linux/fs/xfs/libxfs/xfs_ialloc.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
   4 * All Rights Reserved.
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_shared.h"
   9#include "xfs_format.h"
  10#include "xfs_log_format.h"
  11#include "xfs_trans_resv.h"
  12#include "xfs_bit.h"
  13#include "xfs_sb.h"
  14#include "xfs_mount.h"
  15#include "xfs_defer.h"
  16#include "xfs_inode.h"
  17#include "xfs_btree.h"
  18#include "xfs_ialloc.h"
  19#include "xfs_ialloc_btree.h"
  20#include "xfs_alloc.h"
  21#include "xfs_rtalloc.h"
  22#include "xfs_errortag.h"
  23#include "xfs_error.h"
  24#include "xfs_bmap.h"
  25#include "xfs_cksum.h"
  26#include "xfs_trans.h"
  27#include "xfs_buf_item.h"
  28#include "xfs_icreate_item.h"
  29#include "xfs_icache.h"
  30#include "xfs_trace.h"
  31#include "xfs_log.h"
  32#include "xfs_rmap.h"
  33
  34
  35/*
  36 * Allocation group level functions.
  37 */
  38int
  39xfs_ialloc_cluster_alignment(
  40        struct xfs_mount        *mp)
  41{
  42        if (xfs_sb_version_hasalign(&mp->m_sb) &&
  43            mp->m_sb.sb_inoalignmt >= xfs_icluster_size_fsb(mp))
  44                return mp->m_sb.sb_inoalignmt;
  45        return 1;
  46}
  47
  48/*
  49 * Lookup a record by ino in the btree given by cur.
  50 */
  51int                                     /* error */
  52xfs_inobt_lookup(
  53        struct xfs_btree_cur    *cur,   /* btree cursor */
  54        xfs_agino_t             ino,    /* starting inode of chunk */
  55        xfs_lookup_t            dir,    /* <=, >=, == */
  56        int                     *stat)  /* success/failure */
  57{
  58        cur->bc_rec.i.ir_startino = ino;
  59        cur->bc_rec.i.ir_holemask = 0;
  60        cur->bc_rec.i.ir_count = 0;
  61        cur->bc_rec.i.ir_freecount = 0;
  62        cur->bc_rec.i.ir_free = 0;
  63        return xfs_btree_lookup(cur, dir, stat);
  64}
  65
  66/*
  67 * Update the record referred to by cur to the value given.
  68 * This either works (return 0) or gets an EFSCORRUPTED error.
  69 */
  70STATIC int                              /* error */
  71xfs_inobt_update(
  72        struct xfs_btree_cur    *cur,   /* btree cursor */
  73        xfs_inobt_rec_incore_t  *irec)  /* btree record */
  74{
  75        union xfs_btree_rec     rec;
  76
  77        rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino);
  78        if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) {
  79                rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask);
  80                rec.inobt.ir_u.sp.ir_count = irec->ir_count;
  81                rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount;
  82        } else {
  83                /* ir_holemask/ir_count not supported on-disk */
  84                rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount);
  85        }
  86        rec.inobt.ir_free = cpu_to_be64(irec->ir_free);
  87        return xfs_btree_update(cur, &rec);
  88}
  89
  90/* Convert on-disk btree record to incore inobt record. */
  91void
  92xfs_inobt_btrec_to_irec(
  93        struct xfs_mount                *mp,
  94        union xfs_btree_rec             *rec,
  95        struct xfs_inobt_rec_incore     *irec)
  96{
  97        irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino);
  98        if (xfs_sb_version_hassparseinodes(&mp->m_sb)) {
  99                irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask);
 100                irec->ir_count = rec->inobt.ir_u.sp.ir_count;
 101                irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount;
 102        } else {
 103                /*
 104                 * ir_holemask/ir_count not supported on-disk. Fill in hardcoded
 105                 * values for full inode chunks.
 106                 */
 107                irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL;
 108                irec->ir_count = XFS_INODES_PER_CHUNK;
 109                irec->ir_freecount =
 110                                be32_to_cpu(rec->inobt.ir_u.f.ir_freecount);
 111        }
 112        irec->ir_free = be64_to_cpu(rec->inobt.ir_free);
 113}
 114
 115/*
 116 * Get the data from the pointed-to record.
