linux/drivers/parisc/ccio-dma.c
<<
>>
Prefs
   1/*
   2** ccio-dma.c:
   3**      DMA management routines for first generation cache-coherent machines.
   4**      Program U2/Uturn in "Virtual Mode" and use the I/O MMU.
   5**
   6**      (c) Copyright 2000 Grant Grundler
   7**      (c) Copyright 2000 Ryan Bradetich
   8**      (c) Copyright 2000 Hewlett-Packard Company
   9**
  10** This program is free software; you can redistribute it and/or modify
  11** it under the terms of the GNU General Public License as published by
  12** the Free Software Foundation; either version 2 of the License, or
  13** (at your option) any later version.
  14**
  15**
  16**  "Real Mode" operation refers to U2/Uturn chip operation.
  17**  U2/Uturn were designed to perform coherency checks w/o using
  18**  the I/O MMU - basically what x86 does.
  19**
  20**  Philipp Rumpf has a "Real Mode" driver for PCX-W machines at:
  21**      CVSROOT=:pserver:anonymous@198.186.203.37:/cvsroot/linux-parisc
  22**      cvs -z3 co linux/arch/parisc/kernel/dma-rm.c
  23**
  24**  I've rewritten his code to work under TPG's tree. See ccio-rm-dma.c.
  25**
  26**  Drawbacks of using Real Mode are:
  27**      o outbound DMA is slower - U2 won't prefetch data (GSC+ XQL signal).
  28**      o Inbound DMA less efficient - U2 can't use DMA_FAST attribute.
  29**      o Ability to do scatter/gather in HW is lost.
  30**      o Doesn't work under PCX-U/U+ machines since they didn't follow
  31**        the coherency design originally worked out. Only PCX-W does.
  32*/
  33
  34#include <linux/types.h>
  35#include <linux/kernel.h>
  36#include <linux/init.h>
  37#include <linux/mm.h>
  38#include <linux/spinlock.h>
  39#include <linux/slab.h>
  40#include <linux/string.h>
  41#include <linux/pci.h>
  42#include <linux/reboot.h>
  43#include <linux/proc_fs.h>
  44#include <linux/seq_file.h>
  45#include <linux/scatterlist.h>
  46#include <linux/iommu-helper.h>
  47#include <linux/export.h>
  48
  49#include <asm/byteorder.h>
  50#include <asm/cache.h>          /* for L1_CACHE_BYTES */
  51#include <linux/uaccess.h>
  52#include <asm/page.h>
  53#include <asm/dma.h>
  54#include <asm/io.h>
  55#include <asm/hardware.h>       /* for register_module() */
  56#include <asm/parisc-device.h>
  57
  58/* 
  59** Choose "ccio" since that's what HP-UX calls it.
  60** Make it easier for folks to migrate from one to the other :^)
  61*/
  62#define MODULE_NAME "ccio"
  63
  64#undef DEBUG_CCIO_RES
  65#undef DEBUG_CCIO_RUN
  66#undef DEBUG_CCIO_INIT
  67#undef DEBUG_CCIO_RUN_SG
  68
  69#ifdef CONFIG_PROC_FS
  70/* depends on proc fs support. But costs CPU performance. */
  71#undef CCIO_COLLECT_STATS
  72#endif
  73
  74#include <asm/runway.h>         /* for proc_runway_root */
  75
  76#ifdef DEBUG_CCIO_INIT
  77#define DBG_INIT(x...)  printk(x)
  78#else
  79#define DBG_INIT(x...)
  80#endif
  81
  82#ifdef DEBUG_CCIO_RUN
  83#define DBG_RUN(x...)   printk(x)
  84#else
  85#define DBG_RUN(x...)
  86#endif
  87
  88#ifdef DEBUG_CCIO_RES
  89#define DBG_RES(x...)   printk(x)
  90#else
  91#define DBG_RES(x...)
  92#endif
  93
  94#ifdef DEBUG_CCIO_RUN_SG
  95#define DBG_RUN_SG(x...) printk(x)
  96#else
  97#define DBG_RUN_SG(x...)
  98#endif
  99
 100#define CCIO_INLINE     inline
 101#define WRITE_U32(value, addr) __raw_writel(value, addr)
 102#define READ_U32(addr) __raw_readl(addr)
 103
 104#define U2_IOA_RUNWAY 0x580
 105#define U2_BC_GSC     0x501
 106#define UTURN_IOA_RUNWAY 0x581
 107#define UTURN_BC_GSC     0x502
 108
 109#define IOA_NORMAL_MODE      0x00020080 /* IO_CONTROL to turn on CCIO        */
 110#define CMD_TLB_DIRECT_WRITE 35         /* IO_COMMAND for I/O TLB Writes     */
 111#define CMD_TLB_PURGE        33         /* IO_COMMAND to Purge I/O TLB entry */
 112
 113struct ioa_registers {
 114        /* Runway Supervisory Set */
 115        int32_t    unused1[12];
 116        uint32_t   io_command;             /* Offset 12 */
 117        uint32_t   io_status;              /* Offset 13 */
 118        uint32_t   io_control;             /* Offset 14 */
 119        int32_t    unused2[1];
 120
 121        /* Runway Auxiliary Register Set */
 122        uint32_t   io_err_resp;            /* Offset  0 */
 123        uint32_t   io_err_info;            /* Offset  1 */
 124        uint32_t   io_err_req;             /* Offset  2 */
 125        uint32_t   io_err_resp_hi;         /* Offset  3 */
 126        uint32_t   io_tlb_entry_m;         /* Offset  4 */
 127        uint32_t   io_tlb_entry_l;         /* Offset  5 */
 128        uint32_t   unused3[1];
 129        uint32_t   io_pdir_base;           /* Offset  7 */
 130        uint32_t   io_io_low_hv;           /* Offset  8 */
 131        uint32_t   io_io_high_hv;          /* Offset  9 */
 132        uint32_t   unused4[1];
 133        uint32_t   io_chain_id_mask;       /* Offset 11 */
 134        uint32_t   unused5[2];
 135        uint32_t   io_io_low;              /* Offset 14 */
 136        uint32_t   io_io_high;             /* Offset 15 */
 137};
 138
 139/*
 140** IOA Registers
 141** -------------
 142**
 143** Runway IO_CONTROL Register (+0x38)
 144** 
 145** The Runway IO_CONTROL register controls the forwarding of transactions.
 146**
 147** | 0  ...  13  |  14 15 | 16 ... 21 | 22 | 23 24 |  25 ... 31 |
 148** |    HV       |   TLB  |  reserved | HV | mode  |  reserved  |
 149**
 150** o mode field indicates the address translation of transactions
 151**   forwarded from Runway to GSC+:
 152**       Mode Name     Value        Definition
 153**       Off (default)   0          Opaque to matching addresses.
 154**       Include         1          Transparent for matching addresses.
 155**       Peek            3          Map matching addresses.
 156**
 157**       + "Off" mode: Runway transactions which match the I/O range
 158**         specified by the IO_IO_LOW/IO_IO_HIGH registers will be ignored.
 159**       + "Include" mode: all addresses within the I/O range specified
 160**         by the IO_IO_LOW and IO_IO_HIGH registers are transparently
 161**         forwarded. This is the I/O Adapter's normal operating mode.
 162**       + "Peek" mode: used during system configuration to initialize the
 163**         GSC+ bus. Runway Write_Shorts in the address range specified by
 164**         IO_IO_LOW and IO_IO_HIGH are forwarded through the I/O Adapter
 165**         *AND* the GSC+ address is remapped to the Broadcast Physical
 166**         Address space by setting the 14 high order address bits of the
 167**         32 bit GSC+ address to ones.
 168**
 169** o TLB field affects transactions which are forwarded from GSC+ to Runway.
 170**   "Real" mode is the poweron default.
 171** 
 172**   TLB Mode  Value  Description
 173**   Real        0    No TLB translation. Address is directly mapped and the
 174**                    virtual address is composed of selected physical bits.
 175**   Error       1    Software fills the TLB manually.
 176**   Normal      2    IOA fetches IO TLB misses from IO PDIR (in host memory).
 177**
 178**
 179** IO_IO_LOW_HV   +0x60 (HV dependent)
 180** IO_IO_HIGH_HV  +0x64 (HV dependent)
 181** IO_IO_LOW      +0x78 (Architected register)
 182** IO_IO_HIGH     +0x7c (Architected register)
 183**
 184** IO_IO_LOW and IO_IO_HIGH set the lower and upper bounds of the
 185** I/O Adapter address space, respectively.
