linux/drivers/soc/ti/knav_qmss_queue.c
<<
>>
Prefs
   1/*
   2 * Keystone Queue Manager subsystem driver
   3 *
   4 * Copyright (C) 2014 Texas Instruments Incorporated - http://www.ti.com
   5 * Authors:     Sandeep Nair <sandeep_n@ti.com>
   6 *              Cyril Chemparathy <cyril@ti.com>
   7 *              Santosh Shilimkar <santosh.shilimkar@ti.com>
   8 *
   9 * This program is free software; you can redistribute it and/or
  10 * modify it under the terms of the GNU General Public License
  11 * version 2 as published by the Free Software Foundation.
  12 *
  13 * This program is distributed in the hope that it will be useful, but
  14 * WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  16 * General Public License for more details.
  17 */
  18
  19#include <linux/debugfs.h>
  20#include <linux/dma-mapping.h>
  21#include <linux/firmware.h>
  22#include <linux/interrupt.h>
  23#include <linux/io.h>
  24#include <linux/module.h>
  25#include <linux/of_address.h>
  26#include <linux/of_device.h>
  27#include <linux/of_irq.h>
  28#include <linux/pm_runtime.h>
  29#include <linux/slab.h>
  30#include <linux/soc/ti/knav_qmss.h>
  31
  32#include "knav_qmss.h"
  33
  34static struct knav_device *kdev;
  35static DEFINE_MUTEX(knav_dev_lock);
  36
  37/* Queue manager register indices in DTS */
  38#define KNAV_QUEUE_PEEK_REG_INDEX       0
  39#define KNAV_QUEUE_STATUS_REG_INDEX     1
  40#define KNAV_QUEUE_CONFIG_REG_INDEX     2
  41#define KNAV_QUEUE_REGION_REG_INDEX     3
  42#define KNAV_QUEUE_PUSH_REG_INDEX       4
  43#define KNAV_QUEUE_POP_REG_INDEX        5
  44
  45/* Queue manager register indices in DTS for QMSS in K2G NAVSS.
  46 * There are no status and vbusm push registers on this version
  47 * of QMSS. Push registers are same as pop, So all indices above 1
  48 * are to be re-defined
  49 */
  50#define KNAV_L_QUEUE_CONFIG_REG_INDEX   1
  51#define KNAV_L_QUEUE_REGION_REG_INDEX   2
  52#define KNAV_L_QUEUE_PUSH_REG_INDEX     3
  53
  54/* PDSP register indices in DTS */
  55#define KNAV_QUEUE_PDSP_IRAM_REG_INDEX  0
  56#define KNAV_QUEUE_PDSP_REGS_REG_INDEX  1
  57#define KNAV_QUEUE_PDSP_INTD_REG_INDEX  2
  58#define KNAV_QUEUE_PDSP_CMD_REG_INDEX   3
  59
  60#define knav_queue_idx_to_inst(kdev, idx)                       \
  61        (kdev->instances + (idx << kdev->inst_shift))
  62
  63#define for_each_handle_rcu(qh, inst)                   \
  64        list_for_each_entry_rcu(qh, &inst->handles, list)
  65
  66#define for_each_instance(idx, inst, kdev)              \
  67        for (idx = 0, inst = kdev->instances;           \
  68             idx < (kdev)->num_queues_in_use;                   \
  69             idx++, inst = knav_queue_idx_to_inst(kdev, idx))
  70
  71/* All firmware file names end up here. List the firmware file names below.
  72 * Newest followed by older ones. Search is done from start of the array
  73 * until a firmware file is found.
  74 */
  75const char *knav_acc_firmwares[] = {"ks2_qmss_pdsp_acc48.bin"};
  76
  77static bool device_ready;
  78bool knav_qmss_device_ready(void)
  79{
  80        return device_ready;
  81}
  82EXPORT_SYMBOL_GPL(knav_qmss_device_ready);
  83
  84/**
  85 * knav_queue_notify: qmss queue notfier call
  86 *
  87 * @inst:               qmss queue instance like accumulator
  88 */
  89void knav_queue_notify(struct knav_queue_inst *inst)
  90{
  91        struct knav_queue *qh;
  92
  93        if (!inst)
  94                return;
  95
  96        rcu_read_lock();
  97        for_each_handle_rcu(qh, inst) {
  98                if (atomic_read(&qh->notifier_enabled) <= 0)
  99                        continue;
 100                if (WARN_ON(!qh->notifier_fn))
 101                        continue;
 102                this_cpu_inc(qh->stats->notifies);
 103                qh->notifier_fn(qh->notifier_fn_arg);
 104        }
 105        rcu_read_unlock();
 106}
 107EXPORT_SYMBOL_GPL(knav_queue_notify);
 108
 109static irqreturn_t knav_queue_int_handler(int irq, void *_instdata)
 110{
 111        struct knav_queue_inst *inst = _instdata;
 112
 113        knav_queue_notify(inst);
 114        return IRQ_HANDLED;
 115}
 116
 117static int knav_queue_setup_irq(struct knav_range_info *range,
 118                          struct knav_queue_inst *inst)
 119{
 120        unsigned queue = inst->id - range->queue_base;
 121        int ret = 0, irq;
 122
 123        if (range->flags & RANGE_HAS_IRQ) {
 124                irq = range->irqs[queue].irq;
 125                ret = request_irq(irq, knav_queue_int_handler, 0,
 126                                        inst->irq_name, inst);
 127                if (ret)
 128                        return ret;
 129                disable_irq(irq);
 130                if (range->irqs[queue].cpu_mask) {
 131                        ret = irq_set_affinity_hint(irq, range->irqs[queue].cpu_mask);
 132                        if (ret) {
 133                                dev_warn(range->kdev->dev,
 134                                         "Failed to set IRQ affinity\n");
 135                                return ret;
 136                        }
 137                }
 138        }
 139        return ret;
 140}
 141
 142static void knav_queue_free_irq(struct knav_queue_inst *inst)
 143{
 144        struct knav_range_info *range = inst->range;
 145        unsigned queue = inst->id - inst->range->queue_base;
 146        int irq;
 147
 148        if (range->flags & RANGE_HAS_IRQ) {
 149                irq = range->irqs[queue].irq;
 150                irq_set_affinity_hint(irq, NULL);
 151                free_irq(irq, inst);
 152        }
 153}
 154
 155static inline bool knav_queue_is_busy(struct knav_queue_inst *inst)
 156{
 157        return !list_empty(&inst->handles);
 158}
 159
 160static inline bool knav_queue_is_reserved(struct knav_queue_inst *inst)
 161{
 162        return inst->range->flags & RANGE_RESERVED;
 163}
 164
 165static inline bool knav_queue_is_shared(struct knav_queue_inst *inst)
 166{
 167        struct knav_queue *tmp;
 168
 169        rcu_read_lock();
 170        for_each_handle_rcu(tmp, inst) {
 171                if (tmp->flags & KNAV_QUEUE_SHARED) {
 172                        rcu_read_unlock();
 173                        return true;
 174                }
 175        }
 176        rcu_read_unlock();
 177        return false;
 178}
 179
 180static inline bool knav_queue_match_type(struct knav_queue_inst *inst,
 181                                                unsigned type)
 182{
 183        if ((type == KNAV_QUEUE_QPEND) &&
 184            (inst->range->flags & RANGE_HAS_IRQ)) {
 185                return true;
 186        } else if ((type == KNAV_QUEUE_ACC) &&
 187                (inst->range->flags & RANGE_HAS_ACCUMULATOR)) {
 188                return true;
 189        } else if ((type == KNAV_QUEUE_GP) &&
 190                !(inst->range->flags &
 191                        (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ))) {
 192                return true;
 193        }
 194        return false;
 195}
 196
 197static inline struct knav_queue_inst *
 198knav_queue_match_id_to_inst(struct knav_device *kdev, unsigned id)
 199{
 200        struct knav_queue_inst *inst;
 201        int idx;
 202
 203        for_each_instance(idx, inst, kdev) {
 204                if (inst->id == id)
 205                        return inst;
 206        }
 207        return NULL;
 208}
 209
 210static inline struct knav_queue_inst *knav_queue_find_by_id(int id)
 211{
 212        if (kdev->base_id <= id &&
 213            kdev->base_id + kdev->num_queues > id) {
 214                id -= kdev->base_id;
 215                return knav_queue_match_id_to_inst(kdev, id);
 216        }
 217        return NULL;
 218}
 219
 220static struct knav_queue *__knav_queue_open(struct knav_queue_inst *inst,
 221                                      const char *name, unsigned flags)
 222{
 223        struct knav_queue *qh;
 224        unsigned id;
 225        int ret = 0;
 226
 227        qh = devm_kzalloc(inst->kdev->dev, sizeof(*qh), GFP_KERNEL);
 228        if (!qh)
 229                return ERR_PTR(-ENOMEM);
 230
 231        qh->stats = alloc_percpu(struct knav_queue_stats);
 232        if (!qh->stats) {
 233                ret = -ENOMEM;
 234                goto err;
 235        }
 236
 237        qh->flags = flags;
 238        qh->inst = inst;
 239        id = inst->id - inst->qmgr->start_queue;
 240        qh->reg_push = &inst->qmgr->reg_push[id];
 241        qh->reg_pop = &inst->qmgr->reg_pop[id];
 242        qh->reg_peek = &inst->qmgr->reg_peek[id];
 243
 244        /* first opener? */
 245        if (!knav_queue_is_busy(inst)) {
 246                struct knav_range_info *range = inst->range;
 247
 248                inst->name = kstrndup(name, KNAV_NAME_SIZE - 1, GFP_KERNEL);
 249                if (range->ops && range->ops->open_queue)
 250                        ret = range->ops->open_queue(range, inst, flags);
 251
 252                if (ret)
 253                        goto err;
 254        }
 255        list_add_tail_rcu(&qh->list, &inst->handles);
 256        return qh;
 257
 258err:
 259        if (qh->stats)
 260                free_percpu(qh->stats);
 261        devm_kfree(inst->kdev->dev, qh);
 262        return ERR_PTR(ret);
 263}
 264
