linux/fs/ubifs/tnc_commit.c
<<
>>
Prefs
   1/*
   2 * This file is part of UBIFS.
   3 *
   4 * Copyright (C) 2006-2008 Nokia Corporation.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published by
   8 * the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope that it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 * You should have received a copy of the GNU General Public License along with
  16 * this program; if not, write to the Free Software Foundation, Inc., 51
  17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  18 *
  19 * Authors: Adrian Hunter
  20 *          Artem Bityutskiy (Битюцкий Артём)
  21 */
  22
  23/* This file implements TNC functions for committing */
  24
  25#include <linux/random.h>
  26#include "ubifs.h"
  27
  28/**
  29 * make_idx_node - make an index node for fill-the-gaps method of TNC commit.
  30 * @c: UBIFS file-system description object
  31 * @idx: buffer in which to place new index node
  32 * @znode: znode from which to make new index node
  33 * @lnum: LEB number where new index node will be written
  34 * @offs: offset where new index node will be written
  35 * @len: length of new index node
  36 */
  37static int make_idx_node(struct ubifs_info *c, struct ubifs_idx_node *idx,
  38                         struct ubifs_znode *znode, int lnum, int offs, int len)
  39{
  40        struct ubifs_znode *zp;
  41        u8 hash[UBIFS_HASH_ARR_SZ];
  42        int i, err;
  43
  44        /* Make index node */
  45        idx->ch.node_type = UBIFS_IDX_NODE;
  46        idx->child_cnt = cpu_to_le16(znode->child_cnt);
  47        idx->level = cpu_to_le16(znode->level);
  48        for (i = 0; i < znode->child_cnt; i++) {
  49                struct ubifs_branch *br = ubifs_idx_branch(c, idx, i);
  50                struct ubifs_zbranch *zbr = &znode->zbranch[i];
  51
  52                key_write_idx(c, &zbr->key, &br->key);
  53                br->lnum = cpu_to_le32(zbr->lnum);
  54                br->offs = cpu_to_le32(zbr->offs);
  55                br->len = cpu_to_le32(zbr->len);
  56                ubifs_copy_hash(c, zbr->hash, ubifs_branch_hash(c, br));
  57                if (!zbr->lnum || !zbr->len) {
  58                        ubifs_err(c, "bad ref in znode");
  59                        ubifs_dump_znode(c, znode);
  60                        if (zbr->znode)
  61                                ubifs_dump_znode(c, zbr->znode);
  62
  63                        return -EINVAL;
  64                }
  65        }
  66        ubifs_prepare_node(c, idx, len, 0);
  67        ubifs_node_calc_hash(c, idx, hash);
  68
  69        znode->lnum = lnum;
  70        znode->offs = offs;
  71        znode->len = len;
  72
  73        err = insert_old_idx_znode(c, znode);
  74
  75        /* Update the parent */
  76        zp = znode->parent;
  77        if (zp) {
  78                struct ubifs_zbranch *zbr;
  79
  80                zbr = &zp->zbranch[znode->iip];
  81                zbr->lnum = lnum;
  82                zbr->offs = offs;
  83                zbr->len = len;
  84                ubifs_copy_hash(c, hash, zbr->hash);
  85        } else {
  86                c->zroot.lnum = lnum;
  87                c->zroot.offs = offs;
  88                c->zroot.len = len;
  89                ubifs_copy_hash(c, hash, c->zroot.hash);
  90        }
  91        c->calc_idx_sz += ALIGN(len, 8);
  92
  93        atomic_long_dec(&c->dirty_zn_cnt);
  94
  95        ubifs_assert(c, ubifs_zn_dirty(znode));
  96        ubifs_assert(c, ubifs_zn_cow(znode));
  97
  98        /*
  99         * Note, unlike 'write_index()' we do not add memory barriers here
 100         * because this function is called with @c->tnc_mutex locked.
 101         */
 102        __clear_bit(DIRTY_ZNODE, &znode->flags);
 103        __clear_bit(COW_ZNODE, &znode->flags);
 104
 105        return err;
 106}
 107
 108/**
 109 * fill_gap - make index nodes in gaps in dirty index LEBs.
 110 * @c: UBIFS file-system description object
 111 * @lnum: LEB number that gap appears in
 112 * @gap_start: offset of start of gap
 113 * @gap_end: offset of end of gap
 114 * @dirt: adds dirty space to this
 115 *
 116 * This function returns the number of index nodes written into the gap.
