linux/drivers/remoteproc/remoteproc_core.c
<<
>>
Prefs
   1/*
   2 * Remote Processor Framework
   3 *
   4 * Copyright (C) 2011 Texas Instruments, Inc.
   5 * Copyright (C) 2011 Google, Inc.
   6 *
   7 * Ohad Ben-Cohen <ohad@wizery.com>
   8 * Brian Swetland <swetland@google.com>
   9 * Mark Grosen <mgrosen@ti.com>
  10 * Fernando Guzman Lugo <fernando.lugo@ti.com>
  11 * Suman Anna <s-anna@ti.com>
  12 * Robert Tivy <rtivy@ti.com>
  13 * Armando Uribe De Leon <x0095078@ti.com>
  14 *
  15 * This program is free software; you can redistribute it and/or
  16 * modify it under the terms of the GNU General Public License
  17 * version 2 as published by the Free Software Foundation.
  18 *
  19 * This program is distributed in the hope that it will be useful,
  20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  22 * GNU General Public License for more details.
  23 */
  24
  25#define pr_fmt(fmt)    "%s: " fmt, __func__
  26
  27#include <linux/kernel.h>
  28#include <linux/module.h>
  29#include <linux/device.h>
  30#include <linux/slab.h>
  31#include <linux/mutex.h>
  32#include <linux/dma-mapping.h>
  33#include <linux/firmware.h>
  34#include <linux/string.h>
  35#include <linux/debugfs.h>
  36#include <linux/devcoredump.h>
  37#include <linux/remoteproc.h>
  38#include <linux/iommu.h>
  39#include <linux/idr.h>
  40#include <linux/elf.h>
  41#include <linux/crc32.h>
  42#include <linux/virtio_ids.h>
  43#include <linux/virtio_ring.h>
  44#include <asm/byteorder.h>
  45
  46#include "remoteproc_internal.h"
  47
  48static DEFINE_MUTEX(rproc_list_mutex);
  49static LIST_HEAD(rproc_list);
  50
  51typedef int (*rproc_handle_resources_t)(struct rproc *rproc,
  52                                struct resource_table *table, int len);
  53typedef int (*rproc_handle_resource_t)(struct rproc *rproc,
  54                                 void *, int offset, int avail);
  55
  56static int rproc_alloc_carveout(struct rproc *rproc,
  57                                struct rproc_mem_entry *mem);
  58static int rproc_release_carveout(struct rproc *rproc,
  59                                  struct rproc_mem_entry *mem);
  60
  61/* Unique indices for remoteproc devices */
  62static DEFINE_IDA(rproc_dev_index);
  63
  64static const char * const rproc_crash_names[] = {
  65        [RPROC_MMUFAULT]        = "mmufault",
  66        [RPROC_WATCHDOG]        = "watchdog",
  67        [RPROC_FATAL_ERROR]     = "fatal error",
  68};
  69
  70/* translate rproc_crash_type to string */
  71static const char *rproc_crash_to_string(enum rproc_crash_type type)
  72{
  73        if (type < ARRAY_SIZE(rproc_crash_names))
  74                return rproc_crash_names[type];
  75        return "unknown";
  76}
  77
  78/*
  79 * This is the IOMMU fault handler we register with the IOMMU API
  80 * (when relevant; not all remote processors access memory through
  81 * an IOMMU).
  82 *
  83 * IOMMU core will invoke this handler whenever the remote processor
  84 * will try to access an unmapped device address.
  85 */
  86static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
  87                             unsigned long iova, int flags, void *token)
  88{
  89        struct rproc *rproc = token;
  90
  91        dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
  92
  93        rproc_report_crash(rproc, RPROC_MMUFAULT);
  94
  95        /*
  96         * Let the iommu core know we're not really handling this fault;
  97         * we just used it as a recovery trigger.
  98         */
  99        return -ENOSYS;
 100}
 101
 102static int rproc_enable_iommu(struct rproc *rproc)
 103{
 104        struct iommu_domain *domain;
 105        struct device *dev = rproc->dev.parent;
 106        int ret;
 107
 108        if (!rproc->has_iommu) {
 109                dev_dbg(dev, "iommu not present\n");
 110                return 0;
 111        }
 112
 113        domain = iommu_domain_alloc(dev->bus);
 114        if (!domain) {
 115                dev_err(dev, "can't alloc iommu domain\n");
 116                return -ENOMEM;
 117        }
 118
 119        iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
 120
 121        ret = iommu_attach_device(domain, dev);
 122        if (ret) {
 123                dev_err(dev, "can't attach iommu device: %d\n", ret);
 124                goto free_domain;
 125        }
 126
 127        rproc->domain = domain;
 128
 129        return 0;
 130
 131free_domain:
 132        iommu_domain_free(domain);
 133        return ret;
 134}
 135
 136static void rproc_disable_iommu(struct rproc *rproc)
 137{
 138        struct iommu_domain *domain = rproc->domain;
 139        struct device *dev = rproc->dev.parent;
 140
 141        if (!domain)
 142                return;
 143
 144        iommu_detach_device(domain, dev);
 145        iommu_domain_free(domain);
 146}
 147
 148static phys_addr_t rproc_va_to_pa(void *cpu_addr)
 149{
 150        /*
 151         * Return physical address according to virtual address location
 152         * - in vmalloc: if region ioremapped or defined as dma_alloc_coherent
 153         * - in kernel: if region allocated in generic dma memory pool
 154         */
 155        if (is_vmalloc_addr(cpu_addr)) {
 156                return page_to_phys(vmalloc_to_page(cpu_addr)) +
 157                                    offset_in_page(cpu_addr);
 158        }
 159
 160        WARN_ON(!virt_addr_valid(cpu_addr));
 161        return virt_to_phys(cpu_addr);
 162}
 163
 164/**
 165 * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address
 166 * @rproc: handle of a remote processor
 167 * @da: remoteproc device address to translate
 168 * @len: length of the memory region @da is pointing to
 169 *
 170 * Some remote processors will ask us to allocate them physically contiguous
 171 * memory regions (which we call "carveouts"), and map them to specific
 172 * device addresses (which are hardcoded in the firmware). They may also have
 173 * dedicated memory regions internal to the processors, and use them either
 174 * exclusively or alongside carveouts.
 175 *
 176 * They may then ask us to copy objects into specific device addresses (e.g.
 177 * code/data sections) or expose us certain symbols in other device address
 178 * (e.g. their trace buffer).
 179 *
 180 * This function is a helper function with which we can go over the allocated
 181 * carveouts and translate specific device addresses to kernel virtual addresses
 182 * so we can access the referenced memory. This function also allows to perform
 183 * translations on the internal remoteproc memory regions through a platform
 184 * implementation specific da_to_va ops, if present.
 185 *
 186 * The function returns a valid kernel address on success or NULL on failure.
 187 *
 188 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
 189 * but only on kernel direct mapped RAM memory. Instead, we're just using
 190 * here the output of the DMA API for the carveouts, which should be more
 191 * correct.
 192 */
 193void *rproc_da_to_va(struct rproc *rproc, u64 da, int len)
 194{
 195        struct rproc_mem_entry *carveout;
 196        void *ptr = NULL;
 197
 198        if (rproc->ops->da_to_va) {
 199                ptr = rproc->ops->da_to_va(rproc, da, len);
 200                if (ptr)
 201                        goto out;
 202        }
 203
 204        list_for_each_entry(carveout, &rproc->carveouts, node) {
 205                int offset = da - carveout->da;
 206
 207                /* try next carveout if da is too small */
 208                if (offset < 0)
 209                        continue;
 210
 211                /* try next carveout if da is too large */
 212                if (offset + len > carveout->len)
 213                        continue;
 214
 215                ptr = carveout->va + offset;
 216
 217                break;
 218        }
 219
 220out:
 221        return ptr;
 222}
 223EXPORT_SYMBOL(rproc_da_to_va);
 224
 225/**
 226 * rproc_find_carveout_by_name() - lookup the carveout region by a name
 227 * @rproc: handle of a remote processor
 228 * @name,..: carveout name to find (standard printf format)
 229 *
 230 * Platform driver has the capability to register some pre-allacoted carveout
 231 * (physically contiguous memory regions) before rproc firmware loading and
 232 * associated resource table analysis. These regions may be dedicated memory
 233 * regions internal to the coprocessor or specified DDR region with specific
 234 * attributes
 235 *
 236 * This function is a helper function with which we can go over the
 237 * allocated carveouts and return associated region characteristics like
 238 * coprocessor address, length or processor virtual address.
 239 *
 240 * Return: a valid pointer on carveout entry on success or NULL on failure.
 241 */
 242struct rproc_mem_entry *
 243rproc_find_carveout_by_name(struct rproc *rproc, const char *name, ...)
 244{
 245        va_list args;
 246        char _name[32];
 247        struct rproc_mem_entry *carveout, *mem = NULL;
 248
 249        if (!name)
 250                return NULL;
 251
 252        va_start(args, name);
 253        vsnprintf(_name, sizeof(_name), name, args);
 254        va_end(args);
 255
 256        list_for_each_entry(carveout, &rproc->carveouts, node) {
 257                /* Compare carveout and requested names */
 258                if (!strcmp(carveout->name, _name)) {
 259                        mem = carveout;
 260                        break;
 261                }
 262        }
 263
 264        return mem;
 265}
 266
 267/**
 268 * rproc_check_carveout_da() - Check specified carveout da configuration
 269 * @rproc: handle of a remote processor
 270 * @mem: pointer on carveout to check
 271 * @da: area device address
 272 * @len: associated area size
 273 *
 274 * This function is a helper function to verify requested device area (couple
 275 * da, len) is part of specified carevout.