 186**
 187** 0  ... 7 | 8 ... 15 |  16   ...   31 |
 188** 11111111 | 11111111 |      address   |
 189**
 190** Each LOW/HIGH pair describes a disjoint address space region.
 191** (2 per GSC+ port). Each incoming Runway transaction address is compared
 192** with both sets of LOW/HIGH registers. If the address is in the range
 193** greater than or equal to IO_IO_LOW and less than IO_IO_HIGH the transaction
 194** for forwarded to the respective GSC+ bus.
 195** Specify IO_IO_LOW equal to or greater than IO_IO_HIGH to avoid specifying
 196** an address space region.
 197**
 198** In order for a Runway address to reside within GSC+ extended address space:
 199**      Runway Address [0:7]    must identically compare to 8'b11111111
 200**      Runway Address [8:11]   must be equal to IO_IO_LOW(_HV)[16:19]
 201**      Runway Address [12:23]  must be greater than or equal to
 202**                 IO_IO_LOW(_HV)[20:31] and less than IO_IO_HIGH(_HV)[20:31].
 203**      Runway Address [24:39]  is not used in the comparison.
 204**
 205** When the Runway transaction is forwarded to GSC+, the GSC+ address is
 206** as follows:
 207**      GSC+ Address[0:3]       4'b1111
 208**      GSC+ Address[4:29]      Runway Address[12:37]
 209**      GSC+ Address[30:31]     2'b00
 210**
 211** All 4 Low/High registers must be initialized (by PDC) once the lower bus
 212** is interrogated and address space is defined. The operating system will
 213** modify the architectural IO_IO_LOW and IO_IO_HIGH registers following
 214** the PDC initialization.  However, the hardware version dependent IO_IO_LOW
 215** and IO_IO_HIGH registers should not be subsequently altered by the OS.
 216** 
 217** Writes to both sets of registers will take effect immediately, bypassing
 218** the queues, which ensures that subsequent Runway transactions are checked
 219** against the updated bounds values. However reads are queued, introducing
 220** the possibility of a read being bypassed by a subsequent write to the same
 221** register. This sequence can be avoided by having software wait for read
 222** returns before issuing subsequent writes.
 223*/
 224
 225struct ioc {
 226        struct ioa_registers __iomem *ioc_regs;  /* I/O MMU base address */
 227        u8  *res_map;                   /* resource map, bit == pdir entry */
 228        u64 *pdir_base;                 /* physical base address */
 229        u32 pdir_size;                  /* bytes, function of IOV Space size */
 230        u32 res_hint;                   /* next available IOVP - 
 231                                           circular search */
 232        u32 res_size;                   /* size of resource map in bytes */
 233        spinlock_t res_lock;
 234
 235#ifdef CCIO_COLLECT_STATS
 236#define CCIO_SEARCH_SAMPLE 0x100
 237        unsigned long avg_search[CCIO_SEARCH_SAMPLE];
 238        unsigned long avg_idx;            /* current index into avg_search */
 239        unsigned long used_pages;
 240        unsigned long msingle_calls;
 241        unsigned long msingle_pages;
 242        unsigned long msg_calls;
 243        unsigned long msg_pages;
 244        unsigned long usingle_calls;
 245        unsigned long usingle_pages;
 246        unsigned long usg_calls;
 247        unsigned long usg_pages;
 248#endif
 249        unsigned short cujo20_bug;
 250
 251        /* STUFF We don't need in performance path */
 252        u32 chainid_shift;              /* specify bit location of chain_id */
 253        struct ioc *next;               /* Linked list of discovered iocs */
 254        const char *name;               /* device name from firmware */
 255        unsigned int hw_path;           /* the hardware path this ioc is associatd with */
 256        struct pci_dev *fake_pci_dev;   /* the fake pci_dev for non-pci devs */
 257        struct resource mmio_region[2]; /* The "routed" MMIO regions */
 258};
 259
 260static struct ioc *ioc_list;
 261static int ioc_count;
 262
 263/**************************************************************
 264*
 265*   I/O Pdir Resource Management
 266*
 267*   Bits set in the resource map are in use.
 268*   Each bit can represent a number of pages.
 269*   LSbs represent lower addresses (IOVA's).
 270*
 271*   This was was copied from sba_iommu.c. Don't try to unify
 272*   the two resource managers unless a way to have different
 273*   allocation policies is also adjusted. We'd like to avoid
 274*   I/O TLB thrashing by having resource allocation policy
 275*   match the I/O TLB replacement policy.
 276*
 277***************************************************************/
 278#define IOVP_SIZE PAGE_SIZE
 279#define IOVP_SHIFT PAGE_SHIFT
 280#define IOVP_MASK PAGE_MASK
 281
 282/* Convert from IOVP to IOVA and vice versa. */
 283#define CCIO_IOVA(iovp,offset) ((iovp) | (offset))
 284#define CCIO_IOVP(iova) ((iova) & IOVP_MASK)
 285
 286#define PDIR_INDEX(iovp)    ((iovp)>>IOVP_SHIFT)
 287#define MKIOVP(pdir_idx)    ((long)(pdir_idx) << IOVP_SHIFT)
 288#define MKIOVA(iovp,offset) (dma_addr_t)((long)iovp | (long)offset)
 289
 290/*
 291** Don't worry about the 150% average search length on a miss.
 292** If the search wraps around, and passes the res_hint, it will
 293** cause the kernel to panic anyhow.
 294*/
 295#define CCIO_SEARCH_LOOP(ioc, res_idx, mask, size)  \
 296       for(; res_ptr < res_end; ++res_ptr) { \
 297                int ret;\
 298                unsigned int idx;\
 299                idx = (unsigned int)((unsigned long)res_ptr - (unsigned long)ioc->res_map); \
 300                ret = iommu_is_span_boundary(idx << 3, pages_needed, 0, boundary_size);\
 301                if ((0 == (*res_ptr & mask)) && !ret) { \
 302                        *res_ptr |= mask; \
 303                        res_idx = idx;\
 304                        ioc->res_hint = res_idx + (size >> 3); \
 305                        goto resource_found; \
 306                } \
 307        }
 308
 309#define CCIO_FIND_FREE_MAPPING(ioa, res_idx, mask, size) \
 310       u##size *res_ptr = (u##size *)&((ioc)->res_map[ioa->res_hint & ~((size >> 3) - 1)]); \
 311       u##size *res_end = (u##size *)&(ioc)->res_map[ioa->res_size]; \
 312       CCIO_SEARCH_LOOP(ioc, res_idx, mask, size); \
 313       res_ptr = (u##size *)&(ioc)->res_map[0]; \
 314       CCIO_SEARCH_LOOP(ioa, res_idx, mask, size);
 315
 316/*
 317** Find available bit in this ioa's resource map.
 318** Use a "circular" search:
 319**   o Most IOVA's are "temporary" - avg search time should be small.
 320** o keep a history of what happened for debugging
 321** o KISS.
 322**
 323** Perf optimizations:
 324** o search for log2(size) bits at a time.
 325** o search for available resource bits using byte/word/whatever.
 326** o use different search for "large" (eg > 4 pages) or "very large"
 327**   (eg > 16 pages) mappings.
 328*/
 329
 330/**
 331 * ccio_alloc_range - Allocate pages in the ioc's resource map.
 332 * @ioc: The I/O Controller.
 333 * @pages_needed: The requested number of pages to be mapped into the
 334 * I/O Pdir...
 335 *
 336 * This function searches the resource map of the ioc to locate a range
 337 * of available pages for the requested size.
 338 */
 339static int
 340ccio_alloc_range(struct ioc *ioc, struct device *dev, size_t size)
 341{
 342        unsigned int pages_needed = size >> IOVP_SHIFT;
 343        unsigned int res_idx;
 344        unsigned long boundary_size;
 345#ifdef CCIO_COLLECT_STATS
 346        unsigned long cr_start = mfctl(16);
 347#endif
 348        
 349        BUG_ON(pages_needed == 0);
 350        BUG_ON((pages_needed * IOVP_SIZE) > DMA_CHUNK_SIZE);
 351     
 352        DBG_RES("%s() size: %d pages_needed %d\n", 
 353                __func__, size, pages_needed);
 354
 355        /*
 356        ** "seek and ye shall find"...praying never hurts either...
 357        ** ggg sacrifices another 710 to the computer gods.
