linux/fs/nfs/dir.c
<<
>>
Prefs
   1/*
   2 *  linux/fs/nfs/dir.c
   3 *
   4 *  Copyright (C) 1992  Rick Sladkey
   5 *
   6 *  nfs directory handling functions
   7 *
   8 * 10 Apr 1996  Added silly rename for unlink   --okir
   9 * 28 Sep 1996  Improved directory cache --okir
  10 * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de 
  11 *              Re-implemented silly rename for unlink, newly implemented
  12 *              silly rename for nfs_rename() following the suggestions
  13 *              of Olaf Kirch (okir) found in this file.
  14 *              Following Linus comments on my original hack, this version
  15 *              depends only on the dcache stuff and doesn't touch the inode
  16 *              layer (iput() and friends).
  17 *  6 Jun 1999  Cache readdir lookups in the page cache. -DaveM
  18 */
  19
  20#include <linux/module.h>
  21#include <linux/time.h>
  22#include <linux/errno.h>
  23#include <linux/stat.h>
  24#include <linux/fcntl.h>
  25#include <linux/string.h>
  26#include <linux/kernel.h>
  27#include <linux/slab.h>
  28#include <linux/mm.h>
  29#include <linux/sunrpc/clnt.h>
  30#include <linux/nfs_fs.h>
  31#include <linux/nfs_mount.h>
  32#include <linux/pagemap.h>
  33#include <linux/pagevec.h>
  34#include <linux/namei.h>
  35#include <linux/mount.h>
  36#include <linux/swap.h>
  37#include <linux/sched.h>
  38#include <linux/kmemleak.h>
  39#include <linux/xattr.h>
  40
  41#include "delegation.h"
  42#include "iostat.h"
  43#include "internal.h"
  44#include "fscache.h"
  45
  46#include "nfstrace.h"
  47
  48/* #define NFS_DEBUG_VERBOSE 1 */
  49
  50static int nfs_opendir(struct inode *, struct file *);
  51static int nfs_closedir(struct inode *, struct file *);
  52static int nfs_readdir(struct file *, struct dir_context *);
  53static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
  54static loff_t nfs_llseek_dir(struct file *, loff_t, int);
  55static void nfs_readdir_clear_array(struct page*);
  56
  57const struct file_operations nfs_dir_operations = {
  58        .llseek         = nfs_llseek_dir,
  59        .read           = generic_read_dir,
  60        .iterate        = nfs_readdir,
  61        .open           = nfs_opendir,
  62        .release        = nfs_closedir,
  63        .fsync          = nfs_fsync_dir,
  64};
  65
  66const struct address_space_operations nfs_dir_aops = {
  67        .freepage = nfs_readdir_clear_array,
  68};
  69
  70static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, const struct cred *cred)
  71{
  72        struct nfs_inode *nfsi = NFS_I(dir);
  73        struct nfs_open_dir_context *ctx;
  74        ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
  75        if (ctx != NULL) {
  76                ctx->duped = 0;
  77                ctx->attr_gencount = nfsi->attr_gencount;
  78                ctx->dir_cookie = 0;
  79                ctx->dup_cookie = 0;
  80                ctx->cred = get_cred(cred);
  81                spin_lock(&dir->i_lock);
  82                list_add(&ctx->list, &nfsi->open_files);
  83                spin_unlock(&dir->i_lock);
  84                return ctx;
  85        }
  86        return  ERR_PTR(-ENOMEM);
  87}
  88
  89static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
  90{
  91        spin_lock(&dir->i_lock);
  92        list_del(&ctx->list);
  93        spin_unlock(&dir->i_lock);
  94        put_cred(ctx->cred);
  95        kfree(ctx);
  96}
  97
  98/*
  99 * Open file
 100 */
 101static int
 102nfs_opendir(struct inode *inode, struct file *filp)
 103{
 104        int res = 0;
 105        struct nfs_open_dir_context *ctx;
 106
 107        dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
 108
 109        nfs_inc_stats(inode, NFSIOS_VFSOPEN);
 110
 111        ctx = alloc_nfs_open_dir_context(inode, current_cred());
 112        if (IS_ERR(ctx)) {
 113                res = PTR_ERR(ctx);
 114                goto out;
 115        }
 116        filp->private_data = ctx;
 117out:
 118        return res;
 119}
 120
 121static int
 122nfs_closedir(struct inode *inode, struct file *filp)
 123{
 124        put_nfs_open_dir_context(file_inode(filp), filp->private_data);
 125        return 0;
 126}
 127
 128struct nfs_cache_array_entry {
 129        u64 cookie;
 130        u64 ino;
 131        struct qstr string;
 132        unsigned char d_type;
 133};
 134
 135struct nfs_cache_array {
 136        int size;
 137        int eof_index;
 138        u64 last_cookie;
 139        struct nfs_cache_array_entry array[0];
 140};
 141
 142typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, bool);
 143typedef struct {
 144        struct file     *file;
 145        struct page     *page;
 146        struct dir_context *ctx;
 147        unsigned long   page_index;
 148        u64             *dir_cookie;
 149        u64             last_cookie;
 150        loff_t          current_index;
 151        decode_dirent_t decode;
 152
 153        unsigned long   timestamp;
 154        unsigned long   gencount;
 155        unsigned int    cache_entry_index;
 156        bool plus;
 157        bool eof;
 158} nfs_readdir_descriptor_t;
 159
 160/*
 161 * we are freeing strings created by nfs_add_to_readdir_array()
 162 */
 163static
 164void nfs_readdir_clear_array(struct page *page)
 165{
 166        struct nfs_cache_array *array;
 167        int i;
 168
 169        array = kmap_atomic(page);
 170        for (i = 0; i < array->size; i++)
 171                kfree(array->array[i].string.name);
 172        kunmap_atomic(array);
 173}
 174
 175/*
 176 * the caller is responsible for freeing qstr.name
 177 * when called by nfs_readdir_add_to_array, the strings will be freed in
 178 * nfs_clear_readdir_array()
 179 */
 180static
 181int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
 182{
 183        string->len = len;
 184        string->name = kmemdup(name, len, GFP_KERNEL);
 185        if (string->name == NULL)
 186                return -ENOMEM;
 187        /*
 188         * Avoid a kmemleak false positive. The pointer to the name is stored
 189         * in a page cache page which kmemleak does not scan.
 190         */
 191        kmemleak_not_leak(string->name);
 192        string->hash = full_name_hash(NULL, name, len);
 193        return 0;
 194}
 195
 196static
 197int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
 198{
 199        struct nfs_cache_array *array = kmap(page);
 200        struct nfs_cache_array_entry *cache_entry;
 201        int ret;
 202
 203        cache_entry = &array->array[array->size];
 204
 205        /* Check that this entry lies within the page bounds */
 206        ret = -ENOSPC;
 207        if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
 208                goto out;
 209
 210        cache_entry->cookie = entry->prev_cookie;
 211        cache_entry->ino = entry->ino;
 212        cache_entry->d_type = entry->d_type;
 213        ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
 214        if (ret)
 215                goto out;
 216        array->last_cookie = entry->cookie;
 217        array->size++;
 218        if (entry->eof != 0)
 219                array->eof_index = array->size;
 220out:
 221        kunmap(page);
 222        return ret;
 223}
 224
 225static
 226int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
 227{
 228        loff_t diff = desc->ctx->pos - desc->current_index;
 229        unsigned int index;
 230
 231        if (diff < 0)
 232                goto out_eof;
 233        if (diff >= array->size) {
 234                if (array->eof_index >= 0)
 235                        goto out_eof;
 236                return -EAGAIN;
 237        }
 238
 239        index = (unsigned int)diff;
 240        *desc->dir_cookie = array->array[index].cookie;
 241        desc->cache_entry_index = index;
 242        return 0;
 243out_eof:
 244        desc->eof = true;
 245        return -EBADCOOKIE;
 246}
 247
 248static bool
 249nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
 250{
 251        if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))
 252                return false;
 253        smp_rmb();
 254        return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
 255}
 256
 257static
 258int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
 259{
 260        int i;
 261        loff_t new_pos;
 262        int status = -EAGAIN;
 263
 264        for (i = 0; i < array->size; i++) {
 265                if (array->array[i].cookie == *desc->dir_cookie) {
 266                        struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
 267                        struct nfs_open_dir_context *ctx = desc->file->private_data;
 268
 269                        new_pos = desc->current_index + i;
 270                        if (ctx->attr_gencount != nfsi->attr_gencount ||
 271                            !nfs_readdir_inode_mapping_valid(nfsi)) {
 272                                ctx->duped = 0;
 273                                ctx->attr_gencount = nfsi->attr_gencount;
 274                        } else if (new_pos < desc->ctx->pos) {
 275                                if (ctx->duped > 0
 276                                    && ctx->dup_cookie == *desc->dir_cookie) {
 277                                        if (printk_ratelimit()) {
 278                                                pr_notice("NFS: directory %pD2 contains a readdir loop."