 276 *
 277 * Return: 0 if carveout match request else -ENOMEM
 278 */
 279int rproc_check_carveout_da(struct rproc *rproc, struct rproc_mem_entry *mem,
 280                            u32 da, u32 len)
 281{
 282        struct device *dev = &rproc->dev;
 283        int delta = 0;
 284
 285        /* Check requested resource length */
 286        if (len > mem->len) {
 287                dev_err(dev, "Registered carveout doesn't fit len request\n");
 288                return -ENOMEM;
 289        }
 290
 291        if (da != FW_RSC_ADDR_ANY && mem->da == FW_RSC_ADDR_ANY) {
 292                /* Update existing carveout da */
 293                mem->da = da;
 294        } else if (da != FW_RSC_ADDR_ANY && mem->da != FW_RSC_ADDR_ANY) {
 295                delta = da - mem->da;
 296
 297                /* Check requested resource belongs to registered carveout */
 298                if (delta < 0) {
 299                        dev_err(dev,
 300                                "Registered carveout doesn't fit da request\n");
 301                        return -ENOMEM;
 302                }
 303
 304                if (delta + len > mem->len) {
 305                        dev_err(dev,
 306                                "Registered carveout doesn't fit len request\n");
 307                        return -ENOMEM;
 308                }
 309        }
 310
 311        return 0;
 312}
 313
 314int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
 315{
 316        struct rproc *rproc = rvdev->rproc;
 317        struct device *dev = &rproc->dev;
 318        struct rproc_vring *rvring = &rvdev->vring[i];
 319        struct fw_rsc_vdev *rsc;
 320        int ret, size, notifyid;
 321        struct rproc_mem_entry *mem;
 322
 323        /* actual size of vring (in bytes) */
 324        size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
 325
 326        rsc = (void *)rproc->table_ptr + rvdev->rsc_offset;
 327
 328        /* Search for pre-registered carveout */
 329        mem = rproc_find_carveout_by_name(rproc, "vdev%dvring%d", rvdev->index,
 330                                          i);
 331        if (mem) {
 332                if (rproc_check_carveout_da(rproc, mem, rsc->vring[i].da, size))
 333                        return -ENOMEM;
 334        } else {
 335                /* Register carveout in in list */
 336                mem = rproc_mem_entry_init(dev, 0, 0, size, rsc->vring[i].da,
 337                                           rproc_alloc_carveout,
 338                                           rproc_release_carveout,
 339                                           "vdev%dvring%d",
 340                                           rvdev->index, i);
 341                if (!mem) {
 342                        dev_err(dev, "Can't allocate memory entry structure\n");
 343                        return -ENOMEM;
 344                }
 345
 346                rproc_add_carveout(rproc, mem);
 347        }
 348
 349        /*
 350         * Assign an rproc-wide unique index for this vring
 351         * TODO: assign a notifyid for rvdev updates as well
 352         * TODO: support predefined notifyids (via resource table)
 353         */
 354        ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL);
 355        if (ret < 0) {
 356                dev_err(dev, "idr_alloc failed: %d\n", ret);
 357                return ret;
 358        }
 359        notifyid = ret;
 360
 361        /* Potentially bump max_notifyid */
 362        if (notifyid > rproc->max_notifyid)
 363                rproc->max_notifyid = notifyid;
 364
 365        rvring->notifyid = notifyid;
 366
 367        /* Let the rproc know the notifyid of this vring.*/
 368        rsc->vring[i].notifyid = notifyid;
 369        return 0;
 370}
 371
 372static int
 373rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
 374{
 375        struct rproc *rproc = rvdev->rproc;
 376        struct device *dev = &rproc->dev;
 377        struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
 378        struct rproc_vring *rvring = &rvdev->vring[i];
 379
 380        dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n",
 381                i, vring->da, vring->num, vring->align);
 382
 383        /* verify queue size and vring alignment are sane */
 384        if (!vring->num || !vring->align) {
 385                dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
 386                        vring->num, vring->align);
 387                return -EINVAL;
 388        }
 389
 390        rvring->len = vring->num;
 391        rvring->align = vring->align;
 392        rvring->rvdev = rvdev;
 393
 394        return 0;
 395}
 396
 397void rproc_free_vring(struct rproc_vring *rvring)
 398{
 399        struct rproc *rproc = rvring->rvdev->rproc;
 400        int idx = rvring->rvdev->vring - rvring;
 401        struct fw_rsc_vdev *rsc;
 402
 403        idr_remove(&rproc->notifyids, rvring->notifyid);
 404
 405        /* reset resource entry info */
 406        rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset;
 407        rsc->vring[idx].da = 0;
 408        rsc->vring[idx].notifyid = -1;
 409}
 410
 411static int rproc_vdev_do_start(struct rproc_subdev *subdev)
 412{
 413        struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);
 414
 415        return rproc_add_virtio_dev(rvdev, rvdev->id);
 416}
 417
 418static void rproc_vdev_do_stop(struct rproc_subdev *subdev, bool crashed)
 419{
 420        struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);
 421
 422        rproc_remove_virtio_dev(rvdev);
 423}
 424
 425/**
 426 * rproc_handle_vdev() - handle a vdev fw resource
 427 * @rproc: the remote processor
 428 * @rsc: the vring resource descriptor
 429 * @avail: size of available data (for sanity checking the image)
 430 *
 431 * This resource entry requests the host to statically register a virtio
 432 * device (vdev), and setup everything needed to support it. It contains
 433 * everything needed to make it possible: the virtio device id, virtio
 434 * device features, vrings information, virtio config space, etc...
 435 *
 436 * Before registering the vdev, the vrings are allocated from non-cacheable
 437 * physically contiguous memory. Currently we only support two vrings per
 438 * remote processor (temporary limitation). We might also want to consider
 439 * doing the vring allocation only later when ->find_vqs() is invoked, and
 440 * then release them upon ->del_vqs().
 441 *
 442 * Note: @da is currently not really handled correctly: we dynamically
 443 * allocate it using the DMA API, ignoring requested hard coded addresses,
 444 * and we don't take care of any required IOMMU programming. This is all
 445 * going to be taken care of when the generic iommu-based DMA API will be
 446 * merged. Meanwhile, statically-addressed iommu-based firmware images should
 447 * use RSC_DEVMEM resource entries to map their required @da to the physical
 448 * address of their base CMA region (ouch, hacky!).
 449 *
 450 * Returns 0 on success, or an appropriate error code otherwise
 451 */
 452static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc,
 453                             int offset, int avail)
 454{
 455        struct device *dev = &rproc->dev;
 456        struct rproc_vdev *rvdev;
 457        int i, ret;
 458
 459        /* make sure resource isn't truncated */
 460        if (sizeof(*rsc) + rsc->num_of_vrings * sizeof(struct fw_rsc_vdev_vring)
 461                        + rsc->config_len > avail) {
 462                dev_err(dev, "vdev rsc is truncated\n");
 463                return -EINVAL;
 464        }
 465
 466        /* make sure reserved bytes are zeroes */
 467        if (rsc->reserved[0] || rsc->reserved[1]) {
 468                dev_err(dev, "vdev rsc has non zero reserved bytes\n");
 469                return -EINVAL;
 470        }
 471
 472        dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n",
 473                rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
 474
 475        /* we currently support only two vrings per rvdev */
 476        if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
 477                dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
 478                return -EINVAL;
 479        }
 480
 481        rvdev = kzalloc(sizeof(*rvdev), GFP_KERNEL);
 482        if (!rvdev)
 483                return -ENOMEM;
 484
 485        kref_init(&rvdev->refcount);
 486
 487        rvdev->id = rsc->id;
 488        rvdev->rproc = rproc;
 489        rvdev->index = rproc->nb_vdev++;
 490
 491        /* parse the vrings */
 492        for (i = 0; i < rsc->num_of_vrings; i++) {
 493                ret = rproc_parse_vring(rvdev, rsc, i);
 494                if (ret)
 495                        goto free_rvdev;
 496        }
 497
 498        /* remember the resource offset*/
 499        rvdev->rsc_offset = offset;
 500
 501        /* allocate the vring resources */
 502        for (i = 0; i < rsc->num_of_vrings; i++) {
 503                ret = rproc_alloc_vring(rvdev, i);
 504                if (ret)
 505                        goto unwind_vring_allocations;
 506        }
 507
 508        list_add_tail(&rvdev->node, &rproc->rvdevs);
 509
 510        rvdev->subdev.start = rproc_vdev_do_start;
 511        rvdev->subdev.stop = rproc_vdev_do_stop;
 512
 513        rproc_add_subdev(rproc, &rvdev->subdev);
 514
 515        return 0;
 516
 517unwind_vring_allocations:
 518        for (i--; i >= 0; i--)
 519                rproc_free_vring(&rvdev->vring[i]);
 520free_rvdev:
 521        kfree(rvdev);
 522        return ret;
 523}
 524
 525void rproc_vdev_release(struct kref *ref)
 526{
 527        struct rproc_vdev *rvdev = container_of(ref, struct rproc_vdev, refcount);
 528        struct rproc_vring *rvring;
 529        struct rproc *rproc = rvdev->rproc;
 530        int id;
 531
 532        for (id = 0; id < ARRAY_SIZE(rvdev->vring); id++) {
 533                rvring = &rvdev->vring[id];
 534                rproc_free_vring(rvring);
 535        }
 536
 537        rproc_remove_subdev(rproc, &rvdev->subdev);
 538        list_del(&rvdev->node);
 539        kfree(rvdev);
 540}
 541
 542/**
 543 * rproc_handle_trace() - handle a shared trace buffer resource
 544 * @rproc: the remote processor
 545 * @rsc: the trace resource descriptor
 546 * @avail: size of available data (for sanity checking the image)
 547 *
 548 * In case the remote processor dumps trace logs into memory,
 549 * export it via debugfs.