 117 */
 118int
 119xfs_inobt_get_rec(
 120        struct xfs_btree_cur            *cur,
 121        struct xfs_inobt_rec_incore     *irec,
 122        int                             *stat)
 123{
 124        struct xfs_mount                *mp = cur->bc_mp;
 125        xfs_agnumber_t                  agno = cur->bc_private.a.agno;
 126        union xfs_btree_rec             *rec;
 127        int                             error;
 128        uint64_t                        realfree;
 129
 130        error = xfs_btree_get_rec(cur, &rec, stat);
 131        if (error || *stat == 0)
 132                return error;
 133
 134        xfs_inobt_btrec_to_irec(mp, rec, irec);
 135
 136        if (!xfs_verify_agino(mp, agno, irec->ir_startino))
 137                goto out_bad_rec;
 138        if (irec->ir_count < XFS_INODES_PER_HOLEMASK_BIT ||
 139            irec->ir_count > XFS_INODES_PER_CHUNK)
 140                goto out_bad_rec;
 141        if (irec->ir_freecount > XFS_INODES_PER_CHUNK)
 142                goto out_bad_rec;
 143
 144        /* if there are no holes, return the first available offset */
 145        if (!xfs_inobt_issparse(irec->ir_holemask))
 146                realfree = irec->ir_free;
 147        else
 148                realfree = irec->ir_free & xfs_inobt_irec_to_allocmask(irec);
 149        if (hweight64(realfree) != irec->ir_freecount)
 150                goto out_bad_rec;
 151
 152        return 0;
 153
 154out_bad_rec:
 155        xfs_warn(mp,
 156                "%s Inode BTree record corruption in AG %d detected!",
 157                cur->bc_btnum == XFS_BTNUM_INO ? "Used" : "Free", agno);
 158        xfs_warn(mp,
 159"start inode 0x%x, count 0x%x, free 0x%x freemask 0x%llx, holemask 0x%x",
 160                irec->ir_startino, irec->ir_count, irec->ir_freecount,
 161                irec->ir_free, irec->ir_holemask);
 162        return -EFSCORRUPTED;
 163}
 164
 165/*
 166 * Insert a single inobt record. Cursor must already point to desired location.
 167 */
 168int
 169xfs_inobt_insert_rec(
 170        struct xfs_btree_cur    *cur,
 171        uint16_t                holemask,
 172        uint8_t                 count,
 173        int32_t                 freecount,
 174        xfs_inofree_t           free,
 175        int                     *stat)
 176{
 177        cur->bc_rec.i.ir_holemask = holemask;
 178        cur->bc_rec.i.ir_count = count;
 179        cur->bc_rec.i.ir_freecount = freecount;
 180        cur->bc_rec.i.ir_free = free;
 181        return xfs_btree_insert(cur, stat);
 182}
 183
 184/*
 185 * Insert records describing a newly allocated inode chunk into the inobt.
 186 */
 187STATIC int
 188xfs_inobt_insert(
 189        struct xfs_mount        *mp,
 190        struct xfs_trans        *tp,
 191        struct xfs_buf          *agbp,
 192        xfs_agino_t             newino,
 193        xfs_agino_t             newlen,
 194        xfs_btnum_t             btnum)
 195{
 196        struct xfs_btree_cur    *cur;
 197        struct xfs_agi          *agi = XFS_BUF_TO_AGI(agbp);
 198        xfs_agnumber_t          agno = be32_to_cpu(agi->agi_seqno);
 199        xfs_agino_t             thisino;
 200        int                     i;
 201        int                     error;
 202
 203        cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
 204
 205        for (thisino = newino;
 206             thisino < newino + newlen;
 207             thisino += XFS_INODES_PER_CHUNK) {
 208                error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i);
 209                if (error) {
 210                        xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
 211                        return error;
 212                }
 213                ASSERT(i == 0);
 214
 215                error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL,
 216                                             XFS_INODES_PER_CHUNK,
 217                                             XFS_INODES_PER_CHUNK,
 218                                             XFS_INOBT_ALL_FREE, &i);
 219                if (error) {
 220                        xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
 221                        return error;
 222                }
 223                ASSERT(i == 1);
 224        }
 225
 226        xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
 227
 228        return 0;
 229}
 230
 231/*
 232 * Verify that the number of free inodes in the AGI is correct.