 358        */
 359
 360        boundary_size = ALIGN((unsigned long long)dma_get_seg_boundary(dev) + 1,
 361                              1ULL << IOVP_SHIFT) >> IOVP_SHIFT;
 362
 363        if (pages_needed <= 8) {
 364                /*
 365                 * LAN traffic will not thrash the TLB IFF the same NIC
 366                 * uses 8 adjacent pages to map separate payload data.
 367                 * ie the same byte in the resource bit map.
 368                 */
 369#if 0
 370                /* FIXME: bit search should shift it's way through
 371                 * an unsigned long - not byte at a time. As it is now,
 372                 * we effectively allocate this byte to this mapping.
 373                 */
 374                unsigned long mask = ~(~0UL >> pages_needed);
 375                CCIO_FIND_FREE_MAPPING(ioc, res_idx, mask, 8);
 376#else
 377                CCIO_FIND_FREE_MAPPING(ioc, res_idx, 0xff, 8);
 378#endif
 379        } else if (pages_needed <= 16) {
 380                CCIO_FIND_FREE_MAPPING(ioc, res_idx, 0xffff, 16);
 381        } else if (pages_needed <= 32) {
 382                CCIO_FIND_FREE_MAPPING(ioc, res_idx, ~(unsigned int)0, 32);
 383#ifdef __LP64__
 384        } else if (pages_needed <= 64) {
 385                CCIO_FIND_FREE_MAPPING(ioc, res_idx, ~0UL, 64);
 386#endif
 387        } else {
 388                panic("%s: %s() Too many pages to map. pages_needed: %u\n",
 389                       __FILE__,  __func__, pages_needed);
 390        }
 391
 392        panic("%s: %s() I/O MMU is out of mapping resources.\n", __FILE__,
 393              __func__);
 394        
 395resource_found:
 396        
 397        DBG_RES("%s() res_idx %d res_hint: %d\n",
 398                __func__, res_idx, ioc->res_hint);
 399
 400#ifdef CCIO_COLLECT_STATS
 401        {
 402                unsigned long cr_end = mfctl(16);
 403                unsigned long tmp = cr_end - cr_start;
 404                /* check for roll over */
 405                cr_start = (cr_end < cr_start) ?  -(tmp) : (tmp);
 406        }
 407        ioc->avg_search[ioc->avg_idx++] = cr_start;
 408        ioc->avg_idx &= CCIO_SEARCH_SAMPLE - 1;
 409        ioc->used_pages += pages_needed;
 410#endif
 411        /* 
 412        ** return the bit address.
 413        */
 414        return res_idx << 3;
 415}
 416
 417#define CCIO_FREE_MAPPINGS(ioc, res_idx, mask, size) \
 418        u##size *res_ptr = (u##size *)&((ioc)->res_map[res_idx]); \
 419        BUG_ON((*res_ptr & mask) != mask); \
 420        *res_ptr &= ~(mask);
 421
 422/**
 423 * ccio_free_range - Free pages from the ioc's resource map.
 424 * @ioc: The I/O Controller.
 425 * @iova: The I/O Virtual Address.
 426 * @pages_mapped: The requested number of pages to be freed from the
 427 * I/O Pdir.
 428 *
 429 * This function frees the resouces allocated for the iova.
 430 */
 431static void
 432ccio_free_range(struct ioc *ioc, dma_addr_t iova, unsigned long pages_mapped)
 433{
 434        unsigned long iovp = CCIO_IOVP(iova);
 435        unsigned int res_idx = PDIR_INDEX(iovp) >> 3;
 436
 437        BUG_ON(pages_mapped == 0);
 438        BUG_ON((pages_mapped * IOVP_SIZE) > DMA_CHUNK_SIZE);
 439        BUG_ON(pages_mapped > BITS_PER_LONG);
 440
 441        DBG_RES("%s():  res_idx: %d pages_mapped %d\n", 
 442                __func__, res_idx, pages_mapped);
 443
 444#ifdef CCIO_COLLECT_STATS
 445        ioc->used_pages -= pages_mapped;
 446#endif
 447
 448        if(pages_mapped <= 8) {
 449#if 0
 450                /* see matching comments in alloc_range */
 451                unsigned long mask = ~(~0UL >> pages_mapped);
 452                CCIO_FREE_MAPPINGS(ioc, res_idx, mask, 8);
 453#else
 454                CCIO_FREE_MAPPINGS(ioc, res_idx, 0xffUL, 8);
 455#endif
 456        } else if(pages_mapped <= 16) {
 457                CCIO_FREE_MAPPINGS(ioc, res_idx, 0xffffUL, 16);
 458        } else if(pages_mapped <= 32) {
 459                CCIO_FREE_MAPPINGS(ioc, res_idx, ~(unsigned int)0, 32);
 460#ifdef __LP64__
 461        } else if(pages_mapped <= 64) {
 462                CCIO_FREE_MAPPINGS(ioc, res_idx, ~0UL, 64);
 463#endif
 464        } else {
 465                panic("%s:%s() Too many pages to unmap.\n", __FILE__,
 466                      __func__);
 467        }
 468}
 469
 470/****************************************************************
 471**
 472**          CCIO dma_ops support routines
 473**
 474*****************************************************************/
 475
 476typedef unsigned long space_t;
 477#define KERNEL_SPACE 0
 478
 479/*
 480** DMA "Page Type" and Hints 
 481** o if SAFE_DMA isn't set, mapping is for FAST_DMA. SAFE_DMA should be
 482**   set for subcacheline DMA transfers since we don't want to damage the
 483**   other part of a cacheline.
 484** o SAFE_DMA must be set for "memory" allocated via pci_alloc_consistent().
 485**   This bit tells U2 to do R/M/W for partial cachelines. "Streaming"
 486**   data can avoid this if the mapping covers full cache lines.
 487** o STOP_MOST is needed for atomicity across cachelines.
 488**   Apparently only "some EISA devices" need this.
 489**   Using CONFIG_ISA is hack. Only the IOA with EISA under it needs
 490**   to use this hint iff the EISA devices needs this feature.
 491**   According to the U2 ERS, STOP_MOST enabled pages hurt performance.
 492** o PREFETCH should *not* be set for cases like Multiple PCI devices
 493**   behind GSCtoPCI (dino) bus converter. Only one cacheline per GSC
 494**   device can be fetched and multiply DMA streams will thrash the
 495**   prefetch buffer and burn memory bandwidth. See 6.7.3 "Prefetch Rules
 496**   and Invalidation of Prefetch Entries".
 497**
 498** FIXME: the default hints need to be per GSC device - not global.
 499** 
 500** HP-UX dorks: linux device driver programming model is totally different
 501**    than HP-UX's. HP-UX always sets HINT_PREFETCH since it's drivers
 502**    do special things to work on non-coherent platforms...linux has to
 503**    be much more careful with this.
 504*/
 505#define IOPDIR_VALID    0x01UL
 506#define HINT_SAFE_DMA   0x02UL  /* used for pci_alloc_consistent() pages */
 507#ifdef CONFIG_EISA
 508#define HINT_STOP_MOST  0x04UL  /* LSL support */
 509#else
 510#define HINT_STOP_MOST  0x00UL  /* only needed for "some EISA devices" */
 511#endif
 512#define HINT_UDPATE_ENB 0x08UL  /* not used/supported by U2 */
 513#define HINT_PREFETCH   0x10UL  /* for outbound pages which are not SAFE */
 514
 515
 516/*
 517** Use direction (ie PCI_DMA_TODEVICE) to pick hint.
 518** ccio_alloc_consistent() depends on this to get SAFE_DMA
 519** when it passes in BIDIRECTIONAL flag.
 520*/
 521static u32 hint_lookup[] = {
 522        [PCI_DMA_BIDIRECTIONAL] = HINT_STOP_MOST | HINT_SAFE_DMA | IOPDIR_VALID,
 523        [PCI_DMA_TODEVICE]      = HINT_STOP_MOST | HINT_PREFETCH | IOPDIR_VALID,
 524        [PCI_DMA_FROMDEVICE]    = HINT_STOP_MOST | IOPDIR_VALID,
 525};
 526
 527/**
 528 * ccio_io_pdir_entry - Initialize an I/O Pdir.
 529 * @pdir_ptr: A pointer into I/O Pdir.
 530 * @sid: The Space Identifier.
 531 * @vba: The virtual address.
 532 * @hints: The DMA Hint.