 117 */
 118static int fill_gap(struct ubifs_info *c, int lnum, int gap_start, int gap_end,
 119                    int *dirt)
 120{
 121        int len, gap_remains, gap_pos, written, pad_len;
 122
 123        ubifs_assert(c, (gap_start & 7) == 0);
 124        ubifs_assert(c, (gap_end & 7) == 0);
 125        ubifs_assert(c, gap_end >= gap_start);
 126
 127        gap_remains = gap_end - gap_start;
 128        if (!gap_remains)
 129                return 0;
 130        gap_pos = gap_start;
 131        written = 0;
 132        while (c->enext) {
 133                len = ubifs_idx_node_sz(c, c->enext->child_cnt);
 134                if (len < gap_remains) {
 135                        struct ubifs_znode *znode = c->enext;
 136                        const int alen = ALIGN(len, 8);
 137                        int err;
 138
 139                        ubifs_assert(c, alen <= gap_remains);
 140                        err = make_idx_node(c, c->ileb_buf + gap_pos, znode,
 141                                            lnum, gap_pos, len);
 142                        if (err)
 143                                return err;
 144                        gap_remains -= alen;
 145                        gap_pos += alen;
 146                        c->enext = znode->cnext;
 147                        if (c->enext == c->cnext)
 148                                c->enext = NULL;
 149                        written += 1;
 150                } else
 151                        break;
 152        }
 153        if (gap_end == c->leb_size) {
 154                c->ileb_len = ALIGN(gap_pos, c->min_io_size);
 155                /* Pad to end of min_io_size */
 156                pad_len = c->ileb_len - gap_pos;
 157        } else
 158                /* Pad to end of gap */
 159                pad_len = gap_remains;
 160        dbg_gc("LEB %d:%d to %d len %d nodes written %d wasted bytes %d",
 161               lnum, gap_start, gap_end, gap_end - gap_start, written, pad_len);
 162        ubifs_pad(c, c->ileb_buf + gap_pos, pad_len);
 163        *dirt += pad_len;
 164        return written;
 165}
 166
 167/**
 168 * find_old_idx - find an index node obsoleted since the last commit start.
 169 * @c: UBIFS file-system description object
 170 * @lnum: LEB number of obsoleted index node
 171 * @offs: offset of obsoleted index node
 172 *
 173 * Returns %1 if found and %0 otherwise.
 174 */
 175static int find_old_idx(struct ubifs_info *c, int lnum, int offs)
 176{
 177        struct ubifs_old_idx *o;
 178        struct rb_node *p;
 179
 180        p = c->old_idx.rb_node;
 181        while (p) {
 182                o = rb_entry(p, struct ubifs_old_idx, rb);
 183                if (lnum < o->lnum)
 184                        p = p->rb_left;
 185                else if (lnum > o->lnum)
 186                        p = p->rb_right;
 187                else if (offs < o->offs)
 188                        p = p->rb_left;
 189                else if (offs > o->offs)
 190                        p = p->rb_right;
 191                else
 192                        return 1;
 193        }
 194        return 0;
 195}
 196
 197/**
 198 * is_idx_node_in_use - determine if an index node can be overwritten.
 199 * @c: UBIFS file-system description object
 200 * @key: key of index node
 201 * @level: index node level
 202 * @lnum: LEB number of index node
 203 * @offs: offset of index node
 204 *
 205 * If @key / @lnum / @offs identify an index node that was not part of the old
 206 * index, then this function returns %0 (obsolete).  Else if the index node was
 207 * part of the old index but is now dirty %1 is returned, else if it is clean %2
 208 * is returned. A negative error code is returned on failure.
 209 */
 210static int is_idx_node_in_use(struct ubifs_info *c, union ubifs_key *key,
 211                              int level, int lnum, int offs)
 212{
 213        int ret;
 214
 215        ret = is_idx_node_in_tnc(c, key, level, lnum, offs);
 216        if (ret < 0)
 217                return ret; /* Error code */
 218        if (ret == 0)
 219                if (find_old_idx(c, lnum, offs))
 220                        return 1;
 221        return ret;
 222}
 223
 224/**
 225 * layout_leb_in_gaps - layout index nodes using in-the-gaps method.
 226 * @c: UBIFS file-system description object
 227 * @p: return LEB number here
 228 *
 229 * This function lays out new index nodes for dirty znodes using in-the-gaps
 230 * method of TNC commit.
 231 * This function merely puts the next znode into the next gap, making no attempt
 232 * to try to maximise the number of znodes that fit.
 233 * This function returns the number of index nodes written into the gaps, or a
 234 * negative error code on failure.
 235 */
 236static int layout_leb_in_gaps(struct ubifs_info *c, int *p)
 237{
 238        struct ubifs_scan_leb *sleb;
 239        struct ubifs_scan_node *snod;
 240        int lnum, dirt = 0, gap_start, gap_end, err, written, tot_written;
 241
 242        tot_written = 0;
 243        /* Get an index LEB with lots of obsolete index nodes */
 244        lnum = ubifs_find_dirty_idx_leb(c);
 245        if (lnum < 0)
 246                /*
 247                 * There also may be dirt in the index head that could be
 248                 * filled, however we do not check there at present.
 249                 */
 250                return lnum; /* Error code */
 251        *p = lnum;
 252        dbg_gc("LEB %d", lnum);
 253        /*
 254         * Scan the index LEB.  We use the generic scan for this even though
 255         * it is more comprehensive and less efficient than is needed for this
 256         * purpose.
