linux/drivers/usb/host/xhci-mem.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * xHCI host controller driver
   4 *
   5 * Copyright (C) 2008 Intel Corp.
   6 *
   7 * Author: Sarah Sharp
   8 * Some code borrowed from the Linux EHCI driver.
   9 */
  10
  11#include <linux/usb.h>
  12#include <linux/pci.h>
  13#include <linux/slab.h>
  14#include <linux/dmapool.h>
  15#include <linux/dma-mapping.h>
  16
  17#include "xhci.h"
  18#include "xhci-trace.h"
  19#include "xhci-debugfs.h"
  20
  21/*
  22 * Allocates a generic ring segment from the ring pool, sets the dma address,
  23 * initializes the segment to zero, and sets the private next pointer to NULL.
  24 *
  25 * Section 4.11.1.1:
  26 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
  27 */
  28static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
  29                                               unsigned int cycle_state,
  30                                               unsigned int max_packet,
  31                                               gfp_t flags)
  32{
  33        struct xhci_segment *seg;
  34        dma_addr_t      dma;
  35        int             i;
  36        struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
  37
  38        seg = kzalloc_node(sizeof(*seg), flags, dev_to_node(dev));
  39        if (!seg)
  40                return NULL;
  41
  42        seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
  43        if (!seg->trbs) {
  44                kfree(seg);
  45                return NULL;
  46        }
  47
  48        if (max_packet) {
  49                seg->bounce_buf = kzalloc_node(max_packet, flags,
  50                                        dev_to_node(dev));
  51                if (!seg->bounce_buf) {
  52                        dma_pool_free(xhci->segment_pool, seg->trbs, dma);
  53                        kfree(seg);
  54                        return NULL;
  55                }
  56        }
  57        /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
  58        if (cycle_state == 0) {
  59                for (i = 0; i < TRBS_PER_SEGMENT; i++)
  60                        seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE);
  61        }
  62        seg->dma = dma;
  63        seg->next = NULL;
  64
  65        return seg;
  66}
  67
  68static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
  69{
  70        if (seg->trbs) {
  71                dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
  72                seg->trbs = NULL;
  73        }
  74        kfree(seg->bounce_buf);
  75        kfree(seg);
  76}
  77
  78static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
  79                                struct xhci_segment *first)
  80{
  81        struct xhci_segment *seg;
  82
  83        seg = first->next;
  84        while (seg != first) {
  85                struct xhci_segment *next = seg->next;
  86                xhci_segment_free(xhci, seg);
  87                seg = next;
  88        }
  89        xhci_segment_free(xhci, first);
  90}
  91
  92/*
  93 * Make the prev segment point to the next segment.
  94 *
  95 * Change the last TRB in the prev segment to be a Link TRB which points to the
  96 * DMA address of the next segment.  The caller needs to set any Link TRB
  97 * related flags, such as End TRB, Toggle Cycle, and no snoop.
  98 */
  99static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
 100                struct xhci_segment *next, enum xhci_ring_type type)
 101{
 102        u32 val;
 103
 104        if (!prev || !next)
 105                return;
 106        prev->next = next;
 107        if (type != TYPE_EVENT) {
 108                prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
 109                        cpu_to_le64(next->dma);
 110
 111                /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
 112                val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
 113                val &= ~TRB_TYPE_BITMASK;
 114                val |= TRB_TYPE(TRB_LINK);
 115                /* Always set the chain bit with 0.95 hardware */
 116                /* Set chain bit for isoc rings on AMD 0.96 host */
 117                if (xhci_link_trb_quirk(xhci) ||
 118                                (type == TYPE_ISOC &&
 119                                 (xhci->quirks & XHCI_AMD_0x96_HOST)))
 120                        val |= TRB_CHAIN;
 121                prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
 122        }
 123}
 124
 125/*
 126 * Link the ring to the new segments.
 127 * Set Toggle Cycle for the new ring if needed.
 128 */
 129static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
 130                struct xhci_segment *first, struct xhci_segment *last,
 131                unsigned int num_segs)
 132{
 133        struct xhci_segment *next;
 134
 135        if (!ring || !first || !last)
 136                return;
 137
 138        next = ring->enq_seg->next;
 139        xhci_link_segments(xhci, ring->enq_seg, first, ring->type);
 140        xhci_link_segments(xhci, last, next, ring->type);
 141        ring->num_segs += num_segs;
 142        ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
 143
 144        if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
 145                ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
 146                        &= ~cpu_to_le32(LINK_TOGGLE);
 147                last->trbs[TRBS_PER_SEGMENT-1].link.control
 148                        |= cpu_to_le32(LINK_TOGGLE);
 149                ring->last_seg = last;
 150        }
 151}
 152
 153/*
 154 * We need a radix tree for mapping physical addresses of TRBs to which stream
 155 * ID they belong to.  We need to do this because the host controller won't tell
 156 * us which stream ring the TRB came from.  We could store the stream ID in an
 157 * event data TRB, but that doesn't help us for the cancellation case, since the
 158 * endpoint may stop before it reaches that event data TRB.
 159 *
 160 * The radix tree maps the upper portion of the TRB DMA address to a ring
 161 * segment that has the same upper portion of DMA addresses.  For example, say I
 162 * have segments of size 1KB, that are always 1KB aligned.  A segment may
 163 * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
 164 * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
 165 * pass the radix tree a key to get the right stream ID:
 166 *
 167 *      0x10c90fff >> 10 = 0x43243
 168 *      0x10c912c0 >> 10 = 0x43244
 169 *      0x10c91400 >> 10 = 0x43245
 170 *
 171 * Obviously, only those TRBs with DMA addresses that are within the segment
 172 * will make the radix tree return the stream ID for that ring.
 173 *
 174 * Caveats for the radix tree:
 175 *
 176 * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
 177 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
 178 * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
 179 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
 180 * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
 181 * extended systems (where the DMA address can be bigger than 32-bits),
 182 * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
 183 */
 184static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
 185                struct xhci_ring *ring,
 186                struct xhci_segment *seg,
 187                gfp_t mem_flags)
 188{
 189        unsigned long key;
 190        int ret;
 191
 192        key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
 193        /* Skip any segments that were already added. */
 194        if (radix_tree_lookup(trb_address_map, key))
 195                return 0;
 196
 197        ret = radix_tree_maybe_preload(mem_flags);
 198        if (ret)
 199                return ret;
 200        ret = radix_tree_insert(trb_address_map,
 201                        key, ring);
 202        radix_tree_preload_end();
 203        return ret;
 204}
 205
 206static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
 207                struct xhci_segment *seg)
 208{
 209        unsigned long key;
 210
 211        key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
 212        if (radix_tree_lookup(trb_address_map, key))
 213                radix_tree_delete(trb_address_map, key);
 214}
 215
 216static int xhci_update_stream_segment_mapping(
 217                struct radix_tree_root *trb_address_map,
 218                struct xhci_ring *ring,
 219                struct xhci_segment *first_seg,
 220                struct xhci_segment *last_seg,
 221                gfp_t mem_flags)
 222{
 223        struct xhci_segment *seg;
 224        struct xhci_segment *failed_seg;
 225        int ret;
 226
 227        if (WARN_ON_ONCE(trb_address_map == NULL))
 228                return 0;
 229
 230        seg = first_seg;
 231        do {
 232                ret = xhci_insert_segment_mapping(trb_address_map,
 233                                ring, seg, mem_flags);
 234                if (ret)
 235                        goto remove_streams;
 236                if (seg == last_seg)
 237                        return 0;
 238                seg = seg->next;
 239        } while (seg != first_seg);
 240
 241        return 0;
 242
 243remove_streams:
 244        failed_seg = seg;
 245        seg = first_seg;
 246        do {
 247                xhci_remove_segment_mapping(trb_address_map, seg);
 248                if (seg == failed_seg)
 249                        return ret;
 250                seg = seg->next;
 251        } while (seg != first_seg);
 252
 253        return ret;
 254}
 255
 256static void xhci_remove_stream_mapping(struct xhci_ring *ring)
 257{
 258        struct xhci_segment *seg;
 259
 260        if (WARN_ON_ONCE(ring->trb_address_map == NULL))
 261                return;
 262
 263        seg = ring->first_seg;
 264        do {
 265                xhci_remove_segment_mapping(ring->trb_address_map, seg);
 266                seg = seg->next;
 267        } while (seg != ring->first_seg);
 268}
 269
 270static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
 271{
 272        return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
 273                        ring->first_seg, ring->last_seg, mem_flags);
 274}
 275
 276/* XXX: Do we need the hcd structure in all these functions? */
 277void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
 278{
 279        if (!ring)
 280                return;
 281
 282        trace_xhci_ring_free(ring);
 283
 284        if (ring->first_seg) {
 285                if (ring->type == TYPE_STREAM)
 286                        xhci_remove_stream_mapping(ring);
 287                xhci_free_segments_for_ring(xhci, ring->first_seg);
 288        }
 289
 290        kfree(ring);
 291}
 292
 293static void xhci_initialize_ring_info(struct xhci_ring *ring,
 294                                        unsigned int cycle_state)
 295{
 296        /* The ring is empty, so the enqueue pointer == dequeue pointer */
 297        ring->enqueue = ring->first_seg->trbs;
 298        ring->enq_seg = ring->first_seg;
 299        ring->dequeue = ring->enqueue;
 300        ring->deq_seg = ring->first_seg;
 301        /* The ring is initialized to 0. The producer must write 1 to the cycle
 302         * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
 303         * compare CCS to the cycle bit to check ownership, so CCS = 1.
 304         *
 305         * New rings are initialized with cycle state equal to 1; if we are
 306         * handling ring expansion, set the cycle state equal to the old ring.
 307         */
 308        ring->cycle_state = cycle_state;
 309
 310        /*
 311         * Each segment has a link TRB, and leave an extra TRB for SW
 312         * accounting purpose
 313         */
 314        ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
 315}
 316
 317/* Allocate segments and link them for a ring */
 318static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
 319                struct xhci_segment **first, struct xhci_segment **last,
 320                unsigned int num_segs, unsigned int cycle_state,
 321                enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
 322{
 323        struct xhci_segment *prev;
 324
 325        prev = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
 326        if (!prev)
 327                return -ENOMEM;
 328        num_segs--;
 329
 330        *first = prev;
 331        while (num_segs > 0) {
 332                struct xhci_segment     *next;
 333
 334                next = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
 335                if (!next) {
 336                        prev = *first;
 337                        while (prev) {
 338                                next = prev->next;
 339                                xhci_segment_free(xhci, prev);
 340                                prev = next;
 341                        }
 342                        return -ENOMEM;
 343                }
 344                xhci_link_segments(xhci, prev, next, type);
 345
 346                prev = next;
 347                num_segs--;
 348        }
 349        xhci_link_segments(xhci, prev, *first, type);
 350        *last = prev;
 351
 352        return 0;
 353}
 354
 355/**
 356 * Create a new ring with zero or more segments.
 357 *
 358 * Link each segment together into a ring.
