40e_irq_dynamic_enable_icr0(vsi->back);
2510                return;
2511        }
2512
2513        /* These will do nothing if dynamic updates are not enabled */
2514        i40e_update_itr(q_vector, &q_vector->tx);
2515        i40e_update_itr(q_vector, &q_vector->rx);
2516
2517        /* This block of logic allows us to get away with only updating
2518         * one ITR value with each interrupt. The idea is to perform a
2519         * pseudo-lazy update with the following criteria.
2520         *
2521         * 1. Rx is given higher priority than Tx if both are in same state
2522         * 2. If we must reduce an ITR that is given highest priority.
2523         * 3. We then give priority to increasing ITR based on amount.
2524         */
2525        if (q_vector->rx.target_itr < q_vector->rx.current_itr) {
2526                /* Rx ITR needs to be reduced, this is highest priority */
2527                intval = i40e_buildreg_itr(I40E_RX_ITR,
2528                                           q_vector->rx.target_itr);
2529                q_vector->rx.current_itr = q_vector->rx.target_itr;
2530                q_vector->itr_countdown = ITR_COUNTDOWN_START;
2531        } else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) ||
2532                   ((q_vector->rx.target_itr - q_vector->rx.current_itr) <
2533                    (q_vector->tx.target_itr - q_vector->tx.current_itr))) {
2534                /* Tx ITR needs to be reduced, this is second priority
2535                 * Tx ITR needs to be increased more than Rx, fourth priority
2536                 */
2537                intval = i40e_buildreg_itr(I40E_TX_ITR,
2538                                           q_vector->tx.target_itr);
2539                q_vector->tx.current_itr = q_vector->tx.target_itr;
2540                q_vector->itr_countdown = ITR_COUNTDOWN_START;
2541        } else if (q_vector->rx.current_itr != q_vector->rx.target_itr) {
2542                /* Rx ITR needs to be increased, third priority */
2543                intval = i40e_buildreg_itr(I40E_RX_ITR,
2544                                           q_vector->rx.target_itr);
2545                q_vector->rx.current_itr = q_vector->rx.target_itr;
2546                q_vector->itr_countdown = ITR_COUNTDOWN_START;
2547        } else {
2548                /* No ITR update, lowest priority */
2549                intval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
2550                if (q_vector->itr_countdown)
2551                        q_vector->itr_countdown--;
2552        }
2553
2554        if (!test_bit(__I40E_VSI_DOWN, vsi->state))
2555                wr32(hw, INTREG(q_vector->reg_idx), intval);
2556}
2557
2558/**
2559 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
2560 * @napi: napi struct with our devices info in it
2561 * @budget: amount of work driver is allowed to do this pass, in packets
2562 *
2563 * This function will clean all queues associated with a q_vector.
2564 *
2565 * Returns the amount of work done
2566 **/
2567int i40e_napi_poll(struct napi_struct *napi, int budget)
2568{
2569        struct i40e_q_vector *q_vector =
2570                               container_of(napi, struct i40e_q_vector, napi);
2571        struct i40e_vsi *vsi = q_vector->vsi;
2572        struct i40e_ring *ring;
2573        bool clean_complete = true;
2574        bool arm_wb = false;
2575        int budget_per_ring;
2576        int work_done = 0;
2577
2578        if (test_bit(__I40E_VSI_DOWN, vsi->state)) {
2579                napi_complete(napi);
2580                return 0;
2581        }
2582
2583        /* Since the actual Tx work is minimal, we can give the Tx a larger
2584         * budget and be more aggressive about cleaning up the Tx descriptors.
2585         */
2586        i40e_for_each_ring(ring, q_vector->tx) {
2587                bool wd = ring->xsk_umem ?
2588                          i40e_clean_xdp_tx_irq(vsi, ring, budget) :
2589                          i40e_clean_tx_irq(vsi, ring, budget);
2590
2591                if (!wd) {
2592                        clean_complete = false;
2593                        continue;
2594                }
2595                arm_wb |= ring->arm_wb;
2596                ring->arm_wb = false;
2597        }
2598
2599        /* Handle case where we are called by netpoll with a budget of 0 */
2600        if (budget <= 0)
2601                goto tx_only;
2602
2603        /* We attempt to distribute budget to each Rx queue fairly, but don't
2604         * allow the budget to go below 1 because that would exit polling early.
2605         */
2606        budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
2607
2608        i40e_for_each_ring(ring, q_vector->rx) {
2609                int cleaned = ring->xsk_umem ?
2610                              i40e_clean_rx_irq_zc(ring, budget_per_ring) :
2611                              i40e_clean_rx_irq(ring, budget_per_ring);
2612
2613                work_done += cleaned;
2614                /* if we clean as many as budgeted, we must not be done */
2615                if (cleaned >= budget_per_ring)
2616                        clean_complete = false;
2617        }
2618
2619        /* If work not completed, return budget and polling will return */
2620        if (!clean_complete) {
2621                int cpu_id = smp_processor_id();
2622
2623                /* It is possible that the interrupt affinity has changed but,
2624                 * if the cpu is pegged at 100%, polling will never exit while
2625                 * traffic continues and the interrupt will be stuck on this
2626                 * cpu.  We check to make sure affinity is correct before we
2627                 * continue to poll, otherwise we must stop polling so the
2628                 * interrupt can move to the correct cpu.