 279                                                                "Please contact your server vendor.  "
 280                                                                "The file: %.*s has duplicate cookie %llu\n",
 281                                                                desc->file, array->array[i].string.len,
 282                                                                array->array[i].string.name, *desc->dir_cookie);
 283                                        }
 284                                        status = -ELOOP;
 285                                        goto out;
 286                                }
 287                                ctx->dup_cookie = *desc->dir_cookie;
 288                                ctx->duped = -1;
 289                        }
 290                        desc->ctx->pos = new_pos;
 291                        desc->cache_entry_index = i;
 292                        return 0;
 293                }
 294        }
 295        if (array->eof_index >= 0) {
 296                status = -EBADCOOKIE;
 297                if (*desc->dir_cookie == array->last_cookie)
 298                        desc->eof = true;
 299        }
 300out:
 301        return status;
 302}
 303
 304static
 305int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
 306{
 307        struct nfs_cache_array *array;
 308        int status;
 309
 310        array = kmap(desc->page);
 311
 312        if (*desc->dir_cookie == 0)
 313                status = nfs_readdir_search_for_pos(array, desc);
 314        else
 315                status = nfs_readdir_search_for_cookie(array, desc);
 316
 317        if (status == -EAGAIN) {
 318                desc->last_cookie = array->last_cookie;
 319                desc->current_index += array->size;
 320                desc->page_index++;
 321        }
 322        kunmap(desc->page);
 323        return status;
 324}
 325
 326/* Fill a page with xdr information before transferring to the cache page */
 327static
 328int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
 329                        struct nfs_entry *entry, struct file *file, struct inode *inode)
 330{
 331        struct nfs_open_dir_context *ctx = file->private_data;
 332        const struct cred *cred = ctx->cred;
 333        unsigned long   timestamp, gencount;
 334        int             error;
 335
 336 again:
 337        timestamp = jiffies;
 338        gencount = nfs_inc_attr_generation_counter();
 339        error = NFS_PROTO(inode)->readdir(file_dentry(file), cred, entry->cookie, pages,
 340                                          NFS_SERVER(inode)->dtsize, desc->plus);
 341        if (error < 0) {
 342                /* We requested READDIRPLUS, but the server doesn't grok it */
 343                if (error == -ENOTSUPP && desc->plus) {
 344                        NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
 345                        clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
 346                        desc->plus = false;
 347                        goto again;
 348                }
 349                goto error;
 350        }
 351        desc->timestamp = timestamp;
 352        desc->gencount = gencount;
 353error:
 354        return error;
 355}
 356
 357static int xdr_decode(nfs_readdir_descriptor_t *desc,
 358                      struct nfs_entry *entry, struct xdr_stream *xdr)
 359{
 360        int error;
 361
 362        error = desc->decode(xdr, entry, desc->plus);
 363        if (error)
 364                return error;
 365        entry->fattr->time_start = desc->timestamp;
 366        entry->fattr->gencount = desc->gencount;
 367        return 0;
 368}
 369
 370/* Match file and dirent using either filehandle or fileid
 371 * Note: caller is responsible for checking the fsid
 372 */
 373static
 374int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
 375{
 376        struct inode *inode;
 377        struct nfs_inode *nfsi;
 378
 379        if (d_really_is_negative(dentry))
 380                return 0;
 381
 382        inode = d_inode(dentry);
 383        if (is_bad_inode(inode) || NFS_STALE(inode))
 384                return 0;
 385
 386        nfsi = NFS_I(inode);
 387        if (entry->fattr->fileid != nfsi->fileid)
 388                return 0;
 389        if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
 390                return 0;
 391        return 1;
 392}
 393
 394static
 395bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
 396{
 397        if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
 398                return false;
 399        if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
 400                return true;
 401        if (ctx->pos == 0)
 402                return true;
 403        return false;
 404}
 405
 406/*
 407 * This function is called by the lookup and getattr code to request the
 408 * use of readdirplus to accelerate any future lookups in the same
 409 * directory.
 410 */
 411void nfs_advise_use_readdirplus(struct inode *dir)
 412{
 413        struct nfs_inode *nfsi = NFS_I(dir);
 414
 415        if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
 416            !list_empty(&nfsi->open_files))
 417                set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
 418}
 419
 420/*
 421 * This function is mainly for use by nfs_getattr().
 422 *
 423 * If this is an 'ls -l', we want to force use of readdirplus.
 424 * Do this by checking if there is an active file descriptor
 425 * and calling nfs_advise_use_readdirplus, then forcing a
 426 * cache flush.
 427 */
 428void nfs_force_use_readdirplus(struct inode *dir)
 429{
 430        struct nfs_inode *nfsi = NFS_I(dir);
 431
 432        if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
 433            !list_empty(&nfsi->open_files)) {
 434                set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
 435                invalidate_mapping_pages(dir->i_mapping, 0, -1);
 436        }
 437}
 438
 439static
 440void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
 441{
 442        struct qstr filename = QSTR_INIT(entry->name, entry->len);
 443        DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
 444        struct dentry *dentry;
 445        struct dentry *alias;
 446        struct inode *dir = d_inode(parent);
 447        struct inode *inode;
 448        int status;
 449
 450        if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
 451                return;
 452        if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
 453                return;
 454        if (filename.len == 0)
 455                return;
 456        /* Validate that the name doesn't contain any illegal '\0' */
 457        if (strnlen(filename.name, filename.len) != filename.len)
 458                return;
 459        /* ...or '/' */
 460        if (strnchr(filename.name, filename.len, '/'))
 461                return;
 462        if (filename.name[0] == '.') {
 463                if (filename.len == 1)
 464                        return;
 465                if (filename.len == 2 && filename.name[1] == '.')
 466                        return;
 467        }
 468        filename.hash = full_name_hash(parent, filename.name, filename.len);
 469
 470        dentry = d_lookup(parent, &filename);
 471again:
 472        if (!dentry) {
 473                dentry = d_alloc_parallel(parent, &filename, &wq);
 474                if (IS_ERR(dentry))
 475                        return;
 476        }
 477        if (!d_in_lookup(dentry)) {
 478                /* Is there a mountpoint here? If so, just exit */
 479                if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
 480                                        &entry->fattr->fsid))
 481                        goto out;
 482                if (nfs_same_file(dentry, entry)) {
 483                        if (!entry->fh->size)
 484                                goto out;
 485                        nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
 486                        status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
 487                        if (!status)
 488                                nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label);
 489                        goto out;
 490                } else {
 491                        d_invalidate(dentry);
 492                        dput(dentry);
 493                        dentry = NULL;
 494                        goto again;
 495                }
 496        }
 497        if (!entry->fh->size) {
 498                d_lookup_done(dentry);
 499                goto out;
 500        }
 501
 502        inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
 503        alias = d_splice_alias(inode, dentry);
 504        d_lookup_done(dentry);
 505        if (alias) {
 506                if (IS_ERR(alias))
 507                        goto out;
 508                dput(dentry);
 509                dentry = alias;
 510        }
 511        nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
 512out:
 513        dput(dentry);
 514}
 515
 516/* Perform conversion from xdr to cache array */
 517static
 518int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
 519                                struct page **xdr_pages, struct page *page, unsigned int buflen)
 520{
 521        struct xdr_stream stream;
 522        struct xdr_buf buf;
 523        struct page *scratch;
 524        struct nfs_cache_array *array;
 525        unsigned int count = 0;
 526        int status;
 527
 528        scratch = alloc_page(GFP_KERNEL);
 529        if (scratch == NULL)
 530                return -ENOMEM;
 531
 532        if (buflen == 0)
 533                goto out_nopages;
 534
 535        xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
 536        xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
 537
 538        do {
 539                status = xdr_decode(desc, entry, &stream);
 540                if (status != 0) {
 541                        if (status == -EAGAIN)
 542                                status = 0;
 543                        break;
 544                }
 545
 546                count++;
 547
 548                if (desc->plus)
 549                        nfs_prime_dcache(file_dentry(desc->file), entry);
 550
 551                status = nfs_readdir_add_to_array(entry, page);
 552                if (status != 0)
 553                        break;
 554        } while (!entry->eof);
 555
 556out_nopages:
 557        if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
 558                array = kmap(page);
 559                array->eof_index = array->size;
 560                status = 0;
 561                kunmap(page);
 562        }
 563
 564        put_page(scratch);
 565        return status;
 566}
 567
 568static
 569void nfs_readdir_free_pages(struct page **pages, unsigned int npages)
 570{
 571        unsigned int i;
 572        for (i = 0; i < npages; i++)
 573                put_page(pages[i]);
 574}
 575
 576/*
 577 * nfs_readdir_large_page will allocate pages that must be freed with a call
 578 * to nfs_readdir_free_pagearray
 579 */
 580static
 581int nfs_readdir_alloc_pages(struct page **pages, unsigned int npages)
 582{
 583        unsigned int i;
 584
 585        for (i = 0; i < npages; i++) {
 586                struct page *page = alloc_page(GFP_KERNEL);
 587                if (page == NULL)
 588                        goto out_freepages;
 589                pages[i] = page;
 590        }
 591        return 0;
 592
 593out_freepages:
 594        nfs_readdir_free_pages(pages, i);
 595        return -ENOMEM;
 596}
 597
 598static
 599int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
 600{
 601        struct page *pages[NFS_MAX_READDIR_PAGES];
 602        struct nfs_entry entry;
 603        struct file     *file = desc->file;
 604        struct nfs_cache_array *array;
 605        int status = -ENOMEM;
 606        unsigned int array_size = ARRAY_SIZE(pages);
 607
 608        entry.prev_cookie = 0;
 609        entry.cookie = desc->last_cookie;
 610        entry.eof = 0;
 611        entry.fh = nfs_alloc_fhandle();
 612        entry.fattr = nfs_alloc_fattr();
 613        entry.server = NFS_SERVER(inode);
 614        if (entry.fh == NULL || entry.fattr == NULL)
 615                goto out;
 616
 617        entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
 618        if (IS_ERR(entry.label)) {
 619                status = PTR_ERR(entry.label);
 620                goto out;
 621        }
 622
 623        array = kmap(page);
 624        memset(array, 0, sizeof(struct nfs_cache_array));
 625        array->eof_index = -1;
 626
 627        status = nfs_readdir_alloc_pages(pages, array_size);
 628        if (status < 0)
 629                goto out_release_array;
 630        do {
 631                unsigned int pglen;
 632                status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
 633
 634                if (status < 0)
 635                        break;
 636                pglen = status;
 637                status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
 638                if (status < 0) {
 639                        if (status == -ENOSPC)
 640                                status = 0;
 641                        break;
 642                }
 643        } while (array->eof_index < 0);
 644
 645        nfs_readdir_free_pages(pages, array_size);
 646out_release_array:
 647        kunmap(page);
 648        nfs4_label_free(entry.label);
 649out:
 650        nfs_free_fattr(entry.fattr);
 651        nfs_free_fhandle(entry.fh);
 652        return status;
 653}
 654
 655/*
 656 * Now we cache directories properly, by converting xdr information
 657 * to an array that can be used for lookups later.  This results in
 658 * fewer cache pages, since we can store more information on each page.