 359 * Set the end flag and the cycle toggle bit on the last segment.
 360 * See section 4.9.1 and figures 15 and 16.
 361 */
 362struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
 363                unsigned int num_segs, unsigned int cycle_state,
 364                enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
 365{
 366        struct xhci_ring        *ring;
 367        int ret;
 368        struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 369
 370        ring = kzalloc_node(sizeof(*ring), flags, dev_to_node(dev));
 371        if (!ring)
 372                return NULL;
 373
 374        ring->num_segs = num_segs;
 375        ring->bounce_buf_len = max_packet;
 376        INIT_LIST_HEAD(&ring->td_list);
 377        ring->type = type;
 378        if (num_segs == 0)
 379                return ring;
 380
 381        ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
 382                        &ring->last_seg, num_segs, cycle_state, type,
 383                        max_packet, flags);
 384        if (ret)
 385                goto fail;
 386
 387        /* Only event ring does not use link TRB */
 388        if (type != TYPE_EVENT) {
 389                /* See section 4.9.2.1 and 6.4.4.1 */
 390                ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
 391                        cpu_to_le32(LINK_TOGGLE);
 392        }
 393        xhci_initialize_ring_info(ring, cycle_state);
 394        trace_xhci_ring_alloc(ring);
 395        return ring;
 396
 397fail:
 398        kfree(ring);
 399        return NULL;
 400}
 401
 402void xhci_free_endpoint_ring(struct xhci_hcd *xhci,
 403                struct xhci_virt_device *virt_dev,
 404                unsigned int ep_index)
 405{
 406        xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
 407        virt_dev->eps[ep_index].ring = NULL;
 408}
 409
 410/*
 411 * Expand an existing ring.
 412 * Allocate a new ring which has same segment numbers and link the two rings.
 413 */
 414int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
 415                                unsigned int num_trbs, gfp_t flags)
 416{
 417        struct xhci_segment     *first;
 418        struct xhci_segment     *last;
 419        unsigned int            num_segs;
 420        unsigned int            num_segs_needed;
 421        int                     ret;
 422
 423        num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
 424                                (TRBS_PER_SEGMENT - 1);
 425
 426        /* Allocate number of segments we needed, or double the ring size */
 427        num_segs = ring->num_segs > num_segs_needed ?
 428                        ring->num_segs : num_segs_needed;
 429
 430        ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
 431                        num_segs, ring->cycle_state, ring->type,
 432                        ring->bounce_buf_len, flags);
 433        if (ret)
 434                return -ENOMEM;
 435
 436        if (ring->type == TYPE_STREAM)
 437                ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
 438                                                ring, first, last, flags);
 439        if (ret) {
 440                struct xhci_segment *next;
 441                do {
 442                        next = first->next;
 443                        xhci_segment_free(xhci, first);
 444                        if (first == last)
 445                                break;
 446                        first = next;
 447                } while (true);
 448                return ret;
 449        }
 450
 451        xhci_link_rings(xhci, ring, first, last, num_segs);
 452        trace_xhci_ring_expansion(ring);
 453        xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
 454                        "ring expansion succeed, now has %d segments",
 455                        ring->num_segs);
 456
 457        return 0;
 458}
 459
 460struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
 461                                                    int type, gfp_t flags)
 462{
 463        struct xhci_container_ctx *ctx;
 464        struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 465
 466        if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
 467                return NULL;
 468
 469        ctx = kzalloc_node(sizeof(*ctx), flags, dev_to_node(dev));
 470        if (!ctx)
 471                return NULL;
 472
 473        ctx->type = type;
 474        ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
 475        if (type == XHCI_CTX_TYPE_INPUT)
 476                ctx->size += CTX_SIZE(xhci->hcc_params);
 477
 478        ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
 479        if (!ctx->bytes) {
 480                kfree(ctx);
 481                return NULL;
 482        }
 483        return ctx;
 484}
 485
 486void xhci_free_container_ctx(struct xhci_hcd *xhci,
 487                             struct xhci_container_ctx *ctx)
 488{
 489        if (!ctx)
 490                return;
 491        dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
 492        kfree(ctx);
 493}
 494
 495struct xhci_input_control_ctx *xhci_get_input_control_ctx(
 496                                              struct xhci_container_ctx *ctx)
 497{
 498        if (ctx->type != XHCI_CTX_TYPE_INPUT)
 499                return NULL;
 500
 501        return (struct xhci_input_control_ctx *)ctx->bytes;
 502}
 503
 504struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
 505                                        struct xhci_container_ctx *ctx)
 506{
 507        if (ctx->type == XHCI_CTX_TYPE_DEVICE)
 508                return (struct xhci_slot_ctx *)ctx->bytes;
 509
 510        return (struct xhci_slot_ctx *)
 511                (ctx->bytes + CTX_SIZE(xhci->hcc_params));
 512}
 513
 514struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
 515                                    struct xhci_container_ctx *ctx,
 516                                    unsigned int ep_index)
 517{
 518        /* increment ep index by offset of start of ep ctx array */
 519        ep_index++;
 520        if (ctx->type == XHCI_CTX_TYPE_INPUT)
 521                ep_index++;
 522
 523        return (struct xhci_ep_ctx *)
 524                (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
 525}
 526
 527
 528/***************** Streams structures manipulation *************************/
 529
 530static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
 531                unsigned int num_stream_ctxs,
 532                struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
 533{
 534        struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 535        size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
 536
 537        if (size > MEDIUM_STREAM_ARRAY_SIZE)
 538                dma_free_coherent(dev, size,
 539                                stream_ctx, dma);
 540        else if (size <= SMALL_STREAM_ARRAY_SIZE)
 541                return dma_pool_free(xhci->small_streams_pool,
 542                                stream_ctx, dma);
 543        else
 544                return dma_pool_free(xhci->medium_streams_pool,
 545                                stream_ctx, dma);
 546}
 547
 548/*
 549 * The stream context array for each endpoint with bulk streams enabled can
 550 * vary in size, based on:
 551 *  - how many streams the endpoint supports,
 552 *  - the maximum primary stream array size the host controller supports,
 553 *  - and how many streams the device driver asks for.
 554 *
 555 * The stream context array must be a power of 2, and can be as small as
 556 * 64 bytes or as large as 1MB.
 557 */
 558static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
 559                unsigned int num_stream_ctxs, dma_addr_t *dma,
 560                gfp_t mem_flags)
 561{
 562        struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 563        size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
 564
 565        if (size > MEDIUM_STREAM_ARRAY_SIZE)
 566                return dma_alloc_coherent(dev, size,
 567                                dma, mem_flags);
 568        else if (size <= SMALL_STREAM_ARRAY_SIZE)
 569                return dma_pool_alloc(xhci->small_streams_pool,
 570                                mem_flags, dma);
 571        else
 572                return dma_pool_alloc(xhci->medium_streams_pool,
 573                                mem_flags, dma);
 574}
 575
 576struct xhci_ring *xhci_dma_to_transfer_ring(
 577                struct xhci_virt_ep *ep,
 578                u64 address)
 579{
 580        if (ep->ep_state & EP_HAS_STREAMS)
 581                return radix_tree_lookup(&ep->stream_info->trb_address_map,
 582                                address >> TRB_SEGMENT_SHIFT);
 583        return ep->ring;
 584}
 585
 586struct xhci_ring *xhci_stream_id_to_ring(
 587                struct xhci_virt_device *dev,
 588                unsigned int ep_index,
 589                unsigned int stream_id)
 590{
 591        struct xhci_virt_ep *ep = &dev->eps[ep_index];
 592
 593        if (stream_id == 0)
 594                return ep->ring;
 595        if (!ep->stream_info)
 596                return NULL;
 597
 598        if (stream_id >= ep->stream_info->num_streams)
 599                return NULL;
 600        return ep->stream_info->stream_rings[stream_id];
 601}
 602
 603/*
 604 * Change an endpoint's internal structure so it supports stream IDs.  The
 605 * number of requested streams includes stream 0, which cannot be used by device
 606 * drivers.
 607 *
 608 * The number of stream contexts in the stream context array may be bigger than
 609 * the number of streams the driver wants to use.  This is because the number of
 610 * stream context array entries must be a power of two.
 611 */
 612struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
 613                unsigned int num_stream_ctxs,
 614                unsigned int num_streams,
 615                unsigned int max_packet, gfp_t mem_flags)
 616{
 617        struct xhci_stream_info *stream_info;
 618        u32 cur_stream;
 619        struct xhci_ring *cur_ring;
 620        u64 addr;
 621        int ret;
 622        struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 623
 624        xhci_dbg(xhci, "Allocating %u streams and %u "
 625                        "stream context array entries.\n",
 626                        num_streams, num_stream_ctxs);
 627        if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
 628                xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
 629                return NULL;
 630        }
 631        xhci->cmd_ring_reserved_trbs++;
 632
 633        stream_info = kzalloc_node(sizeof(*stream_info), mem_flags,
 634                        dev_to_node(dev));
 635        if (!stream_info)
 636                goto cleanup_trbs;
 637
 638        stream_info->num_streams = num_streams;
 639        stream_info->num_stream_ctxs = num_stream_ctxs;
 640
 641        /* Initialize the array of virtual pointers to stream rings. */
 642        stream_info->stream_rings = kcalloc_node(
 643                        num_streams, sizeof(struct xhci_ring *), mem_flags,
 644                        dev_to_node(dev));
 645        if (!stream_info->stream_rings)
 646                goto cleanup_info;
 647
 648        /* Initialize the array of DMA addresses for stream rings for the HW. */
 649        stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
 650                        num_stream_ctxs, &stream_info->ctx_array_dma,
 651                        mem_flags);
 652        if (!stream_info->stream_ctx_array)
 653                goto cleanup_ctx;
 654        memset(stream_info->stream_ctx_array, 0,
 655                        sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
 656
 657        /* Allocate everything needed to free the stream rings later */
 658        stream_info->free_streams_command =
 659                xhci_alloc_command_with_ctx(xhci, true, mem_flags);
 660        if (!stream_info->free_streams_command)
 661                goto cleanup_ctx;
 662
 663        INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
 664
 665        /* Allocate rings for all the streams that the driver will use,
 666         * and add their segment DMA addresses to the radix tree.
 667         * Stream 0 is reserved.
 668         */
 669
 670        for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
 671                stream_info->stream_rings[cur_stream] =
 672                        xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet,
 673                                        mem_flags);
 674                cur_ring = stream_info->stream_rings[cur_stream];
 675                if (!cur_ring)
 676                        goto cleanup_rings;
 677                cur_ring->stream_id = cur_stream;
 678                cur_ring->trb_address_map = &stream_info->trb_address_map;
 679                /* Set deq ptr, cycle bit, and stream context type */
 680                addr = cur_ring->first_seg->dma |
 681                        SCT_FOR_CTX(SCT_PRI_TR) |
 682                        cur_ring->cycle_state;
 683                stream_info->stream_ctx_array[cur_stream].stream_ring =
 684                        cpu_to_le64(addr);
 685                xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
 686                                cur_stream, (unsigned long long) addr);
 687
 688                ret = xhci_update_stream_mapping(cur_ring, mem_flags);
 689                if (ret) {
 690                        xhci_ring_free(xhci, cur_ring);
 691                        stream_info->stream_rings[cur_stream] = NULL;
 692                        goto cleanup_rings;
 693                }
 694        }
 695        /* Leave the other unused stream ring pointers in the stream context
 696         * array initialized to zero.  This will cause the xHC to give us an
 697         * error if the device asks for a stream ID we don't have setup (if it
 698         * was any other way, the host controller would assume the ring is
 699         * "empty" and wait forever for data to be queued to that stream ID).