2629                 */
2630                if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
2631                        /* Tell napi that we are done polling */
2632                        napi_complete_done(napi, work_done);
2633
2634                        /* Force an interrupt */
2635                        i40e_force_wb(vsi, q_vector);
2636
2637                        /* Return budget-1 so that polling stops */
2638                        return budget - 1;
2639                }
2640tx_only:
2641                if (arm_wb) {
2642                        q_vector->tx.ring[0].tx_stats.tx_force_wb++;
2643                        i40e_enable_wb_on_itr(vsi, q_vector);
2644                }
2645                return budget;
2646        }
2647
2648        if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
2649                q_vector->arm_wb_state = false;
2650
2651        /* Exit the polling mode, but don't re-enable interrupts if stack might
2652         * poll us due to busy-polling
2653         */
2654        if (likely(napi_complete_done(napi, work_done)))
2655                i40e_update_enable_itr(vsi, q_vector);
2656
2657        return min(work_done, budget - 1);
2658}
2659
2660/**
2661 * i40e_atr - Add a Flow Director ATR filter
2662 * @tx_ring:  ring to add programming descriptor to
2663 * @skb:      send buffer
2664 * @tx_flags: send tx flags
2665 **/
2666static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2667                     u32 tx_flags)
2668{
2669        struct i40e_filter_program_desc *fdir_desc;
2670        struct i40e_pf *pf = tx_ring->vsi->back;
2671        union {
2672                unsigned char *network;
2673                struct iphdr *ipv4;
2674                struct ipv6hdr *ipv6;
2675        } hdr;
2676        struct tcphdr *th;
2677        unsigned int hlen;
2678        u32 flex_ptype, dtype_cmd;
2679        int l4_proto;
2680        u16 i;
2681
2682        /* make sure ATR is enabled */
2683        if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
2684                return;
2685
2686        if (test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2687                return;
2688
2689        /* if sampling is disabled do nothing */
2690        if (!tx_ring->atr_sample_rate)
2691                return;
2692
2693        /* Currently only IPv4/IPv6 with TCP is supported */
2694        if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
2695                return;
2696
2697        /* snag network header to get L4 type and address */
2698        hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
2699                      skb_inner_network_header(skb) : skb_network_header(skb);
2700
2701        /* Note: tx_flags gets modified to reflect inner protocols in
2702         * tx_enable_csum function if encap is enabled.
2703         */
2704        if (tx_flags & I40E_TX_FLAGS_IPV4) {
2705                /* access ihl as u8 to avoid unaligned access on ia64 */
2706                hlen = (hdr.network[0] & 0x0F) << 2;
2707                l4_proto = hdr.ipv4->protocol;
2708        } else {
2709                /* find the start of the innermost ipv6 header */
2710                unsigned int inner_hlen = hdr.network - skb->data;
2711                unsigned int h_offset = inner_hlen;
2712
2713                /* this function updates h_offset to the end of the header */
2714                l4_proto =
2715                  ipv6_find_hdr(skb, &h_offset, IPPROTO_TCP, NULL, NULL);
2716                /* hlen will contain our best estimate of the tcp header */
2717                hlen = h_offset - inner_hlen;
2718        }
2719
2720        if (l4_proto != IPPROTO_TCP)
2721                return;
2722
2723        th = (struct tcphdr *)(hdr.network + hlen);
2724
2725        /* Due to lack of space, no more new filters can be programmed */
2726        if (th->syn && test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2727                return;
2728        if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED) {
2729                /* HW ATR eviction will take care of removing filters on FIN
2730                 * and RST packets.
2731                 */
2732                if (th->fin || th->rst)
2733                        return;
2734        }
2735
2736        tx_ring->atr_count++;
2737
2738        /* sample on all syn/fin/rst packets or once every atr sample rate */
2739        if (!th->fin &&
2740            !th->syn &&
2741            !th->rst &&
2742            (tx_ring->atr_count < tx_ring->atr_sample_rate))
2743                return;
2744
2745        tx_ring->atr_count = 0;
2746
2747        /* grab the next descriptor */
2748        i = tx_ring->next_to_use;
2749        fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2750
2751        i++;
2752        tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2753
2754        flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
2755                      I40E_TXD_FLTR_QW0_QINDEX_MASK;
2756        flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2757                      (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2758                       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2759                      (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2760                       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2761
2762        flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2763
2764        dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2765
2766        dtype_cmd |= (th->fin || th->rst) ?
2767                     (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2768                      I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2769                     (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2770                      I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2771
2772        dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2773                     I40E_TXD_FLTR_QW1_DEST_SHIFT;
2774
2775        dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2776                     I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2777
2778        dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2779        if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2780                dtype_cmd |=
2781                        ((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
2782                        I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2783                        I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2784        else
2785                dtype_cmd |=
2786                        ((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
2787                        I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2788                        I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2789
2790        if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED)
2791                dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
2792
2793        fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
2794        fdir_desc->rsvd = cpu_to_le32(0);
2795        fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
2796        fdir_desc->fd_id = cpu_to_le32(0);
2797}
2798
2799/**
2800 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
2801 * @skb:     send buffer
2802 * @tx_ring: ring to send buffer on
2803 * @flags:   the tx flags to be set
2804 *
2805 * Checks the skb and set up correspondingly several generic transmit flags
2806 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2807 *
2808 * Returns error code indicate the frame should be dropped upon error and the
2809 * otherwise  returns 0 to indicate the flags has been set properly.