 533 *
 534 * Given a virtual address (vba, arg2) and space id, (sid, arg1),
 535 * load the I/O PDIR entry pointed to by pdir_ptr (arg0). Each IO Pdir
 536 * entry consists of 8 bytes as shown below (MSB == bit 0):
 537 *
 538 *
 539 * WORD 0:
 540 * +------+----------------+-----------------------------------------------+
 541 * | Phys | Virtual Index  |               Phys                            |
 542 * | 0:3  |     0:11       |               4:19                            |
 543 * |4 bits|   12 bits      |              16 bits                          |
 544 * +------+----------------+-----------------------------------------------+
 545 * WORD 1:
 546 * +-----------------------+-----------------------------------------------+
 547 * |      Phys    |  Rsvd  | Prefetch |Update |Rsvd  |Lock  |Safe  |Valid  |
 548 * |     20:39    |        | Enable   |Enable |      |Enable|DMA   |       |
 549 * |    20 bits   | 5 bits | 1 bit    |1 bit  |2 bits|1 bit |1 bit |1 bit  |
 550 * +-----------------------+-----------------------------------------------+
 551 *
 552 * The virtual index field is filled with the results of the LCI
 553 * (Load Coherence Index) instruction.  The 8 bits used for the virtual
 554 * index are bits 12:19 of the value returned by LCI.
 555 */ 
 556static void CCIO_INLINE
 557ccio_io_pdir_entry(u64 *pdir_ptr, space_t sid, unsigned long vba,
 558                   unsigned long hints)
 559{
 560        register unsigned long pa;
 561        register unsigned long ci; /* coherent index */
 562
 563        /* We currently only support kernel addresses */
 564        BUG_ON(sid != KERNEL_SPACE);
 565
 566        mtsp(sid,1);
 567
 568        /*
 569        ** WORD 1 - low order word
 570        ** "hints" parm includes the VALID bit!
 571        ** "dep" clobbers the physical address offset bits as well.
 572        */
 573        pa = virt_to_phys(vba);
 574        asm volatile("depw  %1,31,12,%0" : "+r" (pa) : "r" (hints));
 575        ((u32 *)pdir_ptr)[1] = (u32) pa;
 576
 577        /*
 578        ** WORD 0 - high order word
 579        */
 580
 581#ifdef __LP64__
 582        /*
 583        ** get bits 12:15 of physical address
 584        ** shift bits 16:31 of physical address
 585        ** and deposit them
 586        */
 587        asm volatile ("extrd,u %1,15,4,%0" : "=r" (ci) : "r" (pa));
 588        asm volatile ("extrd,u %1,31,16,%0" : "+r" (pa) : "r" (pa));
 589        asm volatile ("depd  %1,35,4,%0" : "+r" (pa) : "r" (ci));
 590#else
 591        pa = 0;
 592#endif
 593        /*
 594        ** get CPU coherency index bits
 595        ** Grab virtual index [0:11]
 596        ** Deposit virt_idx bits into I/O PDIR word
 597        */
 598        asm volatile ("lci %%r0(%%sr1, %1), %0" : "=r" (ci) : "r" (vba));
 599        asm volatile ("extru %1,19,12,%0" : "+r" (ci) : "r" (ci));
 600        asm volatile ("depw  %1,15,12,%0" : "+r" (pa) : "r" (ci));
 601
 602        ((u32 *)pdir_ptr)[0] = (u32) pa;
 603
 604
 605        /* FIXME: PCX_W platforms don't need FDC/SYNC. (eg C360)
 606        **        PCX-U/U+ do. (eg C200/C240)
 607        **        PCX-T'? Don't know. (eg C110 or similar K-class)
 608        **
 609        ** See PDC_MODEL/option 0/SW_CAP word for "Non-coherent IO-PDIR bit".
 610        **
 611        ** "Since PCX-U employs an offset hash that is incompatible with
 612        ** the real mode coherence index generation of U2, the PDIR entry
 613        ** must be flushed to memory to retain coherence."
 614        */
 615        asm_io_fdc(pdir_ptr);
 616        asm_io_sync();
 617}
 618
 619/**
 620 * ccio_clear_io_tlb - Remove stale entries from the I/O TLB.
 621 * @ioc: The I/O Controller.
 622 * @iovp: The I/O Virtual Page.
 623 * @byte_cnt: The requested number of bytes to be freed from the I/O Pdir.
 624 *
 625 * Purge invalid I/O PDIR entries from the I/O TLB.
 626 *
 627 * FIXME: Can we change the byte_cnt to pages_mapped?
 628 */
 629static CCIO_INLINE void
 630ccio_clear_io_tlb(struct ioc *ioc, dma_addr_t iovp, size_t byte_cnt)
 631{
 632        u32 chain_size = 1 << ioc->chainid_shift;
 633
 634        iovp &= IOVP_MASK;      /* clear offset bits, just want pagenum */
 635        byte_cnt += chain_size;
 636
 637        while(byte_cnt > chain_size) {
 638                WRITE_U32(CMD_TLB_PURGE | iovp, &ioc->ioc_regs->io_command);
 639                iovp += chain_size;
 640                byte_cnt -= chain_size;
 641        }
 642}
 643
 644/**
 645 * ccio_mark_invalid - Mark the I/O Pdir entries invalid.
 646 * @ioc: The I/O Controller.
 647 * @iova: The I/O Virtual Address.
 648 * @byte_cnt: The requested number of bytes to be freed from the I/O Pdir.
 649 *
 650 * Mark the I/O Pdir entries invalid and blow away the corresponding I/O
 651 * TLB entries.
 652 *
 653 * FIXME: at some threshold it might be "cheaper" to just blow
 654 *        away the entire I/O TLB instead of individual entries.
 655 *
 656 * FIXME: Uturn has 256 TLB entries. We don't need to purge every
 657 *        PDIR entry - just once for each possible TLB entry.
 658 *        (We do need to maker I/O PDIR entries invalid regardless).
 659 *
 660 * FIXME: Can we change byte_cnt to pages_mapped?
 661 */ 
 662static CCIO_INLINE void
 663ccio_mark_invalid(struct ioc *ioc, dma_addr_t iova, size_t byte_cnt)
 664{
 665        u32 iovp = (u32)CCIO_IOVP(iova);
 666        size_t saved_byte_cnt;
 667
 668        /* round up to nearest page size */
 669        saved_byte_cnt = byte_cnt = ALIGN(byte_cnt, IOVP_SIZE);
 670
 671        while(byte_cnt > 0) {
 672                /* invalidate one page at a time */
 673                unsigned int idx = PDIR_INDEX(iovp);
 674                char *pdir_ptr = (char *) &(ioc->pdir_base[idx]);
 675
 676                BUG_ON(idx >= (ioc->pdir_size / sizeof(u64)));
 677                pdir_ptr[7] = 0;        /* clear only VALID bit */ 
 678                /*
 679                ** FIXME: PCX_W platforms don't need FDC/SYNC. (eg C360)
 680                **   PCX-U/U+ do. (eg C200/C240)
 681                ** See PDC_MODEL/option 0/SW_CAP for "Non-coherent IO-PDIR bit".
 682                */
 683                asm_io_fdc(pdir_ptr);
 684
 685                iovp     += IOVP_SIZE;
 686                byte_cnt -= IOVP_SIZE;
 687        }
 688
 689        asm_io_sync();
 690        ccio_clear_io_tlb(ioc, CCIO_IOVP(iova), saved_byte_cnt);
 691}
 692
 693/****************************************************************
 694**
 695**          CCIO dma_ops
 696**
 697*****************************************************************/
 698
 699/**
 700 * ccio_dma_supported - Verify the IOMMU supports the DMA address range.
 701 * @dev: The PCI device.
 702 * @mask: A bit mask describing the DMA address range of the device.
 703 */
 704static int 
 705ccio_dma_supported(struct device *dev, u64 mask)
 706{
 707        if(dev == NULL) {
 708                printk(KERN_ERR MODULE_NAME ": EISA/ISA/et al not supported\n");
 709                BUG();
 710                return 0;
 711        }
 712
 713        /* only support 32-bit devices (ie PCI/GSC) */
 714        return (int)(mask == 0xffffffffUL);
 715}
 716
 717/**
 718 * ccio_map_single - Map an address range into the IOMMU.
 719 * @dev: The PCI device.
 720 * @addr: The start address of the DMA region.
 721 * @size: The length of the DMA region.
 722 * @direction: The direction of the DMA transaction (to/from device).
 723 *
 724 * This function implements the pci_map_single function.