 700         */
 701
 702        return stream_info;
 703
 704cleanup_rings:
 705        for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
 706                cur_ring = stream_info->stream_rings[cur_stream];
 707                if (cur_ring) {
 708                        xhci_ring_free(xhci, cur_ring);
 709                        stream_info->stream_rings[cur_stream] = NULL;
 710                }
 711        }
 712        xhci_free_command(xhci, stream_info->free_streams_command);
 713cleanup_ctx:
 714        kfree(stream_info->stream_rings);
 715cleanup_info:
 716        kfree(stream_info);
 717cleanup_trbs:
 718        xhci->cmd_ring_reserved_trbs--;
 719        return NULL;
 720}
 721/*
 722 * Sets the MaxPStreams field and the Linear Stream Array field.
 723 * Sets the dequeue pointer to the stream context array.
 724 */
 725void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
 726                struct xhci_ep_ctx *ep_ctx,
 727                struct xhci_stream_info *stream_info)
 728{
 729        u32 max_primary_streams;
 730        /* MaxPStreams is the number of stream context array entries, not the
 731         * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
 732         * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
 733         */
 734        max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
 735        xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
 736                        "Setting number of stream ctx array entries to %u",
 737                        1 << (max_primary_streams + 1));
 738        ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
 739        ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
 740                                       | EP_HAS_LSA);
 741        ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
 742}
 743
 744/*
 745 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
 746 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
 747 * not at the beginning of the ring).
 748 */
 749void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
 750                struct xhci_virt_ep *ep)
 751{
 752        dma_addr_t addr;
 753        ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
 754        addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
 755        ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
 756}
 757
 758/* Frees all stream contexts associated with the endpoint,
 759 *
 760 * Caller should fix the endpoint context streams fields.
 761 */
 762void xhci_free_stream_info(struct xhci_hcd *xhci,
 763                struct xhci_stream_info *stream_info)
 764{
 765        int cur_stream;
 766        struct xhci_ring *cur_ring;
 767
 768        if (!stream_info)
 769                return;
 770
 771        for (cur_stream = 1; cur_stream < stream_info->num_streams;
 772                        cur_stream++) {
 773                cur_ring = stream_info->stream_rings[cur_stream];
 774                if (cur_ring) {
 775                        xhci_ring_free(xhci, cur_ring);
 776                        stream_info->stream_rings[cur_stream] = NULL;
 777                }
 778        }
 779        xhci_free_command(xhci, stream_info->free_streams_command);
 780        xhci->cmd_ring_reserved_trbs--;
 781        if (stream_info->stream_ctx_array)
 782                xhci_free_stream_ctx(xhci,
 783                                stream_info->num_stream_ctxs,
 784                                stream_info->stream_ctx_array,
 785                                stream_info->ctx_array_dma);
 786
 787        kfree(stream_info->stream_rings);
 788        kfree(stream_info);
 789}
 790
 791
 792/***************** Device context manipulation *************************/
 793
 794static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
 795                struct xhci_virt_ep *ep)
 796{
 797        timer_setup(&ep->stop_cmd_timer, xhci_stop_endpoint_command_watchdog,
 798                    0);
 799        ep->xhci = xhci;
 800}
 801
 802static void xhci_free_tt_info(struct xhci_hcd *xhci,
 803                struct xhci_virt_device *virt_dev,
 804                int slot_id)
 805{
 806        struct list_head *tt_list_head;
 807        struct xhci_tt_bw_info *tt_info, *next;
 808        bool slot_found = false;
 809
 810        /* If the device never made it past the Set Address stage,
 811         * it may not have the real_port set correctly.
 812         */
 813        if (virt_dev->real_port == 0 ||
 814                        virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
 815                xhci_dbg(xhci, "Bad real port.\n");
 816                return;
 817        }
 818
 819        tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
 820        list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
 821                /* Multi-TT hubs will have more than one entry */
 822                if (tt_info->slot_id == slot_id) {
 823                        slot_found = true;
 824                        list_del(&tt_info->tt_list);
 825                        kfree(tt_info);
 826                } else if (slot_found) {
 827                        break;
 828                }
 829        }
 830}
 831
 832int xhci_alloc_tt_info(struct xhci_hcd *xhci,
 833                struct xhci_virt_device *virt_dev,
 834                struct usb_device *hdev,
 835                struct usb_tt *tt, gfp_t mem_flags)
 836{
 837        struct xhci_tt_bw_info          *tt_info;
 838        unsigned int                    num_ports;
 839        int                             i, j;
 840        struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 841
 842        if (!tt->multi)
 843                num_ports = 1;
 844        else
 845                num_ports = hdev->maxchild;
 846
 847        for (i = 0; i < num_ports; i++, tt_info++) {
 848                struct xhci_interval_bw_table *bw_table;
 849
 850                tt_info = kzalloc_node(sizeof(*tt_info), mem_flags,
 851                                dev_to_node(dev));
 852                if (!tt_info)
 853                        goto free_tts;
 854                INIT_LIST_HEAD(&tt_info->tt_list);
 855                list_add(&tt_info->tt_list,
 856                                &xhci->rh_bw[virt_dev->real_port - 1].tts);
 857                tt_info->slot_id = virt_dev->udev->slot_id;
 858                if (tt->multi)
 859                        tt_info->ttport = i+1;
 860                bw_table = &tt_info->bw_table;
 861                for (j = 0; j < XHCI_MAX_INTERVAL; j++)
 862                        INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
 863        }
 864        return 0;
 865
 866free_tts:
 867        xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
 868        return -ENOMEM;
 869}
 870
 871
 872/* All the xhci_tds in the ring's TD list should be freed at this point.
 873 * Should be called with xhci->lock held if there is any chance the TT lists
 874 * will be manipulated by the configure endpoint, allocate device, or update
 875 * hub functions while this function is removing the TT entries from the list.
 876 */
 877void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
 878{
 879        struct xhci_virt_device *dev;
 880        int i;
 881        int old_active_eps = 0;
 882
 883        /* Slot ID 0 is reserved */
 884        if (slot_id == 0 || !xhci->devs[slot_id])
 885                return;
 886
 887        dev = xhci->devs[slot_id];
 888
 889        xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
 890        if (!dev)
 891                return;
 892
 893        trace_xhci_free_virt_device(dev);
 894
 895        if (dev->tt_info)
 896                old_active_eps = dev->tt_info->active_eps;
 897
 898        for (i = 0; i < 31; i++) {
 899                if (dev->eps[i].ring)
 900                        xhci_ring_free(xhci, dev->eps[i].ring);
 901                if (dev->eps[i].stream_info)
 902                        xhci_free_stream_info(xhci,
 903                                        dev->eps[i].stream_info);
 904                /* Endpoints on the TT/root port lists should have been removed
 905                 * when usb_disable_device() was called for the device.
 906                 * We can't drop them anyway, because the udev might have gone
 907                 * away by this point, and we can't tell what speed it was.
 908                 */
 909                if (!list_empty(&dev->eps[i].bw_endpoint_list))
 910                        xhci_warn(xhci, "Slot %u endpoint %u "
 911                                        "not removed from BW list!\n",
 912                                        slot_id, i);
 913        }
 914        /* If this is a hub, free the TT(s) from the TT list */
 915        xhci_free_tt_info(xhci, dev, slot_id);
 916        /* If necessary, update the number of active TTs on this root port */
 917        xhci_update_tt_active_eps(xhci, dev, old_active_eps);
 918
 919        if (dev->in_ctx)
 920                xhci_free_container_ctx(xhci, dev->in_ctx);
 921        if (dev->out_ctx)
 922                xhci_free_container_ctx(xhci, dev->out_ctx);
 923
 924        if (dev->udev && dev->udev->slot_id)
 925                dev->udev->slot_id = 0;
 926        kfree(xhci->devs[slot_id]);
 927        xhci->devs[slot_id] = NULL;
 928}
 929
 930/*
 931 * Free a virt_device structure.
 932 * If the virt_device added a tt_info (a hub) and has children pointing to
 933 * that tt_info, then free the child first. Recursive.
 934 * We can't rely on udev at this point to find child-parent relationships.
 935 */
 936void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id)
 937{
 938        struct xhci_virt_device *vdev;
 939        struct list_head *tt_list_head;
 940        struct xhci_tt_bw_info *tt_info, *next;
 941        int i;
 942
 943        vdev = xhci->devs[slot_id];
 944        if (!vdev)
 945                return;
 946
 947        if (vdev->real_port == 0 ||
 948                        vdev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
 949                xhci_dbg(xhci, "Bad vdev->real_port.\n");
 950                goto out;
 951        }
 952
 953        tt_list_head = &(xhci->rh_bw[vdev->real_port - 1].tts);
 954        list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
 955                /* is this a hub device that added a tt_info to the tts list */
 956                if (tt_info->slot_id == slot_id) {
 957                        /* are any devices using this tt_info? */
 958                        for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
 959                                vdev = xhci->devs[i];
 960                                if (vdev && (vdev->tt_info == tt_info))
 961                                        xhci_free_virt_devices_depth_first(
 962                                                xhci, i);
 963                        }
 964                }
 965        }
 966out:
 967        /* we are now at a leaf device */
 968        xhci_debugfs_remove_slot(xhci, slot_id);
 969        xhci_free_virt_device(xhci, slot_id);
 970}
 971
 972int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
 973                struct usb_device *udev, gfp_t flags)
 974{
 975        struct xhci_virt_device *dev;
 976        int i;
 977
 978        /* Slot ID 0 is reserved */
 979        if (slot_id == 0 || xhci->devs[slot_id]) {
 980                xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
 981                return 0;
 982        }
 983
 984        dev = kzalloc(sizeof(*dev), flags);
 985        if (!dev)
 986                return 0;
 987
 988        /* Allocate the (output) device context that will be used in the HC. */
 989        dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
 990        if (!dev->out_ctx)
 991                goto fail;
 992
 993        xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
 994                        (unsigned long long)dev->out_ctx->dma);
 995
 996        /* Allocate the (input) device context for address device command */
 997        dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
 998        if (!dev->in_ctx)
 999                goto fail;
1000
1001        xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
1002                        (unsigned long long)dev->in_ctx->dma);
1003
1004        /* Initialize the cancellation list and watchdog timers for each ep */
1005        for (i = 0; i < 31; i++) {
1006                xhci_init_endpoint_timer(xhci, &dev->eps[i]);
1007                INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
1008                INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
1009        }
1010
1011        /* Allocate endpoint 0 ring */
1012        dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags);
1013        if (!dev->eps[0].ring)
1014                goto fail;
1015
1016        dev->udev = udev;
1017
1018        /* Point to output device context in dcbaa. */
1019        xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1020        xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1021                 slot_id,
1022                 &xhci->dcbaa->dev_context_ptrs[slot_id],
1023                 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1024
1025        trace_xhci_alloc_virt_device(dev);
1026
1027        xhci->devs[slot_id] = dev;
1028
1029        return 1;
1030fail:
1031
1032        if (dev->in_ctx)
1033                xhci_free_container_ctx(xhci, dev->in_ctx);
1034        if (dev->out_ctx)
1035                xhci_free_container_ctx(xhci, dev->out_ctx);
1036        kfree(dev);
1037
1038        return 0;
1039}
1040
1041void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1042                struct usb_device *udev)
1043{
1044        struct xhci_virt_device *virt_dev;
1045        struct xhci_ep_ctx      *ep0_ctx;
1046        struct xhci_ring        *ep_ring;
1047
1048        virt_dev = xhci->devs[udev->slot_id];
1049        ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1050        ep_ring = virt_dev->eps[0].ring;
1051        /*
1052         * FIXME we don't keep track of the dequeue pointer very well after a
1053         * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1054         * host to our enqueue pointer.  This should only be called after a
1055         * configured device has reset, so all control transfers should have
1056         * been completed or cancelled before the reset.