 257         */
 258        sleb = ubifs_scan(c, lnum, 0, c->ileb_buf, 0);
 259        c->ileb_len = 0;
 260        if (IS_ERR(sleb))
 261                return PTR_ERR(sleb);
 262        gap_start = 0;
 263        list_for_each_entry(snod, &sleb->nodes, list) {
 264                struct ubifs_idx_node *idx;
 265                int in_use, level;
 266
 267                ubifs_assert(c, snod->type == UBIFS_IDX_NODE);
 268                idx = snod->node;
 269                key_read(c, ubifs_idx_key(c, idx), &snod->key);
 270                level = le16_to_cpu(idx->level);
 271                /* Determine if the index node is in use (not obsolete) */
 272                in_use = is_idx_node_in_use(c, &snod->key, level, lnum,
 273                                            snod->offs);
 274                if (in_use < 0) {
 275                        ubifs_scan_destroy(sleb);
 276                        return in_use; /* Error code */
 277                }
 278                if (in_use) {
 279                        if (in_use == 1)
 280                                dirt += ALIGN(snod->len, 8);
 281                        /*
 282                         * The obsolete index nodes form gaps that can be
 283                         * overwritten.  This gap has ended because we have
 284                         * found an index node that is still in use
 285                         * i.e. not obsolete
 286                         */
 287                        gap_end = snod->offs;
 288                        /* Try to fill gap */
 289                        written = fill_gap(c, lnum, gap_start, gap_end, &dirt);
 290                        if (written < 0) {
 291                                ubifs_scan_destroy(sleb);
 292                                return written; /* Error code */
 293                        }
 294                        tot_written += written;
 295                        gap_start = ALIGN(snod->offs + snod->len, 8);
 296                }
 297        }
 298        ubifs_scan_destroy(sleb);
 299        c->ileb_len = c->leb_size;
 300        gap_end = c->leb_size;
 301        /* Try to fill gap */
 302        written = fill_gap(c, lnum, gap_start, gap_end, &dirt);
 303        if (written < 0)
 304                return written; /* Error code */
 305        tot_written += written;
 306        if (tot_written == 0) {
 307                struct ubifs_lprops lp;
 308
 309                dbg_gc("LEB %d wrote %d index nodes", lnum, tot_written);
 310                err = ubifs_read_one_lp(c, lnum, &lp);
 311                if (err)
 312                        return err;
 313                if (lp.free == c->leb_size) {
 314                        /*
 315                         * We must have snatched this LEB from the idx_gc list
 316                         * so we need to correct the free and dirty space.
 317                         */
 318                        err = ubifs_change_one_lp(c, lnum,
 319                                                  c->leb_size - c->ileb_len,
 320                                                  dirt, 0, 0, 0);
 321                        if (err)
 322                                return err;
 323                }
 324                return 0;
 325        }
 326        err = ubifs_change_one_lp(c, lnum, c->leb_size - c->ileb_len, dirt,
 327                                  0, 0, 0);
 328        if (err)
 329                return err;
 330        err = ubifs_leb_change(c, lnum, c->ileb_buf, c->ileb_len);
 331        if (err)
 332                return err;
 333        dbg_gc("LEB %d wrote %d index nodes", lnum, tot_written);
 334        return tot_written;
 335}
 336
 337/**
 338 * get_leb_cnt - calculate the number of empty LEBs needed to commit.
 339 * @c: UBIFS file-system description object
 340 * @cnt: number of znodes to commit
 341 *
 342 * This function returns the number of empty LEBs needed to commit @cnt znodes
 343 * to the current index head.  The number is not exact and may be more than
 344 * needed.
 345 */
 346static int get_leb_cnt(struct ubifs_info *c, int cnt)
 347{
 348        int d;
 349
 350        /* Assume maximum index node size (i.e. overestimate space needed) */
 351        cnt -= (c->leb_size - c->ihead_offs) / c->max_idx_node_sz;
 352        if (cnt < 0)
 353                cnt = 0;
 354        d = c->leb_size / c->max_idx_node_sz;
 355        return DIV_ROUND_UP(cnt, d);
 356}
 357
 358/**
 359 * layout_in_gaps - in-the-gaps method of committing TNC.
 360 * @c: UBIFS file-system description object
 361 * @cnt: number of dirty znodes to commit.
 362 *
 363 * This function lays out new index nodes for dirty znodes using in-the-gaps
 364 * method of TNC commit.
 365 *
 366 * This function returns %0 on success and a negative error code on failure.
 367 */
 368static int layout_in_gaps(struct ubifs_info *c, int cnt)
 369{
 370        int err, leb_needed_cnt, written, *p;
 371
 372        dbg_gc("%d znodes to write", cnt);
 373
 374        c->gap_lebs = kmalloc_array(c->lst.idx_lebs + 1, sizeof(int),
 375                                    GFP_NOFS);
 376        if (!c->gap_lebs)
 377                return -ENOMEM;
 378
 379        p = c->gap_lebs;
 380        do {
 381                ubifs_assert(c, p < c->gap_lebs + c->lst.idx_lebs);
 382                written = layout_leb_in_gaps(c, p);
 383                if (written < 0) {
 384                        err = written;
 385                        if (err != -ENOSPC) {
 386                                kfree(c->gap_lebs);
 387                                c->gap_lebs = NULL;
 388                                return err;
 389                        }
 390                        if (!dbg_is_chk_index(c)) {
 391                                /*
 392                                 * Do not print scary warnings if the debugging
 393                                 * option which forces in-the-gaps is enabled.