 725 */
 726static dma_addr_t 
 727ccio_map_single(struct device *dev, void *addr, size_t size,
 728                enum dma_data_direction direction)
 729{
 730        int idx;
 731        struct ioc *ioc;
 732        unsigned long flags;
 733        dma_addr_t iovp;
 734        dma_addr_t offset;
 735        u64 *pdir_start;
 736        unsigned long hint = hint_lookup[(int)direction];
 737
 738        BUG_ON(!dev);
 739        ioc = GET_IOC(dev);
 740        if (!ioc)
 741                return DMA_MAPPING_ERROR;
 742
 743        BUG_ON(size <= 0);
 744
 745        /* save offset bits */
 746        offset = ((unsigned long) addr) & ~IOVP_MASK;
 747
 748        /* round up to nearest IOVP_SIZE */
 749        size = ALIGN(size + offset, IOVP_SIZE);
 750        spin_lock_irqsave(&ioc->res_lock, flags);
 751
 752#ifdef CCIO_COLLECT_STATS
 753        ioc->msingle_calls++;
 754        ioc->msingle_pages += size >> IOVP_SHIFT;
 755#endif
 756
 757        idx = ccio_alloc_range(ioc, dev, size);
 758        iovp = (dma_addr_t)MKIOVP(idx);
 759
 760        pdir_start = &(ioc->pdir_base[idx]);
 761
 762        DBG_RUN("%s() 0x%p -> 0x%lx size: %0x%x\n",
 763                __func__, addr, (long)iovp | offset, size);
 764
 765        /* If not cacheline aligned, force SAFE_DMA on the whole mess */
 766        if((size % L1_CACHE_BYTES) || ((unsigned long)addr % L1_CACHE_BYTES))
 767                hint |= HINT_SAFE_DMA;
 768
 769        while(size > 0) {
 770                ccio_io_pdir_entry(pdir_start, KERNEL_SPACE, (unsigned long)addr, hint);
 771
 772                DBG_RUN(" pdir %p %08x%08x\n",
 773                        pdir_start,
 774                        (u32) (((u32 *) pdir_start)[0]),
 775                        (u32) (((u32 *) pdir_start)[1]));
 776                ++pdir_start;
 777                addr += IOVP_SIZE;
 778                size -= IOVP_SIZE;
 779        }
 780
 781        spin_unlock_irqrestore(&ioc->res_lock, flags);
 782
 783        /* form complete address */
 784        return CCIO_IOVA(iovp, offset);
 785}
 786
 787
 788static dma_addr_t
 789ccio_map_page(struct device *dev, struct page *page, unsigned long offset,
 790                size_t size, enum dma_data_direction direction,
 791                unsigned long attrs)
 792{
 793        return ccio_map_single(dev, page_address(page) + offset, size,
 794                        direction);
 795}
 796
 797
 798/**
 799 * ccio_unmap_page - Unmap an address range from the IOMMU.
 800 * @dev: The PCI device.
 801 * @addr: The start address of the DMA region.
 802 * @size: The length of the DMA region.
 803 * @direction: The direction of the DMA transaction (to/from device).
 804 */
 805static void 
 806ccio_unmap_page(struct device *dev, dma_addr_t iova, size_t size,
 807                enum dma_data_direction direction, unsigned long attrs)
 808{
 809        struct ioc *ioc;
 810        unsigned long flags; 
 811        dma_addr_t offset = iova & ~IOVP_MASK;
 812        
 813        BUG_ON(!dev);
 814        ioc = GET_IOC(dev);
 815        if (!ioc) {
 816                WARN_ON(!ioc);
 817                return;
 818        }
 819
 820        DBG_RUN("%s() iovp 0x%lx/%x\n",
 821                __func__, (long)iova, size);
 822
 823        iova ^= offset;        /* clear offset bits */
 824        size += offset;
 825        size = ALIGN(size, IOVP_SIZE);
 826
 827        spin_lock_irqsave(&ioc->res_lock, flags);
 828
 829#ifdef CCIO_COLLECT_STATS
 830        ioc->usingle_calls++;
 831        ioc->usingle_pages += size >> IOVP_SHIFT;
 832#endif
 833
 834        ccio_mark_invalid(ioc, iova, size);
 835        ccio_free_range(ioc, iova, (size >> IOVP_SHIFT));
 836        spin_unlock_irqrestore(&ioc->res_lock, flags);
 837}
 838
 839/**
 840 * ccio_alloc - Allocate a consistent DMA mapping.
 841 * @dev: The PCI device.
 842 * @size: The length of the DMA region.
 843 * @dma_handle: The DMA address handed back to the device (not the cpu).
 844 *
 845 * This function implements the pci_alloc_consistent function.
 846 */
 847static void * 
 848ccio_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t flag,
 849                unsigned long attrs)
 850{
 851      void *ret;
 852#if 0
 853/* GRANT Need to establish hierarchy for non-PCI devs as well
 854** and then provide matching gsc_map_xxx() functions for them as well.
 855*/
 856        if(!hwdev) {
 857                /* only support PCI */
 858                *dma_handle = 0;
 859                return 0;
 860        }
 861#endif
 862        ret = (void *) __get_free_pages(flag, get_order(size));
 863
 864        if (ret) {
 865                memset(ret, 0, size);
 866                *dma_handle = ccio_map_single(dev, ret, size, PCI_DMA_BIDIRECTIONAL);
 867        }
 868
 869        return ret;
 870}
 871
 872/**
 873 * ccio_free - Free a consistent DMA mapping.
 874 * @dev: The PCI device.
 875 * @size: The length of the DMA region.
 876 * @cpu_addr: The cpu address returned from the ccio_alloc_consistent.
 877 * @dma_handle: The device address returned from the ccio_alloc_consistent.
 878 *
 879 * This function implements the pci_free_consistent function.
 880 */
 881static void 
 882ccio_free(struct device *dev, size_t size, void *cpu_addr,
 883                dma_addr_t dma_handle, unsigned long attrs)
 884{
 885        ccio_unmap_page(dev, dma_handle, size, 0, 0);
 886        free_pages((unsigned long)cpu_addr, get_order(size));
 887}
 888
 889/*
 890** Since 0 is a valid pdir_base index value, can't use that
 891** to determine if a value is valid or not. Use a flag to indicate
 892** the SG list entry contains a valid pdir index.
 893*/
 894#define PIDE_FLAG 0x80000000UL
 895
 896#ifdef CCIO_COLLECT_STATS
 897#define IOMMU_MAP_STATS
 898#endif
 899#include "iommu-helpers.h"
 900
 901/**
 902 * ccio_map_sg - Map the scatter/gather list into the IOMMU.
 903 * @dev: The PCI device.
 904 * @sglist: The scatter/gather list to be mapped in the IOMMU.
 905 * @nents: The number of entries in the scatter/gather list.
 906 * @direction: The direction of the DMA transaction (to/from device).
 907 *
 908 * This function implements the pci_map_sg function.
 909 */
 910static int
 911ccio_map_sg(struct device *dev, struct scatterlist *sglist, int nents, 
 912            enum dma_data_direction direction, unsigned long attrs)
 913{
 914        struct ioc *ioc;
 915        int coalesced, filled = 0;
 916        unsigned long flags;
 917        unsigned long hint = hint_lookup[(int)direction];
 918        unsigned long prev_len = 0, current_len = 0;
 919        int i;
 920        
 921        BUG_ON(!dev);
 922        ioc = GET_IOC(dev);
 923        if (!ioc)
 924                return 0;
 925        
 926        DBG_RUN_SG("%s() START %d entries\n", __func__, nents);
 927
 928        /* Fast path single entry scatterlists. */
 929        if (nents == 1) {
 930                sg_dma_address(sglist) = ccio_map_single(dev,
 931                                sg_virt(sglist), sglist->length,
 932                                direction);
 933                sg_dma_len(sglist) = sglist->length;
 934                return 1;
 935        }
 936
 937        for(i = 0; i < nents; i++)
 938                prev_len += sglist[i].length;
 939        
 940        spin_lock_irqsave(&ioc->res_lock, flags);
 941
 942#ifdef CCIO_COLLECT_STATS
 943        ioc->msg_calls++;
 944#endif
 945
 946        /*
 947        ** First coalesce the chunks and allocate I/O pdir space
 948        **
 949        ** If this is one DMA stream, we can properly map using the
 950        ** correct virtual address associated with each DMA page.
 951        ** w/o this association, we wouldn't have coherent DMA!
 952        ** Access to the virtual address is what forces a two pass algorithm.