1057         */
1058        ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1059                                                        ep_ring->enqueue)
1060                                   | ep_ring->cycle_state);
1061}
1062
1063/*
1064 * The xHCI roothub may have ports of differing speeds in any order in the port
1065 * status registers.
1066 *
1067 * The xHCI hardware wants to know the roothub port number that the USB device
1068 * is attached to (or the roothub port its ancestor hub is attached to).  All we
1069 * know is the index of that port under either the USB 2.0 or the USB 3.0
1070 * roothub, but that doesn't give us the real index into the HW port status
1071 * registers. Call xhci_find_raw_port_number() to get real index.
1072 */
1073static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1074                struct usb_device *udev)
1075{
1076        struct usb_device *top_dev;
1077        struct usb_hcd *hcd;
1078
1079        if (udev->speed >= USB_SPEED_SUPER)
1080                hcd = xhci->shared_hcd;
1081        else
1082                hcd = xhci->main_hcd;
1083
1084        for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1085                        top_dev = top_dev->parent)
1086                /* Found device below root hub */;
1087
1088        return  xhci_find_raw_port_number(hcd, top_dev->portnum);
1089}
1090
1091/* Setup an xHCI virtual device for a Set Address command */
1092int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1093{
1094        struct xhci_virt_device *dev;
1095        struct xhci_ep_ctx      *ep0_ctx;
1096        struct xhci_slot_ctx    *slot_ctx;
1097        u32                     port_num;
1098        u32                     max_packets;
1099        struct usb_device *top_dev;
1100
1101        dev = xhci->devs[udev->slot_id];
1102        /* Slot ID 0 is reserved */
1103        if (udev->slot_id == 0 || !dev) {
1104                xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1105                                udev->slot_id);
1106                return -EINVAL;
1107        }
1108        ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1109        slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1110
1111        /* 3) Only the control endpoint is valid - one endpoint context */
1112        slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1113        switch (udev->speed) {
1114        case USB_SPEED_SUPER_PLUS:
1115                slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
1116                max_packets = MAX_PACKET(512);
1117                break;
1118        case USB_SPEED_SUPER:
1119                slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1120                max_packets = MAX_PACKET(512);
1121                break;
1122        case USB_SPEED_HIGH:
1123                slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1124                max_packets = MAX_PACKET(64);
1125                break;
1126        /* USB core guesses at a 64-byte max packet first for FS devices */
1127        case USB_SPEED_FULL:
1128                slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1129                max_packets = MAX_PACKET(64);
1130                break;
1131        case USB_SPEED_LOW:
1132                slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1133                max_packets = MAX_PACKET(8);
1134                break;
1135        case USB_SPEED_WIRELESS:
1136                xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1137                return -EINVAL;
1138                break;
1139        default:
1140                /* Speed was set earlier, this shouldn't happen. */
1141                return -EINVAL;
1142        }
1143        /* Find the root hub port this device is under */
1144        port_num = xhci_find_real_port_number(xhci, udev);
1145        if (!port_num)
1146                return -EINVAL;
1147        slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1148        /* Set the port number in the virtual_device to the faked port number */
1149        for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1150                        top_dev = top_dev->parent)
1151                /* Found device below root hub */;
1152        dev->fake_port = top_dev->portnum;
1153        dev->real_port = port_num;
1154        xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1155        xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1156
1157        /* Find the right bandwidth table that this device will be a part of.
1158         * If this is a full speed device attached directly to a root port (or a
1159         * decendent of one), it counts as a primary bandwidth domain, not a
1160         * secondary bandwidth domain under a TT.  An xhci_tt_info structure
1161         * will never be created for the HS root hub.
1162         */
1163        if (!udev->tt || !udev->tt->hub->parent) {
1164                dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1165        } else {
1166                struct xhci_root_port_bw_info *rh_bw;
1167                struct xhci_tt_bw_info *tt_bw;
1168
1169                rh_bw = &xhci->rh_bw[port_num - 1];
1170                /* Find the right TT. */
1171                list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1172                        if (tt_bw->slot_id != udev->tt->hub->slot_id)
1173                                continue;
1174
1175                        if (!dev->udev->tt->multi ||
1176                                        (udev->tt->multi &&
1177                                         tt_bw->ttport == dev->udev->ttport)) {
1178                                dev->bw_table = &tt_bw->bw_table;
1179                                dev->tt_info = tt_bw;
1180                                break;
1181                        }
1182                }
1183                if (!dev->tt_info)
1184                        xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1185        }
1186
1187        /* Is this a LS/FS device under an external HS hub? */
1188        if (udev->tt && udev->tt->hub->parent) {
1189                slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1190                                                (udev->ttport << 8));
1191                if (udev->tt->multi)
1192                        slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1193        }
1194        xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1195        xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1196
1197        /* Step 4 - ring already allocated */
1198        /* Step 5 */
1199        ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1200
1201        /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1202        ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1203                                         max_packets);
1204
1205        ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1206                                   dev->eps[0].ring->cycle_state);
1207
1208        trace_xhci_setup_addressable_virt_device(dev);
1209
1210        /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1211
1212        return 0;
1213}
1214
1215/*
1216 * Convert interval expressed as 2^(bInterval - 1) == interval into
1217 * straight exponent value 2^n == interval.
1218 *
1219 */
1220static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1221                struct usb_host_endpoint *ep)
1222{
1223        unsigned int interval;
1224
1225        interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1226        if (interval != ep->desc.bInterval - 1)
1227                dev_warn(&udev->dev,
1228                         "ep %#x - rounding interval to %d %sframes\n",
1229                         ep->desc.bEndpointAddress,
1230                         1 << interval,
1231                         udev->speed == USB_SPEED_FULL ? "" : "micro");
1232
1233        if (udev->speed == USB_SPEED_FULL) {
1234                /*
1235                 * Full speed isoc endpoints specify interval in frames,
1236                 * not microframes. We are using microframes everywhere,
1237                 * so adjust accordingly.
1238                 */
1239                interval += 3;  /* 1 frame = 2^3 uframes */
1240        }
1241
1242        return interval;
1243}
1244
1245/*
1246 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1247 * microframes, rounded down to nearest power of 2.
1248 */
1249static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1250                struct usb_host_endpoint *ep, unsigned int desc_interval,
1251                unsigned int min_exponent, unsigned int max_exponent)
1252{
1253        unsigned int interval;
1254
1255        interval = fls(desc_interval) - 1;
1256        interval = clamp_val(interval, min_exponent, max_exponent);
1257        if ((1 << interval) != desc_interval)
1258                dev_dbg(&udev->dev,
1259                         "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1260                         ep->desc.bEndpointAddress,
1261                         1 << interval,
1262                         desc_interval);
1263
1264        return interval;
1265}
1266
1267static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1268                struct usb_host_endpoint *ep)
1269{
1270        if (ep->desc.bInterval == 0)
1271                return 0;
1272        return xhci_microframes_to_exponent(udev, ep,
1273                        ep->desc.bInterval, 0, 15);
1274}
1275
1276
1277static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1278                struct usb_host_endpoint *ep)
1279{
1280        return xhci_microframes_to_exponent(udev, ep,
1281                        ep->desc.bInterval * 8, 3, 10);
1282}
1283
1284/* Return the polling or NAK interval.
1285 *
1286 * The polling interval is expressed in "microframes".  If xHCI's Interval field
1287 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1288 *
1289 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1290 * is set to 0.
1291 */
1292static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1293                struct usb_host_endpoint *ep)
1294{
1295        unsigned int interval = 0;
1296
1297        switch (udev->speed) {
1298        case USB_SPEED_HIGH:
1299                /* Max NAK rate */
1300                if (usb_endpoint_xfer_control(&ep->desc) ||
1301                    usb_endpoint_xfer_bulk(&ep->desc)) {
1302                        interval = xhci_parse_microframe_interval(udev, ep);
1303                        break;
1304                }
1305                /* Fall through - SS and HS isoc/int have same decoding */
1306
1307        case USB_SPEED_SUPER_PLUS:
1308        case USB_SPEED_SUPER:
1309                if (usb_endpoint_xfer_int(&ep->desc) ||
1310                    usb_endpoint_xfer_isoc(&ep->desc)) {
1311                        interval = xhci_parse_exponent_interval(udev, ep);
1312                }
1313                break;
1314
1315        case USB_SPEED_FULL:
1316                if (usb_endpoint_xfer_isoc(&ep->desc)) {
1317                        interval = xhci_parse_exponent_interval(udev, ep);
1318                        break;
1319                }
1320                /*
1321                 * Fall through for interrupt endpoint interval decoding
1322                 * since it uses the same rules as low speed interrupt
1323                 * endpoints.
1324                 */
1325                /* fall through */
1326
1327        case USB_SPEED_LOW:
1328                if (usb_endpoint_xfer_int(&ep->desc) ||
1329                    usb_endpoint_xfer_isoc(&ep->desc)) {
1330
1331                        interval = xhci_parse_frame_interval(udev, ep);
1332                }
1333                break;
1334
1335        default:
1336                BUG();
1337        }
1338        return interval;
1339}
1340
1341/* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1342 * High speed endpoint descriptors can define "the number of additional
1343 * transaction opportunities per microframe", but that goes in the Max Burst
1344 * endpoint context field.