2810 **/
2811static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2812                                             struct i40e_ring *tx_ring,
2813                                             u32 *flags)
2814{
2815        __be16 protocol = skb->protocol;
2816        u32  tx_flags = 0;
2817
2818        if (protocol == htons(ETH_P_8021Q) &&
2819            !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
2820                /* When HW VLAN acceleration is turned off by the user the
2821                 * stack sets the protocol to 8021q so that the driver
2822                 * can take any steps required to support the SW only
2823                 * VLAN handling.  In our case the driver doesn't need
2824                 * to take any further steps so just set the protocol
2825                 * to the encapsulated ethertype.
2826                 */
2827                skb->protocol = vlan_get_protocol(skb);
2828                goto out;
2829        }
2830
2831        /* if we have a HW VLAN tag being added, default to the HW one */
2832        if (skb_vlan_tag_present(skb)) {
2833                tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
2834                tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2835        /* else if it is a SW VLAN, check the next protocol and store the tag */
2836        } else if (protocol == htons(ETH_P_8021Q)) {
2837                struct vlan_hdr *vhdr, _vhdr;
2838
2839                vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
2840                if (!vhdr)
2841                        return -EINVAL;
2842
2843                protocol = vhdr->h_vlan_encapsulated_proto;
2844                tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
2845                tx_flags |= I40E_TX_FLAGS_SW_VLAN;
2846        }
2847
2848        if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
2849                goto out;
2850
2851        /* Insert 802.1p priority into VLAN header */
2852        if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
2853            (skb->priority != TC_PRIO_CONTROL)) {
2854                tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
2855                tx_flags |= (skb->priority & 0x7) <<
2856                                I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
2857                if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
2858                        struct vlan_ethhdr *vhdr;
2859                        int rc;
2860
2861                        rc = skb_cow_head(skb, 0);
2862                        if (rc < 0)
2863                                return rc;
2864                        vhdr = (struct vlan_ethhdr *)skb->data;
2865                        vhdr->h_vlan_TCI = htons(tx_flags >>
2866                                                 I40E_TX_FLAGS_VLAN_SHIFT);
2867                } else {
2868                        tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2869                }
2870        }
2871
2872out:
2873        *flags = tx_flags;
2874        return 0;
2875}
2876
2877/**
2878 * i40e_tso - set up the tso context descriptor
2879 * @first:    pointer to first Tx buffer for xmit
2880 * @hdr_len:  ptr to the size of the packet header
2881 * @cd_type_cmd_tso_mss: Quad Word 1
2882 *
2883 * Returns 0 if no TSO can happen, 1 if tso is going, or error
2884 **/
2885static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
2886                    u64 *cd_type_cmd_tso_mss)
2887{
2888        struct sk_buff *skb = first->skb;
2889        u64 cd_cmd, cd_tso_len, cd_mss;
2890        union {
2891                struct iphdr *v4;
2892                struct ipv6hdr *v6;
2893                unsigned char *hdr;
2894        } ip;
2895        union {
2896                struct tcphdr *tcp;
2897                struct udphdr *udp;
2898                unsigned char *hdr;
2899        } l4;
2900        u32 paylen, l4_offset;
2901        u16 gso_segs, gso_size;
2902        int err;
2903
2904        if (skb->ip_summed != CHECKSUM_PARTIAL)
2905                return 0;
2906
2907        if (!skb_is_gso(skb))
2908                return 0;
2909
2910        err = skb_cow_head(skb, 0);
2911        if (err < 0)
2912                return err;
2913
2914        ip.hdr = skb_network_header(skb);
2915        l4.hdr = skb_transport_header(skb);
2916
2917        /* initialize outer IP header fields */
2918        if (ip.v4->version == 4) {
2919                ip.v4->tot_len = 0;
2920                ip.v4->check = 0;
2921        } else {
2922                ip.v6->payload_len = 0;
2923        }
2924
2925        if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
2926                                         SKB_GSO_GRE_CSUM |
2927                                         SKB_GSO_IPXIP4 |
2928                                         SKB_GSO_IPXIP6 |
2929                                         SKB_GSO_UDP_TUNNEL |
2930                                         SKB_GSO_UDP_TUNNEL_CSUM)) {
2931                if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2932                    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
2933                        l4.udp->len = 0;
2934
2935                        /* determine offset of outer transport header */
2936                        l4_offset = l4.hdr - skb->data;
2937
2938                        /* remove payload length from outer checksum */
2939                        paylen = skb->len - l4_offset;
2940                        csum_replace_by_diff(&l4.udp->check,
2941                                             (__force __wsum)htonl(paylen));
2942                }
2943
2944                /* reset pointers to inner headers */
2945                ip.hdr = skb_inner_network_header(skb);
2946                l4.hdr = skb_inner_transport_header(skb);
2947
2948                /* initialize inner IP header fields */
2949                if (ip.v4->version == 4) {
2950                        ip.v4->tot_len = 0;
2951                        ip.v4->check = 0;
2952                } else {
2953                        ip.v6->payload_len = 0;
2954                }
2955        }
2956
2957        /* determine offset of inner transport header */
2958        l4_offset = l4.hdr - skb->data;
2959
2960        /* remove payload length from inner checksum */
2961        paylen = skb->len - l4_offset;
2962        csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
2963
2964        /* compute length of segmentation header */
2965        *hdr_len = (l4.tcp->doff * 4) + l4_offset;
2966
2967        /* pull values out of skb_shinfo */
2968        gso_size = skb_shinfo(skb)->gso_size;
2969        gso_segs = skb_shinfo(skb)->gso_segs;
2970
2971        /* update GSO size and bytecount with header size */
2972        first->gso_segs = gso_segs;
2973        first->bytecount += (first->gso_segs - 1) * *hdr_len;
2974
2975        /* find the field values */
2976        cd_cmd = I40E_TX_CTX_DESC_TSO;
2977        cd_tso_len = skb->len - *hdr_len;
2978        cd_mss = gso_size;
2979        *cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