 550 *
 551 * Currently, the 'da' member of @rsc should contain the device address
 552 * where the remote processor is dumping the traces. Later we could also
 553 * support dynamically allocating this address using the generic
 554 * DMA API (but currently there isn't a use case for that).
 555 *
 556 * Returns 0 on success, or an appropriate error code otherwise
 557 */
 558static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc,
 559                              int offset, int avail)
 560{
 561        struct rproc_mem_entry *trace;
 562        struct device *dev = &rproc->dev;
 563        void *ptr;
 564        char name[15];
 565
 566        if (sizeof(*rsc) > avail) {
 567                dev_err(dev, "trace rsc is truncated\n");
 568                return -EINVAL;
 569        }
 570
 571        /* make sure reserved bytes are zeroes */
 572        if (rsc->reserved) {
 573                dev_err(dev, "trace rsc has non zero reserved bytes\n");
 574                return -EINVAL;
 575        }
 576
 577        /* what's the kernel address of this resource ? */
 578        ptr = rproc_da_to_va(rproc, rsc->da, rsc->len);
 579        if (!ptr) {
 580                dev_err(dev, "erroneous trace resource entry\n");
 581                return -EINVAL;
 582        }
 583
 584        trace = kzalloc(sizeof(*trace), GFP_KERNEL);
 585        if (!trace)
 586                return -ENOMEM;
 587
 588        /* set the trace buffer dma properties */
 589        trace->len = rsc->len;
 590        trace->va = ptr;
 591
 592        /* make sure snprintf always null terminates, even if truncating */
 593        snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
 594
 595        /* create the debugfs entry */
 596        trace->priv = rproc_create_trace_file(name, rproc, trace);
 597        if (!trace->priv) {
 598                trace->va = NULL;
 599                kfree(trace);
 600                return -EINVAL;
 601        }
 602
 603        list_add_tail(&trace->node, &rproc->traces);
 604
 605        rproc->num_traces++;
 606
 607        dev_dbg(dev, "%s added: va %pK, da 0x%x, len 0x%x\n",
 608                name, ptr, rsc->da, rsc->len);
 609
 610        return 0;
 611}
 612
 613/**
 614 * rproc_handle_devmem() - handle devmem resource entry
 615 * @rproc: remote processor handle
 616 * @rsc: the devmem resource entry
 617 * @avail: size of available data (for sanity checking the image)
 618 *
 619 * Remote processors commonly need to access certain on-chip peripherals.
 620 *
 621 * Some of these remote processors access memory via an iommu device,
 622 * and might require us to configure their iommu before they can access
 623 * the on-chip peripherals they need.
 624 *
 625 * This resource entry is a request to map such a peripheral device.
 626 *
 627 * These devmem entries will contain the physical address of the device in
 628 * the 'pa' member. If a specific device address is expected, then 'da' will
 629 * contain it (currently this is the only use case supported). 'len' will
 630 * contain the size of the physical region we need to map.
 631 *
 632 * Currently we just "trust" those devmem entries to contain valid physical
 633 * addresses, but this is going to change: we want the implementations to
 634 * tell us ranges of physical addresses the firmware is allowed to request,
 635 * and not allow firmwares to request access to physical addresses that
 636 * are outside those ranges.
 637 */
 638static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc,
 639                               int offset, int avail)
 640{
 641        struct rproc_mem_entry *mapping;
 642        struct device *dev = &rproc->dev;
 643        int ret;
 644
 645        /* no point in handling this resource without a valid iommu domain */
 646        if (!rproc->domain)
 647                return -EINVAL;
 648
 649        if (sizeof(*rsc) > avail) {
 650                dev_err(dev, "devmem rsc is truncated\n");
 651                return -EINVAL;
 652        }
 653
 654        /* make sure reserved bytes are zeroes */
 655        if (rsc->reserved) {
 656                dev_err(dev, "devmem rsc has non zero reserved bytes\n");
 657                return -EINVAL;
 658        }
 659
 660        mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
 661        if (!mapping)
 662                return -ENOMEM;
 663
 664        ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
 665        if (ret) {
 666                dev_err(dev, "failed to map devmem: %d\n", ret);
 667                goto out;
 668        }
 669
 670        /*
 671         * We'll need this info later when we'll want to unmap everything
 672         * (e.g. on shutdown).
 673         *
 674         * We can't trust the remote processor not to change the resource
 675         * table, so we must maintain this info independently.
 676         */
 677        mapping->da = rsc->da;
 678        mapping->len = rsc->len;
 679        list_add_tail(&mapping->node, &rproc->mappings);
 680
 681        dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
 682                rsc->pa, rsc->da, rsc->len);
 683
 684        return 0;
 685
 686out:
 687        kfree(mapping);
 688        return ret;
 689}
 690
 691/**
 692 * rproc_alloc_carveout() - allocated specified carveout
 693 * @rproc: rproc handle
 694 * @mem: the memory entry to allocate
 695 *
 696 * This function allocate specified memory entry @mem using
 697 * dma_alloc_coherent() as default allocator
 698 */
 699static int rproc_alloc_carveout(struct rproc *rproc,
 700                                struct rproc_mem_entry *mem)
 701{
 702        struct rproc_mem_entry *mapping = NULL;
 703        struct device *dev = &rproc->dev;
 704        dma_addr_t dma;
 705        void *va;
 706        int ret;
 707
 708        va = dma_alloc_coherent(dev->parent, mem->len, &dma, GFP_KERNEL);
 709        if (!va) {
 710                dev_err(dev->parent,
 711                        "failed to allocate dma memory: len 0x%x\n", mem->len);
 712                return -ENOMEM;
 713        }
 714
 715        dev_dbg(dev, "carveout va %pK, dma %pad, len 0x%x\n",
 716                va, &dma, mem->len);
 717
 718        /*
 719         * Ok, this is non-standard.
 720         *
 721         * Sometimes we can't rely on the generic iommu-based DMA API
 722         * to dynamically allocate the device address and then set the IOMMU
 723         * tables accordingly, because some remote processors might
 724         * _require_ us to use hard coded device addresses that their
 725         * firmware was compiled with.
 726         *
 727         * In this case, we must use the IOMMU API directly and map
 728         * the memory to the device address as expected by the remote
 729         * processor.
 730         *
 731         * Obviously such remote processor devices should not be configured
 732         * to use the iommu-based DMA API: we expect 'dma' to contain the
 733         * physical address in this case.
 734         */
 735
 736        if (mem->da != FW_RSC_ADDR_ANY) {
 737                if (!rproc->domain) {
 738                        dev_err(dev->parent,
 739                                "Bad carveout rsc configuration\n");
 740                        ret = -ENOMEM;
 741                        goto dma_free;
 742                }
 743
 744                mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
 745                if (!mapping) {
 746                        ret = -ENOMEM;
 747                        goto dma_free;
 748                }
 749
 750                ret = iommu_map(rproc->domain, mem->da, dma, mem->len,
 751                                mem->flags);
 752                if (ret) {
 753                        dev_err(dev, "iommu_map failed: %d\n", ret);
 754                        goto free_mapping;
 755                }
 756
 757                /*
 758                 * We'll need this info later when we'll want to unmap
 759                 * everything (e.g. on shutdown).
 760                 *
 761                 * We can't trust the remote processor not to change the
 762                 * resource table, so we must maintain this info independently.
 763                 */
 764                mapping->da = mem->da;
 765                mapping->len = mem->len;
 766                list_add_tail(&mapping->node, &rproc->mappings);
 767
 768                dev_dbg(dev, "carveout mapped 0x%x to %pad\n",
 769                        mem->da, &dma);
 770        } else {
 771                mem->da = (u32)dma;
 772        }
 773
 774        mem->dma = (u32)dma;
 775        mem->va = va;
 776
 777        return 0;
 778
 779free_mapping:
 780        kfree(mapping);
 781dma_free:
 782        dma_free_coherent(dev->parent, mem->len, va, dma);
 783        return ret;
 784}
 785
 786/**
 787 * rproc_release_carveout() - release acquired carveout
 788 * @rproc: rproc handle
 789 * @mem: the memory entry to release
 790 *
 791 * This function releases specified memory entry @mem allocated via
 792 * rproc_alloc_carveout() function by @rproc.