 394                                 */
 395                                ubifs_warn(c, "out of space");
 396                                ubifs_dump_budg(c, &c->bi);
 397                                ubifs_dump_lprops(c);
 398                        }
 399                        /* Try to commit anyway */
 400                        break;
 401                }
 402                p++;
 403                cnt -= written;
 404                leb_needed_cnt = get_leb_cnt(c, cnt);
 405                dbg_gc("%d znodes remaining, need %d LEBs, have %d", cnt,
 406                       leb_needed_cnt, c->ileb_cnt);
 407        } while (leb_needed_cnt > c->ileb_cnt);
 408
 409        *p = -1;
 410        return 0;
 411}
 412
 413/**
 414 * layout_in_empty_space - layout index nodes in empty space.
 415 * @c: UBIFS file-system description object
 416 *
 417 * This function lays out new index nodes for dirty znodes using empty LEBs.
 418 *
 419 * This function returns %0 on success and a negative error code on failure.
 420 */
 421static int layout_in_empty_space(struct ubifs_info *c)
 422{
 423        struct ubifs_znode *znode, *cnext, *zp;
 424        int lnum, offs, len, next_len, buf_len, buf_offs, used, avail;
 425        int wlen, blen, err;
 426
 427        cnext = c->enext;
 428        if (!cnext)
 429                return 0;
 430
 431        lnum = c->ihead_lnum;
 432        buf_offs = c->ihead_offs;
 433
 434        buf_len = ubifs_idx_node_sz(c, c->fanout);
 435        buf_len = ALIGN(buf_len, c->min_io_size);
 436        used = 0;
 437        avail = buf_len;
 438
 439        /* Ensure there is enough room for first write */
 440        next_len = ubifs_idx_node_sz(c, cnext->child_cnt);
 441        if (buf_offs + next_len > c->leb_size)
 442                lnum = -1;
 443
 444        while (1) {
 445                znode = cnext;
 446
 447                len = ubifs_idx_node_sz(c, znode->child_cnt);
 448
 449                /* Determine the index node position */
 450                if (lnum == -1) {
 451                        if (c->ileb_nxt >= c->ileb_cnt) {
 452                                ubifs_err(c, "out of space");
 453                                return -ENOSPC;
 454                        }
 455                        lnum = c->ilebs[c->ileb_nxt++];
 456                        buf_offs = 0;
 457                        used = 0;
 458                        avail = buf_len;
 459                }
 460
 461                offs = buf_offs + used;
 462
 463                znode->lnum = lnum;
 464                znode->offs = offs;
 465                znode->len = len;
 466
 467                /* Update the parent */
 468                zp = znode->parent;
 469                if (zp) {
 470                        struct ubifs_zbranch *zbr;
 471                        int i;
 472
 473                        i = znode->iip;
 474                        zbr = &zp->zbranch[i];
 475                        zbr->lnum = lnum;
 476                        zbr->offs = offs;
 477                        zbr->len = len;
 478                } else {
 479                        c->zroot.lnum = lnum;
 480                        c->zroot.offs = offs;
 481                        c->zroot.len = len;
 482                }
 483                c->calc_idx_sz += ALIGN(len, 8);
 484
 485                /*
 486                 * Once lprops is updated, we can decrease the dirty znode count
 487                 * but it is easier to just do it here.
 488                 */
 489                atomic_long_dec(&c->dirty_zn_cnt);
 490
 491                /*
 492                 * Calculate the next index node length to see if there is
 493                 * enough room for it
 494                 */
 495                cnext = znode->cnext;
 496                if (cnext == c->cnext)
 497                        next_len = 0;
 498                else
 499                        next_len = ubifs_idx_node_sz(c, cnext->child_cnt);
 500
 501                /* Update buffer positions */
 502                wlen = used + len;
 503                used += ALIGN(len, 8);
 504                avail -= ALIGN(len, 8);
 505
 506                if (next_len != 0 &&
 507                    buf_offs + used + next_len <= c->leb_size &&
 508                    avail > 0)
 509                        continue;
 510
 511                if (avail <= 0 && next_len &&
 512                    buf_offs + used + next_len <= c->leb_size)
 513                        blen = buf_len;
 514                else
 515                        blen = ALIGN(wlen, c->min_io_size);
 516
 517                /* The buffer is full or there are no more znodes to do */
 518                buf_offs += blen;
 519                if (next_len) {
 520                        if (buf_offs + next_len > c->leb_size) {
 521                                err = ubifs_update_one_lp(c, lnum,
 522                                        c->leb_size - buf_offs, blen - used,
 523                                        0, 0);
 524                                if (err)
 525                                        return err;
 526                                lnum = -1;
 527                        }
 528                        used -= blen;
 529                        if (used < 0)
 530                                used = 0;
 531                        avail = buf_len - used;
 532                        continue;
 533                }
 534                err = ubifs_update_one_lp(c, lnum, c->leb_size - buf_offs,
 535                                          blen - used, 0, 0);
 536                if (err)
 537                        return err;
 538                break;
 539        }
 540
 541        c->dbg->new_ihead_lnum = lnum;
 542        c->dbg->new_ihead_offs = buf_offs;
 543
 544        return 0;
 545}
 546
 547/**
 548 * layout_commit - determine positions of index nodes to commit.