2980                                (cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
2981                                (cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
2982        return 1;
2983}
2984
2985/**
2986 * i40e_tsyn - set up the tsyn context descriptor
2987 * @tx_ring:  ptr to the ring to send
2988 * @skb:      ptr to the skb we're sending
2989 * @tx_flags: the collected send information
2990 * @cd_type_cmd_tso_mss: Quad Word 1
2991 *
2992 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
2993 **/
2994static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
2995                     u32 tx_flags, u64 *cd_type_cmd_tso_mss)
2996{
2997        struct i40e_pf *pf;
2998
2999        if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
3000                return 0;
3001
3002        /* Tx timestamps cannot be sampled when doing TSO */
3003        if (tx_flags & I40E_TX_FLAGS_TSO)
3004                return 0;
3005
3006        /* only timestamp the outbound packet if the user has requested it and
3007         * we are not already transmitting a packet to be timestamped
3008         */
3009        pf = i40e_netdev_to_pf(tx_ring->netdev);
3010        if (!(pf->flags & I40E_FLAG_PTP))
3011                return 0;
3012
3013        if (pf->ptp_tx &&
3014            !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, pf->state)) {
3015                skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3016                pf->ptp_tx_start = jiffies;
3017                pf->ptp_tx_skb = skb_get(skb);
3018        } else {
3019                pf->tx_hwtstamp_skipped++;
3020                return 0;
3021        }
3022
3023        *cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
3024                                I40E_TXD_CTX_QW1_CMD_SHIFT;
3025
3026        return 1;
3027}
3028
3029/**
3030 * i40e_tx_enable_csum - Enable Tx checksum offloads
3031 * @skb: send buffer
3032 * @tx_flags: pointer to Tx flags currently set
3033 * @td_cmd: Tx descriptor command bits to set
3034 * @td_offset: Tx descriptor header offsets to set
3035 * @tx_ring: Tx descriptor ring
3036 * @cd_tunneling: ptr to context desc bits
3037 **/
3038static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
3039                               u32 *td_cmd, u32 *td_offset,
3040                               struct i40e_ring *tx_ring,
3041                               u32 *cd_tunneling)
3042{
3043        union {
3044                struct iphdr *v4;
3045                struct ipv6hdr *v6;
3046                unsigned char *hdr;
3047        } ip;
3048        union {
3049                struct tcphdr *tcp;
3050                struct udphdr *udp;
3051                unsigned char *hdr;
3052        } l4;
3053        unsigned char *exthdr;
3054        u32 offset, cmd = 0;
3055        __be16 frag_off;
3056        u8 l4_proto = 0;
3057
3058        if (skb->ip_summed != CHECKSUM_PARTIAL)
3059                return 0;
3060
3061        ip.hdr = skb_network_header(skb);
3062        l4.hdr = skb_transport_header(skb);
3063
3064        /* compute outer L2 header size */
3065        offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
3066
3067        if (skb->encapsulation) {
3068                u32 tunnel = 0;
3069                /* define outer network header type */
3070                if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3071                        tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3072                                  I40E_TX_CTX_EXT_IP_IPV4 :
3073                                  I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
3074
3075                        l4_proto = ip.v4->protocol;
3076                } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3077                        tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
3078
3079                        exthdr = ip.hdr + sizeof(*ip.v6);
3080                        l4_proto = ip.v6->nexthdr;
3081                        if (l4.hdr != exthdr)
3082                                ipv6_skip_exthdr(skb, exthdr - skb->data,
3083                                                 &l4_proto, &frag_off);
3084                }
3085
3086                /* define outer transport */
3087                switch (l4_proto) {
3088                case IPPROTO_UDP:
3089                        tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
3090                        *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3091                        break;
3092                case IPPROTO_GRE:
3093                        tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
3094                        *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3095                        break;
3096                case IPPROTO_IPIP:
3097                case IPPROTO_IPV6:
3098                        *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3099                        l4.hdr = skb_inner_network_header(skb);
3100                        break;
3101                default:
3102                        if (*tx_flags & I40E_TX_FLAGS_TSO)
3103                                return -1;
3104
3105                        skb_checksum_help(skb);
3106                        return 0;
3107                }
3108
3109                /* compute outer L3 header size */
3110                tunnel |= ((l4.hdr - ip.hdr) / 4) <<
3111                          I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
3112
3113                /* switch IP header pointer from outer to inner header */
3114                ip.hdr = skb_inner_network_header(skb);
3115
3116                /* compute tunnel header size */
3117                tunnel |= ((ip.hdr - l4.hdr) / 2) <<
3118                          I40E_TXD_CTX_QW0_NATLEN_SHIFT;
3119
3120                /* indicate if we need to offload outer UDP header */
3121                if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
3122                    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3123                    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
3124                        tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
3125
3126                /* record tunnel offload values */
3127                *cd_tunneling |= tunnel;
3128
3129                /* switch L4 header pointer from outer to inner */
3130                l4.hdr = skb_inner_transport_header(skb);
3131                l4_proto = 0;
3132
3133                /* reset type as we transition from outer to inner headers */
3134                *tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
3135                if (ip.v4->version == 4)
3136                        *tx_flags |= I40E_TX_FLAGS_IPV4;
3137                if (ip.v6->version == 6)
3138                        *tx_flags |= I40E_TX_FLAGS_IPV6;
3139        }
3140
3141        /* Enable IP checksum offloads */
3142        if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3143                l4_proto = ip.v4->protocol;
3144                /* the stack computes the IP header already, the only time we
3145                 * need the hardware to recompute it is in the case of TSO.