 793 */
 794static int rproc_release_carveout(struct rproc *rproc,
 795                                  struct rproc_mem_entry *mem)
 796{
 797        struct device *dev = &rproc->dev;
 798
 799        /* clean up carveout allocations */
 800        dma_free_coherent(dev->parent, mem->len, mem->va, mem->dma);
 801        return 0;
 802}
 803
 804/**
 805 * rproc_handle_carveout() - handle phys contig memory allocation requests
 806 * @rproc: rproc handle
 807 * @rsc: the resource entry
 808 * @avail: size of available data (for image validation)
 809 *
 810 * This function will handle firmware requests for allocation of physically
 811 * contiguous memory regions.
 812 *
 813 * These request entries should come first in the firmware's resource table,
 814 * as other firmware entries might request placing other data objects inside
 815 * these memory regions (e.g. data/code segments, trace resource entries, ...).
 816 *
 817 * Allocating memory this way helps utilizing the reserved physical memory
 818 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
 819 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
 820 * pressure is important; it may have a substantial impact on performance.
 821 */
 822static int rproc_handle_carveout(struct rproc *rproc,
 823                                 struct fw_rsc_carveout *rsc,
 824                                 int offset, int avail)
 825{
 826        struct rproc_mem_entry *carveout;
 827        struct device *dev = &rproc->dev;
 828
 829        if (sizeof(*rsc) > avail) {
 830                dev_err(dev, "carveout rsc is truncated\n");
 831                return -EINVAL;
 832        }
 833
 834        /* make sure reserved bytes are zeroes */
 835        if (rsc->reserved) {
 836                dev_err(dev, "carveout rsc has non zero reserved bytes\n");
 837                return -EINVAL;
 838        }
 839
 840        dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n",
 841                rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags);
 842
 843        /*
 844         * Check carveout rsc already part of a registered carveout,
 845         * Search by name, then check the da and length
 846         */
 847        carveout = rproc_find_carveout_by_name(rproc, rsc->name);
 848
 849        if (carveout) {
 850                if (carveout->rsc_offset != FW_RSC_ADDR_ANY) {
 851                        dev_err(dev,
 852                                "Carveout already associated to resource table\n");
 853                        return -ENOMEM;
 854                }
 855
 856                if (rproc_check_carveout_da(rproc, carveout, rsc->da, rsc->len))
 857                        return -ENOMEM;
 858
 859                /* Update memory carveout with resource table info */
 860                carveout->rsc_offset = offset;
 861                carveout->flags = rsc->flags;
 862
 863                return 0;
 864        }
 865
 866        /* Register carveout in in list */
 867        carveout = rproc_mem_entry_init(dev, 0, 0, rsc->len, rsc->da,
 868                                        rproc_alloc_carveout,
 869                                        rproc_release_carveout, rsc->name);
 870        if (!carveout) {
 871                dev_err(dev, "Can't allocate memory entry structure\n");
 872                return -ENOMEM;
 873        }
 874
 875        carveout->flags = rsc->flags;
 876        carveout->rsc_offset = offset;
 877        rproc_add_carveout(rproc, carveout);
 878
 879        return 0;
 880}
 881
 882/**
 883 * rproc_add_carveout() - register an allocated carveout region
 884 * @rproc: rproc handle
 885 * @mem: memory entry to register
 886 *
 887 * This function registers specified memory entry in @rproc carveouts list.
 888 * Specified carveout should have been allocated before registering.
 889 */
 890void rproc_add_carveout(struct rproc *rproc, struct rproc_mem_entry *mem)
 891{
 892        list_add_tail(&mem->node, &rproc->carveouts);
 893}
 894EXPORT_SYMBOL(rproc_add_carveout);
 895
 896/**
 897 * rproc_mem_entry_init() - allocate and initialize rproc_mem_entry struct
 898 * @dev: pointer on device struct
 899 * @va: virtual address
 900 * @dma: dma address
 901 * @len: memory carveout length
 902 * @da: device address
 903 * @release: memory carveout function
 904 * @name: carveout name
 905 *
 906 * This function allocates a rproc_mem_entry struct and fill it with parameters
 907 * provided by client.
 908 */
 909struct rproc_mem_entry *
 910rproc_mem_entry_init(struct device *dev,
 911                     void *va, dma_addr_t dma, int len, u32 da,
 912                     int (*alloc)(struct rproc *, struct rproc_mem_entry *),
 913                     int (*release)(struct rproc *, struct rproc_mem_entry *),
 914                     const char *name, ...)
 915{
 916        struct rproc_mem_entry *mem;
 917        va_list args;
 918
 919        mem = kzalloc(sizeof(*mem), GFP_KERNEL);
 920        if (!mem)
 921                return mem;
 922
 923        mem->va = va;
 924        mem->dma = dma;
 925        mem->da = da;
 926        mem->len = len;
 927        mem->alloc = alloc;
 928        mem->release = release;
 929        mem->rsc_offset = FW_RSC_ADDR_ANY;
 930        mem->of_resm_idx = -1;
 931
 932        va_start(args, name);
 933        vsnprintf(mem->name, sizeof(mem->name), name, args);
 934        va_end(args);
 935
 936        return mem;
 937}
 938EXPORT_SYMBOL(rproc_mem_entry_init);
 939
 940/**
 941 * rproc_of_resm_mem_entry_init() - allocate and initialize rproc_mem_entry struct
 942 * from a reserved memory phandle
 943 * @dev: pointer on device struct
 944 * @of_resm_idx: reserved memory phandle index in "memory-region"
 945 * @len: memory carveout length
 946 * @da: device address
 947 * @name: carveout name
 948 *
 949 * This function allocates a rproc_mem_entry struct and fill it with parameters
 950 * provided by client.
 951 */
 952struct rproc_mem_entry *
 953rproc_of_resm_mem_entry_init(struct device *dev, u32 of_resm_idx, int len,
 954                             u32 da, const char *name, ...)
 955{
 956        struct rproc_mem_entry *mem;
 957        va_list args;
 958
 959        mem = kzalloc(sizeof(*mem), GFP_KERNEL);
 960        if (!mem)
 961                return mem;
 962
 963        mem->da = da;
 964        mem->len = len;
 965        mem->rsc_offset = FW_RSC_ADDR_ANY;
 966        mem->of_resm_idx = of_resm_idx;
 967
 968        va_start(args, name);
 969        vsnprintf(mem->name, sizeof(mem->name), name, args);
 970        va_end(args);
 971
 972        return mem;
 973}
 974EXPORT_SYMBOL(rproc_of_resm_mem_entry_init);
 975
 976/**
 977 * A lookup table for resource handlers. The indices are defined in
 978 * enum fw_resource_type.
 979 */
 980static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = {
 981        [RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout,
 982        [RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem,
 983        [RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace,
 984        [RSC_VDEV] = (rproc_handle_resource_t)rproc_handle_vdev,
 985};
 986
 987/* handle firmware resource entries before booting the remote processor */
 988static int rproc_handle_resources(struct rproc *rproc,
 989                                  rproc_handle_resource_t handlers[RSC_LAST])
 990{
 991        struct device *dev = &rproc->dev;
 992        rproc_handle_resource_t handler;
 993        int ret = 0, i;
 994
 995        if (!rproc->table_ptr)
 996                return 0;
 997
 998        for (i = 0; i < rproc->table_ptr->num; i++) {
 999                int offset = rproc->table_ptr->offset[i];
1000                struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset;
1001                int avail = rproc->table_sz - offset - sizeof(*hdr);
1002                void *rsc = (void *)hdr + sizeof(*hdr);
1003
1004                /* make sure table isn't truncated */
1005                if (avail < 0) {
1006                        dev_err(dev, "rsc table is truncated\n");
1007                        return -EINVAL;
1008                }
1009
1010                dev_dbg(dev, "rsc: type %d\n", hdr->type);
1011
1012                if (hdr->type >= RSC_LAST) {
1013                        dev_warn(dev, "unsupported resource %d\n", hdr->type);
1014                        continue;
1015                }
1016
1017                handler = handlers[hdr->type];
1018                if (!handler)
1019                        continue;
1020
1021                ret = handler(rproc, rsc, offset + sizeof(*hdr), avail);
1022                if (ret)
1023                        break;
1024        }
1025
1026        return ret;
1027}
1028
1029static int rproc_prepare_subdevices(struct rproc *rproc)
1030{
1031        struct rproc_subdev *subdev;
1032        int ret;
1033
1034        list_for_each_entry(subdev, &rproc->subdevs, node) {
1035                if (subdev->prepare) {
1036                        ret = subdev->prepare(subdev);
1037                        if (ret)
1038                                goto unroll_preparation;
1039                }
1040        }
1041
1042        return 0;
1043
1044unroll_preparation:
1045        list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1046                if (subdev->unprepare)
1047                        subdev->unprepare(subdev);
1048        }
1049
1050        return ret;
1051}
1052
1053static int rproc_start_subdevices(struct rproc *rproc)
1054{
1055        struct rproc_subdev *subdev;
1056        int ret;
1057
1058        list_for_each_entry(subdev, &rproc->subdevs, node) {
1059                if (subdev->start) {
1060                        ret = subdev->start(subdev);
1061                        if (ret)
1062                                goto unroll_registration;
1063                }
1064        }
1065
1066        return 0;
1067
1068unroll_registration:
1069        list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1070                if (subdev->stop)
1071                        subdev->stop(subdev, true);
1072        }
1073
1074        return ret;
1075}
1076
1077static void rproc_stop_subdevices(struct rproc *rproc, bool crashed)
1078{
1079        struct rproc_subdev *subdev;
1080
1081        list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1082                if (subdev->stop)
1083                        subdev->stop(subdev, crashed);
1084        }
1085}
1086
1087static void rproc_unprepare_subdevices(struct rproc *rproc)
1088{
1089        struct rproc_subdev *subdev;
1090
1091        list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1092                if (subdev->unprepare)
1093                        subdev->unprepare(subdev);
1094        }
1095}
1096
1097/**
1098 * rproc_alloc_registered_carveouts() - allocate all carveouts registered
1099 * in the list
1100 * @rproc: the remote processor handle
1101 *
1102 * This function parses registered carveout list, performs allocation
1103 * if alloc() ops registered and updates resource table information
1104 * if rsc_offset set.