 233 */
 234#ifdef DEBUG
 235STATIC int
 236xfs_check_agi_freecount(
 237        struct xfs_btree_cur    *cur,
 238        struct xfs_agi          *agi)
 239{
 240        if (cur->bc_nlevels == 1) {
 241                xfs_inobt_rec_incore_t rec;
 242                int             freecount = 0;
 243                int             error;
 244                int             i;
 245
 246                error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
 247                if (error)
 248                        return error;
 249
 250                do {
 251                        error = xfs_inobt_get_rec(cur, &rec, &i);
 252                        if (error)
 253                                return error;
 254
 255                        if (i) {
 256                                freecount += rec.ir_freecount;
 257                                error = xfs_btree_increment(cur, 0, &i);
 258                                if (error)
 259                                        return error;
 260                        }
 261                } while (i == 1);
 262
 263                if (!XFS_FORCED_SHUTDOWN(cur->bc_mp))
 264                        ASSERT(freecount == be32_to_cpu(agi->agi_freecount));
 265        }
 266        return 0;
 267}
 268#else
 269#define xfs_check_agi_freecount(cur, agi)       0
 270#endif
 271
 272/*
 273 * Initialise a new set of inodes. When called without a transaction context
 274 * (e.g. from recovery) we initiate a delayed write of the inode buffers rather
 275 * than logging them (which in a transaction context puts them into the AIL
 276 * for writeback rather than the xfsbufd queue).
 277 */
 278int
 279xfs_ialloc_inode_init(
 280        struct xfs_mount        *mp,
 281        struct xfs_trans        *tp,
 282        struct list_head        *buffer_list,
 283        int                     icount,
 284        xfs_agnumber_t          agno,
 285        xfs_agblock_t           agbno,
 286        xfs_agblock_t           length,
 287        unsigned int            gen)
 288{
 289        struct xfs_buf          *fbuf;
 290        struct xfs_dinode       *free;
 291        int                     nbufs;
 292        int                     version;
 293        int                     i, j;
 294        xfs_daddr_t             d;
 295        xfs_ino_t               ino = 0;
 296
 297        /*
 298         * Loop over the new block(s), filling in the inodes.  For small block
 299         * sizes, manipulate the inodes in buffers  which are multiples of the
 300         * blocks size.
 301         */
 302        nbufs = length / mp->m_blocks_per_cluster;
 303
 304        /*
 305         * Figure out what version number to use in the inodes we create.  If
 306         * the superblock version has caught up to the one that supports the new
 307         * inode format, then use the new inode version.  Otherwise use the old
 308         * version so that old kernels will continue to be able to use the file
 309         * system.
 310         *
 311         * For v3 inodes, we also need to write the inode number into the inode,
 312         * so calculate the first inode number of the chunk here as
 313         * XFS_AGB_TO_AGINO() only works within a filesystem block, not
 314         * across multiple filesystem blocks (such as a cluster) and so cannot
 315         * be used in the cluster buffer loop below.
 316         *
 317         * Further, because we are writing the inode directly into the buffer
 318         * and calculating a CRC on the entire inode, we have ot log the entire
 319         * inode so that the entire range the CRC covers is present in the log.
 320         * That means for v3 inode we log the entire buffer rather than just the
 321         * inode cores.
 322         */
 323        if (xfs_sb_version_hascrc(&mp->m_sb)) {
 324                version = 3;
 325                ino = XFS_AGINO_TO_INO(mp, agno, XFS_AGB_TO_AGINO(mp, agbno));
 326
 327                /*
 328                 * log the initialisation that is about to take place as an
 329                 * logical operation. This means the transaction does not
 330                 * need to log the physical changes to the inode buffers as log
 331                 * recovery will know what initialisation is actually needed.
 332                 * Hence we only need to log the buffers as "ordered" buffers so
 333                 * they track in the AIL as if they were physically logged.