 265static struct knav_queue *
 266knav_queue_open_by_id(const char *name, unsigned id, unsigned flags)
 267{
 268        struct knav_queue_inst *inst;
 269        struct knav_queue *qh;
 270
 271        mutex_lock(&knav_dev_lock);
 272
 273        qh = ERR_PTR(-ENODEV);
 274        inst = knav_queue_find_by_id(id);
 275        if (!inst)
 276                goto unlock_ret;
 277
 278        qh = ERR_PTR(-EEXIST);
 279        if (!(flags & KNAV_QUEUE_SHARED) && knav_queue_is_busy(inst))
 280                goto unlock_ret;
 281
 282        qh = ERR_PTR(-EBUSY);
 283        if ((flags & KNAV_QUEUE_SHARED) &&
 284            (knav_queue_is_busy(inst) && !knav_queue_is_shared(inst)))
 285                goto unlock_ret;
 286
 287        qh = __knav_queue_open(inst, name, flags);
 288
 289unlock_ret:
 290        mutex_unlock(&knav_dev_lock);
 291
 292        return qh;
 293}
 294
 295static struct knav_queue *knav_queue_open_by_type(const char *name,
 296                                                unsigned type, unsigned flags)
 297{
 298        struct knav_queue_inst *inst;
 299        struct knav_queue *qh = ERR_PTR(-EINVAL);
 300        int idx;
 301
 302        mutex_lock(&knav_dev_lock);
 303
 304        for_each_instance(idx, inst, kdev) {
 305                if (knav_queue_is_reserved(inst))
 306                        continue;
 307                if (!knav_queue_match_type(inst, type))
 308                        continue;
 309                if (knav_queue_is_busy(inst))
 310                        continue;
 311                qh = __knav_queue_open(inst, name, flags);
 312                goto unlock_ret;
 313        }
 314
 315unlock_ret:
 316        mutex_unlock(&knav_dev_lock);
 317        return qh;
 318}
 319
 320static void knav_queue_set_notify(struct knav_queue_inst *inst, bool enabled)
 321{
 322        struct knav_range_info *range = inst->range;
 323
 324        if (range->ops && range->ops->set_notify)
 325                range->ops->set_notify(range, inst, enabled);
 326}
 327
 328static int knav_queue_enable_notifier(struct knav_queue *qh)
 329{
 330        struct knav_queue_inst *inst = qh->inst;
 331        bool first;
 332
 333        if (WARN_ON(!qh->notifier_fn))
 334                return -EINVAL;
 335
 336        /* Adjust the per handle notifier count */
 337        first = (atomic_inc_return(&qh->notifier_enabled) == 1);
 338        if (!first)
 339                return 0; /* nothing to do */
 340
 341        /* Now adjust the per instance notifier count */
 342        first = (atomic_inc_return(&inst->num_notifiers) == 1);
 343        if (first)
 344                knav_queue_set_notify(inst, true);
 345
 346        return 0;
 347}
 348
 349static int knav_queue_disable_notifier(struct knav_queue *qh)
 350{
 351        struct knav_queue_inst *inst = qh->inst;
 352        bool last;
 353
 354        last = (atomic_dec_return(&qh->notifier_enabled) == 0);
 355        if (!last)
 356                return 0; /* nothing to do */
 357
 358        last = (atomic_dec_return(&inst->num_notifiers) == 0);
 359        if (last)
 360                knav_queue_set_notify(inst, false);
 361
 362        return 0;
 363}
 364
 365static int knav_queue_set_notifier(struct knav_queue *qh,
 366                                struct knav_queue_notify_config *cfg)
 367{
 368        knav_queue_notify_fn old_fn = qh->notifier_fn;
 369
 370        if (!cfg)
 371                return -EINVAL;
 372
 373        if (!(qh->inst->range->flags & (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ)))
 374                return -ENOTSUPP;
 375
 376        if (!cfg->fn && old_fn)
 377                knav_queue_disable_notifier(qh);
 378
 379        qh->notifier_fn = cfg->fn;
 380        qh->notifier_fn_arg = cfg->fn_arg;
 381
 382        if (cfg->fn && !old_fn)
 383                knav_queue_enable_notifier(qh);
 384
 385        return 0;
 386}
 387
 388static int knav_gp_set_notify(struct knav_range_info *range,
 389                               struct knav_queue_inst *inst,
 390                               bool enabled)
 391{
 392        unsigned queue;
 393
 394        if (range->flags & RANGE_HAS_IRQ) {
 395                queue = inst->id - range->queue_base;
 396                if (enabled)
 397                        enable_irq(range->irqs[queue].irq);
 398                else
 399                        disable_irq_nosync(range->irqs[queue].irq);
 400        }
 401        return 0;
 402}
 403
 404static int knav_gp_open_queue(struct knav_range_info *range,
 405                                struct knav_queue_inst *inst, unsigned flags)
 406{
 407        return knav_queue_setup_irq(range, inst);
 408}
 409
 410static int knav_gp_close_queue(struct knav_range_info *range,
 411                                struct knav_queue_inst *inst)
 412{
 413        knav_queue_free_irq(inst);
 414        return 0;
 415}
 416
 417struct knav_range_ops knav_gp_range_ops = {
 418        .set_notify     = knav_gp_set_notify,
 419        .open_queue     = knav_gp_open_queue,
 420        .close_queue    = knav_gp_close_queue,
 421};
 422
 423
 424static int knav_queue_get_count(void *qhandle)
 425{
 426        struct knav_queue *qh = qhandle;
 427        struct knav_queue_inst *inst = qh->inst;
 428
 429        return readl_relaxed(&qh->reg_peek[0].entry_count) +
 430                atomic_read(&inst->desc_count);
 431}
 432
 433static void knav_queue_debug_show_instance(struct seq_file *s,
 434                                        struct knav_queue_inst *inst)
 435{
 436        struct knav_device *kdev = inst->kdev;
 437        struct knav_queue *qh;
 438        int cpu = 0;
 439        int pushes = 0;
 440        int pops = 0;
 441        int push_errors = 0;
 442        int pop_errors = 0;
 443        int notifies = 0;
 444
 445        if (!knav_queue_is_busy(inst))
 446                return;
 447
 448        seq_printf(s, "\tqueue id %d (%s)\n",
 449                   kdev->base_id + inst->id, inst->name);
 450        for_each_handle_rcu(qh, inst) {
 451                for_each_possible_cpu(cpu) {
 452                        pushes += per_cpu_ptr(qh->stats, cpu)->pushes;
 453                        pops += per_cpu_ptr(qh->stats, cpu)->pops;
 454                        push_errors += per_cpu_ptr(qh->stats, cpu)->push_errors;
 455                        pop_errors += per_cpu_ptr(qh->stats, cpu)->pop_errors;
 456                        notifies += per_cpu_ptr(qh->stats, cpu)->notifies;
 457                }
 458
 459                seq_printf(s, "\t\thandle %p: pushes %8d, pops %8d, count %8d, notifies %8d, push errors %8d, pop errors %8d\n",
 460                                qh,
 461                                pushes,
 462                                pops,
 463                                knav_queue_get_count(qh),
 464                                notifies,
 465                                push_errors,
 466                                pop_errors);
 467        }
 468}
 469
 470static int knav_queue_debug_show(struct seq_file *s, void *v)
 471{
 472        struct knav_queue_inst *inst;
 473        int idx;
 474
 475        mutex_lock(&knav_dev_lock);
 476        seq_printf(s, "%s: %u-%u\n",
 477                   dev_name(kdev->dev), kdev->base_id,
 478                   kdev->base_id + kdev->num_queues - 1);
 479        for_each_instance(idx, inst, kdev)
 480                knav_queue_debug_show_instance(s, inst);
 481        mutex_unlock(&knav_dev_lock);
 482
 483        return 0;
 484}
 485
 486static int knav_queue_debug_open(struct inode *inode, struct file *file)
 487{
 488        return single_open(file, knav_queue_debug_show, NULL);
 489}
 490
 491static const struct file_operations knav_queue_debug_ops = {
 492        .open           = knav_queue_debug_open,
 493        .read           = seq_read,
 494        .llseek         = seq_lseek,
 495        .release        = single_release,
 496};
 497
 498static inline int knav_queue_pdsp_wait(u32 * __iomem addr, unsigned timeout,
 499                                        u32 flags)
 500{
 501        unsigned long end;
 502        u32 val = 0;
 503
 504        end = jiffies + msecs_to_jiffies(timeout);
 505        while (time_after(end, jiffies)) {
 506                val = readl_relaxed(addr);
 507                if (flags)
 508                        val &= flags;
 509                if (!val)
 510                        break;
 511                cpu_relax();
 512        }
 513        return val ? -ETIMEDOUT : 0;
 514}
 515
 516
 517static int knav_queue_flush(struct knav_queue *qh)
 518{
 519        struct knav_queue_inst *inst = qh->inst;
 520        unsigned id = inst->id - inst->qmgr->start_queue;
 521
 522        atomic_set(&inst->desc_count, 0);
 523        writel_relaxed(0, &inst->qmgr->reg_push[id].ptr_size_thresh);
 524        return 0;
 525}
 526
 527/**
 528 * knav_queue_open()    - open a hardware queue
 529 * @name                - name to give the queue handle
 530 * @id                  - desired queue number if any or specifes the type
 531 *                        of queue
 532 * @flags               - the following flags are applicable to queues:
 533 *      KNAV_QUEUE_SHARED - allow the queue to be shared. Queues are
 534 *                           exclusive by default.