 549 * @c: UBIFS file-system description object
 550 * @no_space: indicates that insufficient empty LEBs were allocated
 551 * @cnt: number of znodes to commit
 552 *
 553 * Calculate and update the positions of index nodes to commit.  If there were
 554 * an insufficient number of empty LEBs allocated, then index nodes are placed
 555 * into the gaps created by obsolete index nodes in non-empty index LEBs.  For
 556 * this purpose, an obsolete index node is one that was not in the index as at
 557 * the end of the last commit.  To write "in-the-gaps" requires that those index
 558 * LEBs are updated atomically in-place.
 559 */
 560static int layout_commit(struct ubifs_info *c, int no_space, int cnt)
 561{
 562        int err;
 563
 564        if (no_space) {
 565                err = layout_in_gaps(c, cnt);
 566                if (err)
 567                        return err;
 568        }
 569        err = layout_in_empty_space(c);
 570        return err;
 571}
 572
 573/**
 574 * find_first_dirty - find first dirty znode.
 575 * @znode: znode to begin searching from
 576 */
 577static struct ubifs_znode *find_first_dirty(struct ubifs_znode *znode)
 578{
 579        int i, cont;
 580
 581        if (!znode)
 582                return NULL;
 583
 584        while (1) {
 585                if (znode->level == 0) {
 586                        if (ubifs_zn_dirty(znode))
 587                                return znode;
 588                        return NULL;
 589                }
 590                cont = 0;
 591                for (i = 0; i < znode->child_cnt; i++) {
 592                        struct ubifs_zbranch *zbr = &znode->zbranch[i];
 593
 594                        if (zbr->znode && ubifs_zn_dirty(zbr->znode)) {
 595                                znode = zbr->znode;
 596                                cont = 1;
 597                                break;
 598                        }
 599                }
 600                if (!cont) {
 601                        if (ubifs_zn_dirty(znode))
 602                                return znode;
 603                        return NULL;
 604                }
 605        }
 606}
 607
 608/**
 609 * find_next_dirty - find next dirty znode.
 610 * @znode: znode to begin searching from
 611 */
 612static struct ubifs_znode *find_next_dirty(struct ubifs_znode *znode)
 613{
 614        int n = znode->iip + 1;
 615
 616        znode = znode->parent;
 617        if (!znode)
 618                return NULL;
 619        for (; n < znode->child_cnt; n++) {
 620                struct ubifs_zbranch *zbr = &znode->zbranch[n];
 621
 622                if (zbr->znode && ubifs_zn_dirty(zbr->znode))
 623                        return find_first_dirty(zbr->znode);
 624        }
 625        return znode;
 626}
 627
 628/**
 629 * get_znodes_to_commit - create list of dirty znodes to commit.
 630 * @c: UBIFS file-system description object
 631 *
 632 * This function returns the number of znodes to commit.
 633 */
 634static int get_znodes_to_commit(struct ubifs_info *c)
 635{
 636        struct ubifs_znode *znode, *cnext;
 637        int cnt = 0;
 638
 639        c->cnext = find_first_dirty(c->zroot.znode);
 640        znode = c->enext = c->cnext;
 641        if (!znode) {
 642                dbg_cmt("no znodes to commit");
 643                return 0;
 644        }
 645        cnt += 1;
 646        while (1) {
 647                ubifs_assert(c, !ubifs_zn_cow(znode));
 648                __set_bit(COW_ZNODE, &znode->flags);
 649                znode->alt = 0;
 650                cnext = find_next_dirty(znode);
 651                if (!cnext) {
 652                        znode->cnext = c->cnext;
 653                        break;
 654                }
 655                znode->cparent = znode->parent;
 656                znode->ciip = znode->iip;
 657                znode->cnext = cnext;
 658                znode = cnext;
 659                cnt += 1;
 660        }
 661        dbg_cmt("committing %d znodes", cnt);
 662        ubifs_assert(c, cnt == atomic_long_read(&c->dirty_zn_cnt));
 663        return cnt;
 664}
 665
 666/**
 667 * alloc_idx_lebs - allocate empty LEBs to be used to commit.
 668 * @c: UBIFS file-system description object
 669 * @cnt: number of znodes to commit
 670 *
 671 * This function returns %-ENOSPC if it cannot allocate a sufficient number of
 672 * empty LEBs.  %0 is returned on success, otherwise a negative error code
 673 * is returned.
 674 */
 675static int alloc_idx_lebs(struct ubifs_info *c, int cnt)
 676{
 677        int i, leb_cnt, lnum;
 678
 679        c->ileb_cnt = 0;
 680        c->ileb_nxt = 0;
 681        leb_cnt = get_leb_cnt(c, cnt);
 682        dbg_cmt("need about %d empty LEBS for TNC commit", leb_cnt);
 683        if (!leb_cnt)
 684                return 0;
 685        c->ilebs = kmalloc_array(leb_cnt, sizeof(int), GFP_NOFS);
 686        if (!c->ilebs)
 687                return -ENOMEM;
 688        for (i = 0; i < leb_cnt; i++) {
 689                lnum = ubifs_find_free_leb_for_idx(c);
 690                if (lnum < 0)
 691                        return lnum;
 692                c->ilebs[c->ileb_cnt++] = lnum;
 693                dbg_cmt("LEB %d", lnum);
 694        }
 695        if (dbg_is_chk_index(c) && !(prandom_u32() & 7))
 696                return -ENOSPC;
 697        return 0;
 698}
 699
 700/**
 701 * free_unused_idx_lebs - free unused LEBs that were allocated for the commit.