 334                 */
 335                if (tp)
 336                        xfs_icreate_log(tp, agno, agbno, icount,
 337                                        mp->m_sb.sb_inodesize, length, gen);
 338        } else
 339                version = 2;
 340
 341        for (j = 0; j < nbufs; j++) {
 342                /*
 343                 * Get the block.
 344                 */
 345                d = XFS_AGB_TO_DADDR(mp, agno, agbno +
 346                                (j * mp->m_blocks_per_cluster));
 347                fbuf = xfs_trans_get_buf(tp, mp->m_ddev_targp, d,
 348                                         mp->m_bsize * mp->m_blocks_per_cluster,
 349                                         XBF_UNMAPPED);
 350                if (!fbuf)
 351                        return -ENOMEM;
 352
 353                /* Initialize the inode buffers and log them appropriately. */
 354                fbuf->b_ops = &xfs_inode_buf_ops;
 355                xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length));
 356                for (i = 0; i < mp->m_inodes_per_cluster; i++) {
 357                        int     ioffset = i << mp->m_sb.sb_inodelog;
 358                        uint    isize = xfs_dinode_size(version);
 359
 360                        free = xfs_make_iptr(mp, fbuf, i);
 361                        free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
 362                        free->di_version = version;
 363                        free->di_gen = cpu_to_be32(gen);
 364                        free->di_next_unlinked = cpu_to_be32(NULLAGINO);
 365
 366                        if (version == 3) {
 367                                free->di_ino = cpu_to_be64(ino);
 368                                ino++;
 369                                uuid_copy(&free->di_uuid,
 370                                          &mp->m_sb.sb_meta_uuid);
 371                                xfs_dinode_calc_crc(mp, free);
 372                        } else if (tp) {
 373                                /* just log the inode core */
 374                                xfs_trans_log_buf(tp, fbuf, ioffset,
 375                                                  ioffset + isize - 1);
 376                        }
 377                }
 378
 379                if (tp) {
 380                        /*
 381                         * Mark the buffer as an inode allocation buffer so it
 382                         * sticks in AIL at the point of this allocation
 383                         * transaction. This ensures the they are on disk before
 384                         * the tail of the log can be moved past this
 385                         * transaction (i.e. by preventing relogging from moving
 386                         * it forward in the log).
 387                         */
 388                        xfs_trans_inode_alloc_buf(tp, fbuf);
 389                        if (version == 3) {
 390                                /*
 391                                 * Mark the buffer as ordered so that they are
 392                                 * not physically logged in the transaction but
 393                                 * still tracked in the AIL as part of the
 394                                 * transaction and pin the log appropriately.
 395                                 */
 396                                xfs_trans_ordered_buf(tp, fbuf);
 397                        }
 398                } else {
 399                        fbuf->b_flags |= XBF_DONE;
 400                        xfs_buf_delwri_queue(fbuf, buffer_list);
 401                        xfs_buf_relse(fbuf);
 402                }
 403        }
 404        return 0;
 405}
 406
 407/*
 408 * Align startino and allocmask for a recently allocated sparse chunk such that
 409 * they are fit for insertion (or merge) into the on-disk inode btrees.
 410 *
 411 * Background:
 412 *
 413 * When enabled, sparse inode support increases the inode alignment from cluster
 414 * size to inode chunk size. This means that the minimum range between two
 415 * non-adjacent inode records in the inobt is large enough for a full inode
 416 * record. This allows for cluster sized, cluster aligned block allocation
 417 * without need to worry about whether the resulting inode record overlaps with
 418 * another record in the tree. Without this basic rule, we would have to deal
 419 * with the consequences of overlap by potentially undoing recent allocations in
 420 * the inode allocation codepath.
 421 *
 422 * Because of this alignment rule (which is enforced on mount), there are two
 423 * inobt possibilities for newly allocated sparse chunks. One is that the
 424 * aligned inode record for the chunk covers a range of inodes not already
 425 * covered in the inobt (i.e., it is safe to insert a new sparse record). The
 426 * other is that a record already exists at the aligned startino that considers
 427 * the newly allocated range as sparse. In the latter case, record content is
 428 * merged in hope that sparse inode chunks fill to full chunks over time.