 535 *                           Subsequent attempts to open a shared queue should
 536 *                           also have this flag.
 537 *
 538 * Returns a handle to the open hardware queue if successful. Use IS_ERR()
 539 * to check the returned value for error codes.
 540 */
 541void *knav_queue_open(const char *name, unsigned id,
 542                                        unsigned flags)
 543{
 544        struct knav_queue *qh = ERR_PTR(-EINVAL);
 545
 546        switch (id) {
 547        case KNAV_QUEUE_QPEND:
 548        case KNAV_QUEUE_ACC:
 549        case KNAV_QUEUE_GP:
 550                qh = knav_queue_open_by_type(name, id, flags);
 551                break;
 552
 553        default:
 554                qh = knav_queue_open_by_id(name, id, flags);
 555                break;
 556        }
 557        return qh;
 558}
 559EXPORT_SYMBOL_GPL(knav_queue_open);
 560
 561/**
 562 * knav_queue_close()   - close a hardware queue handle
 563 * @qh                  - handle to close
 564 */
 565void knav_queue_close(void *qhandle)
 566{
 567        struct knav_queue *qh = qhandle;
 568        struct knav_queue_inst *inst = qh->inst;
 569
 570        while (atomic_read(&qh->notifier_enabled) > 0)
 571                knav_queue_disable_notifier(qh);
 572
 573        mutex_lock(&knav_dev_lock);
 574        list_del_rcu(&qh->list);
 575        mutex_unlock(&knav_dev_lock);
 576        synchronize_rcu();
 577        if (!knav_queue_is_busy(inst)) {
 578                struct knav_range_info *range = inst->range;
 579
 580                if (range->ops && range->ops->close_queue)
 581                        range->ops->close_queue(range, inst);
 582        }
 583        free_percpu(qh->stats);
 584        devm_kfree(inst->kdev->dev, qh);
 585}
 586EXPORT_SYMBOL_GPL(knav_queue_close);
 587
 588/**
 589 * knav_queue_device_control()  - Perform control operations on a queue
 590 * @qh                          - queue handle
 591 * @cmd                         - control commands
 592 * @arg                         - command argument
 593 *
 594 * Returns 0 on success, errno otherwise.
 595 */
 596int knav_queue_device_control(void *qhandle, enum knav_queue_ctrl_cmd cmd,
 597                                unsigned long arg)
 598{
 599        struct knav_queue *qh = qhandle;
 600        struct knav_queue_notify_config *cfg;
 601        int ret;
 602
 603        switch ((int)cmd) {
 604        case KNAV_QUEUE_GET_ID:
 605                ret = qh->inst->kdev->base_id + qh->inst->id;
 606                break;
 607
 608        case KNAV_QUEUE_FLUSH:
 609                ret = knav_queue_flush(qh);
 610                break;
 611
 612        case KNAV_QUEUE_SET_NOTIFIER:
 613                cfg = (void *)arg;
 614                ret = knav_queue_set_notifier(qh, cfg);
 615                break;
 616
 617        case KNAV_QUEUE_ENABLE_NOTIFY:
 618                ret = knav_queue_enable_notifier(qh);
 619                break;
 620
 621        case KNAV_QUEUE_DISABLE_NOTIFY:
 622                ret = knav_queue_disable_notifier(qh);
 623                break;
 624
 625        case KNAV_QUEUE_GET_COUNT:
 626                ret = knav_queue_get_count(qh);
 627                break;
 628
 629        default:
 630                ret = -ENOTSUPP;
 631                break;
 632        }
 633        return ret;
 634}
 635EXPORT_SYMBOL_GPL(knav_queue_device_control);
 636
 637
 638
 639/**
 640 * knav_queue_push()    - push data (or descriptor) to the tail of a queue
 641 * @qh                  - hardware queue handle
 642 * @data                - data to push
 643 * @size                - size of data to push
 644 * @flags               - can be used to pass additional information
 645 *
 646 * Returns 0 on success, errno otherwise.
 647 */
 648int knav_queue_push(void *qhandle, dma_addr_t dma,
 649                                        unsigned size, unsigned flags)
 650{
 651        struct knav_queue *qh = qhandle;
 652        u32 val;
 653
 654        val = (u32)dma | ((size / 16) - 1);
 655        writel_relaxed(val, &qh->reg_push[0].ptr_size_thresh);
 656
 657        this_cpu_inc(qh->stats->pushes);
 658        return 0;
 659}
 660EXPORT_SYMBOL_GPL(knav_queue_push);
 661
 662/**
 663 * knav_queue_pop()     - pop data (or descriptor) from the head of a queue
 664 * @qh                  - hardware queue handle
 665 * @size                - (optional) size of the data pop'ed.
 666 *
 667 * Returns a DMA address on success, 0 on failure.
 668 */
 669dma_addr_t knav_queue_pop(void *qhandle, unsigned *size)
 670{
 671        struct knav_queue *qh = qhandle;
 672        struct knav_queue_inst *inst = qh->inst;
 673        dma_addr_t dma;
 674        u32 val, idx;
 675
 676        /* are we accumulated? */
 677        if (inst->descs) {
 678                if (unlikely(atomic_dec_return(&inst->desc_count) < 0)) {
 679                        atomic_inc(&inst->desc_count);
 680                        return 0;
 681                }
 682                idx  = atomic_inc_return(&inst->desc_head);
 683                idx &= ACC_DESCS_MASK;
 684                val = inst->descs[idx];
 685        } else {
 686                val = readl_relaxed(&qh->reg_pop[0].ptr_size_thresh);
 687                if (unlikely(!val))
 688                        return 0;
 689        }
 690
 691        dma = val & DESC_PTR_MASK;
 692        if (size)
 693                *size = ((val & DESC_SIZE_MASK) + 1) * 16;
 694
 695        this_cpu_inc(qh->stats->pops);
 696        return dma;
 697}
 698EXPORT_SYMBOL_GPL(knav_queue_pop);
 699
 700/* carve out descriptors and push into queue */
 701static void kdesc_fill_pool(struct knav_pool *pool)
 702{
 703        struct knav_region *region;
 704        int i;
 705
 706        region = pool->region;
 707        pool->desc_size = region->desc_size;
 708        for (i = 0; i < pool->num_desc; i++) {
 709                int index = pool->region_offset + i;
 710                dma_addr_t dma_addr;
 711                unsigned dma_size;
 712                dma_addr = region->dma_start + (region->desc_size * index);
 713                dma_size = ALIGN(pool->desc_size, SMP_CACHE_BYTES);
 714                dma_sync_single_for_device(pool->dev, dma_addr, dma_size,
 715                                           DMA_TO_DEVICE);
 716                knav_queue_push(pool->queue, dma_addr, dma_size, 0);
 717        }
 718}
 719
 720/* pop out descriptors and close the queue */
 721static void kdesc_empty_pool(struct knav_pool *pool)
 722{
 723        dma_addr_t dma;
 724        unsigned size;
 725        void *desc;
 726        int i;
 727
 728        if (!pool->queue)
 729                return;
 730
 731        for (i = 0;; i++) {
 732                dma = knav_queue_pop(pool->queue, &size);
 733                if (!dma)
 734                        break;
 735                desc = knav_pool_desc_dma_to_virt(pool, dma);
 736                if (!desc) {
 737                        dev_dbg(pool->kdev->dev,
 738                                "couldn't unmap desc, continuing\n");
 739                        continue;
 740                }
 741        }
 742        WARN_ON(i != pool->num_desc);
 743        knav_queue_close(pool->queue);
 744}
 745
 746
 747/* Get the DMA address of a descriptor */
 748dma_addr_t knav_pool_desc_virt_to_dma(void *ph, void *virt)
 749{
 750        struct knav_pool *pool = ph;
 751        return pool->region->dma_start + (virt - pool->region->virt_start);
 752}
 753EXPORT_SYMBOL_GPL(knav_pool_desc_virt_to_dma);
 754
 755void *knav_pool_desc_dma_to_virt(void *ph, dma_addr_t dma)
 756{
 757        struct knav_pool *pool = ph;
 758        return pool->region->virt_start + (dma - pool->region->dma_start);
 759}
 760EXPORT_SYMBOL_GPL(knav_pool_desc_dma_to_virt);
 761
 762/**
 763 * knav_pool_create()   - Create a pool of descriptors
 764 * @name                - name to give the pool handle
 765 * @num_desc            - numbers of descriptors in the pool
 766 * @region_id           - QMSS region id from which the descriptors are to be
 767 *                        allocated.