3146                 */
3147                cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3148                       I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
3149                       I40E_TX_DESC_CMD_IIPT_IPV4;
3150        } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3151                cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
3152
3153                exthdr = ip.hdr + sizeof(*ip.v6);
3154                l4_proto = ip.v6->nexthdr;
3155                if (l4.hdr != exthdr)
3156                        ipv6_skip_exthdr(skb, exthdr - skb->data,
3157                                         &l4_proto, &frag_off);
3158        }
3159
3160        /* compute inner L3 header size */
3161        offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
3162
3163        /* Enable L4 checksum offloads */
3164        switch (l4_proto) {
3165        case IPPROTO_TCP:
3166                /* enable checksum offloads */
3167                cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
3168                offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3169                break;
3170        case IPPROTO_SCTP:
3171                /* enable SCTP checksum offload */
3172                cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
3173                offset |= (sizeof(struct sctphdr) >> 2) <<
3174                          I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3175                break;
3176        case IPPROTO_UDP:
3177                /* enable UDP checksum offload */
3178                cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
3179                offset |= (sizeof(struct udphdr) >> 2) <<
3180                          I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3181                break;
3182        default:
3183                if (*tx_flags & I40E_TX_FLAGS_TSO)
3184                        return -1;
3185                skb_checksum_help(skb);
3186                return 0;
3187        }
3188
3189        *td_cmd |= cmd;
3190        *td_offset |= offset;
3191
3192        return 1;
3193}
3194
3195/**
3196 * i40e_create_tx_ctx Build the Tx context descriptor
3197 * @tx_ring:  ring to create the descriptor on
3198 * @cd_type_cmd_tso_mss: Quad Word 1
3199 * @cd_tunneling: Quad Word 0 - bits 0-31
3200 * @cd_l2tag2: Quad Word 0 - bits 32-63
3201 **/
3202static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
3203                               const u64 cd_type_cmd_tso_mss,
3204                               const u32 cd_tunneling, const u32 cd_l2tag2)
3205{
3206        struct i40e_tx_context_desc *context_desc;
3207        int i = tx_ring->next_to_use;
3208
3209        if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
3210            !cd_tunneling && !cd_l2tag2)
3211                return;
3212
3213        /* grab the next descriptor */
3214        context_desc = I40E_TX_CTXTDESC(tx_ring, i);
3215
3216        i++;
3217        tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3218
3219        /* cpu_to_le32 and assign to struct fields */
3220        context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
3221        context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
3222        context_desc->rsvd = cpu_to_le16(0);
3223        context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
3224}
3225
3226/**
3227 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
3228 * @tx_ring: the ring to be checked
3229 * @size:    the size buffer we want to assure is available
3230 *
3231 * Returns -EBUSY if a stop is needed, else 0
3232 **/
3233int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
3234{
3235        netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
3236        /* Memory barrier before checking head and tail */
3237        smp_mb();
3238
3239        /* Check again in a case another CPU has just made room available. */
3240        if (likely(I40E_DESC_UNUSED(tx_ring) < size))
3241                return -EBUSY;
3242
3243        /* A reprieve! - use start_queue because it doesn't call schedule */
3244        netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
3245        ++tx_ring->tx_stats.restart_queue;
3246        return 0;
3247}
3248
3249/**
3250 * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
3251 * @skb:      send buffer
3252 *
3253 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
3254 * and so we need to figure out the cases where we need to linearize the skb.
3255 *
3256 * For TSO we need to count the TSO header and segment payload separately.
3257 * As such we need to check cases where we have 7 fragments or more as we
3258 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
3259 * the segment payload in the first descriptor, and another 7 for the
3260 * fragments.
3261 **/
3262bool __i40e_chk_linearize(struct sk_buff *skb)
3263{
3264        const struct skb_frag_struct *frag, *stale;
3265        int nr_frags, sum;
3266
3267        /* no need to check if number of frags is less than 7 */
3268        nr_frags = skb_shinfo(skb)->nr_frags;
3269        if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
3270                return false;
3271
3272        /* We need to walk through the list and validate that each group
3273         * of 6 fragments totals at least gso_size.