 429 */
 430STATIC void
 431xfs_align_sparse_ino(
 432        struct xfs_mount                *mp,
 433        xfs_agino_t                     *startino,
 434        uint16_t                        *allocmask)
 435{
 436        xfs_agblock_t                   agbno;
 437        xfs_agblock_t                   mod;
 438        int                             offset;
 439
 440        agbno = XFS_AGINO_TO_AGBNO(mp, *startino);
 441        mod = agbno % mp->m_sb.sb_inoalignmt;
 442        if (!mod)
 443                return;
 444
 445        /* calculate the inode offset and align startino */
 446        offset = XFS_AGB_TO_AGINO(mp, mod);
 447        *startino -= offset;
 448
 449        /*
 450         * Since startino has been aligned down, left shift allocmask such that
 451         * it continues to represent the same physical inodes relative to the
 452         * new startino.
 453         */
 454        *allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT;
 455}
 456
 457/*
 458 * Determine whether the source inode record can merge into the target. Both
 459 * records must be sparse, the inode ranges must match and there must be no
 460 * allocation overlap between the records.
 461 */
 462STATIC bool
 463__xfs_inobt_can_merge(
 464        struct xfs_inobt_rec_incore     *trec,  /* tgt record */
 465        struct xfs_inobt_rec_incore     *srec)  /* src record */
 466{
 467        uint64_t                        talloc;
 468        uint64_t                        salloc;
 469
 470        /* records must cover the same inode range */
 471        if (trec->ir_startino != srec->ir_startino)
 472                return false;
 473
 474        /* both records must be sparse */
 475        if (!xfs_inobt_issparse(trec->ir_holemask) ||
 476            !xfs_inobt_issparse(srec->ir_holemask))
 477                return false;
 478
 479        /* both records must track some inodes */
 480        if (!trec->ir_count || !srec->ir_count)
 481                return false;
 482
 483        /* can't exceed capacity of a full record */
 484        if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK)
 485                return false;
 486
 487        /* verify there is no allocation overlap */
 488        talloc = xfs_inobt_irec_to_allocmask(trec);
 489        salloc = xfs_inobt_irec_to_allocmask(srec);
 490        if (talloc & salloc)
 491                return false;
 492
 493        return true;
 494}
 495
 496/*
 497 * Merge the source inode record into the target. The caller must call
 498 * __xfs_inobt_can_merge() to ensure the merge is valid.
 499 */
 500STATIC void
 501__xfs_inobt_rec_merge(
 502        struct xfs_inobt_rec_incore     *trec,  /* target */
 503        struct xfs_inobt_rec_incore     *srec)  /* src */
 504{
 505        ASSERT(trec->ir_startino == srec->ir_startino);
 506
 507        /* combine the counts */
 508        trec->ir_count += srec->ir_count;
 509        trec->ir_freecount += srec->ir_freecount;
 510
 511        /*
 512         * Merge the holemask and free mask. For both fields, 0 bits refer to
 513         * allocated inodes. We combine the allocated ranges with bitwise AND.
 514         */
 515        trec->ir_holemask &= srec->ir_holemask;
 516        trec->ir_free &= srec->ir_free;
 517}
 518
 519/*
 520 * Insert a new sparse inode chunk into the associated inode btree. The inode
 521 * record for the sparse chunk is pre-aligned to a startino that should match
 522 * any pre-existing sparse inode record in the tree. This allows sparse chunks
 523 * to fill over time.
 524 *
 525 * This function supports two modes of handling preexisting records depending on
 526 * the merge flag. If merge is true, the provided record is merged with the
 527 * existing record and updated in place. The merged record is returned in nrec.
 528 * If merge is false, an existing record is replaced with the provided record.
 529 * If no preexisting record exists, the provided record is always inserted.
 530 *
 531 * It is considered corruption if a merge is requested and not possible. Given
 532 * the sparse inode alignment constraints, this should never happen.