 702 * @c: UBIFS file-system description object
 703 *
 704 * It is possible that we allocate more empty LEBs for the commit than we need.
 705 * This functions frees the surplus.
 706 *
 707 * This function returns %0 on success and a negative error code on failure.
 708 */
 709static int free_unused_idx_lebs(struct ubifs_info *c)
 710{
 711        int i, err = 0, lnum, er;
 712
 713        for (i = c->ileb_nxt; i < c->ileb_cnt; i++) {
 714                lnum = c->ilebs[i];
 715                dbg_cmt("LEB %d", lnum);
 716                er = ubifs_change_one_lp(c, lnum, LPROPS_NC, LPROPS_NC, 0,
 717                                         LPROPS_INDEX | LPROPS_TAKEN, 0);
 718                if (!err)
 719                        err = er;
 720        }
 721        return err;
 722}
 723
 724/**
 725 * free_idx_lebs - free unused LEBs after commit end.
 726 * @c: UBIFS file-system description object
 727 *
 728 * This function returns %0 on success and a negative error code on failure.
 729 */
 730static int free_idx_lebs(struct ubifs_info *c)
 731{
 732        int err;
 733
 734        err = free_unused_idx_lebs(c);
 735        kfree(c->ilebs);
 736        c->ilebs = NULL;
 737        return err;
 738}
 739
 740/**
 741 * ubifs_tnc_start_commit - start TNC commit.
 742 * @c: UBIFS file-system description object
 743 * @zroot: new index root position is returned here
 744 *
 745 * This function prepares the list of indexing nodes to commit and lays out
 746 * their positions on flash. If there is not enough free space it uses the
 747 * in-gap commit method. Returns zero in case of success and a negative error
 748 * code in case of failure.
 749 */
 750int ubifs_tnc_start_commit(struct ubifs_info *c, struct ubifs_zbranch *zroot)
 751{
 752        int err = 0, cnt;
 753
 754        mutex_lock(&c->tnc_mutex);
 755        err = dbg_check_tnc(c, 1);
 756        if (err)
 757                goto out;
 758        cnt = get_znodes_to_commit(c);
 759        if (cnt != 0) {
 760                int no_space = 0;
 761
 762                err = alloc_idx_lebs(c, cnt);
 763                if (err == -ENOSPC)
 764                        no_space = 1;
 765                else if (err)
 766                        goto out_free;
 767                err = layout_commit(c, no_space, cnt);
 768                if (err)
 769                        goto out_free;
 770                ubifs_assert(c, atomic_long_read(&c->dirty_zn_cnt) == 0);
 771                err = free_unused_idx_lebs(c);
 772                if (err)
 773                        goto out;
 774        }
 775        destroy_old_idx(c);
 776        memcpy(zroot, &c->zroot, sizeof(struct ubifs_zbranch));
 777
 778        err = ubifs_save_dirty_idx_lnums(c);
 779        if (err)
 780                goto out;
 781
 782        spin_lock(&c->space_lock);
 783        /*
 784         * Although we have not finished committing yet, update size of the
 785         * committed index ('c->bi.old_idx_sz') and zero out the index growth
 786         * budget. It is OK to do this now, because we've reserved all the
 787         * space which is needed to commit the index, and it is save for the
 788         * budgeting subsystem to assume the index is already committed,
 789         * even though it is not.
 790         */
 791        ubifs_assert(c, c->bi.min_idx_lebs == ubifs_calc_min_idx_lebs(c));
 792        c->bi.old_idx_sz = c->calc_idx_sz;
 793        c->bi.uncommitted_idx = 0;
 794        c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
 795        spin_unlock(&c->space_lock);
 796        mutex_unlock(&c->tnc_mutex);
 797
 798        dbg_cmt("number of index LEBs %d", c->lst.idx_lebs);
 799        dbg_cmt("size of index %llu", c->calc_idx_sz);
 800        return err;
 801
 802out_free:
 803        free_idx_lebs(c);
 804out:
 805        mutex_unlock(&c->tnc_mutex);
 806        return err;
 807}
 808
 809/**
 810 * write_index - write index nodes.
 811 * @c: UBIFS file-system description object
 812 *
 813 * This function writes the index nodes whose positions were laid out in the
 814 * layout_in_empty_space function.
 815 */
 816static int write_index(struct ubifs_info *c)
 817{
 818        struct ubifs_idx_node *idx;
 819        struct ubifs_znode *znode, *cnext;
 820        int i, lnum, offs, len, next_len, buf_len, buf_offs, used;
 821        int avail, wlen, err, lnum_pos = 0, blen, nxt_offs;
 822
 823        cnext = c->enext;
 824        if (!cnext)
 825                return 0;
 826
 827        /*
 828         * Always write index nodes to the index head so that index nodes and
 829         * other types of nodes are never mixed in the same erase block.