3274         */
3275        nr_frags -= I40E_MAX_BUFFER_TXD - 2;
3276        frag = &skb_shinfo(skb)->frags[0];
3277
3278        /* Initialize size to the negative value of gso_size minus 1.  We
3279         * use this as the worst case scenerio in which the frag ahead
3280         * of us only provides one byte which is why we are limited to 6
3281         * descriptors for a single transmit as the header and previous
3282         * fragment are already consuming 2 descriptors.
3283         */
3284        sum = 1 - skb_shinfo(skb)->gso_size;
3285
3286        /* Add size of frags 0 through 4 to create our initial sum */
3287        sum += skb_frag_size(frag++);
3288        sum += skb_frag_size(frag++);
3289        sum += skb_frag_size(frag++);
3290        sum += skb_frag_size(frag++);
3291        sum += skb_frag_size(frag++);
3292
3293        /* Walk through fragments adding latest fragment, testing it, and
3294         * then removing stale fragments from the sum.
3295         */
3296        for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
3297                int stale_size = skb_frag_size(stale);
3298
3299                sum += skb_frag_size(frag++);
3300
3301                /* The stale fragment may present us with a smaller
3302                 * descriptor than the actual fragment size. To account
3303                 * for that we need to remove all the data on the front and
3304                 * figure out what the remainder would be in the last
3305                 * descriptor associated with the fragment.
3306                 */
3307                if (stale_size > I40E_MAX_DATA_PER_TXD) {
3308                        int align_pad = -(stale->page_offset) &
3309                                        (I40E_MAX_READ_REQ_SIZE - 1);
3310
3311                        sum -= align_pad;
3312                        stale_size -= align_pad;
3313
3314                        do {
3315                                sum -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3316                                stale_size -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3317                        } while (stale_size > I40E_MAX_DATA_PER_TXD);
3318                }
3319
3320                /* if sum is negative we failed to make sufficient progress */
3321                if (sum < 0)
3322                        return true;
3323
3324                if (!nr_frags--)
3325                        break;
3326
3327                sum -= stale_size;
3328        }
3329
3330        return false;
3331}
3332
3333/**
3334 * i40e_tx_map - Build the Tx descriptor
3335 * @tx_ring:  ring to send buffer on
3336 * @skb:      send buffer
3337 * @first:    first buffer info buffer to use
3338 * @tx_flags: collected send information
3339 * @hdr_len:  size of the packet header
3340 * @td_cmd:   the command field in the descriptor
3341 * @td_offset: offset for checksum or crc
3342 *
3343 * Returns 0 on success, -1 on failure to DMA
3344 **/
3345static inline int i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
3346                              struct i40e_tx_buffer *first, u32 tx_flags,
3347                              const u8 hdr_len, u32 td_cmd, u32 td_offset)
3348{
3349        unsigned int data_len = skb->data_len;
3350        unsigned int size = skb_headlen(skb);
3351        struct skb_frag_struct *frag;
3352        struct i40e_tx_buffer *tx_bi;
3353        struct i40e_tx_desc *tx_desc;
3354        u16 i = tx_ring->next_to_use;
3355        u32 td_tag = 0;
3356        dma_addr_t dma;
3357        u16 desc_count = 1;
3358
3359        if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
3360                td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
3361                td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
3362                         I40E_TX_FLAGS_VLAN_SHIFT;
3363        }
3364
3365        first->tx_flags = tx_flags;
3366
3367        dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3368
3369        tx_desc = I40E_TX_DESC(tx_ring, i);
3370        tx_bi = first;
3371
3372        for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
3373                unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3374
3375                if (dma_mapping_error(tx_ring->dev, dma))
3376                        goto dma_error;
3377
3378                /* record length, and DMA address */
3379                dma_unmap_len_set(tx_bi, len, size);
3380                dma_unmap_addr_set(tx_bi, dma, dma);
3381
3382                /* align size to end of page */
3383                max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
3384                tx_desc->buffer_addr = cpu_to_le64(dma);
3385
3386                while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
3387                        tx_desc->cmd_type_offset_bsz =
3388                                build_ctob(td_cmd, td_offset,
3389                                           max_data, td_tag);
3390
3391                        tx_desc++;
3392                        i++;
3393                        desc_count++;
3394
3395                        if (i == tx_ring->count) {
3396                                tx_desc = I40E_TX_DESC(tx_ring, 0);
3397                                i = 0;
3398                        }
3399
3400                        dma += max_data;
3401                        size -= max_data;
3402
3403                        max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3404                        tx_desc->buffer_addr = cpu_to_le64(dma);
3405                }
3406
3407                if (likely(!data_len))
3408                        break;
3409
3410                tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
3411                                                          size, td_tag);
3412
3413                tx_desc++;
3414                i++;
3415                desc_count++;
3416
3417                if (i == tx_ring->count) {
3418                        tx_desc = I40E_TX_DESC(tx_ring, 0);
3419                        i = 0;
3420                }
3421
3422                size = skb_frag_size(frag);
3423                data_len -= size;
3424
3425                dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
3426                                       DMA_TO_DEVICE);
3427
3428                tx_bi = &tx_ring->tx_bi[i];
3429        }
3430
3431        netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
3432
3433        i++;
3434        if (i == tx_ring->count)
3435                i = 0;
3436
3437        tx_ring->next_to_use = i;
3438
3439        i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
3440
3441        /* write last descriptor with EOP bit */
3442        td_cmd |= I40E_TX_DESC_CMD_EOP;
3443
3444        /* We OR these values together to check both against 4 (WB_STRIDE)
3445         * below. This is safe since we don't re-use desc_count afterwards.