 768 *
 769 * Returns a pool handle on success.
 770 * Use IS_ERR_OR_NULL() to identify error values on return.
 771 */
 772void *knav_pool_create(const char *name,
 773                                        int num_desc, int region_id)
 774{
 775        struct knav_region *reg_itr, *region = NULL;
 776        struct knav_pool *pool, *pi;
 777        struct list_head *node;
 778        unsigned last_offset;
 779        bool slot_found;
 780        int ret;
 781
 782        if (!kdev)
 783                return ERR_PTR(-EPROBE_DEFER);
 784
 785        if (!kdev->dev)
 786                return ERR_PTR(-ENODEV);
 787
 788        pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
 789        if (!pool) {
 790                dev_err(kdev->dev, "out of memory allocating pool\n");
 791                return ERR_PTR(-ENOMEM);
 792        }
 793
 794        for_each_region(kdev, reg_itr) {
 795                if (reg_itr->id != region_id)
 796                        continue;
 797                region = reg_itr;
 798                break;
 799        }
 800
 801        if (!region) {
 802                dev_err(kdev->dev, "region-id(%d) not found\n", region_id);
 803                ret = -EINVAL;
 804                goto err;
 805        }
 806
 807        pool->queue = knav_queue_open(name, KNAV_QUEUE_GP, 0);
 808        if (IS_ERR_OR_NULL(pool->queue)) {
 809                dev_err(kdev->dev,
 810                        "failed to open queue for pool(%s), error %ld\n",
 811                        name, PTR_ERR(pool->queue));
 812                ret = PTR_ERR(pool->queue);
 813                goto err;
 814        }
 815
 816        pool->name = kstrndup(name, KNAV_NAME_SIZE - 1, GFP_KERNEL);
 817        pool->kdev = kdev;
 818        pool->dev = kdev->dev;
 819
 820        mutex_lock(&knav_dev_lock);
 821
 822        if (num_desc > (region->num_desc - region->used_desc)) {
 823                dev_err(kdev->dev, "out of descs in region(%d) for pool(%s)\n",
 824                        region_id, name);
 825                ret = -ENOMEM;
 826                goto err_unlock;
 827        }
 828
 829        /* Region maintains a sorted (by region offset) list of pools
 830         * use the first free slot which is large enough to accomodate
 831         * the request
 832         */
 833        last_offset = 0;
 834        slot_found = false;
 835        node = &region->pools;
 836        list_for_each_entry(pi, &region->pools, region_inst) {
 837                if ((pi->region_offset - last_offset) >= num_desc) {
 838                        slot_found = true;
 839                        break;
 840                }
 841                last_offset = pi->region_offset + pi->num_desc;
 842        }
 843        node = &pi->region_inst;
 844
 845        if (slot_found) {
 846                pool->region = region;
 847                pool->num_desc = num_desc;
 848                pool->region_offset = last_offset;
 849                region->used_desc += num_desc;
 850                list_add_tail(&pool->list, &kdev->pools);
 851                list_add_tail(&pool->region_inst, node);
 852        } else {
 853                dev_err(kdev->dev, "pool(%s) create failed: fragmented desc pool in region(%d)\n",
 854                        name, region_id);
 855                ret = -ENOMEM;
 856                goto err_unlock;
 857        }
 858
 859        mutex_unlock(&knav_dev_lock);
 860        kdesc_fill_pool(pool);
 861        return pool;
 862
 863err_unlock:
 864        mutex_unlock(&knav_dev_lock);
 865err:
 866        kfree(pool->name);
 867        devm_kfree(kdev->dev, pool);
 868        return ERR_PTR(ret);
 869}
 870EXPORT_SYMBOL_GPL(knav_pool_create);
 871
 872/**
 873 * knav_pool_destroy()  - Free a pool of descriptors
 874 * @pool                - pool handle
 875 */
 876void knav_pool_destroy(void *ph)
 877{
 878        struct knav_pool *pool = ph;
 879
 880        if (!pool)
 881                return;
 882
 883        if (!pool->region)
 884                return;
 885
 886        kdesc_empty_pool(pool);
 887        mutex_lock(&knav_dev_lock);
 888
 889        pool->region->used_desc -= pool->num_desc;
 890        list_del(&pool->region_inst);
 891        list_del(&pool->list);
 892
 893        mutex_unlock(&knav_dev_lock);
 894        kfree(pool->name);
 895        devm_kfree(kdev->dev, pool);
 896}
 897EXPORT_SYMBOL_GPL(knav_pool_destroy);
 898
 899
 900/**
 901 * knav_pool_desc_get() - Get a descriptor from the pool
 902 * @pool                        - pool handle
 903 *
 904 * Returns descriptor from the pool.
 905 */
 906void *knav_pool_desc_get(void *ph)
 907{
 908        struct knav_pool *pool = ph;
 909        dma_addr_t dma;
 910        unsigned size;
 911        void *data;
 912
 913        dma = knav_queue_pop(pool->queue, &size);
 914        if (unlikely(!dma))
 915                return ERR_PTR(-ENOMEM);
 916        data = knav_pool_desc_dma_to_virt(pool, dma);
 917        return data;
 918}
 919EXPORT_SYMBOL_GPL(knav_pool_desc_get);
 920
 921/**
 922 * knav_pool_desc_put() - return a descriptor to the pool
 923 * @pool                        - pool handle
 924 */
 925void knav_pool_desc_put(void *ph, void *desc)
 926{
 927        struct knav_pool *pool = ph;
 928        dma_addr_t dma;
 929        dma = knav_pool_desc_virt_to_dma(pool, desc);
 930        knav_queue_push(pool->queue, dma, pool->region->desc_size, 0);
 931}
 932EXPORT_SYMBOL_GPL(knav_pool_desc_put);
 933
 934/**
 935 * knav_pool_desc_map() - Map descriptor for DMA transfer
 936 * @pool                        - pool handle
 937 * @desc                        - address of descriptor to map
 938 * @size                        - size of descriptor to map
 939 * @dma                         - DMA address return pointer
 940 * @dma_sz                      - adjusted return pointer
 941 *
 942 * Returns 0 on success, errno otherwise.
 943 */
 944int knav_pool_desc_map(void *ph, void *desc, unsigned size,
 945                                        dma_addr_t *dma, unsigned *dma_sz)
 946{
 947        struct knav_pool *pool = ph;
 948        *dma = knav_pool_desc_virt_to_dma(pool, desc);
 949        size = min(size, pool->region->desc_size);
 950        size = ALIGN(size, SMP_CACHE_BYTES);
 951        *dma_sz = size;
 952        dma_sync_single_for_device(pool->dev, *dma, size, DMA_TO_DEVICE);
 953
 954        /* Ensure the descriptor reaches to the memory */
 955        __iowmb();
 956
 957        return 0;
 958}
 959EXPORT_SYMBOL_GPL(knav_pool_desc_map);
 960
 961/**
 962 * knav_pool_desc_unmap()       - Unmap descriptor after DMA transfer
 963 * @pool                        - pool handle
 964 * @dma                         - DMA address of descriptor to unmap
 965 * @dma_sz                      - size of descriptor to unmap
 966 *
 967 * Returns descriptor address on success, Use IS_ERR_OR_NULL() to identify
 968 * error values on return.
 969 */
 970void *knav_pool_desc_unmap(void *ph, dma_addr_t dma, unsigned dma_sz)
 971{
 972        struct knav_pool *pool = ph;
 973        unsigned desc_sz;
 974        void *desc;
 975
 976        desc_sz = min(dma_sz, pool->region->desc_size);
 977        desc = knav_pool_desc_dma_to_virt(pool, dma);
 978        dma_sync_single_for_cpu(pool->dev, dma, desc_sz, DMA_FROM_DEVICE);
 979        prefetch(desc);
 980        return desc;
 981}
 982EXPORT_SYMBOL_GPL(knav_pool_desc_unmap);
 983
 984/**
 985 * knav_pool_count()    - Get the number of descriptors in pool.
 986 * @pool                - pool handle
 987 * Returns number of elements in the pool.