 953        */
 954        coalesced = iommu_coalesce_chunks(ioc, dev, sglist, nents, ccio_alloc_range);
 955
 956        /*
 957        ** Program the I/O Pdir
 958        **
 959        ** map the virtual addresses to the I/O Pdir
 960        ** o dma_address will contain the pdir index
 961        ** o dma_len will contain the number of bytes to map 
 962        ** o page/offset contain the virtual address.
 963        */
 964        filled = iommu_fill_pdir(ioc, sglist, nents, hint, ccio_io_pdir_entry);
 965
 966        spin_unlock_irqrestore(&ioc->res_lock, flags);
 967
 968        BUG_ON(coalesced != filled);
 969
 970        DBG_RUN_SG("%s() DONE %d mappings\n", __func__, filled);
 971
 972        for (i = 0; i < filled; i++)
 973                current_len += sg_dma_len(sglist + i);
 974
 975        BUG_ON(current_len != prev_len);
 976
 977        return filled;
 978}
 979
 980/**
 981 * ccio_unmap_sg - Unmap the scatter/gather list from the IOMMU.
 982 * @dev: The PCI device.
 983 * @sglist: The scatter/gather list to be unmapped from the IOMMU.
 984 * @nents: The number of entries in the scatter/gather list.
 985 * @direction: The direction of the DMA transaction (to/from device).
 986 *
 987 * This function implements the pci_unmap_sg function.
 988 */
 989static void 
 990ccio_unmap_sg(struct device *dev, struct scatterlist *sglist, int nents, 
 991              enum dma_data_direction direction, unsigned long attrs)
 992{
 993        struct ioc *ioc;
 994
 995        BUG_ON(!dev);
 996        ioc = GET_IOC(dev);
 997        if (!ioc) {
 998                WARN_ON(!ioc);
 999                return;
1000        }
1001
1002        DBG_RUN_SG("%s() START %d entries, %p,%x\n",
1003                __func__, nents, sg_virt(sglist), sglist->length);
1004
1005#ifdef CCIO_COLLECT_STATS
1006        ioc->usg_calls++;
1007#endif
1008
1009        while(sg_dma_len(sglist) && nents--) {
1010
1011#ifdef CCIO_COLLECT_STATS
1012                ioc->usg_pages += sg_dma_len(sglist) >> PAGE_SHIFT;
1013#endif
1014                ccio_unmap_page(dev, sg_dma_address(sglist),
1015                                  sg_dma_len(sglist), direction, 0);
1016                ++sglist;
1017        }
1018
1019        DBG_RUN_SG("%s() DONE (nents %d)\n", __func__, nents);
1020}
1021
1022static const struct dma_map_ops ccio_ops = {
1023        .dma_supported =        ccio_dma_supported,
1024        .alloc =                ccio_alloc,
1025        .free =                 ccio_free,
1026        .map_page =             ccio_map_page,
1027        .unmap_page =           ccio_unmap_page,
1028        .map_sg =               ccio_map_sg,
1029        .unmap_sg =             ccio_unmap_sg,
1030};
1031
1032#ifdef CONFIG_PROC_FS
1033static int ccio_proc_info(struct seq_file *m, void *p)
1034{
1035        struct ioc *ioc = ioc_list;
1036
1037        while (ioc != NULL) {
1038                unsigned int total_pages = ioc->res_size << 3;
1039#ifdef CCIO_COLLECT_STATS
1040                unsigned long avg = 0, min, max;
1041                int j;
1042#endif
1043
1044                seq_printf(m, "%s\n", ioc->name);
1045                
1046                seq_printf(m, "Cujo 2.0 bug    : %s\n",
1047                           (ioc->cujo20_bug ? "yes" : "no"));
1048                
1049                seq_printf(m, "IO PDIR size    : %d bytes (%d entries)\n",
1050                           total_pages * 8, total_pages);
1051
1052#ifdef CCIO_COLLECT_STATS
1053                seq_printf(m, "IO PDIR entries : %ld free  %ld used (%d%%)\n",
1054                           total_pages - ioc->used_pages, ioc->used_pages,
1055                           (int)(ioc->used_pages * 100 / total_pages));
1056#endif
1057
1058                seq_printf(m, "Resource bitmap : %d bytes (%d pages)\n",
1059                           ioc->res_size, total_pages);
1060
1061#ifdef CCIO_COLLECT_STATS
1062                min = max = ioc->avg_search[0];
1063                for(j = 0; j < CCIO_SEARCH_SAMPLE; ++j) {
1064                        avg += ioc->avg_search[j];
1065                        if(ioc->avg_search[j] > max) 
1066                                max = ioc->avg_search[j];
1067                        if(ioc->avg_search[j] < min) 
1068                                min = ioc->avg_search[j];
1069                }
1070                avg /= CCIO_SEARCH_SAMPLE;
1071                seq_printf(m, "  Bitmap search : %ld/%ld/%ld (min/avg/max CPU Cycles)\n",
1072                           min, avg, max);
1073
1074                seq_printf(m, "pci_map_single(): %8ld calls  %8ld pages (avg %d/1000)\n",
1075                           ioc->msingle_calls, ioc->msingle_pages,
1076                           (int)((ioc->msingle_pages * 1000)/ioc->msingle_calls));
1077
1078                /* KLUGE - unmap_sg calls unmap_page for each mapped page */
1079                min = ioc->usingle_calls - ioc->usg_calls;
1080                max = ioc->usingle_pages - ioc->usg_pages;
1081                seq_printf(m, "pci_unmap_single: %8ld calls  %8ld pages (avg %d/1000)\n",
1082                           min, max, (int)((max * 1000)/min));
1083 
1084                seq_printf(m, "pci_map_sg()    : %8ld calls  %8ld pages (avg %d/1000)\n",
1085                           ioc->msg_calls, ioc->msg_pages,
1086                           (int)((ioc->msg_pages * 1000)/ioc->msg_calls));
1087
1088                seq_printf(m, "pci_unmap_sg()  : %8ld calls  %8ld pages (avg %d/1000)\n\n\n",
1089                           ioc->usg_calls, ioc->usg_pages,
1090                           (int)((ioc->usg_pages * 1000)/ioc->usg_calls));
1091#endif  /* CCIO_COLLECT_STATS */
1092
1093                ioc = ioc->next;
1094        }
1095
1096        return 0;
1097}
1098
1099static int ccio_proc_bitmap_info(struct seq_file *m, void *p)
1100{
1101        struct ioc *ioc = ioc_list;
1102
1103        while (ioc != NULL) {
1104                seq_hex_dump(m, "   ", DUMP_PREFIX_NONE, 32, 4, ioc->res_map,
1105                             ioc->res_size, false);
1106                seq_putc(m, '\n');
1107                ioc = ioc->next;
1108                break; /* XXX - remove me */
1109        }
1110
1111        return 0;
1112}
1113#endif /* CONFIG_PROC_FS */
1114
1115/**
1116 * ccio_find_ioc - Find the ioc in the ioc_list
1117 * @hw_path: The hardware path of the ioc.
1118 *
1119 * This function searches the ioc_list for an ioc that matches
1120 * the provide hardware path.
1121 */
1122static struct ioc * ccio_find_ioc(int hw_path)
1123{
1124        int i;
1125        struct ioc *ioc;
1126
1127        ioc = ioc_list;
1128        for (i = 0; i < ioc_count; i++) {
1129                if (ioc->hw_path == hw_path)
1130                        return ioc;
1131
1132                ioc = ioc->next;
1133        }
1134
1135        return NULL;
1136}
1137
1138/**
1139 * ccio_get_iommu - Find the iommu which controls this device
1140 * @dev: The parisc device.
1141 *
1142 * This function searches through the registered IOMMU's and returns
1143 * the appropriate IOMMU for the device based on its hardware path.
1144 */
1145void * ccio_get_iommu(const struct parisc_device *dev)
1146{
1147        dev = find_pa_parent_type(dev, HPHW_IOA);
1148        if (!dev)
1149                return NULL;
1150
1151        return ccio_find_ioc(dev->hw_path);
1152}
1153
1154#define CUJO_20_STEP       0x10000000   /* inc upper nibble */
1155
1156/* Cujo 2.0 has a bug which will silently corrupt data being transferred
1157 * to/from certain pages.  To avoid this happening, we mark these pages
1158 * as `used', and ensure that nothing will try to allocate from them.