1105 *
1106 * Return: 0 on success
1107 */
1108static int rproc_alloc_registered_carveouts(struct rproc *rproc)
1109{
1110        struct rproc_mem_entry *entry, *tmp;
1111        struct fw_rsc_carveout *rsc;
1112        struct device *dev = &rproc->dev;
1113        int ret;
1114
1115        list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1116                if (entry->alloc) {
1117                        ret = entry->alloc(rproc, entry);
1118                        if (ret) {
1119                                dev_err(dev, "Unable to allocate carveout %s: %d\n",
1120                                        entry->name, ret);
1121                                return -ENOMEM;
1122                        }
1123                }
1124
1125                if (entry->rsc_offset != FW_RSC_ADDR_ANY) {
1126                        /* update resource table */
1127                        rsc = (void *)rproc->table_ptr + entry->rsc_offset;
1128
1129                        /*
1130                         * Some remote processors might need to know the pa
1131                         * even though they are behind an IOMMU. E.g., OMAP4's
1132                         * remote M3 processor needs this so it can control
1133                         * on-chip hardware accelerators that are not behind
1134                         * the IOMMU, and therefor must know the pa.
1135                         *
1136                         * Generally we don't want to expose physical addresses
1137                         * if we don't have to (remote processors are generally
1138                         * _not_ trusted), so we might want to do this only for
1139                         * remote processor that _must_ have this (e.g. OMAP4's
1140                         * dual M3 subsystem).
1141                         *
1142                         * Non-IOMMU processors might also want to have this info.
1143                         * In this case, the device address and the physical address
1144                         * are the same.
1145                         */
1146
1147                        /* Use va if defined else dma to generate pa */
1148                        if (entry->va)
1149                                rsc->pa = (u32)rproc_va_to_pa(entry->va);
1150                        else
1151                                rsc->pa = (u32)entry->dma;
1152
1153                        rsc->da = entry->da;
1154                        rsc->len = entry->len;
1155                }
1156        }
1157
1158        return 0;
1159}
1160
1161/**
1162 * rproc_coredump_cleanup() - clean up dump_segments list
1163 * @rproc: the remote processor handle
1164 */
1165static void rproc_coredump_cleanup(struct rproc *rproc)
1166{
1167        struct rproc_dump_segment *entry, *tmp;
1168
1169        list_for_each_entry_safe(entry, tmp, &rproc->dump_segments, node) {
1170                list_del(&entry->node);
1171                kfree(entry);
1172        }
1173}
1174
1175/**
1176 * rproc_resource_cleanup() - clean up and free all acquired resources
1177 * @rproc: rproc handle
1178 *
1179 * This function will free all resources acquired for @rproc, and it
1180 * is called whenever @rproc either shuts down or fails to boot.
1181 */
1182static void rproc_resource_cleanup(struct rproc *rproc)
1183{
1184        struct rproc_mem_entry *entry, *tmp;
1185        struct rproc_vdev *rvdev, *rvtmp;
1186        struct device *dev = &rproc->dev;
1187
1188        /* clean up debugfs trace entries */
1189        list_for_each_entry_safe(entry, tmp, &rproc->traces, node) {
1190                rproc_remove_trace_file(entry->priv);
1191                rproc->num_traces--;
1192                list_del(&entry->node);
1193                kfree(entry);
1194        }
1195
1196        /* clean up iommu mapping entries */
1197        list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
1198                size_t unmapped;
1199
1200                unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
1201                if (unmapped != entry->len) {
1202                        /* nothing much to do besides complaining */
1203                        dev_err(dev, "failed to unmap %u/%zu\n", entry->len,
1204                                unmapped);
1205                }
1206
1207                list_del(&entry->node);
1208                kfree(entry);
1209        }
1210
1211        /* clean up carveout allocations */
1212        list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1213                if (entry->release)
1214                        entry->release(rproc, entry);
1215                list_del(&entry->node);
1216                kfree(entry);
1217        }
1218
1219        /* clean up remote vdev entries */
1220        list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
1221                kref_put(&rvdev->refcount, rproc_vdev_release);
1222
1223        rproc_coredump_cleanup(rproc);
1224}
1225
1226static int rproc_start(struct rproc *rproc, const struct firmware *fw)
1227{
1228        struct resource_table *loaded_table;
1229        struct device *dev = &rproc->dev;
1230        int ret;
1231
1232        /* load the ELF segments to memory */
1233        ret = rproc_load_segments(rproc, fw);
1234        if (ret) {
1235                dev_err(dev, "Failed to load program segments: %d\n", ret);
1236                return ret;
1237        }
1238
1239        /*
1240         * The starting device has been given the rproc->cached_table as the
1241         * resource table. The address of the vring along with the other
1242         * allocated resources (carveouts etc) is stored in cached_table.
1243         * In order to pass this information to the remote device we must copy
1244         * this information to device memory. We also update the table_ptr so
1245         * that any subsequent changes will be applied to the loaded version.
1246         */
1247        loaded_table = rproc_find_loaded_rsc_table(rproc, fw);
1248        if (loaded_table) {
1249                memcpy(loaded_table, rproc->cached_table, rproc->table_sz);
1250                rproc->table_ptr = loaded_table;
1251        }
1252
1253        ret = rproc_prepare_subdevices(rproc);
1254        if (ret) {
1255                dev_err(dev, "failed to prepare subdevices for %s: %d\n",
1256                        rproc->name, ret);
1257                goto reset_table_ptr;
1258        }
1259
1260        /* power up the remote processor */
1261        ret = rproc->ops->start(rproc);
1262        if (ret) {
1263                dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
1264                goto unprepare_subdevices;
1265        }
1266
1267        /* Start any subdevices for the remote processor */
1268        ret = rproc_start_subdevices(rproc);
1269        if (ret) {
1270                dev_err(dev, "failed to probe subdevices for %s: %d\n",
1271                        rproc->name, ret);
1272                goto stop_rproc;
1273        }
1274
1275        rproc->state = RPROC_RUNNING;
1276
1277        dev_info(dev, "remote processor %s is now up\n", rproc->name);
1278
1279        return 0;
1280
1281stop_rproc:
1282        rproc->ops->stop(rproc);
1283unprepare_subdevices:
1284        rproc_unprepare_subdevices(rproc);
1285reset_table_ptr:
1286        rproc->table_ptr = rproc->cached_table;
1287
1288        return ret;
1289}
1290
1291/*
1292 * take a firmware and boot a remote processor with it.
1293 */
1294static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
1295{
1296        struct device *dev = &rproc->dev;
1297        const char *name = rproc->firmware;
1298        int ret;
1299
1300        ret = rproc_fw_sanity_check(rproc, fw);
1301        if (ret)
1302                return ret;
1303
1304        dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
1305
1306        /*
1307         * if enabling an IOMMU isn't relevant for this rproc, this is
1308         * just a nop
1309         */
1310        ret = rproc_enable_iommu(rproc);
1311        if (ret) {
1312                dev_err(dev, "can't enable iommu: %d\n", ret);
1313                return ret;
1314        }
1315
1316        rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
1317
1318        /* Load resource table, core dump segment list etc from the firmware */
1319        ret = rproc_parse_fw(rproc, fw);
1320        if (ret)
1321                goto disable_iommu;
1322
1323        /* reset max_notifyid */
1324        rproc->max_notifyid = -1;
1325
1326        /* reset handled vdev */
1327        rproc->nb_vdev = 0;
1328
1329        /* handle fw resources which are required to boot rproc */
1330        ret = rproc_handle_resources(rproc, rproc_loading_handlers);
1331        if (ret) {
1332                dev_err(dev, "Failed to process resources: %d\n", ret);
1333                goto clean_up_resources;
1334        }
1335
1336        /* Allocate carveout resources associated to rproc */
1337        ret = rproc_alloc_registered_carveouts(rproc);
1338        if (ret) {
1339                dev_err(dev, "Failed to allocate associated carveouts: %d\n",
1340                        ret);
1341                goto clean_up_resources;
1342        }
1343
1344        ret = rproc_start(rproc, fw);
1345        if (ret)
1346                goto clean_up_resources;
1347
1348        return 0;
1349
1350clean_up_resources:
1351        rproc_resource_cleanup(rproc);
1352        kfree(rproc->cached_table);
1353        rproc->cached_table = NULL;
1354        rproc->table_ptr = NULL;
1355disable_iommu:
1356        rproc_disable_iommu(rproc);
1357        return ret;
1358}
1359
1360/*
1361 * take a firmware and boot it up.