3446         */
3447        desc_count |= ++tx_ring->packet_stride;
3448
3449        if (desc_count >= WB_STRIDE) {
3450                /* write last descriptor with RS bit set */
3451                td_cmd |= I40E_TX_DESC_CMD_RS;
3452                tx_ring->packet_stride = 0;
3453        }
3454
3455        tx_desc->cmd_type_offset_bsz =
3456                        build_ctob(td_cmd, td_offset, size, td_tag);
3457
3458        skb_tx_timestamp(skb);
3459
3460        /* Force memory writes to complete before letting h/w know there
3461         * are new descriptors to fetch.
3462         *
3463         * We also use this memory barrier to make certain all of the
3464         * status bits have been updated before next_to_watch is written.
3465         */
3466        wmb();
3467
3468        /* set next_to_watch value indicating a packet is present */
3469        first->next_to_watch = tx_desc;
3470
3471        /* notify HW of packet */
3472        if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
3473                writel(i, tx_ring->tail);
3474
3475                /* we need this if more than one processor can write to our tail
3476                 * at a time, it synchronizes IO on IA64/Altix systems
3477                 */
3478                mmiowb();
3479        }
3480
3481        return 0;
3482
3483dma_error:
3484        dev_info(tx_ring->dev, "TX DMA map failed\n");
3485
3486        /* clear dma mappings for failed tx_bi map */
3487        for (;;) {
3488                tx_bi = &tx_ring->tx_bi[i];
3489                i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
3490                if (tx_bi == first)
3491                        break;
3492                if (i == 0)
3493                        i = tx_ring->count;
3494                i--;
3495        }
3496
3497        tx_ring->next_to_use = i;
3498
3499        return -1;
3500}
3501
3502/**
3503 * i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring
3504 * @xdp: data to transmit
3505 * @xdp_ring: XDP Tx ring
3506 **/
3507static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
3508                              struct i40e_ring *xdp_ring)
3509{
3510        u16 i = xdp_ring->next_to_use;
3511        struct i40e_tx_buffer *tx_bi;
3512        struct i40e_tx_desc *tx_desc;
3513        void *data = xdpf->data;
3514        u32 size = xdpf->len;
3515        dma_addr_t dma;
3516
3517        if (!unlikely(I40E_DESC_UNUSED(xdp_ring))) {
3518                xdp_ring->tx_stats.tx_busy++;
3519                return I40E_XDP_CONSUMED;
3520        }
3521        dma = dma_map_single(xdp_ring->dev, data, size, DMA_TO_DEVICE);
3522        if (dma_mapping_error(xdp_ring->dev, dma))
3523                return I40E_XDP_CONSUMED;
3524
3525        tx_bi = &xdp_ring->tx_bi[i];
3526        tx_bi->bytecount = size;
3527        tx_bi->gso_segs = 1;
3528        tx_bi->xdpf = xdpf;
3529
3530        /* record length, and DMA address */
3531        dma_unmap_len_set(tx_bi, len, size);
3532        dma_unmap_addr_set(tx_bi, dma, dma);
3533
3534        tx_desc = I40E_TX_DESC(xdp_ring, i);
3535        tx_desc->buffer_addr = cpu_to_le64(dma);
3536        tx_desc->cmd_type_offset_bsz = build_ctob(I40E_TX_DESC_CMD_ICRC
3537                                                  | I40E_TXD_CMD,
3538                                                  0, size, 0);
3539
3540        /* Make certain all of the status bits have been updated
3541         * before next_to_watch is written.
3542         */
3543        smp_wmb();
3544
3545        i++;
3546        if (i == xdp_ring->count)
3547                i = 0;
3548
3549        tx_bi->next_to_watch = tx_desc;
3550        xdp_ring->next_to_use = i;
3551
3552        return I40E_XDP_TX;
3553}
3554
3555/**
3556 * i40e_xmit_frame_ring - Sends buffer on Tx ring
3557 * @skb:     send buffer
3558 * @tx_ring: ring to send buffer on
3559 *
3560 * Returns NETDEV_TX_OK if sent, else an error code
3561 **/
3562static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
3563                                        struct i40e_ring *tx_ring)
3564{
3565        u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
3566        u32 cd_tunneling = 0, cd_l2tag2 = 0;
3567        struct i40e_tx_buffer *first;
3568        u32 td_offset = 0;
3569        u32 tx_flags = 0;
3570        __be16 protocol;
3571        u32 td_cmd = 0;
3572        u8 hdr_len = 0;
3573        int tso, count;
3574        int tsyn;
3575
3576        /* prefetch the data, we'll need it later */
3577        prefetch(skb->data);
3578
3579        i40e_trace(xmit_frame_ring, skb, tx_ring);
3580
3581        count = i40e_xmit_descriptor_count(skb);
3582        if (i40e_chk_linearize(skb, count)) {
3583                if (__skb_linearize(skb)) {
3584                        dev_kfree_skb_any(skb);
3585                        return NETDEV_TX_OK;
3586                }
3587                count = i40e_txd_use_count(skb->len);
3588                tx_ring->tx_stats.tx_linearize++;
3589        }
3590
3591        /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
3592         *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
3593         *       + 4 desc gap to avoid the cache line where head is,
3594         *       + 1 desc for context descriptor,
3595         * otherwise try next time