1159 */
1160void __init ccio_cujo20_fixup(struct parisc_device *cujo, u32 iovp)
1161{
1162        unsigned int idx;
1163        struct parisc_device *dev = parisc_parent(cujo);
1164        struct ioc *ioc = ccio_get_iommu(dev);
1165        u8 *res_ptr;
1166
1167        ioc->cujo20_bug = 1;
1168        res_ptr = ioc->res_map;
1169        idx = PDIR_INDEX(iovp) >> 3;
1170
1171        while (idx < ioc->res_size) {
1172                res_ptr[idx] |= 0xff;
1173                idx += PDIR_INDEX(CUJO_20_STEP) >> 3;
1174        }
1175}
1176
1177#if 0
1178/* GRANT -  is this needed for U2 or not? */
1179
1180/*
1181** Get the size of the I/O TLB for this I/O MMU.
1182**
1183** If spa_shift is non-zero (ie probably U2),
1184** then calculate the I/O TLB size using spa_shift.
1185**
1186** Otherwise we are supposed to get the IODC entry point ENTRY TLB
1187** and execute it. However, both U2 and Uturn firmware supplies spa_shift.
1188** I think only Java (K/D/R-class too?) systems don't do this.
1189*/
1190static int
1191ccio_get_iotlb_size(struct parisc_device *dev)
1192{
1193        if (dev->spa_shift == 0) {
1194                panic("%s() : Can't determine I/O TLB size.\n", __func__);
1195        }
1196        return (1 << dev->spa_shift);
1197}
1198#else
1199
1200/* Uturn supports 256 TLB entries */
1201#define CCIO_CHAINID_SHIFT      8
1202#define CCIO_CHAINID_MASK       0xff
1203#endif /* 0 */
1204
1205/* We *can't* support JAVA (T600). Venture there at your own risk. */
1206static const struct parisc_device_id ccio_tbl[] __initconst = {
1207        { HPHW_IOA, HVERSION_REV_ANY_ID, U2_IOA_RUNWAY, 0xb }, /* U2 */
1208        { HPHW_IOA, HVERSION_REV_ANY_ID, UTURN_IOA_RUNWAY, 0xb }, /* UTurn */
1209        { 0, }
1210};
1211
1212static int ccio_probe(struct parisc_device *dev);
1213
1214static struct parisc_driver ccio_driver __refdata = {
1215        .name =         "ccio",
1216        .id_table =     ccio_tbl,
1217        .probe =        ccio_probe,
1218};
1219
1220/**
1221 * ccio_ioc_init - Initialize the I/O Controller
1222 * @ioc: The I/O Controller.
1223 *
1224 * Initialize the I/O Controller which includes setting up the
1225 * I/O Page Directory, the resource map, and initalizing the
1226 * U2/Uturn chip into virtual mode.
1227 */
1228static void __init
1229ccio_ioc_init(struct ioc *ioc)
1230{
1231        int i;
1232        unsigned int iov_order;
1233        u32 iova_space_size;
1234
1235        /*
1236        ** Determine IOVA Space size from memory size.
1237        **
1238        ** Ideally, PCI drivers would register the maximum number
1239        ** of DMA they can have outstanding for each device they
1240        ** own.  Next best thing would be to guess how much DMA
1241        ** can be outstanding based on PCI Class/sub-class. Both
1242        ** methods still require some "extra" to support PCI
1243        ** Hot-Plug/Removal of PCI cards. (aka PCI OLARD).
1244        */
1245
1246        iova_space_size = (u32) (totalram_pages() / count_parisc_driver(&ccio_driver));
1247
1248        /* limit IOVA space size to 1MB-1GB */
1249
1250        if (iova_space_size < (1 << (20 - PAGE_SHIFT))) {
1251                iova_space_size =  1 << (20 - PAGE_SHIFT);
1252#ifdef __LP64__
1253        } else if (iova_space_size > (1 << (30 - PAGE_SHIFT))) {
1254                iova_space_size =  1 << (30 - PAGE_SHIFT);
1255#endif
1256        }
1257
1258        /*
1259        ** iova space must be log2() in size.
1260        ** thus, pdir/res_map will also be log2().
1261        */
1262
1263        /* We could use larger page sizes in order to *decrease* the number
1264        ** of mappings needed.  (ie 8k pages means 1/2 the mappings).
1265        **
1266        ** Note: Grant Grunder says "Using 8k I/O pages isn't trivial either
1267        **   since the pages must also be physically contiguous - typically
1268        **   this is the case under linux."
1269        */
1270
1271        iov_order = get_order(iova_space_size << PAGE_SHIFT);
1272
1273        /* iova_space_size is now bytes, not pages */
1274        iova_space_size = 1 << (iov_order + PAGE_SHIFT);
1275
1276        ioc->pdir_size = (iova_space_size / IOVP_SIZE) * sizeof(u64);
1277
1278        BUG_ON(ioc->pdir_size > 8 * 1024 * 1024);   /* max pdir size <= 8MB */
1279
1280        /* Verify it's a power of two */
1281        BUG_ON((1 << get_order(ioc->pdir_size)) != (ioc->pdir_size >> PAGE_SHIFT));
1282
1283        DBG_INIT("%s() hpa 0x%p mem %luMB IOV %dMB (%d bits)\n",
1284                        __func__, ioc->ioc_regs,
1285                        (unsigned long) totalram_pages() >> (20 - PAGE_SHIFT),
1286                        iova_space_size>>20,
1287                        iov_order + PAGE_SHIFT);
1288
1289        ioc->pdir_base = (u64 *)__get_free_pages(GFP_KERNEL, 
1290                                                 get_order(ioc->pdir_size));
1291        if(NULL == ioc->pdir_base) {
1292                panic("%s() could not allocate I/O Page Table\n", __func__);
1293        }
1294        memset(ioc->pdir_base, 0, ioc->pdir_size);
1295
1296        BUG_ON((((unsigned long)ioc->pdir_base) & PAGE_MASK) != (unsigned long)ioc->pdir_base);
1297        DBG_INIT(" base %p\n", ioc->pdir_base);
1298
1299        /* resource map size dictated by pdir_size */
1300        ioc->res_size = (ioc->pdir_size / sizeof(u64)) >> 3;
1301        DBG_INIT("%s() res_size 0x%x\n", __func__, ioc->res_size);
1302        
1303        ioc->res_map = (u8 *)__get_free_pages(GFP_KERNEL, 
1304                                              get_order(ioc->res_size));
1305        if(NULL == ioc->res_map) {
1306                panic("%s() could not allocate resource map\n", __func__);
1307        }
1308        memset(ioc->res_map, 0, ioc->res_size);
1309
1310        /* Initialize the res_hint to 16 */
1311        ioc->res_hint = 16;
1312
1313        /* Initialize the spinlock */
1314        spin_lock_init(&ioc->res_lock);
1315
1316        /*
1317        ** Chainid is the upper most bits of an IOVP used to determine
1318        ** which TLB entry an IOVP will use.
1319        */
1320        ioc->chainid_shift = get_order(iova_space_size) + PAGE_SHIFT - CCIO_CHAINID_SHIFT;
1321        DBG_INIT(" chainid_shift 0x%x\n", ioc->chainid_shift);
1322
1323        /*
1324        ** Initialize IOA hardware
1325        */
1326        WRITE_U32(CCIO_CHAINID_MASK << ioc->chainid_shift, 
1327                  &ioc->ioc_regs->io_chain_id_mask);
1328
1329        WRITE_U32(virt_to_phys(ioc->pdir_base), 
1330                  &ioc->ioc_regs->io_pdir_base);
1331
1332        /*
1333        ** Go to "Virtual Mode"
1334        */
1335        WRITE_U32(IOA_NORMAL_MODE, &ioc->ioc_regs->io_control);
1336
1337        /*
1338        ** Initialize all I/O TLB entries to 0 (Valid bit off).
1339        */
1340        WRITE_U32(0, &ioc->ioc_regs->io_tlb_entry_m);
1341        WRITE_U32(0, &ioc->ioc_regs->io_tlb_entry_l);
1342
1343        for(i = 1 << CCIO_CHAINID_SHIFT; i ; i--) {
1344                WRITE_U32((CMD_TLB_DIRECT_WRITE | (i << ioc->chainid_shift)),
1345                          &ioc->ioc_regs->io_command);
1346        }
1347}
1348
1349static void __init
1350ccio_init_resource(struct resource *res, char *name, void __iomem *ioaddr)
1351{
1352        int result;
1353
1354        res->parent = NULL;
1355        res->flags = IORESOURCE_MEM;
1356        /*
1357         * bracing ((signed) ...) are required for 64bit kernel because
1358         * we only want to sign extend the lower 16 bits of the register.