 659 * We only need to convert from xdr once so future lookups are much simpler
 660 */
 661static
 662int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page)
 663{
 664        struct inode    *inode = file_inode(desc->file);
 665        int ret;
 666
 667        ret = nfs_readdir_xdr_to_array(desc, page, inode);
 668        if (ret < 0)
 669                goto error;
 670        SetPageUptodate(page);
 671
 672        if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
 673                /* Should never happen */
 674                nfs_zap_mapping(inode, inode->i_mapping);
 675        }
 676        unlock_page(page);
 677        return 0;
 678 error:
 679        unlock_page(page);
 680        return ret;
 681}
 682
 683static
 684void cache_page_release(nfs_readdir_descriptor_t *desc)
 685{
 686        if (!desc->page->mapping)
 687                nfs_readdir_clear_array(desc->page);
 688        put_page(desc->page);
 689        desc->page = NULL;
 690}
 691
 692static
 693struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
 694{
 695        return read_cache_page(desc->file->f_mapping,
 696                        desc->page_index, (filler_t *)nfs_readdir_filler, desc);
 697}
 698
 699/*
 700 * Returns 0 if desc->dir_cookie was found on page desc->page_index
 701 */
 702static
 703int find_cache_page(nfs_readdir_descriptor_t *desc)
 704{
 705        int res;
 706
 707        desc->page = get_cache_page(desc);
 708        if (IS_ERR(desc->page))
 709                return PTR_ERR(desc->page);
 710
 711        res = nfs_readdir_search_array(desc);
 712        if (res != 0)
 713                cache_page_release(desc);
 714        return res;
 715}
 716
 717/* Search for desc->dir_cookie from the beginning of the page cache */
 718static inline
 719int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
 720{
 721        int res;
 722
 723        if (desc->page_index == 0) {
 724                desc->current_index = 0;
 725                desc->last_cookie = 0;
 726        }
 727        do {
 728                res = find_cache_page(desc);
 729        } while (res == -EAGAIN);
 730        return res;
 731}
 732
 733/*
 734 * Once we've found the start of the dirent within a page: fill 'er up...
 735 */
 736static 
 737int nfs_do_filldir(nfs_readdir_descriptor_t *desc)
 738{
 739        struct file     *file = desc->file;
 740        int i = 0;
 741        int res = 0;
 742        struct nfs_cache_array *array = NULL;
 743        struct nfs_open_dir_context *ctx = file->private_data;
 744
 745        array = kmap(desc->page);
 746        for (i = desc->cache_entry_index; i < array->size; i++) {
 747                struct nfs_cache_array_entry *ent;
 748
 749                ent = &array->array[i];
 750                if (!dir_emit(desc->ctx, ent->string.name, ent->string.len,
 751                    nfs_compat_user_ino64(ent->ino), ent->d_type)) {
 752                        desc->eof = true;
 753                        break;
 754                }
 755                desc->ctx->pos++;
 756                if (i < (array->size-1))
 757                        *desc->dir_cookie = array->array[i+1].cookie;
 758                else
 759                        *desc->dir_cookie = array->last_cookie;
 760                if (ctx->duped != 0)
 761                        ctx->duped = 1;
 762        }
 763        if (array->eof_index >= 0)
 764                desc->eof = true;
 765
 766        kunmap(desc->page);
 767        cache_page_release(desc);
 768        dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
 769                        (unsigned long long)*desc->dir_cookie, res);
 770        return res;
 771}
 772
 773/*
 774 * If we cannot find a cookie in our cache, we suspect that this is
 775 * because it points to a deleted file, so we ask the server to return
 776 * whatever it thinks is the next entry. We then feed this to filldir.
 777 * If all goes well, we should then be able to find our way round the
 778 * cache on the next call to readdir_search_pagecache();
 779 *
 780 * NOTE: we cannot add the anonymous page to the pagecache because
 781 *       the data it contains might not be page aligned. Besides,
 782 *       we should already have a complete representation of the
 783 *       directory in the page cache by the time we get here.
 784 */
 785static inline
 786int uncached_readdir(nfs_readdir_descriptor_t *desc)
 787{
 788        struct page     *page = NULL;
 789        int             status;
 790        struct inode *inode = file_inode(desc->file);
 791        struct nfs_open_dir_context *ctx = desc->file->private_data;
 792
 793        dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
 794                        (unsigned long long)*desc->dir_cookie);
 795
 796        page = alloc_page(GFP_HIGHUSER);
 797        if (!page) {
 798                status = -ENOMEM;
 799                goto out;
 800        }
 801
 802        desc->page_index = 0;
 803        desc->last_cookie = *desc->dir_cookie;
 804        desc->page = page;
 805        ctx->duped = 0;
 806
 807        status = nfs_readdir_xdr_to_array(desc, page, inode);
 808        if (status < 0)
 809                goto out_release;
 810
 811        status = nfs_do_filldir(desc);
 812
 813 out:
 814        dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
 815                        __func__, status);
 816        return status;
 817 out_release:
 818        cache_page_release(desc);
 819        goto out;
 820}
 821
 822/* The file offset position represents the dirent entry number.  A
 823   last cookie cache takes care of the common case of reading the
 824   whole directory.
 825 */
 826static int nfs_readdir(struct file *file, struct dir_context *ctx)
 827{
 828        struct dentry   *dentry = file_dentry(file);
 829        struct inode    *inode = d_inode(dentry);
 830        nfs_readdir_descriptor_t my_desc,
 831                        *desc = &my_desc;
 832        struct nfs_open_dir_context *dir_ctx = file->private_data;
 833        int res = 0;
 834
 835        dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
 836                        file, (long long)ctx->pos);
 837        nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
 838
 839        /*
 840         * ctx->pos points to the dirent entry number.
 841         * *desc->dir_cookie has the cookie for the next entry. We have
 842         * to either find the entry with the appropriate number or
 843         * revalidate the cookie.
 844         */
 845        memset(desc, 0, sizeof(*desc));
 846
 847        desc->file = file;
 848        desc->ctx = ctx;
 849        desc->dir_cookie = &dir_ctx->dir_cookie;
 850        desc->decode = NFS_PROTO(inode)->decode_dirent;
 851        desc->plus = nfs_use_readdirplus(inode, ctx);
 852
 853        if (ctx->pos == 0 || nfs_attribute_cache_expired(inode))
 854                res = nfs_revalidate_mapping(inode, file->f_mapping);
 855        if (res < 0)
 856                goto out;
 857
 858        do {
 859                res = readdir_search_pagecache(desc);
 860
 861                if (res == -EBADCOOKIE) {
 862                        res = 0;
 863                        /* This means either end of directory */
 864                        if (*desc->dir_cookie && !desc->eof) {
 865                                /* Or that the server has 'lost' a cookie */
 866                                res = uncached_readdir(desc);
 867                                if (res == 0)
 868                                        continue;
 869                        }
 870                        break;
 871                }
 872                if (res == -ETOOSMALL && desc->plus) {
 873                        clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
 874                        nfs_zap_caches(inode);
 875                        desc->page_index = 0;
 876                        desc->plus = false;
 877                        desc->eof = false;
 878                        continue;
 879                }
 880                if (res < 0)
 881                        break;
 882
 883                res = nfs_do_filldir(desc);
 884                if (res < 0)
 885                        break;
 886        } while (!desc->eof);
 887out:
 888        if (res > 0)
 889                res = 0;
 890        dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
 891        return res;
 892}
 893
 894static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
 895{
 896        struct inode *inode = file_inode(filp);
 897        struct nfs_open_dir_context *dir_ctx = filp->private_data;
 898
 899        dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
 900                        filp, offset, whence);
 901
 902        switch (whence) {
 903        default:
 904                return -EINVAL;
 905        case SEEK_SET:
 906                if (offset < 0)
 907                        return -EINVAL;
 908                inode_lock(inode);
 909                break;
 910        case SEEK_CUR:
 911                if (offset == 0)
 912                        return filp->f_pos;
 913                inode_lock(inode);
 914                offset += filp->f_pos;
 915                if (offset < 0) {
 916                        inode_unlock(inode);
 917                        return -EINVAL;
 918                }
 919        }
 920        if (offset != filp->f_pos) {
 921                filp->f_pos = offset;
 922                dir_ctx->dir_cookie = 0;
 923                dir_ctx->duped = 0;
 924        }
 925        inode_unlock(inode);
 926        return offset;
 927}
 928
 929/*
 930 * All directory operations under NFS are synchronous, so fsync()
 931 * is a dummy operation.
 932 */
 933static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
 934                         int datasync)
 935{
 936        struct inode *inode = file_inode(filp);
 937
 938        dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
 939
 940        inode_lock(inode);
 941        nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
 942        inode_unlock(inode);
 943        return 0;
 944}
 945
 946/**
 947 * nfs_force_lookup_revalidate - Mark the directory as having changed
 948 * @dir - pointer to directory inode
 949 *
 950 * This forces the revalidation code in nfs_lookup_revalidate() to do a
 951 * full lookup on all child dentries of 'dir' whenever a change occurs
 952 * on the server that might have invalidated our dcache.
 953 *
 954 * The caller should be holding dir->i_lock
 955 */
 956void nfs_force_lookup_revalidate(struct inode *dir)
 957{
 958        NFS_I(dir)->cache_change_attribute++;
 959}
 960EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
 961
 962/*
 963 * A check for whether or not the parent directory has changed.
 964 * In the case it has, we assume that the dentries are untrustworthy
 965 * and may need to be looked up again.
 966 * If rcu_walk prevents us from performing a full check, return 0.
 967 */
 968static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
 969                              int rcu_walk)
 970{
 971        if (IS_ROOT(dentry))
 972                return 1;
 973        if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
 974                return 0;
 975        if (!nfs_verify_change_attribute(dir, dentry->d_time))
 976                return 0;
 977        /* Revalidate nfsi->cache_change_attribute before we declare a match */
 978        if (nfs_mapping_need_revalidate_inode(dir)) {
 979                if (rcu_walk)
 980                        return 0;
 981                if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
 982                        return 0;
 983        }
 984        if (!nfs_verify_change_attribute(dir, dentry->d_time))
 985                return 0;
 986        return 1;
 987}
 988
 989/*
 990 * Use intent information to check whether or not we're going to do
 991 * an O_EXCL create using this path component.