1345 */
1346static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1347                struct usb_host_endpoint *ep)
1348{
1349        if (udev->speed < USB_SPEED_SUPER ||
1350                        !usb_endpoint_xfer_isoc(&ep->desc))
1351                return 0;
1352        return ep->ss_ep_comp.bmAttributes;
1353}
1354
1355static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
1356                                       struct usb_host_endpoint *ep)
1357{
1358        /* Super speed and Plus have max burst in ep companion desc */
1359        if (udev->speed >= USB_SPEED_SUPER)
1360                return ep->ss_ep_comp.bMaxBurst;
1361
1362        if (udev->speed == USB_SPEED_HIGH &&
1363            (usb_endpoint_xfer_isoc(&ep->desc) ||
1364             usb_endpoint_xfer_int(&ep->desc)))
1365                return usb_endpoint_maxp_mult(&ep->desc) - 1;
1366
1367        return 0;
1368}
1369
1370static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1371{
1372        int in;
1373
1374        in = usb_endpoint_dir_in(&ep->desc);
1375
1376        switch (usb_endpoint_type(&ep->desc)) {
1377        case USB_ENDPOINT_XFER_CONTROL:
1378                return CTRL_EP;
1379        case USB_ENDPOINT_XFER_BULK:
1380                return in ? BULK_IN_EP : BULK_OUT_EP;
1381        case USB_ENDPOINT_XFER_ISOC:
1382                return in ? ISOC_IN_EP : ISOC_OUT_EP;
1383        case USB_ENDPOINT_XFER_INT:
1384                return in ? INT_IN_EP : INT_OUT_EP;
1385        }
1386        return 0;
1387}
1388
1389/* Return the maximum endpoint service interval time (ESIT) payload.
1390 * Basically, this is the maxpacket size, multiplied by the burst size
1391 * and mult size.
1392 */
1393static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1394                struct usb_host_endpoint *ep)
1395{
1396        int max_burst;
1397        int max_packet;
1398
1399        /* Only applies for interrupt or isochronous endpoints */
1400        if (usb_endpoint_xfer_control(&ep->desc) ||
1401                        usb_endpoint_xfer_bulk(&ep->desc))
1402                return 0;
1403
1404        /* SuperSpeedPlus Isoc ep sending over 48k per esit */
1405        if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
1406            USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
1407                return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
1408        /* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1409        else if (udev->speed >= USB_SPEED_SUPER)
1410                return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1411
1412        max_packet = usb_endpoint_maxp(&ep->desc);
1413        max_burst = usb_endpoint_maxp_mult(&ep->desc);
1414        /* A 0 in max burst means 1 transfer per ESIT */
1415        return max_packet * max_burst;
1416}
1417
1418/* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1419 * Drivers will have to call usb_alloc_streams() to do that.
1420 */
1421int xhci_endpoint_init(struct xhci_hcd *xhci,
1422                struct xhci_virt_device *virt_dev,
1423                struct usb_device *udev,
1424                struct usb_host_endpoint *ep,
1425                gfp_t mem_flags)
1426{
1427        unsigned int ep_index;
1428        struct xhci_ep_ctx *ep_ctx;
1429        struct xhci_ring *ep_ring;
1430        unsigned int max_packet;
1431        enum xhci_ring_type ring_type;
1432        u32 max_esit_payload;
1433        u32 endpoint_type;
1434        unsigned int max_burst;
1435        unsigned int interval;
1436        unsigned int mult;
1437        unsigned int avg_trb_len;
1438        unsigned int err_count = 0;
1439
1440        ep_index = xhci_get_endpoint_index(&ep->desc);
1441        ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1442
1443        endpoint_type = xhci_get_endpoint_type(ep);
1444        if (!endpoint_type)
1445                return -EINVAL;
1446
1447        ring_type = usb_endpoint_type(&ep->desc);
1448
1449        /*
1450         * Get values to fill the endpoint context, mostly from ep descriptor.
1451         * The average TRB buffer lengt for bulk endpoints is unclear as we
1452         * have no clue on scatter gather list entry size. For Isoc and Int,
1453         * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1454         */
1455        max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1456        interval = xhci_get_endpoint_interval(udev, ep);
1457
1458        /* Periodic endpoint bInterval limit quirk */
1459        if (usb_endpoint_xfer_int(&ep->desc) ||
1460            usb_endpoint_xfer_isoc(&ep->desc)) {
1461                if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) &&
1462                    udev->speed >= USB_SPEED_HIGH &&
1463                    interval >= 7) {
1464                        interval = 6;
1465                }
1466        }
1467
1468        mult = xhci_get_endpoint_mult(udev, ep);
1469        max_packet = usb_endpoint_maxp(&ep->desc);
1470        max_burst = xhci_get_endpoint_max_burst(udev, ep);
1471        avg_trb_len = max_esit_payload;
1472
1473        /* FIXME dig Mult and streams info out of ep companion desc */
1474
1475        /* Allow 3 retries for everything but isoc, set CErr = 3 */
1476        if (!usb_endpoint_xfer_isoc(&ep->desc))
1477                err_count = 3;
1478        /* Some devices get this wrong */
1479        if (usb_endpoint_xfer_bulk(&ep->desc) && udev->speed == USB_SPEED_HIGH)
1480                max_packet = 512;
1481        /* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1482        if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1483                avg_trb_len = 8;
1484        /* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1485        if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
1486                mult = 0;
1487
1488        /* Set up the endpoint ring */
1489        virt_dev->eps[ep_index].new_ring =
1490                xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags);
1491        if (!virt_dev->eps[ep_index].new_ring)
1492                return -ENOMEM;
1493
1494        virt_dev->eps[ep_index].skip = false;
1495        ep_ring = virt_dev->eps[ep_index].new_ring;
1496
1497        /* Fill the endpoint context */
1498        ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
1499                                      EP_INTERVAL(interval) |
1500                                      EP_MULT(mult));
1501        ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
1502                                       MAX_PACKET(max_packet) |
1503                                       MAX_BURST(max_burst) |
1504                                       ERROR_COUNT(err_count));
1505        ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
1506                                  ep_ring->cycle_state);
1507
1508        ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
1509                                      EP_AVG_TRB_LENGTH(avg_trb_len));
1510
1511        return 0;
1512}
1513
1514void xhci_endpoint_zero(struct xhci_hcd *xhci,
1515                struct xhci_virt_device *virt_dev,
1516                struct usb_host_endpoint *ep)
1517{
1518        unsigned int ep_index;
1519        struct xhci_ep_ctx *ep_ctx;
1520
1521        ep_index = xhci_get_endpoint_index(&ep->desc);
1522        ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1523
1524        ep_ctx->ep_info = 0;
1525        ep_ctx->ep_info2 = 0;
1526        ep_ctx->deq = 0;
1527        ep_ctx->tx_info = 0;
1528        /* Don't free the endpoint ring until the set interface or configuration
1529         * request succeeds.
1530         */
1531}
1532
1533void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1534{
1535        bw_info->ep_interval = 0;
1536        bw_info->mult = 0;
1537        bw_info->num_packets = 0;
1538        bw_info->max_packet_size = 0;
1539        bw_info->type = 0;
1540        bw_info->max_esit_payload = 0;
1541}
1542
1543void xhci_update_bw_info(struct xhci_hcd *xhci,
1544                struct xhci_container_ctx *in_ctx,
1545                struct xhci_input_control_ctx *ctrl_ctx,
1546                struct xhci_virt_device *virt_dev)
1547{
1548        struct xhci_bw_info *bw_info;
1549        struct xhci_ep_ctx *ep_ctx;
1550        unsigned int ep_type;
1551        int i;
1552
1553        for (i = 1; i < 31; i++) {
1554                bw_info = &virt_dev->eps[i].bw_info;
1555
1556                /* We can't tell what endpoint type is being dropped, but
1557                 * unconditionally clearing the bandwidth info for non-periodic
1558                 * endpoints should be harmless because the info will never be
1559                 * set in the first place.
1560                 */
1561                if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1562                        /* Dropped endpoint */
1563                        xhci_clear_endpoint_bw_info(bw_info);
1564                        continue;
1565                }
1566
1567                if (EP_IS_ADDED(ctrl_ctx, i)) {
1568                        ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1569                        ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1570
1571                        /* Ignore non-periodic endpoints */
1572                        if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1573                                        ep_type != ISOC_IN_EP &&
1574                                        ep_type != INT_IN_EP)
1575                                continue;
1576
1577                        /* Added or changed endpoint */
1578                        bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1579                                        le32_to_cpu(ep_ctx->ep_info));
1580                        /* Number of packets and mult are zero-based in the
1581                         * input context, but we want one-based for the
1582                         * interval table.
1583                         */
1584                        bw_info->mult = CTX_TO_EP_MULT(
1585                                        le32_to_cpu(ep_ctx->ep_info)) + 1;
1586                        bw_info->num_packets = CTX_TO_MAX_BURST(
1587                                        le32_to_cpu(ep_ctx->ep_info2)) + 1;
1588                        bw_info->max_packet_size = MAX_PACKET_DECODED(
1589                                        le32_to_cpu(ep_ctx->ep_info2));
1590                        bw_info->type = ep_type;
1591                        bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1592                                        le32_to_cpu(ep_ctx->tx_info));
1593                }
1594        }
1595}
1596
1597/* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1598 * Useful when you want to change one particular aspect of the endpoint and then
1599 * issue a configure endpoint command.
1600 */
1601void xhci_endpoint_copy(struct xhci_hcd *xhci,
1602                struct xhci_container_ctx *in_ctx,
1603                struct xhci_container_ctx *out_ctx,
1604                unsigned int ep_index)
1605{
1606        struct xhci_ep_ctx *out_ep_ctx;
1607        struct xhci_ep_ctx *in_ep_ctx;
1608
1609        out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1610        in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1611
1612        in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1613        in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1614        in_ep_ctx->deq = out_ep_ctx->deq;
1615        in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1616        if (xhci->quirks & XHCI_MTK_HOST) {
1617                in_ep_ctx->reserved[0] = out_ep_ctx->reserved[0];
1618                in_ep_ctx->reserved[1] = out_ep_ctx->reserved[1];
1619        }
1620}
1621
1622/* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1623 * Useful when you want to change one particular aspect of the endpoint and then
1624 * issue a configure endpoint command.  Only the context entries field matters,
1625 * but we'll copy the whole thing anyway.