 988 */
 989int knav_pool_count(void *ph)
 990{
 991        struct knav_pool *pool = ph;
 992        return knav_queue_get_count(pool->queue);
 993}
 994EXPORT_SYMBOL_GPL(knav_pool_count);
 995
 996static void knav_queue_setup_region(struct knav_device *kdev,
 997                                        struct knav_region *region)
 998{
 999        unsigned hw_num_desc, hw_desc_size, size;
1000        struct knav_reg_region __iomem  *regs;
1001        struct knav_qmgr_info *qmgr;
1002        struct knav_pool *pool;
1003        int id = region->id;
1004        struct page *page;
1005
1006        /* unused region? */
1007        if (!region->num_desc) {
1008                dev_warn(kdev->dev, "unused region %s\n", region->name);
1009                return;
1010        }
1011
1012        /* get hardware descriptor value */
1013        hw_num_desc = ilog2(region->num_desc - 1) + 1;
1014
1015        /* did we force fit ourselves into nothingness? */
1016        if (region->num_desc < 32) {
1017                region->num_desc = 0;
1018                dev_warn(kdev->dev, "too few descriptors in region %s\n",
1019                         region->name);
1020                return;
1021        }
1022
1023        size = region->num_desc * region->desc_size;
1024        region->virt_start = alloc_pages_exact(size, GFP_KERNEL | GFP_DMA |
1025                                                GFP_DMA32);
1026        if (!region->virt_start) {
1027                region->num_desc = 0;
1028                dev_err(kdev->dev, "memory alloc failed for region %s\n",
1029                        region->name);
1030                return;
1031        }
1032        region->virt_end = region->virt_start + size;
1033        page = virt_to_page(region->virt_start);
1034
1035        region->dma_start = dma_map_page(kdev->dev, page, 0, size,
1036                                         DMA_BIDIRECTIONAL);
1037        if (dma_mapping_error(kdev->dev, region->dma_start)) {
1038                dev_err(kdev->dev, "dma map failed for region %s\n",
1039                        region->name);
1040                goto fail;
1041        }
1042        region->dma_end = region->dma_start + size;
1043
1044        pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
1045        if (!pool) {
1046                dev_err(kdev->dev, "out of memory allocating dummy pool\n");
1047                goto fail;
1048        }
1049        pool->num_desc = 0;
1050        pool->region_offset = region->num_desc;
1051        list_add(&pool->region_inst, &region->pools);
1052
1053        dev_dbg(kdev->dev,
1054                "region %s (%d): size:%d, link:%d@%d, dma:%pad-%pad, virt:%p-%p\n",
1055                region->name, id, region->desc_size, region->num_desc,
1056                region->link_index, &region->dma_start, &region->dma_end,
1057                region->virt_start, region->virt_end);
1058
1059        hw_desc_size = (region->desc_size / 16) - 1;
1060        hw_num_desc -= 5;
1061
1062        for_each_qmgr(kdev, qmgr) {
1063                regs = qmgr->reg_region + id;
1064                writel_relaxed((u32)region->dma_start, &regs->base);
1065                writel_relaxed(region->link_index, &regs->start_index);
1066                writel_relaxed(hw_desc_size << 16 | hw_num_desc,
1067                               &regs->size_count);
1068        }
1069        return;
1070
1071fail:
1072        if (region->dma_start)
1073                dma_unmap_page(kdev->dev, region->dma_start, size,
1074                                DMA_BIDIRECTIONAL);
1075        if (region->virt_start)
1076                free_pages_exact(region->virt_start, size);
1077        region->num_desc = 0;
1078        return;
1079}
1080
1081static const char *knav_queue_find_name(struct device_node *node)
1082{
1083        const char *name;
1084
1085        if (of_property_read_string(node, "label", &name) < 0)
1086                name = node->name;
1087        if (!name)
1088                name = "unknown";
1089        return name;
1090}
1091
1092static int knav_queue_setup_regions(struct knav_device *kdev,
1093                                        struct device_node *regions)
1094{
1095        struct device *dev = kdev->dev;
1096        struct knav_region *region;
1097        struct device_node *child;
1098        u32 temp[2];
1099        int ret;
1100
1101        for_each_child_of_node(regions, child) {
1102                region = devm_kzalloc(dev, sizeof(*region), GFP_KERNEL);
1103                if (!region) {
1104                        dev_err(dev, "out of memory allocating region\n");
1105                        return -ENOMEM;
1106                }
1107
1108                region->name = knav_queue_find_name(child);
1109                of_property_read_u32(child, "id", &region->id);
1110                ret = of_property_read_u32_array(child, "region-spec", temp, 2);
1111                if (!ret) {
1112                        region->num_desc  = temp[0];
1113                        region->desc_size = temp[1];
1114                } else {
1115                        dev_err(dev, "invalid region info %s\n", region->name);
1116                        devm_kfree(dev, region);
1117                        continue;
1118                }
1119
1120                if (!of_get_property(child, "link-index", NULL)) {
1121                        dev_err(dev, "No link info for %s\n", region->name);
1122                        devm_kfree(dev, region);
1123                        continue;
1124                }
1125                ret = of_property_read_u32(child, "link-index",
1126                                           &region->link_index);
1127                if (ret) {
1128                        dev_err(dev, "link index not found for %s\n",
1129                                region->name);
1130                        devm_kfree(dev, region);
1131                        continue;
1132                }
1133
1134                INIT_LIST_HEAD(&region->pools);
1135                list_add_tail(&region->list, &kdev->regions);
1136        }
1137        if (list_empty(&kdev->regions)) {
1138                dev_err(dev, "no valid region information found\n");
1139                return -ENODEV;
1140        }
1141
1142        /* Next, we run through the regions and set things up */
1143        for_each_region(kdev, region)
1144                knav_queue_setup_region(kdev, region);
1145
1146        return 0;
1147}
1148
1149static int knav_get_link_ram(struct knav_device *kdev,
1150                                       const char *name,
1151                                       struct knav_link_ram_block *block)
1152{
1153        struct platform_device *pdev = to_platform_device(kdev->dev);
1154        struct device_node *node = pdev->dev.of_node;
1155        u32 temp[2];
1156
1157        /*
1158         * Note: link ram resources are specified in "entry" sized units. In
1159         * reality, although entries are ~40bits in hardware, we treat them as
1160         * 64-bit entities here.
1161         *
1162         * For example, to specify the internal link ram for Keystone-I class
1163         * devices, we would set the linkram0 resource to 0x80000-0x83fff.
1164         *
1165         * This gets a bit weird when other link rams are used.  For example,
1166         * if the range specified is 0x0c000000-0x0c003fff (i.e., 16K entries
1167         * in MSMC SRAM), the actual memory used is 0x0c000000-0x0c020000,
1168         * which accounts for 64-bits per entry, for 16K entries.