1362 *
1363 * Note: this function is called asynchronously upon registration of the
1364 * remote processor (so we must wait until it completes before we try
1365 * to unregister the device. one other option is just to use kref here,
1366 * that might be cleaner).
1367 */
1368static void rproc_auto_boot_callback(const struct firmware *fw, void *context)
1369{
1370        struct rproc *rproc = context;
1371
1372        rproc_boot(rproc);
1373
1374        release_firmware(fw);
1375}
1376
1377static int rproc_trigger_auto_boot(struct rproc *rproc)
1378{
1379        int ret;
1380
1381        /*
1382         * We're initiating an asynchronous firmware loading, so we can
1383         * be built-in kernel code, without hanging the boot process.
1384         */
1385        ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG,
1386                                      rproc->firmware, &rproc->dev, GFP_KERNEL,
1387                                      rproc, rproc_auto_boot_callback);
1388        if (ret < 0)
1389                dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
1390
1391        return ret;
1392}
1393
1394static int rproc_stop(struct rproc *rproc, bool crashed)
1395{
1396        struct device *dev = &rproc->dev;
1397        int ret;
1398
1399        /* Stop any subdevices for the remote processor */
1400        rproc_stop_subdevices(rproc, crashed);
1401
1402        /* the installed resource table is no longer accessible */
1403        rproc->table_ptr = rproc->cached_table;
1404
1405        /* power off the remote processor */
1406        ret = rproc->ops->stop(rproc);
1407        if (ret) {
1408                dev_err(dev, "can't stop rproc: %d\n", ret);
1409                return ret;
1410        }
1411
1412        rproc_unprepare_subdevices(rproc);
1413
1414        rproc->state = RPROC_OFFLINE;
1415
1416        dev_info(dev, "stopped remote processor %s\n", rproc->name);
1417
1418        return 0;
1419}
1420
1421/**
1422 * rproc_coredump_add_segment() - add segment of device memory to coredump
1423 * @rproc:      handle of a remote processor
1424 * @da:         device address
1425 * @size:       size of segment
1426 *
1427 * Add device memory to the list of segments to be included in a coredump for
1428 * the remoteproc.
1429 *
1430 * Return: 0 on success, negative errno on error.
1431 */
1432int rproc_coredump_add_segment(struct rproc *rproc, dma_addr_t da, size_t size)
1433{
1434        struct rproc_dump_segment *segment;
1435
1436        segment = kzalloc(sizeof(*segment), GFP_KERNEL);
1437        if (!segment)
1438                return -ENOMEM;
1439
1440        segment->da = da;
1441        segment->size = size;
1442
1443        list_add_tail(&segment->node, &rproc->dump_segments);
1444
1445        return 0;
1446}
1447EXPORT_SYMBOL(rproc_coredump_add_segment);
1448
1449/**
1450 * rproc_coredump_add_custom_segment() - add custom coredump segment
1451 * @rproc:      handle of a remote processor
1452 * @da:         device address
1453 * @size:       size of segment
1454 * @dumpfn:     custom dump function called for each segment during coredump
1455 * @priv:       private data
1456 *
1457 * Add device memory to the list of segments to be included in the coredump
1458 * and associate the segment with the given custom dump function and private
1459 * data.
1460 *
1461 * Return: 0 on success, negative errno on error.
1462 */
1463int rproc_coredump_add_custom_segment(struct rproc *rproc,
1464                                      dma_addr_t da, size_t size,
1465                                      void (*dumpfn)(struct rproc *rproc,
1466                                                     struct rproc_dump_segment *segment,
1467                                                     void *dest),
1468                                      void *priv)
1469{
1470        struct rproc_dump_segment *segment;
1471
1472        segment = kzalloc(sizeof(*segment), GFP_KERNEL);
1473        if (!segment)
1474                return -ENOMEM;
1475
1476        segment->da = da;
1477        segment->size = size;
1478        segment->priv = priv;
1479        segment->dump = dumpfn;
1480
1481        list_add_tail(&segment->node, &rproc->dump_segments);
1482
1483        return 0;
1484}
1485EXPORT_SYMBOL(rproc_coredump_add_custom_segment);
1486
1487/**
1488 * rproc_coredump() - perform coredump
1489 * @rproc:      rproc handle
1490 *
1491 * This function will generate an ELF header for the registered segments
1492 * and create a devcoredump device associated with rproc.
1493 */
1494static void rproc_coredump(struct rproc *rproc)
1495{
1496        struct rproc_dump_segment *segment;
1497        struct elf32_phdr *phdr;
1498        struct elf32_hdr *ehdr;
1499        size_t data_size;
1500        size_t offset;
1501        void *data;
1502        void *ptr;
1503        int phnum = 0;
1504
1505        if (list_empty(&rproc->dump_segments))
1506                return;
1507
1508        data_size = sizeof(*ehdr);
1509        list_for_each_entry(segment, &rproc->dump_segments, node) {
1510                data_size += sizeof(*phdr) + segment->size;
1511
1512                phnum++;
1513        }
1514
1515        data = vmalloc(data_size);
1516        if (!data)
1517                return;
1518
1519        ehdr = data;
1520
1521        memset(ehdr, 0, sizeof(*ehdr));
1522        memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
1523        ehdr->e_ident[EI_CLASS] = ELFCLASS32;
1524        ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
1525        ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1526        ehdr->e_ident[EI_OSABI] = ELFOSABI_NONE;
1527        ehdr->e_type = ET_CORE;
1528        ehdr->e_machine = EM_NONE;
1529        ehdr->e_version = EV_CURRENT;
1530        ehdr->e_entry = rproc->bootaddr;
1531        ehdr->e_phoff = sizeof(*ehdr);
1532        ehdr->e_ehsize = sizeof(*ehdr);
1533        ehdr->e_phentsize = sizeof(*phdr);
1534        ehdr->e_phnum = phnum;
1535
1536        phdr = data + ehdr->e_phoff;
1537        offset = ehdr->e_phoff + sizeof(*phdr) * ehdr->e_phnum;
1538        list_for_each_entry(segment, &rproc->dump_segments, node) {
1539                memset(phdr, 0, sizeof(*phdr));
1540                phdr->p_type = PT_LOAD;
1541                phdr->p_offset = offset;
1542                phdr->p_vaddr = segment->da;
1543                phdr->p_paddr = segment->da;
1544                phdr->p_filesz = segment->size;
1545                phdr->p_memsz = segment->size;
1546                phdr->p_flags = PF_R | PF_W | PF_X;
1547                phdr->p_align = 0;
1548
1549                if (segment->dump) {
1550                        segment->dump(rproc, segment, data + offset);
1551                } else {
1552                        ptr = rproc_da_to_va(rproc, segment->da, segment->size);
1553                        if (!ptr) {
1554                                dev_err(&rproc->dev,
1555                                        "invalid coredump segment (%pad, %zu)\n",
1556                                        &segment->da, segment->size);
1557                                memset(data + offset, 0xff, segment->size);
1558                        } else {
1559                                memcpy(data + offset, ptr, segment->size);
1560                        }
1561                }
1562
1563                offset += phdr->p_filesz;
1564                phdr++;
1565        }
1566
1567        dev_coredumpv(&rproc->dev, data, data_size, GFP_KERNEL);
1568}
1569
1570/**
1571 * rproc_trigger_recovery() - recover a remoteproc
1572 * @rproc: the remote processor
1573 *
1574 * The recovery is done by resetting all the virtio devices, that way all the
1575 * rpmsg drivers will be reseted along with the remote processor making the
1576 * remoteproc functional again.
1577 *
1578 * This function can sleep, so it cannot be called from atomic context.
1579 */
1580int rproc_trigger_recovery(struct rproc *rproc)
1581{
1582        const struct firmware *firmware_p;
1583        struct device *dev = &rproc->dev;
1584        int ret;
1585
1586        dev_err(dev, "recovering %s\n", rproc->name);
1587
1588        ret = mutex_lock_interruptible(&rproc->lock);
1589        if (ret)
1590                return ret;
1591
1592        ret = rproc_stop(rproc, true);
1593        if (ret)
1594                goto unlock_mutex;
1595
1596        /* generate coredump */
1597        rproc_coredump(rproc);
1598
1599        /* load firmware */
1600        ret = request_firmware(&firmware_p, rproc->firmware, dev);
1601        if (ret < 0) {
1602                dev_err(dev, "request_firmware failed: %d\n", ret);
1603                goto unlock_mutex;
1604        }
1605
1606        /* boot the remote processor up again */
1607        ret = rproc_start(rproc, firmware_p);
1608
1609        release_firmware(firmware_p);
1610
1611unlock_mutex:
1612        mutex_unlock(&rproc->lock);
1613        return ret;
1614}
1615
1616/**
1617 * rproc_crash_handler_work() - handle a crash
1618 *
1619 * This function needs to handle everything related to a crash, like cpu
1620 * registers and stack dump, information to help to debug the fatal error, etc.