1626 */
1627void xhci_slot_copy(struct xhci_hcd *xhci,
1628                struct xhci_container_ctx *in_ctx,
1629                struct xhci_container_ctx *out_ctx)
1630{
1631        struct xhci_slot_ctx *in_slot_ctx;
1632        struct xhci_slot_ctx *out_slot_ctx;
1633
1634        in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1635        out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1636
1637        in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1638        in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1639        in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1640        in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1641}
1642
1643/* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1644static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1645{
1646        int i;
1647        struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1648        int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1649
1650        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1651                        "Allocating %d scratchpad buffers", num_sp);
1652
1653        if (!num_sp)
1654                return 0;
1655
1656        xhci->scratchpad = kzalloc_node(sizeof(*xhci->scratchpad), flags,
1657                                dev_to_node(dev));
1658        if (!xhci->scratchpad)
1659                goto fail_sp;
1660
1661        xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1662                                     num_sp * sizeof(u64),
1663                                     &xhci->scratchpad->sp_dma, flags);
1664        if (!xhci->scratchpad->sp_array)
1665                goto fail_sp2;
1666
1667        xhci->scratchpad->sp_buffers = kcalloc_node(num_sp, sizeof(void *),
1668                                        flags, dev_to_node(dev));
1669        if (!xhci->scratchpad->sp_buffers)
1670                goto fail_sp3;
1671
1672        xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1673        for (i = 0; i < num_sp; i++) {
1674                dma_addr_t dma;
1675                void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1676                                               flags);
1677                if (!buf)
1678                        goto fail_sp4;
1679
1680                xhci->scratchpad->sp_array[i] = dma;
1681                xhci->scratchpad->sp_buffers[i] = buf;
1682        }
1683
1684        return 0;
1685
1686 fail_sp4:
1687        for (i = i - 1; i >= 0; i--) {
1688                dma_free_coherent(dev, xhci->page_size,
1689                                    xhci->scratchpad->sp_buffers[i],
1690                                    xhci->scratchpad->sp_array[i]);
1691        }
1692
1693        kfree(xhci->scratchpad->sp_buffers);
1694
1695 fail_sp3:
1696        dma_free_coherent(dev, num_sp * sizeof(u64),
1697                            xhci->scratchpad->sp_array,
1698                            xhci->scratchpad->sp_dma);
1699
1700 fail_sp2:
1701        kfree(xhci->scratchpad);
1702        xhci->scratchpad = NULL;
1703
1704 fail_sp:
1705        return -ENOMEM;
1706}
1707
1708static void scratchpad_free(struct xhci_hcd *xhci)
1709{
1710        int num_sp;
1711        int i;
1712        struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1713
1714        if (!xhci->scratchpad)
1715                return;
1716
1717        num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1718
1719        for (i = 0; i < num_sp; i++) {
1720                dma_free_coherent(dev, xhci->page_size,
1721                                    xhci->scratchpad->sp_buffers[i],
1722                                    xhci->scratchpad->sp_array[i]);
1723        }
1724        kfree(xhci->scratchpad->sp_buffers);
1725        dma_free_coherent(dev, num_sp * sizeof(u64),
1726                            xhci->scratchpad->sp_array,
1727                            xhci->scratchpad->sp_dma);
1728        kfree(xhci->scratchpad);
1729        xhci->scratchpad = NULL;
1730}
1731
1732struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1733                bool allocate_completion, gfp_t mem_flags)
1734{
1735        struct xhci_command *command;
1736        struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1737
1738        command = kzalloc_node(sizeof(*command), mem_flags, dev_to_node(dev));
1739        if (!command)
1740                return NULL;
1741
1742        if (allocate_completion) {
1743                command->completion =
1744                        kzalloc_node(sizeof(struct completion), mem_flags,
1745                                dev_to_node(dev));
1746                if (!command->completion) {
1747                        kfree(command);
1748                        return NULL;
1749                }
1750                init_completion(command->completion);
1751        }
1752
1753        command->status = 0;
1754        INIT_LIST_HEAD(&command->cmd_list);
1755        return command;
1756}
1757
1758struct xhci_command *xhci_alloc_command_with_ctx(struct xhci_hcd *xhci,
1759                bool allocate_completion, gfp_t mem_flags)
1760{
1761        struct xhci_command *command;
1762
1763        command = xhci_alloc_command(xhci, allocate_completion, mem_flags);
1764        if (!command)
1765                return NULL;
1766
1767        command->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1768                                                   mem_flags);
1769        if (!command->in_ctx) {
1770                kfree(command->completion);
1771                kfree(command);
1772                return NULL;
1773        }
1774        return command;
1775}
1776
1777void xhci_urb_free_priv(struct urb_priv *urb_priv)
1778{
1779        kfree(urb_priv);
1780}
1781
1782void xhci_free_command(struct xhci_hcd *xhci,
1783                struct xhci_command *command)
1784{
1785        xhci_free_container_ctx(xhci,
1786                        command->in_ctx);
1787        kfree(command->completion);
1788        kfree(command);
1789}
1790
1791int xhci_alloc_erst(struct xhci_hcd *xhci,
1792                    struct xhci_ring *evt_ring,
1793                    struct xhci_erst *erst,
1794                    gfp_t flags)
1795{
1796        size_t size;
1797        unsigned int val;
1798        struct xhci_segment *seg;
1799        struct xhci_erst_entry *entry;
1800
1801        size = sizeof(struct xhci_erst_entry) * evt_ring->num_segs;
1802        erst->entries = dma_alloc_coherent(xhci_to_hcd(xhci)->self.sysdev,
1803                                           size, &erst->erst_dma_addr, flags);
1804        if (!erst->entries)
1805                return -ENOMEM;
1806
1807        erst->num_entries = evt_ring->num_segs;
1808
1809        seg = evt_ring->first_seg;
1810        for (val = 0; val < evt_ring->num_segs; val++) {
1811                entry = &erst->entries[val];
1812                entry->seg_addr = cpu_to_le64(seg->dma);
1813                entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
1814                entry->rsvd = 0;
1815                seg = seg->next;
1816        }
1817
1818        return 0;
1819}
1820
1821void xhci_free_erst(struct xhci_hcd *xhci, struct xhci_erst *erst)
1822{
1823        size_t size;
1824        struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1825
1826        size = sizeof(struct xhci_erst_entry) * (erst->num_entries);
1827        if (erst->entries)
1828                dma_free_coherent(dev, size,
1829                                erst->entries,
1830                                erst->erst_dma_addr);
1831        erst->entries = NULL;
1832}
1833
1834void xhci_mem_cleanup(struct xhci_hcd *xhci)
1835{
1836        struct device   *dev = xhci_to_hcd(xhci)->self.sysdev;
1837        int i, j, num_ports;
1838
1839        cancel_delayed_work_sync(&xhci->cmd_timer);
1840
1841        xhci_free_erst(xhci, &xhci->erst);
1842
1843        if (xhci->event_ring)
1844                xhci_ring_free(xhci, xhci->event_ring);
1845        xhci->event_ring = NULL;
1846        xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
1847
1848        if (xhci->lpm_command)
1849                xhci_free_command(xhci, xhci->lpm_command);
1850        xhci->lpm_command = NULL;
1851        if (xhci->cmd_ring)
1852                xhci_ring_free(xhci, xhci->cmd_ring);
1853        xhci->cmd_ring = NULL;
1854        xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1855        xhci_cleanup_command_queue(xhci);
1856
1857        num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1858        for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1859                struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1860                for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1861                        struct list_head *ep = &bwt->interval_bw[j].endpoints;
1862                        while (!list_empty(ep))
1863                                list_del_init(ep->next);
1864                }
1865        }
1866
1867        for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--)
1868                xhci_free_virt_devices_depth_first(xhci, i);
1869
1870        dma_pool_destroy(xhci->segment_pool);
1871        xhci->segment_pool = NULL;
1872        xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1873
1874        dma_pool_destroy(xhci->device_pool);
1875        xhci->device_pool = NULL;
1876        xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1877
1878        dma_pool_destroy(xhci->small_streams_pool);
1879        xhci->small_streams_pool = NULL;
1880        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1881                        "Freed small stream array pool");
1882
1883        dma_pool_destroy(xhci->medium_streams_pool);
1884        xhci->medium_streams_pool = NULL;
1885        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1886                        "Freed medium stream array pool");
1887
1888        if (xhci->dcbaa)
1889                dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1890                                xhci->dcbaa, xhci->dcbaa->dma);
1891        xhci->dcbaa = NULL;
1892
1893        scratchpad_free(xhci);
1894
1895        if (!xhci->rh_bw)
1896                goto no_bw;
1897
1898        for (i = 0; i < num_ports; i++) {
1899                struct xhci_tt_bw_info *tt, *n;
1900                list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1901                        list_del(&tt->tt_list);
1902                        kfree(tt);
1903                }
1904        }
1905
1906no_bw:
1907        xhci->cmd_ring_reserved_trbs = 0;
1908        xhci->usb2_rhub.num_ports = 0;
1909        xhci->usb3_rhub.num_ports = 0;
1910        xhci->num_active_eps = 0;
1911        kfree(xhci->usb2_rhub.ports);
1912        kfree(xhci->usb3_rhub.ports);
1913        kfree(xhci->hw_ports);
1914        kfree(xhci->rh_bw);
1915        kfree(xhci->ext_caps);
1916
1917        xhci->usb2_rhub.ports = NULL;
1918        xhci->usb3_rhub.ports = NULL;
1919        xhci->hw_ports = NULL;
1920        xhci->rh_bw = NULL;
1921        xhci->ext_caps = NULL;
1922
1923        xhci->page_size = 0;
1924        xhci->page_shift = 0;
1925        xhci->usb2_rhub.bus_state.bus_suspended = 0;
1926        xhci->usb3_rhub.bus_state.bus_suspended = 0;
1927}
1928
1929static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1930                struct xhci_segment *input_seg,
1931                union xhci_trb *start_trb,
1932                union xhci_trb *end_trb,
1933                dma_addr_t input_dma,
1934                struct xhci_segment *result_seg,
1935                char *test_name, int test_number)
1936{
1937        unsigned long long start_dma;
1938        unsigned long long end_dma;
1939        struct xhci_segment *seg;
1940
1941        start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1942        end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1943
1944        seg = trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, false);
1945        if (seg != result_seg) {
1946                xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1947                                test_name, test_number);
1948                xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1949                                "input DMA 0x%llx\n",
1950                                input_seg,
1951                                (unsigned long long) input_dma);
1952                xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1953                                "ending TRB %p (0x%llx DMA)\n",
1954                                start_trb, start_dma,
1955                                end_trb, end_dma);
1956                xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1957                                result_seg, seg);
1958                trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma,
1959                          true);
1960                return -1;
1961        }
1962        return 0;
1963}
1964
1965/* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1966static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci)
1967{
1968        struct {
1969                dma_addr_t              input_dma;
1970                struct xhci_segment     *result_seg;
1971        } simple_test_vector [] = {
1972                /* A zeroed DMA field should fail */
1973                { 0, NULL },
1974                /* One TRB before the ring start should fail */
1975                { xhci->event_ring->first_seg->dma - 16, NULL },
1976                /* One byte before the ring start should fail */
1977                { xhci->event_ring->first_seg->dma - 1, NULL },
1978                /* Starting TRB should succeed */