 992 */
 993static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
 994{
 995        if (NFS_PROTO(dir)->version == 2)
 996                return 0;
 997        return flags & LOOKUP_EXCL;
 998}
 999
1000/*
1001 * Inode and filehandle revalidation for lookups.
1002 *
1003 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1004 * or if the intent information indicates that we're about to open this
1005 * particular file and the "nocto" mount flag is not set.
1006 *
1007 */
1008static
1009int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1010{
1011        struct nfs_server *server = NFS_SERVER(inode);
1012        int ret;
1013
1014        if (IS_AUTOMOUNT(inode))
1015                return 0;
1016
1017        if (flags & LOOKUP_OPEN) {
1018                switch (inode->i_mode & S_IFMT) {
1019                case S_IFREG:
1020                        /* A NFSv4 OPEN will revalidate later */
1021                        if (server->caps & NFS_CAP_ATOMIC_OPEN)
1022                                goto out;
1023                        /* Fallthrough */
1024                case S_IFDIR:
1025                        if (server->flags & NFS_MOUNT_NOCTO)
1026                                break;
1027                        /* NFS close-to-open cache consistency validation */
1028                        goto out_force;
1029                }
1030        }
1031
1032        /* VFS wants an on-the-wire revalidation */
1033        if (flags & LOOKUP_REVAL)
1034                goto out_force;
1035out:
1036        return (inode->i_nlink == 0) ? -ESTALE : 0;
1037out_force:
1038        if (flags & LOOKUP_RCU)
1039                return -ECHILD;
1040        ret = __nfs_revalidate_inode(server, inode);
1041        if (ret != 0)
1042                return ret;
1043        goto out;
1044}
1045
1046/*
1047 * We judge how long we want to trust negative
1048 * dentries by looking at the parent inode mtime.
1049 *
1050 * If parent mtime has changed, we revalidate, else we wait for a
1051 * period corresponding to the parent's attribute cache timeout value.
1052 *
1053 * If LOOKUP_RCU prevents us from performing a full check, return 1
1054 * suggesting a reval is needed.
1055 *
1056 * Note that when creating a new file, or looking up a rename target,
1057 * then it shouldn't be necessary to revalidate a negative dentry.
1058 */
1059static inline
1060int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1061                       unsigned int flags)
1062{
1063        if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET))
1064                return 0;
1065        if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1066                return 1;
1067        return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1068}
1069
1070static int
1071nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry,
1072                           struct inode *inode, int error)
1073{
1074        switch (error) {
1075        case 1:
1076                dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1077                        __func__, dentry);
1078                return 1;
1079        case 0:
1080                nfs_mark_for_revalidate(dir);
1081                if (inode && S_ISDIR(inode->i_mode)) {
1082                        /* Purge readdir caches. */
1083                        nfs_zap_caches(inode);
1084                        /*
1085                         * We can't d_drop the root of a disconnected tree:
1086                         * its d_hash is on the s_anon list and d_drop() would hide
1087                         * it from shrink_dcache_for_unmount(), leading to busy
1088                         * inodes on unmount and further oopses.
1089                         */
1090                        if (IS_ROOT(dentry))
1091                                return 1;
1092                }
1093                dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1094                                __func__, dentry);
1095                return 0;
1096        }
1097        dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1098                                __func__, dentry, error);
1099        return error;
1100}
1101
1102static int
1103nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry,
1104                               unsigned int flags)
1105{
1106        int ret = 1;
1107        if (nfs_neg_need_reval(dir, dentry, flags)) {
1108                if (flags & LOOKUP_RCU)
1109                        return -ECHILD;
1110                ret = 0;
1111        }
1112        return nfs_lookup_revalidate_done(dir, dentry, NULL, ret);
1113}
1114
1115static int
1116nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry,
1117                                struct inode *inode)
1118{
1119        nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1120        return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1121}
1122
1123static int
1124nfs_lookup_revalidate_dentry(struct inode *dir, struct dentry *dentry,
1125                             struct inode *inode)
1126{
1127        struct nfs_fh *fhandle;
1128        struct nfs_fattr *fattr;
1129        struct nfs4_label *label;
1130        int ret;
1131
1132        ret = -ENOMEM;
1133        fhandle = nfs_alloc_fhandle();
1134        fattr = nfs_alloc_fattr();
1135        label = nfs4_label_alloc(NFS_SERVER(inode), GFP_KERNEL);
1136        if (fhandle == NULL || fattr == NULL || IS_ERR(label))
1137                goto out;
1138
1139        ret = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1140        if (ret < 0) {
1141                if (ret == -ESTALE || ret == -ENOENT)
1142                        ret = 0;
1143                goto out;
1144        }
1145        ret = 0;
1146        if (nfs_compare_fh(NFS_FH(inode), fhandle))
1147                goto out;
1148        if (nfs_refresh_inode(inode, fattr) < 0)
1149                goto out;
1150
1151        nfs_setsecurity(inode, fattr, label);
1152        nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1153
1154        /* set a readdirplus hint that we had a cache miss */
1155        nfs_force_use_readdirplus(dir);
1156        ret = 1;
1157out:
1158        nfs_free_fattr(fattr);
1159        nfs_free_fhandle(fhandle);
1160        nfs4_label_free(label);
1161        return nfs_lookup_revalidate_done(dir, dentry, inode, ret);
1162}
1163
1164/*
1165 * This is called every time the dcache has a lookup hit,
1166 * and we should check whether we can really trust that
1167 * lookup.
1168 *
1169 * NOTE! The hit can be a negative hit too, don't assume
1170 * we have an inode!
1171 *
1172 * If the parent directory is seen to have changed, we throw out the
1173 * cached dentry and do a new lookup.
1174 */
1175static int
1176nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1177                         unsigned int flags)
1178{
1179        struct inode *inode;
1180        int error;
1181
1182        nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1183        inode = d_inode(dentry);
1184
1185        if (!inode)
1186                return nfs_lookup_revalidate_negative(dir, dentry, flags);
1187
1188        if (is_bad_inode(inode)) {
1189                dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1190                                __func__, dentry);
1191                goto out_bad;
1192        }
1193
1194        if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1195                return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1196
1197        /* Force a full look up iff the parent directory has changed */
1198        if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) &&
1199            nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1200                error = nfs_lookup_verify_inode(inode, flags);
1201                if (error) {
1202                        if (error == -ESTALE)
1203                                nfs_zap_caches(dir);
1204                        goto out_bad;
1205                }
1206                nfs_advise_use_readdirplus(dir);
1207                goto out_valid;
1208        }
1209
1210        if (flags & LOOKUP_RCU)
1211                return -ECHILD;
1212
1213        if (NFS_STALE(inode))
1214                goto out_bad;
1215
1216        trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1217        error = nfs_lookup_revalidate_dentry(dir, dentry, inode);
1218        trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1219        return error;
1220out_valid:
1221        return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1222out_bad:
1223        if (flags & LOOKUP_RCU)
1224                return -ECHILD;
1225        return nfs_lookup_revalidate_done(dir, dentry, inode, 0);
1226}
1227
1228static int
1229__nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags,
1230                        int (*reval)(struct inode *, struct dentry *, unsigned int))
1231{
1232        struct dentry *parent;
1233        struct inode *dir;
1234        int ret;
1235
1236        if (flags & LOOKUP_RCU) {
1237                parent = READ_ONCE(dentry->d_parent);
1238                dir = d_inode_rcu(parent);
1239                if (!dir)
1240                        return -ECHILD;
1241                ret = reval(dir, dentry, flags);
1242                if (parent != READ_ONCE(dentry->d_parent))
1243                        return -ECHILD;
1244        } else {
1245                parent = dget_parent(dentry);
1246                ret = reval(d_inode(parent), dentry, flags);
1247                dput(parent);
1248        }
1249        return ret;
1250}
1251
1252static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1253{
1254        return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate);
1255}
1256
1257/*
1258 * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1259 * when we don't really care about the dentry name. This is called when a
1260 * pathwalk ends on a dentry that was not found via a normal lookup in the
1261 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1262 *
1263 * In this situation, we just want to verify that the inode itself is OK
1264 * since the dentry might have changed on the server.
1265 */
1266static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1267{
1268        struct inode *inode = d_inode(dentry);
1269        int error = 0;
1270
1271        /*
1272         * I believe we can only get a negative dentry here in the case of a
1273         * procfs-style symlink. Just assume it's correct for now, but we may
1274         * eventually need to do something more here.
1275         */
1276        if (!inode) {
1277                dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1278                                __func__, dentry);
1279                return 1;
1280        }
1281
1282        if (is_bad_inode(inode)) {
1283                dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1284                                __func__, dentry);
1285                return 0;
1286        }
1287
1288        error = nfs_lookup_verify_inode(inode, flags);
1289        dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1290                        __func__, inode->i_ino, error ? "invalid" : "valid");
1291        return !error;
1292}
1293
1294/*
1295 * This is called from dput() when d_count is going to 0.
1296 */
1297static int nfs_dentry_delete(const struct dentry *dentry)
1298{
1299        dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1300                dentry, dentry->d_flags);
1301
1302        /* Unhash any dentry with a stale inode */
1303        if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1304                return 1;
1305
1306        if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1307                /* Unhash it, so that ->d_iput() would be called */
1308                return 1;
1309        }
1310        if (!(dentry->d_sb->s_flags & SB_ACTIVE)) {
1311                /* Unhash it, so that ancestors of killed async unlink
1312                 * files will be cleaned up during umount */
1313                return 1;
1314        }
1315        return 0;
1316
1317}
1318
1319/* Ensure that we revalidate inode->i_nlink */
1320static void nfs_drop_nlink(struct inode *inode)
1321{
1322        spin_lock(&inode->i_lock);
1323        /* drop the inode if we're reasonably sure this is the last link */
1324        if (inode->i_nlink > 0)
1325                drop_nlink(inode);
1326        NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter();
1327        NFS_I(inode)->cache_validity |= NFS_INO_INVALID_CHANGE
1328                | NFS_INO_INVALID_CTIME
1329                | NFS_INO_INVALID_OTHER
1330                | NFS_INO_REVAL_FORCED;
1331        spin_unlock(&inode->i_lock);
1332}
1333
1334/*
1335 * Called when the dentry loses inode.