1169         */
1170        if (!of_property_read_u32_array(node, name , temp, 2)) {
1171                if (temp[0]) {
1172                        /*
1173                         * queue_base specified => using internal or onchip
1174                         * link ram WARNING - we do not "reserve" this block
1175                         */
1176                        block->dma = (dma_addr_t)temp[0];
1177                        block->virt = NULL;
1178                        block->size = temp[1];
1179                } else {
1180                        block->size = temp[1];
1181                        /* queue_base not specific => allocate requested size */
1182                        block->virt = dmam_alloc_coherent(kdev->dev,
1183                                                  8 * block->size, &block->dma,
1184                                                  GFP_KERNEL);
1185                        if (!block->virt) {
1186                                dev_err(kdev->dev, "failed to alloc linkram\n");
1187                                return -ENOMEM;
1188                        }
1189                }
1190        } else {
1191                return -ENODEV;
1192        }
1193        return 0;
1194}
1195
1196static int knav_queue_setup_link_ram(struct knav_device *kdev)
1197{
1198        struct knav_link_ram_block *block;
1199        struct knav_qmgr_info *qmgr;
1200
1201        for_each_qmgr(kdev, qmgr) {
1202                block = &kdev->link_rams[0];
1203                dev_dbg(kdev->dev, "linkram0: dma:%pad, virt:%p, size:%x\n",
1204                        &block->dma, block->virt, block->size);
1205                writel_relaxed((u32)block->dma, &qmgr->reg_config->link_ram_base0);
1206                if (kdev->version == QMSS_66AK2G)
1207                        writel_relaxed(block->size,
1208                                       &qmgr->reg_config->link_ram_size0);
1209                else
1210                        writel_relaxed(block->size - 1,
1211                                       &qmgr->reg_config->link_ram_size0);
1212                block++;
1213                if (!block->size)
1214                        continue;
1215
1216                dev_dbg(kdev->dev, "linkram1: dma:%pad, virt:%p, size:%x\n",
1217                        &block->dma, block->virt, block->size);
1218                writel_relaxed(block->dma, &qmgr->reg_config->link_ram_base1);
1219        }
1220
1221        return 0;
1222}
1223
1224static int knav_setup_queue_range(struct knav_device *kdev,
1225                                        struct device_node *node)
1226{
1227        struct device *dev = kdev->dev;
1228        struct knav_range_info *range;
1229        struct knav_qmgr_info *qmgr;
1230        u32 temp[2], start, end, id, index;
1231        int ret, i;
1232
1233        range = devm_kzalloc(dev, sizeof(*range), GFP_KERNEL);
1234        if (!range) {
1235                dev_err(dev, "out of memory allocating range\n");
1236                return -ENOMEM;
1237        }
1238
1239        range->kdev = kdev;
1240        range->name = knav_queue_find_name(node);
1241        ret = of_property_read_u32_array(node, "qrange", temp, 2);
1242        if (!ret) {
1243                range->queue_base = temp[0] - kdev->base_id;
1244                range->num_queues = temp[1];
1245        } else {
1246                dev_err(dev, "invalid queue range %s\n", range->name);
1247                devm_kfree(dev, range);
1248                return -EINVAL;
1249        }
1250
1251        for (i = 0; i < RANGE_MAX_IRQS; i++) {
1252                struct of_phandle_args oirq;
1253
1254                if (of_irq_parse_one(node, i, &oirq))
1255                        break;
1256
1257                range->irqs[i].irq = irq_create_of_mapping(&oirq);
1258                if (range->irqs[i].irq == IRQ_NONE)
1259                        break;
1260
1261                range->num_irqs++;
1262
1263                if (IS_ENABLED(CONFIG_SMP) && oirq.args_count == 3) {
1264                        unsigned long mask;
1265                        int bit;
1266
1267                        range->irqs[i].cpu_mask = devm_kzalloc(dev,
1268                                                               cpumask_size(), GFP_KERNEL);
1269                        if (!range->irqs[i].cpu_mask)
1270                                return -ENOMEM;
1271
1272                        mask = (oirq.args[2] & 0x0000ff00) >> 8;
1273                        for_each_set_bit(bit, &mask, BITS_PER_LONG)
1274                                cpumask_set_cpu(bit, range->irqs[i].cpu_mask);
1275                }
1276        }
1277
1278        range->num_irqs = min(range->num_irqs, range->num_queues);
1279        if (range->num_irqs)
1280                range->flags |= RANGE_HAS_IRQ;
1281
1282        if (of_get_property(node, "qalloc-by-id", NULL))
1283                range->flags |= RANGE_RESERVED;
1284
1285        if (of_get_property(node, "accumulator", NULL)) {
1286                ret = knav_init_acc_range(kdev, node, range);
1287                if (ret < 0) {
1288                        devm_kfree(dev, range);
1289                        return ret;
1290                }
1291        } else {
1292                range->ops = &knav_gp_range_ops;
1293        }
1294
1295        /* set threshold to 1, and flush out the queues */
1296        for_each_qmgr(kdev, qmgr) {
1297                start = max(qmgr->start_queue, range->queue_base);
1298                end   = min(qmgr->start_queue + qmgr->num_queues,
1299                            range->queue_base + range->num_queues);
1300                for (id = start; id < end; id++) {
1301                        index = id - qmgr->start_queue;
1302                        writel_relaxed(THRESH_GTE | 1,
1303                                       &qmgr->reg_peek[index].ptr_size_thresh);
1304                        writel_relaxed(0,
1305                                       &qmgr->reg_push[index].ptr_size_thresh);
1306                }
1307        }
1308
1309        list_add_tail(&range->list, &kdev->queue_ranges);
1310        dev_dbg(dev, "added range %s: %d-%d, %d irqs%s%s%s\n",
1311                range->name, range->queue_base,
1312                range->queue_base + range->num_queues - 1,
1313                range->num_irqs,
1314                (range->flags & RANGE_HAS_IRQ) ? ", has irq" : "",
1315                (range->flags & RANGE_RESERVED) ? ", reserved" : "",
1316                (range->flags & RANGE_HAS_ACCUMULATOR) ? ", acc" : "");
1317        kdev->num_queues_in_use += range->num_queues;
1318        return 0;
1319}
1320
1321static int knav_setup_queue_pools(struct knav_device *kdev,
1322                                   struct device_node *queue_pools)
1323{
1324        struct device_node *type, *range;
1325        int ret;
1326
1327        for_each_child_of_node(queue_pools, type) {
1328                for_each_child_of_node(type, range) {
1329                        ret = knav_setup_queue_range(kdev, range);
1330                        /* return value ignored, we init the rest... */
1331                }
1332        }
1333
1334        /* ... and barf if they all failed! */
1335        if (list_empty(&kdev->queue_ranges)) {
1336                dev_err(kdev->dev, "no valid queue range found\n");
1337                return -ENODEV;
1338        }
1339        return 0;
1340}
1341
1342static void knav_free_queue_range(struct knav_device *kdev,
1343                                  struct knav_range_info *range)
1344{
1345        if (range->ops && range->ops->free_range)
1346                range->ops->free_range(range);
1347        list_del(&range->list);
1348        devm_kfree(kdev->dev, range);
1349}
1350
1351static void knav_free_queue_ranges(struct knav_device *kdev)
1352{
1353        struct knav_range_info *range;
1354
1355        for (;;) {
1356                range = first_queue_range(kdev);
1357                if (!range)
1358                        break;
1359                knav_free_queue_range(kdev, range);
1360        }
1361}
1362
1363static void knav_queue_free_regions(struct knav_device *kdev)
1364{
1365        struct knav_region *region;
1366        struct knav_pool *pool, *tmp;
1367        unsigned size;
1368
1369        for (;;) {
1370                region = first_region(kdev);
1371                if (!region)
1372                        break;
1373                list_for_each_entry_safe(pool, tmp, &region->pools, region_inst)
1374                        knav_pool_destroy(pool);
1375
1376                size = region->virt_end - region->virt_start;
1377                if (size)
1378                        free_pages_exact(region->virt_start, size);
1379                list_del(&region->list);
1380                devm_kfree(kdev->dev, region);
1381        }
1382}
1383
1384static void __iomem *knav_queue_map_reg(struct knav_device *kdev,
1385                                        struct device_node *node, int index)
1386{
1387        struct resource res;
1388        void __iomem *regs;
1389        int ret;
1390
1391        ret = of_address_to_resource(node, index, &res);
1392        if (ret) {
1393                dev_err(kdev->dev, "Can't translate of node(%pOFn) address for index(%d)\n",
1394                        node, index);
1395                return ERR_PTR(ret);
1396        }
1397
1398        regs = devm_ioremap_resource(kdev->dev, &res);
1399        if (IS_ERR(regs))
1400                dev_err(kdev->dev, "Failed to map register base for index(%d) node(%pOFn)\n",
1401                        index, node);
1402        return regs;
1403}
1404
1405static int knav_queue_init_qmgrs(struct knav_device *kdev,
1406                                        struct device_node *qmgrs)
1407{
1408        struct device *dev = kdev->dev;
1409        struct knav_qmgr_info *qmgr;
1410        struct device_node *child;
1411        u32 temp[2];
1412        int ret;
1413
1414        for_each_child_of_node(qmgrs, child) {
1415                qmgr = devm_kzalloc(dev, sizeof(*qmgr), GFP_KERNEL);
1416                if (!qmgr) {
1417                        dev_err(dev, "out of memory allocating qmgr\n");
1418                        return -ENOMEM;
1419                }
1420
1421                ret = of_property_read_u32_array(child, "managed-queues",
1422                                                 temp, 2);
1423                if (!ret) {
1424                        qmgr->start_queue = temp[0];
1425                        qmgr->num_queues = temp[1];
1426                } else {
1427                        dev_err(dev, "invalid qmgr queue range\n");
1428                        devm_kfree(dev, qmgr);
1429                        continue;
1430                }
1431
1432                dev_info(dev, "qmgr start queue %d, number of queues %d\n",
1433                         qmgr->start_queue, qmgr->num_queues);
1434
1435                qmgr->reg_peek =
1436                        knav_queue_map_reg(kdev, child,
1437                                           KNAV_QUEUE_PEEK_REG_INDEX);
1438
1439                if (kdev->version == QMSS) {
1440                        qmgr->reg_status =
1441                                knav_queue_map_reg(kdev, child,
1442                                                   KNAV_QUEUE_STATUS_REG_INDEX);
1443                }
1444
1445                qmgr->reg_config =
1446                        knav_queue_map_reg(kdev, child,
1447                                           (kdev->version == QMSS_66AK2G) ?
1448                                           KNAV_L_QUEUE_CONFIG_REG_INDEX :
1449                                           KNAV_QUEUE_CONFIG_REG_INDEX);
1450                qmgr->reg_region =
1451                        knav_queue_map_reg(kdev, child,
1452                                           (kdev->version == QMSS_66AK2G) ?
1453                                           KNAV_L_QUEUE_REGION_REG_INDEX :
1454                                           KNAV_QUEUE_REGION_REG_INDEX);
1455
1456                qmgr->reg_push =
1457                        knav_queue_map_reg(kdev, child,
1458                                           (kdev->version == QMSS_66AK2G) ?