 533 */
 534STATIC int
 535xfs_inobt_insert_sprec(
 536        struct xfs_mount                *mp,
 537        struct xfs_trans                *tp,
 538        struct xfs_buf                  *agbp,
 539        int                             btnum,
 540        struct xfs_inobt_rec_incore     *nrec,  /* in/out: new/merged rec. */
 541        bool                            merge)  /* merge or replace */
 542{
 543        struct xfs_btree_cur            *cur;
 544        struct xfs_agi                  *agi = XFS_BUF_TO_AGI(agbp);
 545        xfs_agnumber_t                  agno = be32_to_cpu(agi->agi_seqno);
 546        int                             error;
 547        int                             i;
 548        struct xfs_inobt_rec_incore     rec;
 549
 550        cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
 551
 552        /* the new record is pre-aligned so we know where to look */
 553        error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i);
 554        if (error)
 555                goto error;
 556        /* if nothing there, insert a new record and return */
 557        if (i == 0) {
 558                error = xfs_inobt_insert_rec(cur, nrec->ir_holemask,
 559                                             nrec->ir_count, nrec->ir_freecount,
 560                                             nrec->ir_free, &i);
 561                if (error)
 562                        goto error;
 563                XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
 564
 565                goto out;
 566        }
 567
 568        /*
 569         * A record exists at this startino. Merge or replace the record
 570         * depending on what we've been asked to do.
 571         */
 572        if (merge) {
 573                error = xfs_inobt_get_rec(cur, &rec, &i);
 574                if (error)
 575                        goto error;
 576                XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
 577                XFS_WANT_CORRUPTED_GOTO(mp,
 578                                        rec.ir_startino == nrec->ir_startino,
 579                                        error);
 580
 581                /*
 582                 * This should never fail. If we have coexisting records that
 583                 * cannot merge, something is seriously wrong.
 584                 */
 585                XFS_WANT_CORRUPTED_GOTO(mp, __xfs_inobt_can_merge(nrec, &rec),
 586                                        error);
 587
 588                trace_xfs_irec_merge_pre(mp, agno, rec.ir_startino,
 589                                         rec.ir_holemask, nrec->ir_startino,
 590                                         nrec->ir_holemask);
 591
 592                /* merge to nrec to output the updated record */
 593                __xfs_inobt_rec_merge(nrec, &rec);
 594
 595                trace_xfs_irec_merge_post(mp, agno, nrec->ir_startino,
 596                                          nrec->ir_holemask);
 597
 598                error = xfs_inobt_rec_check_count(mp, nrec);
 599                if (error)
 600                        goto error;
 601        }
 602
 603        error = xfs_inobt_update(cur, nrec);
 604        if (error)
 605                goto error;
 606
 607out:
 608        xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
 609        return 0;
 610error:
 611        xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
 612        return error;
 613}
 614
 615/*
 616 * Allocate new inodes in the allocation group specified by agbp.
 617 * Return 0 for success, else error code.
 618 */
 619STATIC int                              /* error code or 0 */
 620xfs_ialloc_ag_alloc(
 621        xfs_trans_t     *tp,            /* transaction pointer */
 622        xfs_buf_t       *agbp,          /* alloc group buffer */
 623        int             *alloc)
 624{
 625        xfs_agi_t       *agi;           /* allocation group header */
 626        xfs_alloc_arg_t args;           /* allocation argument structure */
 627        xfs_agnumber_t  agno;
 628        int             error;
 629        xfs_agino_t     newino;         /* new first inode's number */
 630        xfs_agino_t     newlen;         /* new number of inodes */
 631        int             isaligned = 0;  /* inode allocation at stripe unit */
 632                                        /* boundary */
 633        uint16_t        allocmask = (uint16_t) -1; /* init. to full chunk */
 634        struct xfs_inobt_rec_incore rec;
 635        struct xfs_perag *pag;
 636        int             do_sparse = 0;
 637
 638        memset(&args, 0, sizeof(args));
 639        args.tp = tp;
 640        args.mp = tp->t_mountp;
 641        args.fsbno = NULLFSBLOCK;
 642        args.oinfo = XFS_RMAP_OINFO_INODES;
 643
 644#ifdef DEBUG
 645        /* randomly do sparse inode allocations */
 646        if (xfs_sb_version_hassparseinodes(&tp->t_mountp->m_sb) &&
 647            args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks)
 648                do_sparse = prandom_u32() & 1;
 649#endif
 650
 651        /*
 652         * Locking will ensure that we don't have two callers in here
 653         * at one time.