1979                { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1980                /* Ending TRB should succeed */
1981                { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1982                        xhci->event_ring->first_seg },
1983                /* One byte after the ring end should fail */
1984                { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1985                /* One TRB after the ring end should fail */
1986                { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1987                /* An address of all ones should fail */
1988                { (dma_addr_t) (~0), NULL },
1989        };
1990        struct {
1991                struct xhci_segment     *input_seg;
1992                union xhci_trb          *start_trb;
1993                union xhci_trb          *end_trb;
1994                dma_addr_t              input_dma;
1995                struct xhci_segment     *result_seg;
1996        } complex_test_vector [] = {
1997                /* Test feeding a valid DMA address from a different ring */
1998                {       .input_seg = xhci->event_ring->first_seg,
1999                        .start_trb = xhci->event_ring->first_seg->trbs,
2000                        .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2001                        .input_dma = xhci->cmd_ring->first_seg->dma,
2002                        .result_seg = NULL,
2003                },
2004                /* Test feeding a valid end TRB from a different ring */
2005                {       .input_seg = xhci->event_ring->first_seg,
2006                        .start_trb = xhci->event_ring->first_seg->trbs,
2007                        .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2008                        .input_dma = xhci->cmd_ring->first_seg->dma,
2009                        .result_seg = NULL,
2010                },
2011                /* Test feeding a valid start and end TRB from a different ring */
2012                {       .input_seg = xhci->event_ring->first_seg,
2013                        .start_trb = xhci->cmd_ring->first_seg->trbs,
2014                        .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2015                        .input_dma = xhci->cmd_ring->first_seg->dma,
2016                        .result_seg = NULL,
2017                },
2018                /* TRB in this ring, but after this TD */
2019                {       .input_seg = xhci->event_ring->first_seg,
2020                        .start_trb = &xhci->event_ring->first_seg->trbs[0],
2021                        .end_trb = &xhci->event_ring->first_seg->trbs[3],
2022                        .input_dma = xhci->event_ring->first_seg->dma + 4*16,
2023                        .result_seg = NULL,
2024                },
2025                /* TRB in this ring, but before this TD */
2026                {       .input_seg = xhci->event_ring->first_seg,
2027                        .start_trb = &xhci->event_ring->first_seg->trbs[3],
2028                        .end_trb = &xhci->event_ring->first_seg->trbs[6],
2029                        .input_dma = xhci->event_ring->first_seg->dma + 2*16,
2030                        .result_seg = NULL,
2031                },
2032                /* TRB in this ring, but after this wrapped TD */
2033                {       .input_seg = xhci->event_ring->first_seg,
2034                        .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2035                        .end_trb = &xhci->event_ring->first_seg->trbs[1],
2036                        .input_dma = xhci->event_ring->first_seg->dma + 2*16,
2037                        .result_seg = NULL,
2038                },
2039                /* TRB in this ring, but before this wrapped TD */
2040                {       .input_seg = xhci->event_ring->first_seg,
2041                        .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2042                        .end_trb = &xhci->event_ring->first_seg->trbs[1],
2043                        .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
2044                        .result_seg = NULL,
2045                },
2046                /* TRB not in this ring, and we have a wrapped TD */
2047                {       .input_seg = xhci->event_ring->first_seg,
2048                        .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2049                        .end_trb = &xhci->event_ring->first_seg->trbs[1],
2050                        .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
2051                        .result_seg = NULL,
2052                },
2053        };
2054
2055        unsigned int num_tests;
2056        int i, ret;
2057
2058        num_tests = ARRAY_SIZE(simple_test_vector);
2059        for (i = 0; i < num_tests; i++) {
2060                ret = xhci_test_trb_in_td(xhci,
2061                                xhci->event_ring->first_seg,
2062                                xhci->event_ring->first_seg->trbs,
2063                                &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2064                                simple_test_vector[i].input_dma,
2065                                simple_test_vector[i].result_seg,
2066                                "Simple", i);
2067                if (ret < 0)
2068                        return ret;
2069        }
2070
2071        num_tests = ARRAY_SIZE(complex_test_vector);
2072        for (i = 0; i < num_tests; i++) {
2073                ret = xhci_test_trb_in_td(xhci,
2074                                complex_test_vector[i].input_seg,
2075                                complex_test_vector[i].start_trb,
2076                                complex_test_vector[i].end_trb,
2077                                complex_test_vector[i].input_dma,
2078                                complex_test_vector[i].result_seg,
2079                                "Complex", i);
2080                if (ret < 0)
2081                        return ret;
2082        }
2083        xhci_dbg(xhci, "TRB math tests passed.\n");
2084        return 0;
2085}
2086
2087static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2088{
2089        u64 temp;
2090        dma_addr_t deq;
2091
2092        deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2093                        xhci->event_ring->dequeue);
2094        if (deq == 0 && !in_interrupt())
2095                xhci_warn(xhci, "WARN something wrong with SW event ring "
2096                                "dequeue ptr.\n");
2097        /* Update HC event ring dequeue pointer */
2098        temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2099        temp &= ERST_PTR_MASK;
2100        /* Don't clear the EHB bit (which is RW1C) because
2101         * there might be more events to service.
2102         */
2103        temp &= ~ERST_EHB;
2104        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2105                        "// Write event ring dequeue pointer, "
2106                        "preserving EHB bit");
2107        xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2108                        &xhci->ir_set->erst_dequeue);
2109}
2110
2111static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2112                __le32 __iomem *addr, int max_caps)
2113{
2114        u32 temp, port_offset, port_count;
2115        int i;
2116        u8 major_revision, minor_revision;
2117        struct xhci_hub *rhub;
2118        struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2119
2120        temp = readl(addr);
2121        major_revision = XHCI_EXT_PORT_MAJOR(temp);
2122        minor_revision = XHCI_EXT_PORT_MINOR(temp);
2123
2124        if (major_revision == 0x03) {
2125                rhub = &xhci->usb3_rhub;
2126        } else if (major_revision <= 0x02) {
2127                rhub = &xhci->usb2_rhub;
2128        } else {
2129                xhci_warn(xhci, "Ignoring unknown port speed, "
2130                                "Ext Cap %p, revision = 0x%x\n",
2131                                addr, major_revision);
2132                /* Ignoring port protocol we can't understand. FIXME */
2133                return;
2134        }
2135        rhub->maj_rev = XHCI_EXT_PORT_MAJOR(temp);
2136
2137        if (rhub->min_rev < minor_revision)
2138                rhub->min_rev = minor_revision;
2139
2140        /* Port offset and count in the third dword, see section 7.2 */
2141        temp = readl(addr + 2);
2142        port_offset = XHCI_EXT_PORT_OFF(temp);
2143        port_count = XHCI_EXT_PORT_COUNT(temp);
2144        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2145                        "Ext Cap %p, port offset = %u, "
2146                        "count = %u, revision = 0x%x",
2147                        addr, port_offset, port_count, major_revision);
2148        /* Port count includes the current port offset */
2149        if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2150                /* WTF? "Valid values are ‘1’ to MaxPorts" */
2151                return;
2152
2153        rhub->psi_count = XHCI_EXT_PORT_PSIC(temp);
2154        if (rhub->psi_count) {
2155                rhub->psi = kcalloc_node(rhub->psi_count, sizeof(*rhub->psi),
2156                                    GFP_KERNEL, dev_to_node(dev));
2157                if (!rhub->psi)
2158                        rhub->psi_count = 0;
2159
2160                rhub->psi_uid_count++;
2161                for (i = 0; i < rhub->psi_count; i++) {
2162                        rhub->psi[i] = readl(addr + 4 + i);
2163
2164                        /* count unique ID values, two consecutive entries can
2165                         * have the same ID if link is assymetric
2166                         */
2167                        if (i && (XHCI_EXT_PORT_PSIV(rhub->psi[i]) !=
2168                                  XHCI_EXT_PORT_PSIV(rhub->psi[i - 1])))
2169                                rhub->psi_uid_count++;
2170
2171                        xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2172                                  XHCI_EXT_PORT_PSIV(rhub->psi[i]),
2173                                  XHCI_EXT_PORT_PSIE(rhub->psi[i]),
2174                                  XHCI_EXT_PORT_PLT(rhub->psi[i]),
2175                                  XHCI_EXT_PORT_PFD(rhub->psi[i]),
2176                                  XHCI_EXT_PORT_LP(rhub->psi[i]),
2177                                  XHCI_EXT_PORT_PSIM(rhub->psi[i]));
2178                }
2179        }
2180        /* cache usb2 port capabilities */
2181        if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2182                xhci->ext_caps[xhci->num_ext_caps++] = temp;
2183
2184        if ((xhci->hci_version >= 0x100) && (major_revision != 0x03) &&
2185                 (temp & XHCI_HLC)) {
2186                xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2187                               "xHCI 1.0: support USB2 hardware lpm");
2188                xhci->hw_lpm_support = 1;
2189        }
2190
2191        port_offset--;
2192        for (i = port_offset; i < (port_offset + port_count); i++) {
2193                struct xhci_port *hw_port = &xhci->hw_ports[i];
2194                /* Duplicate entry.  Ignore the port if the revisions differ. */
2195                if (hw_port->rhub) {
2196                        xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2197                                        " port %u\n", addr, i);
2198                        xhci_warn(xhci, "Port was marked as USB %u, "
2199                                        "duplicated as USB %u\n",
2200                                        hw_port->rhub->maj_rev, major_revision);
2201                        /* Only adjust the roothub port counts if we haven't
2202                         * found a similar duplicate.
2203                         */
2204                        if (hw_port->rhub != rhub &&
2205                                 hw_port->hcd_portnum != DUPLICATE_ENTRY) {
2206                                hw_port->rhub->num_ports--;
2207                                hw_port->hcd_portnum = DUPLICATE_ENTRY;
2208                        }
2209                        continue;
2210                }
2211                hw_port->rhub = rhub;
2212                rhub->num_ports++;
2213        }
2214        /* FIXME: Should we disable ports not in the Extended Capabilities? */
2215}
2216
2217static void xhci_create_rhub_port_array(struct xhci_hcd *xhci,
2218                                        struct xhci_hub *rhub, gfp_t flags)
2219{
2220        int port_index = 0;
2221        int i;
2222        struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2223
2224        if (!rhub->num_ports)
2225                return;
2226        rhub->ports = kcalloc_node(rhub->num_ports, sizeof(rhub->ports), flags,
2227                        dev_to_node(dev));
2228        for (i = 0; i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
2229                if (xhci->hw_ports[i].rhub != rhub ||
2230                    xhci->hw_ports[i].hcd_portnum == DUPLICATE_ENTRY)
2231                        continue;
2232                xhci->hw_ports[i].hcd_portnum = port_index;
2233                rhub->ports[port_index] = &xhci->hw_ports[i];
2234                port_index++;
2235                if (port_index == rhub->num_ports)
2236                        break;
2237        }
2238}
2239
2240/*
2241 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2242 * specify what speeds each port is supposed to be.  We can't count on the port
2243 * speed bits in the PORTSC register being correct until a device is connected,
2244 * but we need to set up the two fake roothubs with the correct number of USB
2245 * 3.0 and USB 2.0 ports at host controller initialization time.