1459                                            KNAV_L_QUEUE_PUSH_REG_INDEX :
1460                                            KNAV_QUEUE_PUSH_REG_INDEX);
1461
1462                if (kdev->version == QMSS) {
1463                        qmgr->reg_pop =
1464                                knav_queue_map_reg(kdev, child,
1465                                                   KNAV_QUEUE_POP_REG_INDEX);
1466                }
1467
1468                if (IS_ERR(qmgr->reg_peek) ||
1469                    ((kdev->version == QMSS) &&
1470                    (IS_ERR(qmgr->reg_status) || IS_ERR(qmgr->reg_pop))) ||
1471                    IS_ERR(qmgr->reg_config) || IS_ERR(qmgr->reg_region) ||
1472                    IS_ERR(qmgr->reg_push)) {
1473                        dev_err(dev, "failed to map qmgr regs\n");
1474                        if (kdev->version == QMSS) {
1475                                if (!IS_ERR(qmgr->reg_status))
1476                                        devm_iounmap(dev, qmgr->reg_status);
1477                                if (!IS_ERR(qmgr->reg_pop))
1478                                        devm_iounmap(dev, qmgr->reg_pop);
1479                        }
1480                        if (!IS_ERR(qmgr->reg_peek))
1481                                devm_iounmap(dev, qmgr->reg_peek);
1482                        if (!IS_ERR(qmgr->reg_config))
1483                                devm_iounmap(dev, qmgr->reg_config);
1484                        if (!IS_ERR(qmgr->reg_region))
1485                                devm_iounmap(dev, qmgr->reg_region);
1486                        if (!IS_ERR(qmgr->reg_push))
1487                                devm_iounmap(dev, qmgr->reg_push);
1488                        devm_kfree(dev, qmgr);
1489                        continue;
1490                }
1491
1492                /* Use same push register for pop as well */
1493                if (kdev->version == QMSS_66AK2G)
1494                        qmgr->reg_pop = qmgr->reg_push;
1495
1496                list_add_tail(&qmgr->list, &kdev->qmgrs);
1497                dev_info(dev, "added qmgr start queue %d, num of queues %d, reg_peek %p, reg_status %p, reg_config %p, reg_region %p, reg_push %p, reg_pop %p\n",
1498                         qmgr->start_queue, qmgr->num_queues,
1499                         qmgr->reg_peek, qmgr->reg_status,
1500                         qmgr->reg_config, qmgr->reg_region,
1501                         qmgr->reg_push, qmgr->reg_pop);
1502        }
1503        return 0;
1504}
1505
1506static int knav_queue_init_pdsps(struct knav_device *kdev,
1507                                        struct device_node *pdsps)
1508{
1509        struct device *dev = kdev->dev;
1510        struct knav_pdsp_info *pdsp;
1511        struct device_node *child;
1512
1513        for_each_child_of_node(pdsps, child) {
1514                pdsp = devm_kzalloc(dev, sizeof(*pdsp), GFP_KERNEL);
1515                if (!pdsp) {
1516                        dev_err(dev, "out of memory allocating pdsp\n");
1517                        return -ENOMEM;
1518                }
1519                pdsp->name = knav_queue_find_name(child);
1520                pdsp->iram =
1521                        knav_queue_map_reg(kdev, child,
1522                                           KNAV_QUEUE_PDSP_IRAM_REG_INDEX);
1523                pdsp->regs =
1524                        knav_queue_map_reg(kdev, child,
1525                                           KNAV_QUEUE_PDSP_REGS_REG_INDEX);
1526                pdsp->intd =
1527                        knav_queue_map_reg(kdev, child,
1528                                           KNAV_QUEUE_PDSP_INTD_REG_INDEX);
1529                pdsp->command =
1530                        knav_queue_map_reg(kdev, child,
1531                                           KNAV_QUEUE_PDSP_CMD_REG_INDEX);
1532
1533                if (IS_ERR(pdsp->command) || IS_ERR(pdsp->iram) ||
1534                    IS_ERR(pdsp->regs) || IS_ERR(pdsp->intd)) {
1535                        dev_err(dev, "failed to map pdsp %s regs\n",
1536                                pdsp->name);
1537                        if (!IS_ERR(pdsp->command))
1538                                devm_iounmap(dev, pdsp->command);
1539                        if (!IS_ERR(pdsp->iram))
1540                                devm_iounmap(dev, pdsp->iram);
1541                        if (!IS_ERR(pdsp->regs))
1542                                devm_iounmap(dev, pdsp->regs);
1543                        if (!IS_ERR(pdsp->intd))
1544                                devm_iounmap(dev, pdsp->intd);
1545                        devm_kfree(dev, pdsp);
1546                        continue;
1547                }
1548                of_property_read_u32(child, "id", &pdsp->id);
1549                list_add_tail(&pdsp->list, &kdev->pdsps);
1550                dev_dbg(dev, "added pdsp %s: command %p, iram %p, regs %p, intd %p\n",
1551                        pdsp->name, pdsp->command, pdsp->iram, pdsp->regs,
1552                        pdsp->intd);
1553        }
1554        return 0;
1555}
1556
1557static int knav_queue_stop_pdsp(struct knav_device *kdev,
1558                          struct knav_pdsp_info *pdsp)
1559{
1560        u32 val, timeout = 1000;
1561        int ret;
1562
1563        val = readl_relaxed(&pdsp->regs->control) & ~PDSP_CTRL_ENABLE;
1564        writel_relaxed(val, &pdsp->regs->control);
1565        ret = knav_queue_pdsp_wait(&pdsp->regs->control, timeout,
1566                                        PDSP_CTRL_RUNNING);
1567        if (ret < 0) {
1568                dev_err(kdev->dev, "timed out on pdsp %s stop\n", pdsp->name);
1569                return ret;
1570        }
1571        pdsp->loaded = false;
1572        pdsp->started = false;
1573        return 0;
1574}
1575
1576static int knav_queue_load_pdsp(struct knav_device *kdev,
1577                          struct knav_pdsp_info *pdsp)
1578{
1579        int i, ret, fwlen;
1580        const struct firmware *fw;
1581        bool found = false;
1582        u32 *fwdata;
1583
1584        for (i = 0; i < ARRAY_SIZE(knav_acc_firmwares); i++) {
1585                if (knav_acc_firmwares[i]) {
1586                        ret = request_firmware_direct(&fw,
1587                                                      knav_acc_firmwares[i],
1588                                                      kdev->dev);
1589                        if (!ret) {
1590                                found = true;
1591                                break;
1592                        }
1593                }
1594        }
1595
1596        if (!found) {
1597                dev_err(kdev->dev, "failed to get firmware for pdsp\n");
1598                return -ENODEV;
1599        }
1600
1601        dev_info(kdev->dev, "firmware file %s downloaded for PDSP\n",
1602                 knav_acc_firmwares[i]);
1603
1604        writel_relaxed(pdsp->id + 1, pdsp->command + 0x18);
1605        /* download the firmware */
1606        fwdata = (u32 *)fw->data;
1607        fwlen = (fw->size + sizeof(u32) - 1) / sizeof(u32);
1608        for (i = 0; i < fwlen; i++)
1609                writel_relaxed(be32_to_cpu(fwdata[i]), pdsp->iram + i);
1610
1611        release_firmware(fw);
1612        return 0;
1613}
1614
1615static int knav_queue_start_pdsp(struct knav_device *kdev,
1616                           struct knav_pdsp_info *pdsp)
1617{
1618        u32 val, timeout = 1000;
1619        int ret;
1620
1621        /* write a command for sync */
1622        writel_relaxed(0xffffffff, pdsp->command);
1623        while (readl_relaxed(pdsp->command) != 0xffffffff)
1624                cpu_relax();
1625
1626        /* soft reset the PDSP */
1627        val  = readl_relaxed(&pdsp->regs->control);
1628        val &= ~(PDSP_CTRL_PC_MASK | PDSP_CTRL_SOFT_RESET);
1629        writel_relaxed(val, &pdsp->regs->control);
1630
1631        /* enable pdsp */
1632        val = readl_relaxed(&pdsp->regs->control) | PDSP_CTRL_ENABLE;
1633        writel_relaxed(val, &pdsp->regs->control);
1634
1635        /* wait for command register to clear */
1636        ret = knav_queue_pdsp_wait(pdsp->command, timeout, 0);
1637        if (ret < 0) {
1638                dev_err(kdev->dev,
1639                        "timed out on pdsp %s command register wait\n",
1640                        pdsp->name);
1641                return ret;
1642        }
1643        return 0;
1644}
1645
1646static void knav_queue_stop_pdsps(struct knav_device *kdev)
1647{
1648        struct knav_pdsp_info *pdsp;
1649
1650        /* disable all pdsps */
1651        for_each_pdsp(kdev, pdsp)
1652                knav_queue_stop_pdsp(kdev, pdsp);
1653}
1654
1655static int knav_queue_start_pdsps(struct knav_device *kdev)
1656{
1657        struct knav_pdsp_info *pdsp;
1658        int ret;
1659
1660        knav_queue_stop_pdsps(kdev);
1661        /* now load them all. We return success even if pdsp
1662         * is not loaded as acc channels are optional on having
1663         * firmware availability in the system. We set the loaded
1664         * and stated flag and when initialize the acc range, check
1665         * it and init the range only if pdsp is started.