1336 * We use it to clean up silly-renamed files.
1337 */
1338static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1339{
1340        if (S_ISDIR(inode->i_mode))
1341                /* drop any readdir cache as it could easily be old */
1342                NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1343
1344        if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1345                nfs_complete_unlink(dentry, inode);
1346                nfs_drop_nlink(inode);
1347        }
1348        iput(inode);
1349}
1350
1351static void nfs_d_release(struct dentry *dentry)
1352{
1353        /* free cached devname value, if it survived that far */
1354        if (unlikely(dentry->d_fsdata)) {
1355                if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1356                        WARN_ON(1);
1357                else
1358                        kfree(dentry->d_fsdata);
1359        }
1360}
1361
1362const struct dentry_operations nfs_dentry_operations = {
1363        .d_revalidate   = nfs_lookup_revalidate,
1364        .d_weak_revalidate      = nfs_weak_revalidate,
1365        .d_delete       = nfs_dentry_delete,
1366        .d_iput         = nfs_dentry_iput,
1367        .d_automount    = nfs_d_automount,
1368        .d_release      = nfs_d_release,
1369};
1370EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1371
1372struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1373{
1374        struct dentry *res;
1375        struct inode *inode = NULL;
1376        struct nfs_fh *fhandle = NULL;
1377        struct nfs_fattr *fattr = NULL;
1378        struct nfs4_label *label = NULL;
1379        int error;
1380
1381        dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1382        nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1383
1384        if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1385                return ERR_PTR(-ENAMETOOLONG);
1386
1387        /*
1388         * If we're doing an exclusive create, optimize away the lookup
1389         * but don't hash the dentry.
1390         */
1391        if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET)
1392                return NULL;
1393
1394        res = ERR_PTR(-ENOMEM);
1395        fhandle = nfs_alloc_fhandle();
1396        fattr = nfs_alloc_fattr();
1397        if (fhandle == NULL || fattr == NULL)
1398                goto out;
1399
1400        label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1401        if (IS_ERR(label))
1402                goto out;
1403
1404        trace_nfs_lookup_enter(dir, dentry, flags);
1405        error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1406        if (error == -ENOENT)
1407                goto no_entry;
1408        if (error < 0) {
1409                res = ERR_PTR(error);
1410                goto out_label;
1411        }
1412        inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1413        res = ERR_CAST(inode);
1414        if (IS_ERR(res))
1415                goto out_label;
1416
1417        /* Notify readdir to use READDIRPLUS */
1418        nfs_force_use_readdirplus(dir);
1419
1420no_entry:
1421        res = d_splice_alias(inode, dentry);
1422        if (res != NULL) {
1423                if (IS_ERR(res))
1424                        goto out_label;
1425                dentry = res;
1426        }
1427        nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1428out_label:
1429        trace_nfs_lookup_exit(dir, dentry, flags, error);
1430        nfs4_label_free(label);
1431out:
1432        nfs_free_fattr(fattr);
1433        nfs_free_fhandle(fhandle);
1434        return res;
1435}
1436EXPORT_SYMBOL_GPL(nfs_lookup);
1437
1438#if IS_ENABLED(CONFIG_NFS_V4)
1439static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1440
1441const struct dentry_operations nfs4_dentry_operations = {
1442        .d_revalidate   = nfs4_lookup_revalidate,
1443        .d_weak_revalidate      = nfs_weak_revalidate,
1444        .d_delete       = nfs_dentry_delete,
1445        .d_iput         = nfs_dentry_iput,
1446        .d_automount    = nfs_d_automount,
1447        .d_release      = nfs_d_release,
1448};
1449EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1450
1451static fmode_t flags_to_mode(int flags)
1452{
1453        fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1454        if ((flags & O_ACCMODE) != O_WRONLY)
1455                res |= FMODE_READ;
1456        if ((flags & O_ACCMODE) != O_RDONLY)
1457                res |= FMODE_WRITE;
1458        return res;
1459}
1460
1461static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
1462{
1463        return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
1464}
1465
1466static int do_open(struct inode *inode, struct file *filp)
1467{
1468        nfs_fscache_open_file(inode, filp);
1469        return 0;
1470}
1471
1472static int nfs_finish_open(struct nfs_open_context *ctx,
1473                           struct dentry *dentry,
1474                           struct file *file, unsigned open_flags)
1475{
1476        int err;
1477
1478        err = finish_open(file, dentry, do_open);
1479        if (err)
1480                goto out;
1481        if (S_ISREG(file->f_path.dentry->d_inode->i_mode))
1482                nfs_file_set_open_context(file, ctx);
1483        else
1484                err = -ESTALE;
1485out:
1486        return err;
1487}
1488
1489int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1490                    struct file *file, unsigned open_flags,
1491                    umode_t mode)
1492{
1493        DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1494        struct nfs_open_context *ctx;
1495        struct dentry *res;
1496        struct iattr attr = { .ia_valid = ATTR_OPEN };
1497        struct inode *inode;
1498        unsigned int lookup_flags = 0;
1499        bool switched = false;
1500        int created = 0;
1501        int err;
1502
1503        /* Expect a negative dentry */
1504        BUG_ON(d_inode(dentry));
1505
1506        dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1507                        dir->i_sb->s_id, dir->i_ino, dentry);
1508
1509        err = nfs_check_flags(open_flags);
1510        if (err)
1511                return err;
1512
1513        /* NFS only supports OPEN on regular files */
1514        if ((open_flags & O_DIRECTORY)) {
1515                if (!d_in_lookup(dentry)) {
1516                        /*
1517                         * Hashed negative dentry with O_DIRECTORY: dentry was
1518                         * revalidated and is fine, no need to perform lookup
1519                         * again
1520                         */
1521                        return -ENOENT;
1522                }
1523                lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1524                goto no_open;
1525        }
1526
1527        if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1528                return -ENAMETOOLONG;
1529
1530        if (open_flags & O_CREAT) {
1531                struct nfs_server *server = NFS_SERVER(dir);
1532
1533                if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
1534                        mode &= ~current_umask();
1535
1536                attr.ia_valid |= ATTR_MODE;
1537                attr.ia_mode = mode;
1538        }
1539        if (open_flags & O_TRUNC) {
1540                attr.ia_valid |= ATTR_SIZE;
1541                attr.ia_size = 0;
1542        }
1543
1544        if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
1545                d_drop(dentry);
1546                switched = true;
1547                dentry = d_alloc_parallel(dentry->d_parent,
1548                                          &dentry->d_name, &wq);
1549                if (IS_ERR(dentry))
1550                        return PTR_ERR(dentry);
1551                if (unlikely(!d_in_lookup(dentry)))
1552                        return finish_no_open(file, dentry);
1553        }
1554
1555        ctx = create_nfs_open_context(dentry, open_flags, file);
1556        err = PTR_ERR(ctx);
1557        if (IS_ERR(ctx))
1558                goto out;
1559
1560        trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1561        inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created);
1562        if (created)
1563                file->f_mode |= FMODE_CREATED;
1564        if (IS_ERR(inode)) {
1565                err = PTR_ERR(inode);
1566                trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1567                put_nfs_open_context(ctx);
1568                d_drop(dentry);
1569                switch (err) {
1570                case -ENOENT:
1571                        d_splice_alias(NULL, dentry);
1572                        nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1573                        break;
1574                case -EISDIR:
1575                case -ENOTDIR:
1576                        goto no_open;
1577                case -ELOOP:
1578                        if (!(open_flags & O_NOFOLLOW))
1579                                goto no_open;
1580                        break;
1581                        /* case -EINVAL: */
1582                default:
1583                        break;
1584                }
1585                goto out;
1586        }
1587
1588        err = nfs_finish_open(ctx, ctx->dentry, file, open_flags);
1589        trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1590        put_nfs_open_context(ctx);
1591out:
1592        if (unlikely(switched)) {
1593                d_lookup_done(dentry);
1594                dput(dentry);
1595        }
1596        return err;
1597
1598no_open:
1599        res = nfs_lookup(dir, dentry, lookup_flags);
1600        if (switched) {
1601                d_lookup_done(dentry);
1602                if (!res)
1603                        res = dentry;
1604                else
1605                        dput(dentry);
1606        }
1607        if (IS_ERR(res))
1608                return PTR_ERR(res);
1609        return finish_no_open(file, res);
1610}
1611EXPORT_SYMBOL_GPL(nfs_atomic_open);
1612
1613static int
1614nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1615                          unsigned int flags)
1616{
1617        struct inode *inode;
1618
1619        if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1620                goto full_reval;
1621        if (d_mountpoint(dentry))
1622                goto full_reval;
1623
1624        inode = d_inode(dentry);
1625
1626        /* We can't create new files in nfs_open_revalidate(), so we
1627         * optimize away revalidation of negative dentries.
1628         */
1629        if (inode == NULL)
1630                goto full_reval;
1631
1632        if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1633                return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1634
1635        /* NFS only supports OPEN on regular files */
1636        if (!S_ISREG(inode->i_mode))
1637                goto full_reval;
1638
1639        /* We cannot do exclusive creation on a positive dentry */
1640        if (flags & (LOOKUP_EXCL | LOOKUP_REVAL))
1641                goto reval_dentry;
1642
1643        /* Check if the directory changed */
1644        if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU))
1645                goto reval_dentry;
1646
1647        /* Let f_op->open() actually open (and revalidate) the file */
1648        return 1;
1649reval_dentry:
1650        if (flags & LOOKUP_RCU)
1651                return -ECHILD;
1652        return nfs_lookup_revalidate_dentry(dir, dentry, inode);;
1653
1654full_reval:
1655        return nfs_do_lookup_revalidate(dir, dentry, flags);
1656}
1657
1658static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1659{
1660        return __nfs_lookup_revalidate(dentry, flags,
1661                        nfs4_do_lookup_revalidate);
1662}
1663
1664#endif /* CONFIG_NFSV4 */
1665
1666/*
1667 * Code common to create, mkdir, and mknod.