3596         */
3597        if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
3598                tx_ring->tx_stats.tx_busy++;
3599                return NETDEV_TX_BUSY;
3600        }
3601
3602        /* record the location of the first descriptor for this packet */
3603        first = &tx_ring->tx_bi[tx_ring->next_to_use];
3604        first->skb = skb;
3605        first->bytecount = skb->len;
3606        first->gso_segs = 1;
3607
3608        /* prepare the xmit flags */
3609        if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
3610                goto out_drop;
3611
3612        /* obtain protocol of skb */
3613        protocol = vlan_get_protocol(skb);
3614
3615        /* setup IPv4/IPv6 offloads */
3616        if (protocol == htons(ETH_P_IP))
3617                tx_flags |= I40E_TX_FLAGS_IPV4;
3618        else if (protocol == htons(ETH_P_IPV6))
3619                tx_flags |= I40E_TX_FLAGS_IPV6;
3620
3621        tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
3622
3623        if (tso < 0)
3624                goto out_drop;
3625        else if (tso)
3626                tx_flags |= I40E_TX_FLAGS_TSO;
3627
3628        /* Always offload the checksum, since it's in the data descriptor */
3629        tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
3630                                  tx_ring, &cd_tunneling);
3631        if (tso < 0)
3632                goto out_drop;
3633
3634        tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
3635
3636        if (tsyn)
3637                tx_flags |= I40E_TX_FLAGS_TSYN;
3638
3639        /* always enable CRC insertion offload */
3640        td_cmd |= I40E_TX_DESC_CMD_ICRC;
3641
3642        i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
3643                           cd_tunneling, cd_l2tag2);
3644
3645        /* Add Flow Director ATR if it's enabled.
3646         *
3647         * NOTE: this must always be directly before the data descriptor.
3648         */
3649        i40e_atr(tx_ring, skb, tx_flags);
3650
3651        if (i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
3652                        td_cmd, td_offset))
3653                goto cleanup_tx_tstamp;
3654
3655        return NETDEV_TX_OK;
3656
3657out_drop:
3658        i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring);
3659        dev_kfree_skb_any(first->skb);
3660        first->skb = NULL;
3661cleanup_tx_tstamp:
3662        if (unlikely(tx_flags & I40E_TX_FLAGS_TSYN)) {
3663                struct i40e_pf *pf = i40e_netdev_to_pf(tx_ring->netdev);
3664
3665                dev_kfree_skb_any(pf->ptp_tx_skb);
3666                pf->ptp_tx_skb = NULL;
3667                clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
3668        }
3669
3670        return NETDEV_TX_OK;
3671}
3672
3673/**
3674 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
3675 * @skb:    send buffer
3676 * @netdev: network interface device structure
3677 *
3678 * Returns NETDEV_TX_OK if sent, else an error code
3679 **/
3680netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3681{
3682        struct i40e_netdev_priv *np = netdev_priv(netdev);
3683        struct i40e_vsi *vsi = np->vsi;
3684        struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
3685
3686        /* hardware can't handle really short frames, hardware padding works
3687         * beyond this point
3688         */
3689        if (skb_put_padto(skb, I40E_MIN_TX_LEN))
3690                return NETDEV_TX_OK;
3691
3692        return i40e_xmit_frame_ring(skb, tx_ring);
3693}
3694
3695/**
3696 * i40e_xdp_xmit - Implements ndo_xdp_xmit
3697 * @dev: netdev
3698 * @xdp: XDP buffer
3699 *
3700 * Returns number of frames successfully sent. Frames that fail are
3701 * free'ed via XDP return API.
3702 *
3703 * For error cases, a negative errno code is returned and no-frames
3704 * are transmitted (caller must handle freeing frames).
3705 **/
3706int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
3707                  u32 flags)
3708{
3709        struct i40e_netdev_priv *np = netdev_priv(dev);
3710        unsigned int queue_index = smp_processor_id();
3711        struct i40e_vsi *vsi = np->vsi;
3712        struct i40e_pf *pf = vsi->back;
3713        struct i40e_ring *xdp_ring;
3714        int drops = 0;
3715        int i;
3716
3717        if (test_bit(__I40E_VSI_DOWN, vsi->state))
3718                return -ENETDOWN;
3719
3720        if (!i40e_enabled_xdp_vsi(vsi) || queue_index >= vsi->num_queue_pairs ||
3721            test_bit(__I40E_CONFIG_BUSY, pf->state))
3722                return -ENXIO;
3723
3724        if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
3725                return -EINVAL;
3726
3727        xdp_ring = vsi->xdp_rings[queue_index];
3728
3729        for (i = 0; i < n; i++) {
3730                struct xdp_frame *xdpf = frames[i];
3731                int err;
3732
3733                err = i40e_xmit_xdp_ring(xdpf, xdp_ring);
3734                if (err != I40E_XDP_TX) {
3735                        xdp_return_frame_rx_napi(xdpf);
3736                        drops++;
3737                }
3738        }
3739
3740        if (unlikely(flags & XDP_XMIT_FLUSH))
3741                i40e_xdp_ring_update_tail(xdp_ring);
3742
3743        return n - drops;
3744}
3745