2246 */
2247static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2248{
2249        void __iomem *base;
2250        u32 offset;
2251        unsigned int num_ports;
2252        int i, j;
2253        int cap_count = 0;
2254        u32 cap_start;
2255        struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2256
2257        num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2258        xhci->hw_ports = kcalloc_node(num_ports, sizeof(*xhci->hw_ports),
2259                                flags, dev_to_node(dev));
2260        if (!xhci->hw_ports)
2261                return -ENOMEM;
2262
2263        for (i = 0; i < num_ports; i++) {
2264                xhci->hw_ports[i].addr = &xhci->op_regs->port_status_base +
2265                        NUM_PORT_REGS * i;
2266                xhci->hw_ports[i].hw_portnum = i;
2267        }
2268
2269        xhci->rh_bw = kcalloc_node(num_ports, sizeof(*xhci->rh_bw), flags,
2270                                   dev_to_node(dev));
2271        if (!xhci->rh_bw)
2272                return -ENOMEM;
2273        for (i = 0; i < num_ports; i++) {
2274                struct xhci_interval_bw_table *bw_table;
2275
2276                INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2277                bw_table = &xhci->rh_bw[i].bw_table;
2278                for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2279                        INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2280        }
2281        base = &xhci->cap_regs->hc_capbase;
2282
2283        cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
2284        if (!cap_start) {
2285                xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2286                return -ENODEV;
2287        }
2288
2289        offset = cap_start;
2290        /* count extended protocol capability entries for later caching */
2291        while (offset) {
2292                cap_count++;
2293                offset = xhci_find_next_ext_cap(base, offset,
2294                                                      XHCI_EXT_CAPS_PROTOCOL);
2295        }
2296
2297        xhci->ext_caps = kcalloc_node(cap_count, sizeof(*xhci->ext_caps),
2298                                flags, dev_to_node(dev));
2299        if (!xhci->ext_caps)
2300                return -ENOMEM;
2301
2302        offset = cap_start;
2303
2304        while (offset) {
2305                xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
2306                if (xhci->usb2_rhub.num_ports + xhci->usb3_rhub.num_ports ==
2307                    num_ports)
2308                        break;
2309                offset = xhci_find_next_ext_cap(base, offset,
2310                                                XHCI_EXT_CAPS_PROTOCOL);
2311        }
2312        if (xhci->usb2_rhub.num_ports == 0 && xhci->usb3_rhub.num_ports == 0) {
2313                xhci_warn(xhci, "No ports on the roothubs?\n");
2314                return -ENODEV;
2315        }
2316        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2317                       "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2318                       xhci->usb2_rhub.num_ports, xhci->usb3_rhub.num_ports);
2319
2320        /* Place limits on the number of roothub ports so that the hub
2321         * descriptors aren't longer than the USB core will allocate.
2322         */
2323        if (xhci->usb3_rhub.num_ports > USB_SS_MAXPORTS) {
2324                xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2325                                "Limiting USB 3.0 roothub ports to %u.",
2326                                USB_SS_MAXPORTS);
2327                xhci->usb3_rhub.num_ports = USB_SS_MAXPORTS;
2328        }
2329        if (xhci->usb2_rhub.num_ports > USB_MAXCHILDREN) {
2330                xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2331                                "Limiting USB 2.0 roothub ports to %u.",
2332                                USB_MAXCHILDREN);
2333                xhci->usb2_rhub.num_ports = USB_MAXCHILDREN;
2334        }
2335
2336        /*
2337         * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2338         * Not sure how the USB core will handle a hub with no ports...
2339         */
2340
2341        xhci_create_rhub_port_array(xhci, &xhci->usb2_rhub, flags);
2342        xhci_create_rhub_port_array(xhci, &xhci->usb3_rhub, flags);
2343
2344        return 0;
2345}
2346
2347int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2348{
2349        dma_addr_t      dma;
2350        struct device   *dev = xhci_to_hcd(xhci)->self.sysdev;
2351        unsigned int    val, val2;
2352        u64             val_64;
2353        u32             page_size, temp;
2354        int             i, ret;
2355
2356        INIT_LIST_HEAD(&xhci->cmd_list);
2357
2358        /* init command timeout work */
2359        INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
2360        init_completion(&xhci->cmd_ring_stop_completion);
2361
2362        page_size = readl(&xhci->op_regs->page_size);
2363        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2364                        "Supported page size register = 0x%x", page_size);
2365        for (i = 0; i < 16; i++) {
2366                if ((0x1 & page_size) != 0)
2367                        break;
2368                page_size = page_size >> 1;
2369        }
2370        if (i < 16)
2371                xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2372                        "Supported page size of %iK", (1 << (i+12)) / 1024);
2373        else
2374                xhci_warn(xhci, "WARN: no supported page size\n");
2375        /* Use 4K pages, since that's common and the minimum the HC supports */
2376        xhci->page_shift = 12;
2377        xhci->page_size = 1 << xhci->page_shift;
2378        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2379                        "HCD page size set to %iK", xhci->page_size / 1024);
2380
2381        /*
2382         * Program the Number of Device Slots Enabled field in the CONFIG
2383         * register with the max value of slots the HC can handle.
2384         */
2385        val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2386        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2387                        "// xHC can handle at most %d device slots.", val);
2388        val2 = readl(&xhci->op_regs->config_reg);
2389        val |= (val2 & ~HCS_SLOTS_MASK);
2390        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2391                        "// Setting Max device slots reg = 0x%x.", val);
2392        writel(val, &xhci->op_regs->config_reg);
2393
2394        /*
2395         * xHCI section 5.4.6 - doorbell array must be
2396         * "physically contiguous and 64-byte (cache line) aligned".
2397         */
2398        xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2399                        flags);
2400        if (!xhci->dcbaa)
2401                goto fail;
2402        memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
2403        xhci->dcbaa->dma = dma;
2404        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2405                        "// Device context base array address = 0x%llx (DMA), %p (virt)",
2406                        (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2407        xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2408
2409        /*
2410         * Initialize the ring segment pool.  The ring must be a contiguous
2411         * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2412         * however, the command ring segment needs 64-byte aligned segments
2413         * and our use of dma addresses in the trb_address_map radix tree needs
2414         * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2415         */
2416        xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2417                        TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2418
2419        /* See Table 46 and Note on Figure 55 */
2420        xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2421                        2112, 64, xhci->page_size);
2422        if (!xhci->segment_pool || !xhci->device_pool)
2423                goto fail;
2424
2425        /* Linear stream context arrays don't have any boundary restrictions,
2426         * and only need to be 16-byte aligned.
2427         */
2428        xhci->small_streams_pool =
2429                dma_pool_create("xHCI 256 byte stream ctx arrays",
2430                        dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2431        xhci->medium_streams_pool =
2432                dma_pool_create("xHCI 1KB stream ctx arrays",
2433                        dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2434        /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2435         * will be allocated with dma_alloc_coherent()
2436         */
2437
2438        if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2439                goto fail;
2440
2441        /* Set up the command ring to have one segments for now. */
2442        xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags);
2443        if (!xhci->cmd_ring)
2444                goto fail;
2445        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2446                        "Allocated command ring at %p", xhci->cmd_ring);
2447        xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
2448                        (unsigned long long)xhci->cmd_ring->first_seg->dma);
2449
2450        /* Set the address in the Command Ring Control register */
2451        val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2452        val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2453                (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2454                xhci->cmd_ring->cycle_state;
2455        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2456                        "// Setting command ring address to 0x%016llx", val_64);
2457        xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2458
2459        xhci->lpm_command = xhci_alloc_command_with_ctx(xhci, true, flags);
2460        if (!xhci->lpm_command)
2461                goto fail;
2462
2463        /* Reserve one command ring TRB for disabling LPM.
2464         * Since the USB core grabs the shared usb_bus bandwidth mutex before
2465         * disabling LPM, we only need to reserve one TRB for all devices.
2466         */
2467        xhci->cmd_ring_reserved_trbs++;
2468
2469        val = readl(&xhci->cap_regs->db_off);
2470        val &= DBOFF_MASK;
2471        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2472                        "// Doorbell array is located at offset 0x%x"
2473                        " from cap regs base addr", val);
2474        xhci->dba = (void __iomem *) xhci->cap_regs + val;
2475        /* Set ir_set to interrupt register set 0 */
2476        xhci->ir_set = &xhci->run_regs->ir_set[0];
2477
2478        /*
2479         * Event ring setup: Allocate a normal ring, but also setup
2480         * the event ring segment table (ERST).  Section 4.9.3.
2481         */
2482        xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
2483        xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2484                                        0, flags);
2485        if (!xhci->event_ring)
2486                goto fail;
2487        if (xhci_check_trb_in_td_math(xhci) < 0)
2488                goto fail;
2489
2490        ret = xhci_alloc_erst(xhci, xhci->event_ring, &xhci->erst, flags);
2491        if (ret)
2492                goto fail;
2493
2494        /* set ERST count with the number of entries in the segment table */
2495        val = readl(&xhci->ir_set->erst_size);
2496        val &= ERST_SIZE_MASK;
2497        val |= ERST_NUM_SEGS;
2498        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2499                        "// Write ERST size = %i to ir_set 0 (some bits preserved)",
2500                        val);
2501        writel(val, &xhci->ir_set->erst_size);
2502
2503        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2504                        "// Set ERST entries to point to event ring.");
2505        /* set the segment table base address */
2506        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2507                        "// Set ERST base address for ir_set 0 = 0x%llx",
2508                        (unsigned long long)xhci->erst.erst_dma_addr);
2509        val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2510        val_64 &= ERST_PTR_MASK;
2511        val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2512        xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2513
2514        /* Set the event ring dequeue address */
2515        xhci_set_hc_event_deq(xhci);
2516        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2517                        "Wrote ERST address to ir_set 0.");
2518
2519        /*
2520         * XXX: Might need to set the Interrupter Moderation Register to
2521         * something other than the default (~1ms minimum between interrupts).
2522         * See section 5.5.1.2.
2523         */
2524        for (i = 0; i < MAX_HC_SLOTS; i++)
2525                xhci->devs[i] = NULL;
2526        for (i = 0; i < USB_MAXCHILDREN; i++) {
2527                xhci->usb2_rhub.bus_state.resume_done[i] = 0;
2528                xhci->usb3_rhub.bus_state.resume_done[i] = 0;
2529                /* Only the USB 2.0 completions will ever be used. */
2530                init_completion(&xhci->usb2_rhub.bus_state.rexit_done[i]);
2531        }
2532
2533        if (scratchpad_alloc(xhci, flags))
2534                goto fail;
2535        if (xhci_setup_port_arrays(xhci, flags))
2536                goto fail;
2537
2538        /* Enable USB 3.0 device notifications for function remote wake, which
2539         * is necessary for allowing USB 3.0 devices to do remote wakeup from
2540         * U3 (device suspend).
2541         */
2542        temp = readl(&xhci->op_regs->dev_notification);
2543        temp &= ~DEV_NOTE_MASK;
2544        temp |= DEV_NOTE_FWAKE;
2545        writel(temp, &xhci->op_regs->dev_notification);
2546
2547        return 0;
2548
2549fail:
2550        xhci_halt(xhci);
2551        xhci_reset(xhci);
2552        xhci_mem_cleanup(xhci);
2553        return -ENOMEM;
2554}
2555