1668 */
1669int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1670                                struct nfs_fattr *fattr,
1671                                struct nfs4_label *label)
1672{
1673        struct dentry *parent = dget_parent(dentry);
1674        struct inode *dir = d_inode(parent);
1675        struct inode *inode;
1676        struct dentry *d;
1677        int error = -EACCES;
1678
1679        d_drop(dentry);
1680
1681        /* We may have been initialized further down */
1682        if (d_really_is_positive(dentry))
1683                goto out;
1684        if (fhandle->size == 0) {
1685                error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, NULL);
1686                if (error)
1687                        goto out_error;
1688        }
1689        nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1690        if (!(fattr->valid & NFS_ATTR_FATTR)) {
1691                struct nfs_server *server = NFS_SB(dentry->d_sb);
1692                error = server->nfs_client->rpc_ops->getattr(server, fhandle,
1693                                fattr, NULL, NULL);
1694                if (error < 0)
1695                        goto out_error;
1696        }
1697        inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1698        d = d_splice_alias(inode, dentry);
1699        if (IS_ERR(d)) {
1700                error = PTR_ERR(d);
1701                goto out_error;
1702        }
1703        dput(d);
1704out:
1705        dput(parent);
1706        return 0;
1707out_error:
1708        nfs_mark_for_revalidate(dir);
1709        dput(parent);
1710        return error;
1711}
1712EXPORT_SYMBOL_GPL(nfs_instantiate);
1713
1714/*
1715 * Following a failed create operation, we drop the dentry rather
1716 * than retain a negative dentry. This avoids a problem in the event
1717 * that the operation succeeded on the server, but an error in the
1718 * reply path made it appear to have failed.
1719 */
1720int nfs_create(struct inode *dir, struct dentry *dentry,
1721                umode_t mode, bool excl)
1722{
1723        struct iattr attr;
1724        int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
1725        int error;
1726
1727        dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
1728                        dir->i_sb->s_id, dir->i_ino, dentry);
1729
1730        attr.ia_mode = mode;
1731        attr.ia_valid = ATTR_MODE;
1732
1733        trace_nfs_create_enter(dir, dentry, open_flags);
1734        error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
1735        trace_nfs_create_exit(dir, dentry, open_flags, error);
1736        if (error != 0)
1737                goto out_err;
1738        return 0;
1739out_err:
1740        d_drop(dentry);
1741        return error;
1742}
1743EXPORT_SYMBOL_GPL(nfs_create);
1744
1745/*
1746 * See comments for nfs_proc_create regarding failed operations.
1747 */
1748int
1749nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1750{
1751        struct iattr attr;
1752        int status;
1753
1754        dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
1755                        dir->i_sb->s_id, dir->i_ino, dentry);
1756
1757        attr.ia_mode = mode;
1758        attr.ia_valid = ATTR_MODE;
1759
1760        trace_nfs_mknod_enter(dir, dentry);
1761        status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1762        trace_nfs_mknod_exit(dir, dentry, status);
1763        if (status != 0)
1764                goto out_err;
1765        return 0;
1766out_err:
1767        d_drop(dentry);
1768        return status;
1769}
1770EXPORT_SYMBOL_GPL(nfs_mknod);
1771
1772/*
1773 * See comments for nfs_proc_create regarding failed operations.
1774 */
1775int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1776{
1777        struct iattr attr;
1778        int error;
1779
1780        dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
1781                        dir->i_sb->s_id, dir->i_ino, dentry);
1782
1783        attr.ia_valid = ATTR_MODE;
1784        attr.ia_mode = mode | S_IFDIR;
1785
1786        trace_nfs_mkdir_enter(dir, dentry);
1787        error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1788        trace_nfs_mkdir_exit(dir, dentry, error);
1789        if (error != 0)
1790                goto out_err;
1791        return 0;
1792out_err:
1793        d_drop(dentry);
1794        return error;
1795}
1796EXPORT_SYMBOL_GPL(nfs_mkdir);
1797
1798static void nfs_dentry_handle_enoent(struct dentry *dentry)
1799{
1800        if (simple_positive(dentry))
1801                d_delete(dentry);
1802}
1803
1804int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1805{
1806        int error;
1807
1808        dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
1809                        dir->i_sb->s_id, dir->i_ino, dentry);
1810
1811        trace_nfs_rmdir_enter(dir, dentry);
1812        if (d_really_is_positive(dentry)) {
1813                down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1814                error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1815                /* Ensure the VFS deletes this inode */
1816                switch (error) {
1817                case 0:
1818                        clear_nlink(d_inode(dentry));
1819                        break;
1820                case -ENOENT:
1821                        nfs_dentry_handle_enoent(dentry);
1822                }
1823                up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1824        } else
1825                error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1826        trace_nfs_rmdir_exit(dir, dentry, error);
1827
1828        return error;
1829}
1830EXPORT_SYMBOL_GPL(nfs_rmdir);
1831
1832/*
1833 * Remove a file after making sure there are no pending writes,
1834 * and after checking that the file has only one user. 
1835 *
1836 * We invalidate the attribute cache and free the inode prior to the operation
1837 * to avoid possible races if the server reuses the inode.
1838 */
1839static int nfs_safe_remove(struct dentry *dentry)
1840{
1841        struct inode *dir = d_inode(dentry->d_parent);
1842        struct inode *inode = d_inode(dentry);
1843        int error = -EBUSY;
1844                
1845        dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
1846
1847        /* If the dentry was sillyrenamed, we simply call d_delete() */
1848        if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1849                error = 0;
1850                goto out;
1851        }
1852
1853        trace_nfs_remove_enter(dir, dentry);
1854        if (inode != NULL) {
1855                error = NFS_PROTO(dir)->remove(dir, dentry);
1856                if (error == 0)
1857                        nfs_drop_nlink(inode);
1858        } else
1859                error = NFS_PROTO(dir)->remove(dir, dentry);
1860        if (error == -ENOENT)
1861                nfs_dentry_handle_enoent(dentry);
1862        trace_nfs_remove_exit(dir, dentry, error);
1863out:
1864        return error;
1865}
1866
1867/*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
1868 *  belongs to an active ".nfs..." file and we return -EBUSY.
1869 *
1870 *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
1871 */
1872int nfs_unlink(struct inode *dir, struct dentry *dentry)
1873{
1874        int error;
1875        int need_rehash = 0;
1876
1877        dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
1878                dir->i_ino, dentry);
1879
1880        trace_nfs_unlink_enter(dir, dentry);
1881        spin_lock(&dentry->d_lock);
1882        if (d_count(dentry) > 1) {
1883                spin_unlock(&dentry->d_lock);
1884                /* Start asynchronous writeout of the inode */
1885                write_inode_now(d_inode(dentry), 0);
1886                error = nfs_sillyrename(dir, dentry);
1887                goto out;
1888        }
1889        if (!d_unhashed(dentry)) {
1890                __d_drop(dentry);
1891                need_rehash = 1;
1892        }
1893        spin_unlock(&dentry->d_lock);
1894        error = nfs_safe_remove(dentry);
1895        if (!error || error == -ENOENT) {
1896                nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1897        } else if (need_rehash)
1898                d_rehash(dentry);
1899out:
1900        trace_nfs_unlink_exit(dir, dentry, error);
1901        return error;
1902}
1903EXPORT_SYMBOL_GPL(nfs_unlink);
1904
1905/*
1906 * To create a symbolic link, most file systems instantiate a new inode,
1907 * add a page to it containing the path, then write it out to the disk
1908 * using prepare_write/commit_write.
1909 *
1910 * Unfortunately the NFS client can't create the in-core inode first
1911 * because it needs a file handle to create an in-core inode (see
1912 * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
1913 * symlink request has completed on the server.
1914 *
1915 * So instead we allocate a raw page, copy the symname into it, then do
1916 * the SYMLINK request with the page as the buffer.  If it succeeds, we
1917 * now have a new file handle and can instantiate an in-core NFS inode
1918 * and move the raw page into its mapping.
1919 */
1920int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1921{
1922        struct page *page;
1923        char *kaddr;
1924        struct iattr attr;
1925        unsigned int pathlen = strlen(symname);
1926        int error;
1927
1928        dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
1929                dir->i_ino, dentry, symname);
1930
1931        if (pathlen > PAGE_SIZE)
1932                return -ENAMETOOLONG;
1933
1934        attr.ia_mode = S_IFLNK | S_IRWXUGO;
1935        attr.ia_valid = ATTR_MODE;
1936
1937        page = alloc_page(GFP_USER);
1938        if (!page)
1939                return -ENOMEM;
1940
1941        kaddr = page_address(page);
1942        memcpy(kaddr, symname, pathlen);
1943        if (pathlen < PAGE_SIZE)
1944                memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1945
1946        trace_nfs_symlink_enter(dir, dentry);
1947        error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1948        trace_nfs_symlink_exit(dir, dentry, error);
1949        if (error != 0) {
1950                dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
1951                        dir->i_sb->s_id, dir->i_ino,
1952                        dentry, symname, error);
1953                d_drop(dentry);
1954                __free_page(page);
1955                return error;
1956        }
1957
1958        /*
1959         * No big deal if we can't add this page to the page cache here.
1960         * READLINK will get the missing page from the server if needed.
1961         */
1962        if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
1963                                                        GFP_KERNEL)) {
1964                SetPageUptodate(page);
1965                unlock_page(page);
1966                /*
1967                 * add_to_page_cache_lru() grabs an extra page refcount.
1968                 * Drop it here to avoid leaking this page later.