 830         */
 831        lnum = c->ihead_lnum;
 832        buf_offs = c->ihead_offs;
 833
 834        /* Allocate commit buffer */
 835        buf_len = ALIGN(c->max_idx_node_sz, c->min_io_size);
 836        used = 0;
 837        avail = buf_len;
 838
 839        /* Ensure there is enough room for first write */
 840        next_len = ubifs_idx_node_sz(c, cnext->child_cnt);
 841        if (buf_offs + next_len > c->leb_size) {
 842                err = ubifs_update_one_lp(c, lnum, LPROPS_NC, 0, 0,
 843                                          LPROPS_TAKEN);
 844                if (err)
 845                        return err;
 846                lnum = -1;
 847        }
 848
 849        while (1) {
 850                u8 hash[UBIFS_HASH_ARR_SZ];
 851
 852                cond_resched();
 853
 854                znode = cnext;
 855                idx = c->cbuf + used;
 856
 857                /* Make index node */
 858                idx->ch.node_type = UBIFS_IDX_NODE;
 859                idx->child_cnt = cpu_to_le16(znode->child_cnt);
 860                idx->level = cpu_to_le16(znode->level);
 861                for (i = 0; i < znode->child_cnt; i++) {
 862                        struct ubifs_branch *br = ubifs_idx_branch(c, idx, i);
 863                        struct ubifs_zbranch *zbr = &znode->zbranch[i];
 864
 865                        key_write_idx(c, &zbr->key, &br->key);
 866                        br->lnum = cpu_to_le32(zbr->lnum);
 867                        br->offs = cpu_to_le32(zbr->offs);
 868                        br->len = cpu_to_le32(zbr->len);
 869                        ubifs_copy_hash(c, zbr->hash, ubifs_branch_hash(c, br));
 870                        if (!zbr->lnum || !zbr->len) {
 871                                ubifs_err(c, "bad ref in znode");
 872                                ubifs_dump_znode(c, znode);
 873                                if (zbr->znode)
 874                                        ubifs_dump_znode(c, zbr->znode);
 875
 876                                return -EINVAL;
 877                        }
 878                }
 879                len = ubifs_idx_node_sz(c, znode->child_cnt);
 880                ubifs_prepare_node(c, idx, len, 0);
 881                ubifs_node_calc_hash(c, idx, hash);
 882
 883                mutex_lock(&c->tnc_mutex);
 884
 885                if (znode->cparent)
 886                        ubifs_copy_hash(c, hash,
 887                                        znode->cparent->zbranch[znode->ciip].hash);
 888
 889                if (znode->parent) {
 890                        if (!ubifs_zn_obsolete(znode))
 891                                ubifs_copy_hash(c, hash,
 892                                        znode->parent->zbranch[znode->iip].hash);
 893                } else {
 894                        ubifs_copy_hash(c, hash, c->zroot.hash);
 895                }
 896
 897                mutex_unlock(&c->tnc_mutex);
 898
 899                /* Determine the index node position */
 900                if (lnum == -1) {
 901                        lnum = c->ilebs[lnum_pos++];
 902                        buf_offs = 0;
 903                        used = 0;
 904                        avail = buf_len;
 905                }
 906                offs = buf_offs + used;
 907
 908                if (lnum != znode->lnum || offs != znode->offs ||
 909                    len != znode->len) {
 910                        ubifs_err(c, "inconsistent znode posn");
 911                        return -EINVAL;
 912                }
 913
 914                /* Grab some stuff from znode while we still can */
 915                cnext = znode->cnext;
 916
 917                ubifs_assert(c, ubifs_zn_dirty(znode));
 918                ubifs_assert(c, ubifs_zn_cow(znode));
 919
 920                /*
 921                 * It is important that other threads should see %DIRTY_ZNODE
 922                 * flag cleared before %COW_ZNODE. Specifically, it matters in
 923                 * the 'dirty_cow_znode()' function. This is the reason for the
 924                 * first barrier. Also, we want the bit changes to be seen to
 925                 * other threads ASAP, to avoid unnecesarry copying, which is
 926                 * the reason for the second barrier.
 927                 */
 928                clear_bit(DIRTY_ZNODE, &znode->flags);
 929                smp_mb__before_atomic();
 930                clear_bit(COW_ZNODE, &znode->flags);
 931                smp_mb__after_atomic();
 932
 933                /*
 934                 * We have marked the znode as clean but have not updated the
 935                 * @c->clean_zn_cnt counter. If this znode becomes dirty again
 936                 * before 'free_obsolete_znodes()' is called, then
 937                 * @c->clean_zn_cnt will be decremented before it gets
 938                 * incremented (resulting in 2 decrements for the same znode).
 939                 * This means that @c->clean_zn_cnt may become negative for a
 940                 * while.
 941                 *
 942                 * Q: why we cannot increment @c->clean_zn_cnt?