 654         */
 655        newlen = args.mp->m_ialloc_inos;
 656        if (args.mp->m_maxicount &&
 657            percpu_counter_read_positive(&args.mp->m_icount) + newlen >
 658                                                        args.mp->m_maxicount)
 659                return -ENOSPC;
 660        args.minlen = args.maxlen = args.mp->m_ialloc_blks;
 661        /*
 662         * First try to allocate inodes contiguous with the last-allocated
 663         * chunk of inodes.  If the filesystem is striped, this will fill
 664         * an entire stripe unit with inodes.
 665         */
 666        agi = XFS_BUF_TO_AGI(agbp);
 667        newino = be32_to_cpu(agi->agi_newino);
 668        agno = be32_to_cpu(agi->agi_seqno);
 669        args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) +
 670                     args.mp->m_ialloc_blks;
 671        if (do_sparse)
 672                goto sparse_alloc;
 673        if (likely(newino != NULLAGINO &&
 674                  (args.agbno < be32_to_cpu(agi->agi_length)))) {
 675                args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
 676                args.type = XFS_ALLOCTYPE_THIS_BNO;
 677                args.prod = 1;
 678
 679                /*
 680                 * We need to take into account alignment here to ensure that
 681                 * we don't modify the free list if we fail to have an exact
 682                 * block. If we don't have an exact match, and every oher
 683                 * attempt allocation attempt fails, we'll end up cancelling
 684                 * a dirty transaction and shutting down.
 685                 *
 686                 * For an exact allocation, alignment must be 1,
 687                 * however we need to take cluster alignment into account when
 688                 * fixing up the freelist. Use the minalignslop field to
 689                 * indicate that extra blocks might be required for alignment,
 690                 * but not to use them in the actual exact allocation.
 691                 */
 692                args.alignment = 1;
 693                args.minalignslop = args.mp->m_cluster_align - 1;
 694
 695                /* Allow space for the inode btree to split. */
 696                args.minleft = args.mp->m_in_maxlevels - 1;
 697                if ((error = xfs_alloc_vextent(&args)))
 698                        return error;
 699
 700                /*
 701                 * This request might have dirtied the transaction if the AG can
 702                 * satisfy the request, but the exact block was not available.
 703                 * If the allocation did fail, subsequent requests will relax
 704                 * the exact agbno requirement and increase the alignment
 705                 * instead. It is critical that the total size of the request
 706                 * (len + alignment + slop) does not increase from this point
 707                 * on, so reset minalignslop to ensure it is not included in
 708                 * subsequent requests.
 709                 */
 710                args.minalignslop = 0;
 711        }
 712
 713        if (unlikely(args.fsbno == NULLFSBLOCK)) {
 714                /*
 715                 * Set the alignment for the allocation.
 716                 * If stripe alignment is turned on then align at stripe unit
 717                 * boundary.
 718                 * If the cluster size is smaller than a filesystem block
 719                 * then we're doing I/O for inodes in filesystem block size
 720                 * pieces, so don't need alignment anyway.
 721                 */
 722                isaligned = 0;
 723                if (args.mp->m_sinoalign) {
 724                        ASSERT(!(args.mp->m_flags & XFS_MOUNT_NOALIGN));
 725                        args.alignment = args.mp->m_dalign;
 726                        isaligned = 1;
 727                } else
 728                        args.alignment = args.mp->m_cluster_align;
 729                /*
 730                 * Need to figure out where to allocate the inode blocks.
 731                 * Ideally they should be spaced out through the a.g.
 732                 * For now, just allocate blocks up front.
 733                 */
 734                args.agbno = be32_to_cpu(agi->agi_root);
 735                args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
 736                /*
 737                 * Allocate a fixed-size extent of inodes.
 738                 */
 739                args.type = XFS_ALLOCTYPE_NEAR_BNO;
 740                args.prod = 1;
 741                /*
 742                 * Allow space for the inode btree to split.