1969                 */
1970                put_page(page);
1971        } else
1972                __free_page(page);
1973
1974        return 0;
1975}
1976EXPORT_SYMBOL_GPL(nfs_symlink);
1977
1978int
1979nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1980{
1981        struct inode *inode = d_inode(old_dentry);
1982        int error;
1983
1984        dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
1985                old_dentry, dentry);
1986
1987        trace_nfs_link_enter(inode, dir, dentry);
1988        d_drop(dentry);
1989        error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1990        if (error == 0) {
1991                ihold(inode);
1992                d_add(dentry, inode);
1993        }
1994        trace_nfs_link_exit(inode, dir, dentry, error);
1995        return error;
1996}
1997EXPORT_SYMBOL_GPL(nfs_link);
1998
1999/*
2000 * RENAME
2001 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2002 * different file handle for the same inode after a rename (e.g. when
2003 * moving to a different directory). A fail-safe method to do so would
2004 * be to look up old_dir/old_name, create a link to new_dir/new_name and
2005 * rename the old file using the sillyrename stuff. This way, the original
2006 * file in old_dir will go away when the last process iput()s the inode.
2007 *
2008 * FIXED.
2009 * 
2010 * It actually works quite well. One needs to have the possibility for
2011 * at least one ".nfs..." file in each directory the file ever gets
2012 * moved or linked to which happens automagically with the new
2013 * implementation that only depends on the dcache stuff instead of
2014 * using the inode layer
2015 *
2016 * Unfortunately, things are a little more complicated than indicated
2017 * above. For a cross-directory move, we want to make sure we can get
2018 * rid of the old inode after the operation.  This means there must be
2019 * no pending writes (if it's a file), and the use count must be 1.
2020 * If these conditions are met, we can drop the dentries before doing
2021 * the rename.
2022 */
2023int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2024               struct inode *new_dir, struct dentry *new_dentry,
2025               unsigned int flags)
2026{
2027        struct inode *old_inode = d_inode(old_dentry);
2028        struct inode *new_inode = d_inode(new_dentry);
2029        struct dentry *dentry = NULL, *rehash = NULL;
2030        struct rpc_task *task;
2031        int error = -EBUSY;
2032
2033        if (flags)
2034                return -EINVAL;
2035
2036        dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2037                 old_dentry, new_dentry,
2038                 d_count(new_dentry));
2039
2040        trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2041        /*
2042         * For non-directories, check whether the target is busy and if so,
2043         * make a copy of the dentry and then do a silly-rename. If the
2044         * silly-rename succeeds, the copied dentry is hashed and becomes
2045         * the new target.
2046         */
2047        if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2048                /*
2049                 * To prevent any new references to the target during the
2050                 * rename, we unhash the dentry in advance.
2051                 */
2052                if (!d_unhashed(new_dentry)) {
2053                        d_drop(new_dentry);
2054                        rehash = new_dentry;
2055                }
2056
2057                if (d_count(new_dentry) > 2) {
2058                        int err;
2059
2060                        /* copy the target dentry's name */
2061                        dentry = d_alloc(new_dentry->d_parent,
2062                                         &new_dentry->d_name);
2063                        if (!dentry)
2064                                goto out;
2065
2066                        /* silly-rename the existing target ... */
2067                        err = nfs_sillyrename(new_dir, new_dentry);
2068                        if (err)
2069                                goto out;
2070
2071                        new_dentry = dentry;
2072                        rehash = NULL;
2073                        new_inode = NULL;
2074                }
2075        }
2076
2077        task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2078        if (IS_ERR(task)) {
2079                error = PTR_ERR(task);
2080                goto out;
2081        }
2082
2083        error = rpc_wait_for_completion_task(task);
2084        if (error != 0) {
2085                ((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2086                /* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2087                smp_wmb();
2088        } else
2089                error = task->tk_status;
2090        rpc_put_task(task);
2091        /* Ensure the inode attributes are revalidated */
2092        if (error == 0) {
2093                spin_lock(&old_inode->i_lock);
2094                NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter();
2095                NFS_I(old_inode)->cache_validity |= NFS_INO_INVALID_CHANGE
2096                        | NFS_INO_INVALID_CTIME
2097                        | NFS_INO_REVAL_FORCED;
2098                spin_unlock(&old_inode->i_lock);
2099        }
2100out:
2101        if (rehash)
2102                d_rehash(rehash);
2103        trace_nfs_rename_exit(old_dir, old_dentry,
2104                        new_dir, new_dentry, error);
2105        if (!error) {
2106                if (new_inode != NULL)
2107                        nfs_drop_nlink(new_inode);
2108                /*
2109                 * The d_move() should be here instead of in an async RPC completion
2110                 * handler because we need the proper locks to move the dentry.  If
2111                 * we're interrupted by a signal, the async RPC completion handler
2112                 * should mark the directories for revalidation.
2113                 */
2114                d_move(old_dentry, new_dentry);
2115                nfs_set_verifier(old_dentry,
2116                                        nfs_save_change_attribute(new_dir));
2117        } else if (error == -ENOENT)
2118                nfs_dentry_handle_enoent(old_dentry);
2119
2120        /* new dentry created? */
2121        if (dentry)
2122                dput(dentry);
2123        return error;
2124}
2125EXPORT_SYMBOL_GPL(nfs_rename);
2126
2127static DEFINE_SPINLOCK(nfs_access_lru_lock);
2128static LIST_HEAD(nfs_access_lru_list);
2129static atomic_long_t nfs_access_nr_entries;
2130
2131static unsigned long nfs_access_max_cachesize = ULONG_MAX;
2132module_param(nfs_access_max_cachesize, ulong, 0644);
2133MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2134
2135static void nfs_access_free_entry(struct nfs_access_entry *entry)
2136{
2137        put_cred(entry->cred);
2138        kfree_rcu(entry, rcu_head);
2139        smp_mb__before_atomic();
2140        atomic_long_dec(&nfs_access_nr_entries);
2141        smp_mb__after_atomic();
2142}
2143
2144static void nfs_access_free_list(struct list_head *head)
2145{
2146        struct nfs_access_entry *cache;
2147
2148        while (!list_empty(head)) {
2149                cache = list_entry(head->next, struct nfs_access_entry, lru);
2150                list_del(&cache->lru);
2151                nfs_access_free_entry(cache);
2152        }
2153}
2154
2155static unsigned long
2156nfs_do_access_cache_scan(unsigned int nr_to_scan)
2157{
2158        LIST_HEAD(head);
2159        struct nfs_inode *nfsi, *next;
2160        struct nfs_access_entry *cache;
2161        long freed = 0;
2162
2163        spin_lock(&nfs_access_lru_lock);
2164        list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2165                struct inode *inode;
2166
2167                if (nr_to_scan-- == 0)
2168                        break;
2169                inode = &nfsi->vfs_inode;
2170                spin_lock(&inode->i_lock);
2171                if (list_empty(&nfsi->access_cache_entry_lru))
2172                        goto remove_lru_entry;
2173                cache = list_entry(nfsi->access_cache_entry_lru.next,
2174                                struct nfs_access_entry, lru);
2175                list_move(&cache->lru, &head);
2176                rb_erase(&cache->rb_node, &nfsi->access_cache);
2177                freed++;
2178                if (!list_empty(&nfsi->access_cache_entry_lru))
2179                        list_move_tail(&nfsi->access_cache_inode_lru,
2180                                        &nfs_access_lru_list);
2181                else {
2182remove_lru_entry:
2183                        list_del_init(&nfsi->access_cache_inode_lru);
2184                        smp_mb__before_atomic();
2185                        clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2186                        smp_mb__after_atomic();
2187                }
2188                spin_unlock(&inode->i_lock);
2189        }
2190        spin_unlock(&nfs_access_lru_lock);
2191        nfs_access_free_list(&head);
2192        return freed;
2193}
2194
2195unsigned long
2196nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2197{
2198        int nr_to_scan = sc->nr_to_scan;
2199        gfp_t gfp_mask = sc->gfp_mask;
2200
2201        if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2202                return SHRINK_STOP;
2203        return nfs_do_access_cache_scan(nr_to_scan);
2204}
2205
2206
2207unsigned long
2208nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2209{
2210        return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2211}
2212
2213static void
2214nfs_access_cache_enforce_limit(void)
2215{
2216        long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2217        unsigned long diff;
2218        unsigned int nr_to_scan;
2219
2220        if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2221                return;
2222        nr_to_scan = 100;
2223        diff = nr_entries - nfs_access_max_cachesize;
2224        if (diff < nr_to_scan)
2225                nr_to_scan = diff;
2226        nfs_do_access_cache_scan(nr_to_scan);
2227}
2228
2229static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2230{
2231        struct rb_root *root_node = &nfsi->access_cache;
2232        struct rb_node *n;
2233        struct nfs_access_entry *entry;
2234
2235        /* Unhook entries from the cache */
2236        while ((n = rb_first(root_node)) != NULL) {
2237                entry = rb_entry(n, struct nfs_access_entry, rb_node);
2238                rb_erase(n, root_node);
2239                list_move(&entry->lru, head);
2240        }
2241        nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2242}
2243
2244void nfs_access_zap_cache(struct inode *inode)
2245{
2246        LIST_HEAD(head);
2247
2248        if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2249                return;
2250        /* Remove from global LRU init */
2251        spin_lock(&nfs_access_lru_lock);
2252        if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2253                list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2254
2255        spin_lock(&inode->i_lock);
2256        __nfs_access_zap_cache(NFS_I(inode), &head);
2257        spin_unlock(&inode->i_lock);
2258        spin_unlock(&nfs_access_lru_lock);
2259        nfs_access_free_list(&head);
2260}
2261EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2262
2263static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred)
2264{
2265        struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2266
2267        while (n != NULL) {
2268                struct nfs_access_entry *entry =
2269                        rb_entry(n, struct nfs_access_entry, rb_node);
2270                int cmp = cred_fscmp(cred, entry->cred);
2271
2272                if (cmp < 0)
2273                        n = n->rb_left;
2274                else if (cmp > 0)
2275                        n = n->rb_right;
2276                else
2277                        return entry;
2278        }
2279        return NULL;
2280}
2281
2282static int nfs_access_get_cached(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res, bool may_block)
2283{
2284        struct nfs_inode *nfsi = NFS_I(inode);
2285        struct nfs_access_entry *cache;
2286        bool retry = true;
2287        int err;
2288
2289        spin_lock(&inode->i_lock);
2290        for(;;) {
2291                if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2292                        goto out_zap;
2293                cache = nfs_access_search_rbtree(inode, cred);
2294                err = -ENOENT;
2295                if (cache == NULL)
2296                        goto out;
2297                /* Found an entry, is our attribute cache valid? */
2298                if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2299                        break;
2300                err = -ECHILD;
2301                if (!may_block)
2302                        goto out;
2303                if (!retry)
2304                        goto out_zap;
2305                spin_unlock(&inode->i_lock);
2306                err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
2307                if (err)
2308                        return err;
2309                spin_lock(&inode->i_lock);
2310                retry = false;
2311        }
2312        res->cred = cache->cred;
2313        res->mask = cache->mask;
2314        list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2315        err = 0;
2316out:
2317        spin_unlock(&inode->i_lock);
2318        return err;
2319out_zap:
2320        spin_unlock(&inode->i_lock);
2321        nfs_access_zap_cache(inode);
2322        return -ENOENT;
2323}
2324
2325static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res)
2326{
2327        /* Only check the most recently returned cache entry,
2328         * but do it without locking.