1359         * The upper 16-bits of range registers are hardcoded to 0xffff.
1360         */
1361        res->start = (unsigned long)((signed) READ_U32(ioaddr) << 16);
1362        res->end = (unsigned long)((signed) (READ_U32(ioaddr + 4) << 16) - 1);
1363        res->name = name;
1364        /*
1365         * Check if this MMIO range is disable
1366         */
1367        if (res->end + 1 == res->start)
1368                return;
1369
1370        /* On some platforms (e.g. K-Class), we have already registered
1371         * resources for devices reported by firmware. Some are children
1372         * of ccio.
1373         * "insert" ccio ranges in the mmio hierarchy (/proc/iomem).
1374         */
1375        result = insert_resource(&iomem_resource, res);
1376        if (result < 0) {
1377                printk(KERN_ERR "%s() failed to claim CCIO bus address space (%08lx,%08lx)\n", 
1378                        __func__, (unsigned long)res->start, (unsigned long)res->end);
1379        }
1380}
1381
1382static void __init ccio_init_resources(struct ioc *ioc)
1383{
1384        struct resource *res = ioc->mmio_region;
1385        char *name = kmalloc(14, GFP_KERNEL);
1386
1387        snprintf(name, 14, "GSC Bus [%d/]", ioc->hw_path);
1388
1389        ccio_init_resource(res, name, &ioc->ioc_regs->io_io_low);
1390        ccio_init_resource(res + 1, name, &ioc->ioc_regs->io_io_low_hv);
1391}
1392
1393static int new_ioc_area(struct resource *res, unsigned long size,
1394                unsigned long min, unsigned long max, unsigned long align)
1395{
1396        if (max <= min)
1397                return -EBUSY;
1398
1399        res->start = (max - size + 1) &~ (align - 1);
1400        res->end = res->start + size;
1401        
1402        /* We might be trying to expand the MMIO range to include
1403         * a child device that has already registered it's MMIO space.
1404         * Use "insert" instead of request_resource().
1405         */
1406        if (!insert_resource(&iomem_resource, res))
1407                return 0;
1408
1409        return new_ioc_area(res, size, min, max - size, align);
1410}
1411
1412static int expand_ioc_area(struct resource *res, unsigned long size,
1413                unsigned long min, unsigned long max, unsigned long align)
1414{
1415        unsigned long start, len;
1416
1417        if (!res->parent)
1418                return new_ioc_area(res, size, min, max, align);
1419
1420        start = (res->start - size) &~ (align - 1);
1421        len = res->end - start + 1;
1422        if (start >= min) {
1423                if (!adjust_resource(res, start, len))
1424                        return 0;
1425        }
1426
1427        start = res->start;
1428        len = ((size + res->end + align) &~ (align - 1)) - start;
1429        if (start + len <= max) {
1430                if (!adjust_resource(res, start, len))
1431                        return 0;
1432        }
1433
1434        return -EBUSY;
1435}
1436
1437/*
1438 * Dino calls this function.  Beware that we may get called on systems
1439 * which have no IOC (725, B180, C160L, etc) but do have a Dino.
1440 * So it's legal to find no parent IOC.
1441 *
1442 * Some other issues: one of the resources in the ioc may be unassigned.
1443 */
1444int ccio_allocate_resource(const struct parisc_device *dev,
1445                struct resource *res, unsigned long size,
1446                unsigned long min, unsigned long max, unsigned long align)
1447{
1448        struct resource *parent = &iomem_resource;
1449        struct ioc *ioc = ccio_get_iommu(dev);
1450        if (!ioc)
1451                goto out;
1452
1453        parent = ioc->mmio_region;
1454        if (parent->parent &&
1455            !allocate_resource(parent, res, size, min, max, align, NULL, NULL))
1456                return 0;
1457
1458        if ((parent + 1)->parent &&
1459            !allocate_resource(parent + 1, res, size, min, max, align,
1460                                NULL, NULL))
1461                return 0;
1462
1463        if (!expand_ioc_area(parent, size, min, max, align)) {
1464                __raw_writel(((parent->start)>>16) | 0xffff0000,
1465                             &ioc->ioc_regs->io_io_low);
1466                __raw_writel(((parent->end)>>16) | 0xffff0000,
1467                             &ioc->ioc_regs->io_io_high);
1468        } else if (!expand_ioc_area(parent + 1, size, min, max, align)) {
1469                parent++;
1470                __raw_writel(((parent->start)>>16) | 0xffff0000,
1471                             &ioc->ioc_regs->io_io_low_hv);
1472                __raw_writel(((parent->end)>>16) | 0xffff0000,
1473                             &ioc->ioc_regs->io_io_high_hv);
1474        } else {
1475                return -EBUSY;
1476        }
1477
1478 out:
1479        return allocate_resource(parent, res, size, min, max, align, NULL,NULL);
1480}
1481
1482int ccio_request_resource(const struct parisc_device *dev,
1483                struct resource *res)
1484{
1485        struct resource *parent;
1486        struct ioc *ioc = ccio_get_iommu(dev);
1487
1488        if (!ioc) {
1489                parent = &iomem_resource;
1490        } else if ((ioc->mmio_region->start <= res->start) &&
1491                        (res->end <= ioc->mmio_region->end)) {
1492                parent = ioc->mmio_region;
1493        } else if (((ioc->mmio_region + 1)->start <= res->start) &&
1494                        (res->end <= (ioc->mmio_region + 1)->end)) {
1495                parent = ioc->mmio_region + 1;
1496        } else {
1497                return -EBUSY;
1498        }
1499
1500        /* "transparent" bus bridges need to register MMIO resources
1501         * firmware assigned them. e.g. children of hppb.c (e.g. K-class)
1502         * registered their resources in the PDC "bus walk" (See
1503         * arch/parisc/kernel/inventory.c).
1504         */
1505        return insert_resource(parent, res);
1506}
1507
1508/**
1509 * ccio_probe - Determine if ccio should claim this device.
1510 * @dev: The device which has been found
1511 *
1512 * Determine if ccio should claim this chip (return 0) or not (return 1).
1513 * If so, initialize the chip and tell other partners in crime they
1514 * have work to do.
1515 */
1516static int __init ccio_probe(struct parisc_device *dev)
1517{
1518        int i;
1519        struct ioc *ioc, **ioc_p = &ioc_list;
1520
1521        ioc = kzalloc(sizeof(struct ioc), GFP_KERNEL);
1522        if (ioc == NULL) {
1523                printk(KERN_ERR MODULE_NAME ": memory allocation failure\n");
1524                return -ENOMEM;
1525        }
1526
1527        ioc->name = dev->id.hversion == U2_IOA_RUNWAY ? "U2" : "UTurn";
1528
1529        printk(KERN_INFO "Found %s at 0x%lx\n", ioc->name,
1530                (unsigned long)dev->hpa.start);
1531
1532        for (i = 0; i < ioc_count; i++) {
1533                ioc_p = &(*ioc_p)->next;
1534        }
1535        *ioc_p = ioc;
1536
1537        ioc->hw_path = dev->hw_path;
1538        ioc->ioc_regs = ioremap_nocache(dev->hpa.start, 4096);
1539        if (!ioc->ioc_regs) {
1540                kfree(ioc);
1541                return -ENOMEM;
1542        }
1543        ccio_ioc_init(ioc);
1544        ccio_init_resources(ioc);
1545        hppa_dma_ops = &ccio_ops;
1546        dev->dev.platform_data = kzalloc(sizeof(struct pci_hba_data), GFP_KERNEL);
1547
1548        /* if this fails, no I/O cards will work, so may as well bug */
1549        BUG_ON(dev->dev.platform_data == NULL);
1550        HBA_DATA(dev->dev.platform_data)->iommu = ioc;
1551
1552#ifdef CONFIG_PROC_FS
1553        if (ioc_count == 0) {
1554                proc_create_single(MODULE_NAME, 0, proc_runway_root,
1555                                ccio_proc_info);
1556                proc_create_single(MODULE_NAME"-bitmap", 0, proc_runway_root,
1557                                ccio_proc_bitmap_info);
1558        }
1559#endif
1560        ioc_count++;
1561        return 0;
1562}
1563
1564/**
1565 * ccio_init - ccio initialization procedure.
1566 *
1567 * Register this driver.
1568 */
1569void __init ccio_init(void)
1570{
1571        register_parisc_driver(&ccio_driver);
1572}
1573
1574