1666         */
1667        for_each_pdsp(kdev, pdsp) {
1668                ret = knav_queue_load_pdsp(kdev, pdsp);
1669                if (!ret)
1670                        pdsp->loaded = true;
1671        }
1672
1673        for_each_pdsp(kdev, pdsp) {
1674                if (pdsp->loaded) {
1675                        ret = knav_queue_start_pdsp(kdev, pdsp);
1676                        if (!ret)
1677                                pdsp->started = true;
1678                }
1679        }
1680        return 0;
1681}
1682
1683static inline struct knav_qmgr_info *knav_find_qmgr(unsigned id)
1684{
1685        struct knav_qmgr_info *qmgr;
1686
1687        for_each_qmgr(kdev, qmgr) {
1688                if ((id >= qmgr->start_queue) &&
1689                    (id < qmgr->start_queue + qmgr->num_queues))
1690                        return qmgr;
1691        }
1692        return NULL;
1693}
1694
1695static int knav_queue_init_queue(struct knav_device *kdev,
1696                                        struct knav_range_info *range,
1697                                        struct knav_queue_inst *inst,
1698                                        unsigned id)
1699{
1700        char irq_name[KNAV_NAME_SIZE];
1701        inst->qmgr = knav_find_qmgr(id);
1702        if (!inst->qmgr)
1703                return -1;
1704
1705        INIT_LIST_HEAD(&inst->handles);
1706        inst->kdev = kdev;
1707        inst->range = range;
1708        inst->irq_num = -1;
1709        inst->id = id;
1710        scnprintf(irq_name, sizeof(irq_name), "hwqueue-%d", id);
1711        inst->irq_name = kstrndup(irq_name, sizeof(irq_name), GFP_KERNEL);
1712
1713        if (range->ops && range->ops->init_queue)
1714                return range->ops->init_queue(range, inst);
1715        else
1716                return 0;
1717}
1718
1719static int knav_queue_init_queues(struct knav_device *kdev)
1720{
1721        struct knav_range_info *range;
1722        int size, id, base_idx;
1723        int idx = 0, ret = 0;
1724
1725        /* how much do we need for instance data? */
1726        size = sizeof(struct knav_queue_inst);
1727
1728        /* round this up to a power of 2, keep the index to instance
1729         * arithmetic fast.
1730         * */
1731        kdev->inst_shift = order_base_2(size);
1732        size = (1 << kdev->inst_shift) * kdev->num_queues_in_use;
1733        kdev->instances = devm_kzalloc(kdev->dev, size, GFP_KERNEL);
1734        if (!kdev->instances)
1735                return -ENOMEM;
1736
1737        for_each_queue_range(kdev, range) {
1738                if (range->ops && range->ops->init_range)
1739                        range->ops->init_range(range);
1740                base_idx = idx;
1741                for (id = range->queue_base;
1742                     id < range->queue_base + range->num_queues; id++, idx++) {
1743                        ret = knav_queue_init_queue(kdev, range,
1744                                        knav_queue_idx_to_inst(kdev, idx), id);
1745                        if (ret < 0)
1746                                return ret;
1747                }
1748                range->queue_base_inst =
1749                        knav_queue_idx_to_inst(kdev, base_idx);
1750        }
1751        return 0;
1752}
1753
1754/* Match table for of_platform binding */
1755static const struct of_device_id keystone_qmss_of_match[] = {
1756        {
1757                .compatible = "ti,keystone-navigator-qmss",
1758        },
1759        {
1760                .compatible = "ti,66ak2g-navss-qm",
1761                .data   = (void *)QMSS_66AK2G,
1762        },
1763        {},
1764};
1765MODULE_DEVICE_TABLE(of, keystone_qmss_of_match);
1766
1767static int knav_queue_probe(struct platform_device *pdev)
1768{
1769        struct device_node *node = pdev->dev.of_node;
1770        struct device_node *qmgrs, *queue_pools, *regions, *pdsps;
1771        const struct of_device_id *match;
1772        struct device *dev = &pdev->dev;
1773        u32 temp[2];
1774        int ret;
1775
1776        if (!node) {
1777                dev_err(dev, "device tree info unavailable\n");
1778                return -ENODEV;
1779        }
1780
1781        kdev = devm_kzalloc(dev, sizeof(struct knav_device), GFP_KERNEL);
1782        if (!kdev) {
1783                dev_err(dev, "memory allocation failed\n");
1784                return -ENOMEM;
1785        }
1786
1787        match = of_match_device(of_match_ptr(keystone_qmss_of_match), dev);
1788        if (match && match->data)
1789                kdev->version = QMSS_66AK2G;
1790
1791        platform_set_drvdata(pdev, kdev);
1792        kdev->dev = dev;
1793        INIT_LIST_HEAD(&kdev->queue_ranges);
1794        INIT_LIST_HEAD(&kdev->qmgrs);
1795        INIT_LIST_HEAD(&kdev->pools);
1796        INIT_LIST_HEAD(&kdev->regions);
1797        INIT_LIST_HEAD(&kdev->pdsps);
1798
1799        pm_runtime_enable(&pdev->dev);
1800        ret = pm_runtime_get_sync(&pdev->dev);
1801        if (ret < 0) {
1802                dev_err(dev, "Failed to enable QMSS\n");
1803                return ret;
1804        }
1805
1806        if (of_property_read_u32_array(node, "queue-range", temp, 2)) {
1807                dev_err(dev, "queue-range not specified\n");
1808                ret = -ENODEV;
1809                goto err;
1810        }
1811        kdev->base_id    = temp[0];
1812        kdev->num_queues = temp[1];
1813
1814        /* Initialize queue managers using device tree configuration */
1815        qmgrs =  of_get_child_by_name(node, "qmgrs");
1816        if (!qmgrs) {
1817                dev_err(dev, "queue manager info not specified\n");
1818                ret = -ENODEV;
1819                goto err;
1820        }
1821        ret = knav_queue_init_qmgrs(kdev, qmgrs);
1822        of_node_put(qmgrs);
1823        if (ret)
1824                goto err;
1825
1826        /* get pdsp configuration values from device tree */
1827        pdsps =  of_get_child_by_name(node, "pdsps");
1828        if (pdsps) {
1829                ret = knav_queue_init_pdsps(kdev, pdsps);
1830                if (ret)
1831                        goto err;
1832
1833                ret = knav_queue_start_pdsps(kdev);
1834                if (ret)
1835                        goto err;
1836        }
1837        of_node_put(pdsps);
1838
1839        /* get usable queue range values from device tree */
1840        queue_pools = of_get_child_by_name(node, "queue-pools");
1841        if (!queue_pools) {
1842                dev_err(dev, "queue-pools not specified\n");
1843                ret = -ENODEV;
1844                goto err;
1845        }
1846        ret = knav_setup_queue_pools(kdev, queue_pools);
1847        of_node_put(queue_pools);
1848        if (ret)
1849                goto err;
1850
1851        ret = knav_get_link_ram(kdev, "linkram0", &kdev->link_rams[0]);
1852        if (ret) {
1853                dev_err(kdev->dev, "could not setup linking ram\n");
1854                goto err;
1855        }
1856
1857        ret = knav_get_link_ram(kdev, "linkram1", &kdev->link_rams[1]);
1858        if (ret) {
1859                /*
1860                 * nothing really, we have one linking ram already, so we just
1861                 * live within our means
1862                 */
1863        }
1864
1865        ret = knav_queue_setup_link_ram(kdev);
1866        if (ret)
1867                goto err;
1868
1869        regions =  of_get_child_by_name(node, "descriptor-regions");
1870        if (!regions) {
1871                dev_err(dev, "descriptor-regions not specified\n");
1872                goto err;
1873        }
1874        ret = knav_queue_setup_regions(kdev, regions);
1875        of_node_put(regions);
1876        if (ret)
1877                goto err;
1878
1879        ret = knav_queue_init_queues(kdev);
1880        if (ret < 0) {
1881                dev_err(dev, "hwqueue initialization failed\n");
1882                goto err;
1883        }
1884
1885        debugfs_create_file("qmss", S_IFREG | S_IRUGO, NULL, NULL,
1886                            &knav_queue_debug_ops);
1887        device_ready = true;
1888        return 0;
1889
1890err:
1891        knav_queue_stop_pdsps(kdev);
1892        knav_queue_free_regions(kdev);
1893        knav_free_queue_ranges(kdev);
1894        pm_runtime_put_sync(&pdev->dev);
1895        pm_runtime_disable(&pdev->dev);
1896        return ret;
1897}
1898
1899static int knav_queue_remove(struct platform_device *pdev)
1900{
1901        /* TODO: Free resources */
1902        pm_runtime_put_sync(&pdev->dev);
1903        pm_runtime_disable(&pdev->dev);
1904        return 0;
1905}
1906
1907static struct platform_driver keystone_qmss_driver = {
1908        .probe          = knav_queue_probe,
1909        .remove         = knav_queue_remove,
1910        .driver         = {
1911                .name   = "keystone-navigator-qmss",
1912                .of_match_table = keystone_qmss_of_match,
1913        },
1914};
1915module_platform_driver(keystone_qmss_driver);
1916
1917MODULE_LICENSE("GPL v2");
1918MODULE_DESCRIPTION("TI QMSS driver for Keystone SOCs");
1919MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com>");
1920MODULE_AUTHOR("Santosh Shilimkar <santosh.shilimkar@ti.com>");
1921