 943                 * A: because we do not have the @c->tnc_mutex locked, and the
 944                 *    following code would be racy and buggy:
 945                 *
 946                 *    if (!ubifs_zn_obsolete(znode)) {
 947                 *            atomic_long_inc(&c->clean_zn_cnt);
 948                 *            atomic_long_inc(&ubifs_clean_zn_cnt);
 949                 *    }
 950                 *
 951                 *    Thus, we just delay the @c->clean_zn_cnt update until we
 952                 *    have the mutex locked.
 953                 */
 954
 955                /* Do not access znode from this point on */
 956
 957                /* Update buffer positions */
 958                wlen = used + len;
 959                used += ALIGN(len, 8);
 960                avail -= ALIGN(len, 8);
 961
 962                /*
 963                 * Calculate the next index node length to see if there is
 964                 * enough room for it
 965                 */
 966                if (cnext == c->cnext)
 967                        next_len = 0;
 968                else
 969                        next_len = ubifs_idx_node_sz(c, cnext->child_cnt);
 970
 971                nxt_offs = buf_offs + used + next_len;
 972                if (next_len && nxt_offs <= c->leb_size) {
 973                        if (avail > 0)
 974                                continue;
 975                        else
 976                                blen = buf_len;
 977                } else {
 978                        wlen = ALIGN(wlen, 8);
 979                        blen = ALIGN(wlen, c->min_io_size);
 980                        ubifs_pad(c, c->cbuf + wlen, blen - wlen);
 981                }
 982
 983                /* The buffer is full or there are no more znodes to do */
 984                err = ubifs_leb_write(c, lnum, c->cbuf, buf_offs, blen);
 985                if (err)
 986                        return err;
 987                buf_offs += blen;
 988                if (next_len) {
 989                        if (nxt_offs > c->leb_size) {
 990                                err = ubifs_update_one_lp(c, lnum, LPROPS_NC, 0,
 991                                                          0, LPROPS_TAKEN);
 992                                if (err)
 993                                        return err;
 994                                lnum = -1;
 995                        }
 996                        used -= blen;
 997                        if (used < 0)
 998                                used = 0;
 999                        avail = buf_len - used;
1000                        memmove(c->cbuf, c->cbuf + blen, used);
1001                        continue;
1002                }
1003                break;
1004        }
1005
1006        if (lnum != c->dbg->new_ihead_lnum ||
1007            buf_offs != c->dbg->new_ihead_offs) {
1008                ubifs_err(c, "inconsistent ihead");
1009                return -EINVAL;
1010        }
1011
1012        c->ihead_lnum = lnum;
1013        c->ihead_offs = buf_offs;
1014
1015        return 0;
1016}
1017
1018/**
1019 * free_obsolete_znodes - free obsolete znodes.
1020 * @c: UBIFS file-system description object
1021 *
1022 * At the end of commit end, obsolete znodes are freed.
1023 */
1024static void free_obsolete_znodes(struct ubifs_info *c)
1025{
1026        struct ubifs_znode *znode, *cnext;
1027
1028        cnext = c->cnext;
1029        do {
1030                znode = cnext;
1031                cnext = znode->cnext;
1032                if (ubifs_zn_obsolete(znode))
1033                        kfree(znode);
1034                else {
1035                        znode->cnext = NULL;
1036                        atomic_long_inc(&c->clean_zn_cnt);
1037                        atomic_long_inc(&ubifs_clean_zn_cnt);
1038                }
1039        } while (cnext != c->cnext);
1040}
1041
1042/**
1043 * return_gap_lebs - return LEBs used by the in-gap commit method.
1044 * @c: UBIFS file-system description object
1045 *
1046 * This function clears the "taken" flag for the LEBs which were used by the
1047 * "commit in-the-gaps" method.
1048 */
1049static int return_gap_lebs(struct ubifs_info *c)
1050{
1051        int *p, err;
1052
1053        if (!c->gap_lebs)
1054                return 0;
1055
1056        dbg_cmt("");
1057        for (p = c->gap_lebs; *p != -1; p++) {
1058                err = ubifs_change_one_lp(c, *p, LPROPS_NC, LPROPS_NC, 0,
1059                                          LPROPS_TAKEN, 0);
1060                if (err)
1061                        return err;
1062        }
1063
1064        kfree(c->gap_lebs);
1065        c->gap_lebs = NULL;
1066        return 0;
1067}
1068
1069/**
1070 * ubifs_tnc_end_commit - update the TNC for commit end.
1071 * @c: UBIFS file-system description object
1072 *
1073 * Write the dirty znodes.
1074 */
1075int ubifs_tnc_end_commit(struct ubifs_info *c)
1076{
1077        int err;
1078
1079        if (!c->cnext)
1080                return 0;
1081
1082        err = return_gap_lebs(c);
1083        if (err)
1084                return err;
1085
1086        err = write_index(c);
1087        if (err)
1088                return err;
1089
1090        mutex_lock(&c->tnc_mutex);
1091
1092        dbg_cmt("TNC height is %d", c->zroot.znode->level + 1);
1093
1094        free_obsolete_znodes(c);
1095
1096        c->cnext = NULL;
1097        kfree(c->ilebs);
1098        c->ilebs = NULL;
1099
1100        mutex_unlock(&c->tnc_mutex);
1101
1102        return 0;
1103}
1104