1621 */
1622static void rproc_crash_handler_work(struct work_struct *work)
1623{
1624        struct rproc *rproc = container_of(work, struct rproc, crash_handler);
1625        struct device *dev = &rproc->dev;
1626
1627        dev_dbg(dev, "enter %s\n", __func__);
1628
1629        mutex_lock(&rproc->lock);
1630
1631        if (rproc->state == RPROC_CRASHED || rproc->state == RPROC_OFFLINE) {
1632                /* handle only the first crash detected */
1633                mutex_unlock(&rproc->lock);
1634                return;
1635        }
1636
1637        rproc->state = RPROC_CRASHED;
1638        dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
1639                rproc->name);
1640
1641        mutex_unlock(&rproc->lock);
1642
1643        if (!rproc->recovery_disabled)
1644                rproc_trigger_recovery(rproc);
1645}
1646
1647/**
1648 * rproc_boot() - boot a remote processor
1649 * @rproc: handle of a remote processor
1650 *
1651 * Boot a remote processor (i.e. load its firmware, power it on, ...).
1652 *
1653 * If the remote processor is already powered on, this function immediately
1654 * returns (successfully).
1655 *
1656 * Returns 0 on success, and an appropriate error value otherwise.
1657 */
1658int rproc_boot(struct rproc *rproc)
1659{
1660        const struct firmware *firmware_p;
1661        struct device *dev;
1662        int ret;
1663
1664        if (!rproc) {
1665                pr_err("invalid rproc handle\n");
1666                return -EINVAL;
1667        }
1668
1669        dev = &rproc->dev;
1670
1671        ret = mutex_lock_interruptible(&rproc->lock);
1672        if (ret) {
1673                dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1674                return ret;
1675        }
1676
1677        if (rproc->state == RPROC_DELETED) {
1678                ret = -ENODEV;
1679                dev_err(dev, "can't boot deleted rproc %s\n", rproc->name);
1680                goto unlock_mutex;
1681        }
1682
1683        /* skip the boot process if rproc is already powered up */
1684        if (atomic_inc_return(&rproc->power) > 1) {
1685                ret = 0;
1686                goto unlock_mutex;
1687        }
1688
1689        dev_info(dev, "powering up %s\n", rproc->name);
1690
1691        /* load firmware */
1692        ret = request_firmware(&firmware_p, rproc->firmware, dev);
1693        if (ret < 0) {
1694                dev_err(dev, "request_firmware failed: %d\n", ret);
1695                goto downref_rproc;
1696        }
1697
1698        ret = rproc_fw_boot(rproc, firmware_p);
1699
1700        release_firmware(firmware_p);
1701
1702downref_rproc:
1703        if (ret)
1704                atomic_dec(&rproc->power);
1705unlock_mutex:
1706        mutex_unlock(&rproc->lock);
1707        return ret;
1708}
1709EXPORT_SYMBOL(rproc_boot);
1710
1711/**
1712 * rproc_shutdown() - power off the remote processor
1713 * @rproc: the remote processor
1714 *
1715 * Power off a remote processor (previously booted with rproc_boot()).
1716 *
1717 * In case @rproc is still being used by an additional user(s), then
1718 * this function will just decrement the power refcount and exit,
1719 * without really powering off the device.
1720 *
1721 * Every call to rproc_boot() must (eventually) be accompanied by a call
1722 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
1723 *
1724 * Notes:
1725 * - we're not decrementing the rproc's refcount, only the power refcount.
1726 *   which means that the @rproc handle stays valid even after rproc_shutdown()
1727 *   returns, and users can still use it with a subsequent rproc_boot(), if
1728 *   needed.
1729 */
1730void rproc_shutdown(struct rproc *rproc)
1731{
1732        struct device *dev = &rproc->dev;
1733        int ret;
1734
1735        ret = mutex_lock_interruptible(&rproc->lock);
1736        if (ret) {
1737                dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1738                return;
1739        }
1740
1741        /* if the remote proc is still needed, bail out */
1742        if (!atomic_dec_and_test(&rproc->power))
1743                goto out;
1744
1745        ret = rproc_stop(rproc, false);
1746        if (ret) {
1747                atomic_inc(&rproc->power);
1748                goto out;
1749        }
1750
1751        /* clean up all acquired resources */
1752        rproc_resource_cleanup(rproc);
1753
1754        rproc_disable_iommu(rproc);
1755
1756        /* Free the copy of the resource table */
1757        kfree(rproc->cached_table);
1758        rproc->cached_table = NULL;
1759        rproc->table_ptr = NULL;
1760out:
1761        mutex_unlock(&rproc->lock);
1762}
1763EXPORT_SYMBOL(rproc_shutdown);
1764
1765/**
1766 * rproc_get_by_phandle() - find a remote processor by phandle
1767 * @phandle: phandle to the rproc
1768 *
1769 * Finds an rproc handle using the remote processor's phandle, and then
1770 * return a handle to the rproc.
1771 *
1772 * This function increments the remote processor's refcount, so always
1773 * use rproc_put() to decrement it back once rproc isn't needed anymore.
1774 *
1775 * Returns the rproc handle on success, and NULL on failure.
1776 */
1777#ifdef CONFIG_OF
1778struct rproc *rproc_get_by_phandle(phandle phandle)
1779{
1780        struct rproc *rproc = NULL, *r;
1781        struct device_node *np;
1782
1783        np = of_find_node_by_phandle(phandle);
1784        if (!np)
1785                return NULL;
1786
1787        mutex_lock(&rproc_list_mutex);
1788        list_for_each_entry(r, &rproc_list, node) {
1789                if (r->dev.parent && r->dev.parent->of_node == np) {
1790                        /* prevent underlying implementation from being removed */
1791                        if (!try_module_get(r->dev.parent->driver->owner)) {
1792                                dev_err(&r->dev, "can't get owner\n");
1793                                break;
1794                        }
1795
1796                        rproc = r;
1797                        get_device(&rproc->dev);
1798                        break;
1799                }
1800        }
1801        mutex_unlock(&rproc_list_mutex);
1802
1803        of_node_put(np);
1804
1805        return rproc;
1806}
1807#else
1808struct rproc *rproc_get_by_phandle(phandle phandle)
1809{
1810        return NULL;
1811}
1812#endif
1813EXPORT_SYMBOL(rproc_get_by_phandle);
1814
1815/**
1816 * rproc_add() - register a remote processor
1817 * @rproc: the remote processor handle to register
1818 *
1819 * Registers @rproc with the remoteproc framework, after it has been
1820 * allocated with rproc_alloc().
1821 *
1822 * This is called by the platform-specific rproc implementation, whenever
1823 * a new remote processor device is probed.
1824 *
1825 * Returns 0 on success and an appropriate error code otherwise.
1826 *
1827 * Note: this function initiates an asynchronous firmware loading
1828 * context, which will look for virtio devices supported by the rproc's
1829 * firmware.
1830 *
1831 * If found, those virtio devices will be created and added, so as a result
1832 * of registering this remote processor, additional virtio drivers might be
1833 * probed.
1834 */
1835int rproc_add(struct rproc *rproc)
1836{
1837        struct device *dev = &rproc->dev;
1838        int ret;
1839
1840        ret = device_add(dev);
1841        if (ret < 0)
1842                return ret;
1843
1844        dev_info(dev, "%s is available\n", rproc->name);
1845
1846        /* create debugfs entries */
1847        rproc_create_debug_dir(rproc);
1848
1849        /* if rproc is marked always-on, request it to boot */
1850        if (rproc->auto_boot) {
1851                ret = rproc_trigger_auto_boot(rproc);
1852                if (ret < 0)
1853                        return ret;
1854        }
1855
1856        /* expose to rproc_get_by_phandle users */
1857        mutex_lock(&rproc_list_mutex);
1858        list_add(&rproc->node, &rproc_list);
1859        mutex_unlock(&rproc_list_mutex);
1860
1861        return 0;
1862}
1863EXPORT_SYMBOL(rproc_add);
1864
1865/**
1866 * rproc_type_release() - release a remote processor instance
1867 * @dev: the rproc's device
1868 *
1869 * This function should _never_ be called directly.
1870 *
1871 * It will be called by the driver core when no one holds a valid pointer
1872 * to @dev anymore.
1873 */
1874static void rproc_type_release(struct device *dev)
1875{
1876        struct rproc *rproc = container_of(dev, struct rproc, dev);
1877
1878        dev_info(&rproc->dev, "releasing %s\n", rproc->name);
1879
1880        idr_destroy(&rproc->notifyids);
1881
1882        if (rproc->index >= 0)
1883                ida_simple_remove(&rproc_dev_index, rproc->index);
1884
1885        kfree(rproc->firmware);
1886        kfree(rproc->ops);
1887        kfree(rproc);
1888}
1889
1890static const struct device_type rproc_type = {
1891        .name           = "remoteproc",
1892        .release        = rproc_type_release,
1893};
1894
1895/**
1896 * rproc_alloc() - allocate a remote processor handle
1897 * @dev: the underlying device
1898 * @name: name of this remote processor
1899 * @ops: platform-specific handlers (mainly start/stop)
1900 * @firmware: name of firmware file to load, can be NULL
1901 * @len: length of private data needed by the rproc driver (in bytes)
1902 *
1903 * Allocates a new remote processor handle, but does not register
1904 * it yet. if @firmware is NULL, a default name is used.