2329         */
2330        struct nfs_inode *nfsi = NFS_I(inode);
2331        struct nfs_access_entry *cache;
2332        int err = -ECHILD;
2333        struct list_head *lh;
2334
2335        rcu_read_lock();
2336        if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2337                goto out;
2338        lh = rcu_dereference(nfsi->access_cache_entry_lru.prev);
2339        cache = list_entry(lh, struct nfs_access_entry, lru);
2340        if (lh == &nfsi->access_cache_entry_lru ||
2341            cred != cache->cred)
2342                cache = NULL;
2343        if (cache == NULL)
2344                goto out;
2345        if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2346                goto out;
2347        res->cred = cache->cred;
2348        res->mask = cache->mask;
2349        err = 0;
2350out:
2351        rcu_read_unlock();
2352        return err;
2353}
2354
2355static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2356{
2357        struct nfs_inode *nfsi = NFS_I(inode);
2358        struct rb_root *root_node = &nfsi->access_cache;
2359        struct rb_node **p = &root_node->rb_node;
2360        struct rb_node *parent = NULL;
2361        struct nfs_access_entry *entry;
2362        int cmp;
2363
2364        spin_lock(&inode->i_lock);
2365        while (*p != NULL) {
2366                parent = *p;
2367                entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2368                cmp = cred_fscmp(set->cred, entry->cred);
2369
2370                if (cmp < 0)
2371                        p = &parent->rb_left;
2372                else if (cmp > 0)
2373                        p = &parent->rb_right;
2374                else
2375                        goto found;
2376        }
2377        rb_link_node(&set->rb_node, parent, p);
2378        rb_insert_color(&set->rb_node, root_node);
2379        list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2380        spin_unlock(&inode->i_lock);
2381        return;
2382found:
2383        rb_replace_node(parent, &set->rb_node, root_node);
2384        list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2385        list_del(&entry->lru);
2386        spin_unlock(&inode->i_lock);
2387        nfs_access_free_entry(entry);
2388}
2389
2390void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2391{
2392        struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2393        if (cache == NULL)
2394                return;
2395        RB_CLEAR_NODE(&cache->rb_node);
2396        cache->cred = get_cred(set->cred);
2397        cache->mask = set->mask;
2398
2399        /* The above field assignments must be visible
2400         * before this item appears on the lru.  We cannot easily
2401         * use rcu_assign_pointer, so just force the memory barrier.
2402         */
2403        smp_wmb();
2404        nfs_access_add_rbtree(inode, cache);
2405
2406        /* Update accounting */
2407        smp_mb__before_atomic();
2408        atomic_long_inc(&nfs_access_nr_entries);
2409        smp_mb__after_atomic();
2410
2411        /* Add inode to global LRU list */
2412        if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2413                spin_lock(&nfs_access_lru_lock);
2414                if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2415                        list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2416                                        &nfs_access_lru_list);
2417                spin_unlock(&nfs_access_lru_lock);
2418        }
2419        nfs_access_cache_enforce_limit();
2420}
2421EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2422
2423#define NFS_MAY_READ (NFS_ACCESS_READ)
2424#define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
2425                NFS_ACCESS_EXTEND | \
2426                NFS_ACCESS_DELETE)
2427#define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
2428                NFS_ACCESS_EXTEND)
2429#define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
2430#define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
2431#define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
2432static int
2433nfs_access_calc_mask(u32 access_result, umode_t umode)
2434{
2435        int mask = 0;
2436
2437        if (access_result & NFS_MAY_READ)
2438                mask |= MAY_READ;
2439        if (S_ISDIR(umode)) {
2440                if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE)
2441                        mask |= MAY_WRITE;
2442                if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP)
2443                        mask |= MAY_EXEC;
2444        } else if (S_ISREG(umode)) {
2445                if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE)
2446                        mask |= MAY_WRITE;
2447                if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE)
2448                        mask |= MAY_EXEC;
2449        } else if (access_result & NFS_MAY_WRITE)
2450                        mask |= MAY_WRITE;
2451        return mask;
2452}
2453
2454void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2455{
2456        entry->mask = access_result;
2457}
2458EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2459
2460static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask)
2461{
2462        struct nfs_access_entry cache;
2463        bool may_block = (mask & MAY_NOT_BLOCK) == 0;
2464        int cache_mask;
2465        int status;
2466
2467        trace_nfs_access_enter(inode);
2468
2469        status = nfs_access_get_cached_rcu(inode, cred, &cache);
2470        if (status != 0)
2471                status = nfs_access_get_cached(inode, cred, &cache, may_block);
2472        if (status == 0)
2473                goto out_cached;
2474
2475        status = -ECHILD;
2476        if (!may_block)
2477                goto out;
2478
2479        /*
2480         * Determine which access bits we want to ask for...
2481         */
2482        cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND;
2483        if (S_ISDIR(inode->i_mode))
2484                cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP;
2485        else
2486                cache.mask |= NFS_ACCESS_EXECUTE;
2487        cache.cred = cred;
2488        status = NFS_PROTO(inode)->access(inode, &cache);
2489        if (status != 0) {
2490                if (status == -ESTALE) {
2491                        nfs_zap_caches(inode);
2492                        if (!S_ISDIR(inode->i_mode))
2493                                set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2494                }
2495                goto out;
2496        }
2497        nfs_access_add_cache(inode, &cache);
2498out_cached:
2499        cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode);
2500        if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2501                status = -EACCES;
2502out:
2503        trace_nfs_access_exit(inode, status);
2504        return status;
2505}
2506
2507static int nfs_open_permission_mask(int openflags)
2508{
2509        int mask = 0;
2510
2511        if (openflags & __FMODE_EXEC) {
2512                /* ONLY check exec rights */
2513                mask = MAY_EXEC;
2514        } else {
2515                if ((openflags & O_ACCMODE) != O_WRONLY)
2516                        mask |= MAY_READ;
2517                if ((openflags & O_ACCMODE) != O_RDONLY)
2518                        mask |= MAY_WRITE;
2519        }
2520
2521        return mask;
2522}
2523
2524int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags)
2525{
2526        return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2527}
2528EXPORT_SYMBOL_GPL(nfs_may_open);
2529
2530static int nfs_execute_ok(struct inode *inode, int mask)
2531{
2532        struct nfs_server *server = NFS_SERVER(inode);
2533        int ret = 0;
2534
2535        if (S_ISDIR(inode->i_mode))
2536                return 0;
2537        if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_OTHER)) {
2538                if (mask & MAY_NOT_BLOCK)
2539                        return -ECHILD;
2540                ret = __nfs_revalidate_inode(server, inode);
2541        }
2542        if (ret == 0 && !execute_ok(inode))
2543                ret = -EACCES;
2544        return ret;
2545}
2546
2547int nfs_permission(struct inode *inode, int mask)
2548{
2549        const struct cred *cred = current_cred();
2550        int res = 0;
2551
2552        nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2553
2554        if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2555                goto out;
2556        /* Is this sys_access() ? */
2557        if (mask & (MAY_ACCESS | MAY_CHDIR))
2558                goto force_lookup;
2559
2560        switch (inode->i_mode & S_IFMT) {
2561                case S_IFLNK:
2562                        goto out;
2563                case S_IFREG:
2564                        if ((mask & MAY_OPEN) &&
2565                           nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
2566                                return 0;
2567                        break;
2568                case S_IFDIR:
2569                        /*
2570                         * Optimize away all write operations, since the server
2571                         * will check permissions when we perform the op.
2572                         */
2573                        if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2574                                goto out;
2575        }
2576
2577force_lookup:
2578        if (!NFS_PROTO(inode)->access)
2579                goto out_notsup;
2580
2581        /* Always try fast lookups first */
2582        rcu_read_lock();
2583        res = nfs_do_access(inode, cred, mask|MAY_NOT_BLOCK);
2584        rcu_read_unlock();
2585        if (res == -ECHILD && !(mask & MAY_NOT_BLOCK)) {
2586                /* Fast lookup failed, try the slow way */
2587                res = nfs_do_access(inode, cred, mask);
2588        }
2589out:
2590        if (!res && (mask & MAY_EXEC))
2591                res = nfs_execute_ok(inode, mask);
2592
2593        dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
2594                inode->i_sb->s_id, inode->i_ino, mask, res);
2595        return res;
2596out_notsup:
2597        if (mask & MAY_NOT_BLOCK)
2598                return -ECHILD;
2599
2600        res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2601        if (res == 0)
2602                res = generic_permission(inode, mask);
2603        goto out;
2604}
2605EXPORT_SYMBOL_GPL(nfs_permission);
2606
2607/*
2608 * Local variables:
2609 *  version-control: t
2610 *  kept-new-versions: 5
2611 * End:
2612 */
2613