1905 *
1906 * This function should be used by rproc implementations during initialization
1907 * of the remote processor.
1908 *
1909 * After creating an rproc handle using this function, and when ready,
1910 * implementations should then call rproc_add() to complete
1911 * the registration of the remote processor.
1912 *
1913 * On success the new rproc is returned, and on failure, NULL.
1914 *
1915 * Note: _never_ directly deallocate @rproc, even if it was not registered
1916 * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free().
1917 */
1918struct rproc *rproc_alloc(struct device *dev, const char *name,
1919                          const struct rproc_ops *ops,
1920                          const char *firmware, int len)
1921{
1922        struct rproc *rproc;
1923        char *p, *template = "rproc-%s-fw";
1924        int name_len;
1925
1926        if (!dev || !name || !ops)
1927                return NULL;
1928
1929        if (!firmware) {
1930                /*
1931                 * If the caller didn't pass in a firmware name then
1932                 * construct a default name.
1933                 */
1934                name_len = strlen(name) + strlen(template) - 2 + 1;
1935                p = kmalloc(name_len, GFP_KERNEL);
1936                if (!p)
1937                        return NULL;
1938                snprintf(p, name_len, template, name);
1939        } else {
1940                p = kstrdup(firmware, GFP_KERNEL);
1941                if (!p)
1942                        return NULL;
1943        }
1944
1945        rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL);
1946        if (!rproc) {
1947                kfree(p);
1948                return NULL;
1949        }
1950
1951        rproc->ops = kmemdup(ops, sizeof(*ops), GFP_KERNEL);
1952        if (!rproc->ops) {
1953                kfree(p);
1954                kfree(rproc);
1955                return NULL;
1956        }
1957
1958        rproc->firmware = p;
1959        rproc->name = name;
1960        rproc->priv = &rproc[1];
1961        rproc->auto_boot = true;
1962
1963        device_initialize(&rproc->dev);
1964        rproc->dev.parent = dev;
1965        rproc->dev.type = &rproc_type;
1966        rproc->dev.class = &rproc_class;
1967        rproc->dev.driver_data = rproc;
1968
1969        /* Assign a unique device index and name */
1970        rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL);
1971        if (rproc->index < 0) {
1972                dev_err(dev, "ida_simple_get failed: %d\n", rproc->index);
1973                put_device(&rproc->dev);
1974                return NULL;
1975        }
1976
1977        dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);
1978
1979        atomic_set(&rproc->power, 0);
1980
1981        /* Default to ELF loader if no load function is specified */
1982        if (!rproc->ops->load) {
1983                rproc->ops->load = rproc_elf_load_segments;
1984                rproc->ops->parse_fw = rproc_elf_load_rsc_table;
1985                rproc->ops->find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table;
1986                rproc->ops->sanity_check = rproc_elf_sanity_check;
1987                rproc->ops->get_boot_addr = rproc_elf_get_boot_addr;
1988        }
1989
1990        mutex_init(&rproc->lock);
1991
1992        idr_init(&rproc->notifyids);
1993
1994        INIT_LIST_HEAD(&rproc->carveouts);
1995        INIT_LIST_HEAD(&rproc->mappings);
1996        INIT_LIST_HEAD(&rproc->traces);
1997        INIT_LIST_HEAD(&rproc->rvdevs);
1998        INIT_LIST_HEAD(&rproc->subdevs);
1999        INIT_LIST_HEAD(&rproc->dump_segments);
2000
2001        INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
2002
2003        rproc->state = RPROC_OFFLINE;
2004
2005        return rproc;
2006}
2007EXPORT_SYMBOL(rproc_alloc);
2008
2009/**
2010 * rproc_free() - unroll rproc_alloc()
2011 * @rproc: the remote processor handle
2012 *
2013 * This function decrements the rproc dev refcount.
2014 *
2015 * If no one holds any reference to rproc anymore, then its refcount would
2016 * now drop to zero, and it would be freed.
2017 */
2018void rproc_free(struct rproc *rproc)
2019{
2020        put_device(&rproc->dev);
2021}
2022EXPORT_SYMBOL(rproc_free);
2023
2024/**
2025 * rproc_put() - release rproc reference
2026 * @rproc: the remote processor handle
2027 *
2028 * This function decrements the rproc dev refcount.
2029 *
2030 * If no one holds any reference to rproc anymore, then its refcount would
2031 * now drop to zero, and it would be freed.
2032 */
2033void rproc_put(struct rproc *rproc)
2034{
2035        module_put(rproc->dev.parent->driver->owner);
2036        put_device(&rproc->dev);
2037}
2038EXPORT_SYMBOL(rproc_put);
2039
2040/**
2041 * rproc_del() - unregister a remote processor
2042 * @rproc: rproc handle to unregister
2043 *
2044 * This function should be called when the platform specific rproc
2045 * implementation decides to remove the rproc device. it should
2046 * _only_ be called if a previous invocation of rproc_add()
2047 * has completed successfully.
2048 *
2049 * After rproc_del() returns, @rproc isn't freed yet, because
2050 * of the outstanding reference created by rproc_alloc. To decrement that
2051 * one last refcount, one still needs to call rproc_free().
2052 *
2053 * Returns 0 on success and -EINVAL if @rproc isn't valid.
2054 */
2055int rproc_del(struct rproc *rproc)
2056{
2057        if (!rproc)
2058                return -EINVAL;
2059
2060        /* if rproc is marked always-on, rproc_add() booted it */
2061        /* TODO: make sure this works with rproc->power > 1 */
2062        if (rproc->auto_boot)
2063                rproc_shutdown(rproc);
2064
2065        mutex_lock(&rproc->lock);
2066        rproc->state = RPROC_DELETED;
2067        mutex_unlock(&rproc->lock);
2068
2069        rproc_delete_debug_dir(rproc);
2070
2071        /* the rproc is downref'ed as soon as it's removed from the klist */
2072        mutex_lock(&rproc_list_mutex);
2073        list_del(&rproc->node);
2074        mutex_unlock(&rproc_list_mutex);
2075
2076        device_del(&rproc->dev);
2077
2078        return 0;
2079}
2080EXPORT_SYMBOL(rproc_del);
2081
2082/**
2083 * rproc_add_subdev() - add a subdevice to a remoteproc
2084 * @rproc: rproc handle to add the subdevice to
2085 * @subdev: subdev handle to register
2086 *
2087 * Caller is responsible for populating optional subdevice function pointers.
2088 */
2089void rproc_add_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2090{
2091        list_add_tail(&subdev->node, &rproc->subdevs);
2092}
2093EXPORT_SYMBOL(rproc_add_subdev);
2094
2095/**
2096 * rproc_remove_subdev() - remove a subdevice from a remoteproc
2097 * @rproc: rproc handle to remove the subdevice from
2098 * @subdev: subdev handle, previously registered with rproc_add_subdev()
2099 */
2100void rproc_remove_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2101{
2102        list_del(&subdev->node);
2103}
2104EXPORT_SYMBOL(rproc_remove_subdev);
2105
2106/**
2107 * rproc_get_by_child() - acquire rproc handle of @dev's ancestor
2108 * @dev:        child device to find ancestor of
2109 *
2110 * Returns the ancestor rproc instance, or NULL if not found.
2111 */
2112struct rproc *rproc_get_by_child(struct device *dev)
2113{
2114        for (dev = dev->parent; dev; dev = dev->parent) {
2115                if (dev->type == &rproc_type)
2116                        return dev->driver_data;
2117        }
2118
2119        return NULL;
2120}
2121EXPORT_SYMBOL(rproc_get_by_child);
2122
2123/**
2124 * rproc_report_crash() - rproc crash reporter function
2125 * @rproc: remote processor
2126 * @type: crash type
2127 *
2128 * This function must be called every time a crash is detected by the low-level
2129 * drivers implementing a specific remoteproc. This should not be called from a
2130 * non-remoteproc driver.
2131 *
2132 * This function can be called from atomic/interrupt context.
2133 */
2134void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
2135{
2136        if (!rproc) {
2137                pr_err("NULL rproc pointer\n");
2138                return;
2139        }
2140
2141        dev_err(&rproc->dev, "crash detected in %s: type %s\n",
2142                rproc->name, rproc_crash_to_string(type));
2143
2144        /* create a new task to handle the error */
2145        schedule_work(&rproc->crash_handler);
2146}
2147EXPORT_SYMBOL(rproc_report_crash);
2148
2149static int __init remoteproc_init(void)
2150{
2151        rproc_init_sysfs();
2152        rproc_init_debugfs();
2153
2154        return 0;
2155}
2156module_init(remoteproc_init);
2157
2158static void __exit remoteproc_exit(void)
2159{
2160        ida_destroy(&rproc_dev_index);
2161
2162        rproc_exit_debugfs();
2163        rproc_exit_sysfs();
2164}
2165module_exit(remoteproc_exit);
2166
2167MODULE_LICENSE("GPL v2");
2168MODULE_DESCRIPTION("Generic Remote Processor Framework");
2169