 743                 */
 744                args.minleft = args.mp->m_in_maxlevels - 1;
 745                if ((error = xfs_alloc_vextent(&args)))
 746                        return error;
 747        }
 748
 749        /*
 750         * If stripe alignment is turned on, then try again with cluster
 751         * alignment.
 752         */
 753        if (isaligned && args.fsbno == NULLFSBLOCK) {
 754                args.type = XFS_ALLOCTYPE_NEAR_BNO;
 755                args.agbno = be32_to_cpu(agi->agi_root);
 756                args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
 757                args.alignment = args.mp->m_cluster_align;
 758                if ((error = xfs_alloc_vextent(&args)))
 759                        return error;
 760        }
 761
 762        /*
 763         * Finally, try a sparse allocation if the filesystem supports it and
 764         * the sparse allocation length is smaller than a full chunk.
 765         */
 766        if (xfs_sb_version_hassparseinodes(&args.mp->m_sb) &&
 767            args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks &&
 768            args.fsbno == NULLFSBLOCK) {
 769sparse_alloc:
 770                args.type = XFS_ALLOCTYPE_NEAR_BNO;
 771                args.agbno = be32_to_cpu(agi->agi_root);
 772                args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
 773                args.alignment = args.mp->m_sb.sb_spino_align;
 774                args.prod = 1;
 775
 776                args.minlen = args.mp->m_ialloc_min_blks;
 777                args.maxlen = args.minlen;
 778
 779                /*
 780                 * The inode record will be aligned to full chunk size. We must
 781                 * prevent sparse allocation from AG boundaries that result in
 782                 * invalid inode records, such as records that start at agbno 0
 783                 * or extend beyond the AG.
 784                 *
 785                 * Set min agbno to the first aligned, non-zero agbno and max to
 786                 * the last aligned agbno that is at least one full chunk from
 787                 * the end of the AG.
 788                 */
 789                args.min_agbno = args.mp->m_sb.sb_inoalignmt;
 790                args.max_agbno = round_down(args.mp->m_sb.sb_agblocks,
 791                                            args.mp->m_sb.sb_inoalignmt) -
 792                                 args.mp->m_ialloc_blks;
 793
 794                error = xfs_alloc_vextent(&args);
 795                if (error)
 796                        return error;
 797
 798                newlen = XFS_AGB_TO_AGINO(args.mp, args.len);
 799                ASSERT(newlen <= XFS_INODES_PER_CHUNK);
 800                allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1;
 801        }
 802
 803        if (args.fsbno == NULLFSBLOCK) {
 804                *alloc = 0;
 805                return 0;
 806        }
 807        ASSERT(args.len == args.minlen);
 808
 809        /*
 810         * Stamp and write the inode buffers.
 811         *
 812         * Seed the new inode cluster with a random generation number. This
 813         * prevents short-term reuse of generation numbers if a chunk is
 814         * freed and then immediately reallocated. We use random numbers
 815         * rather than a linear progression to prevent the next generation
 816         * number from being easily guessable.
 817         */
 818        error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, agno,
 819                        args.agbno, args.len, prandom_u32());
 820
 821        if (error)
 822                return error;
 823        /*
 824         * Convert the results.
 825         */
 826        newino = XFS_AGB_TO_AGINO(args.mp, args.agbno);
 827
 828        if (xfs_inobt_issparse(~allocmask)) {
 829                /*
 830                 * We've allocated a sparse chunk. Align the startino and mask.
 831                 */
 832                xfs_align_sparse_ino(args.mp, &newino, &allocmask);
 833
 834                rec.ir_startino = newino;
 835                rec.ir_holemask = ~allocmask;
 836                rec.ir_count = newlen;
 837                rec.ir_freecount = newlen;
 838                rec.ir_free = XFS_INOBT_ALL_FREE;
 839
 840                /*
 841                 * Insert the sparse record into the inobt and allow for a merge
 842                 * if necessary. If a merge does occur, rec is updated to the
 843                 * merged record.
 844                 */
 845                error = xfs_inobt_insert_sprec(args.mp, tp, agbp, XFS_BTNUM_INO,
 846                                               &rec, true);
 847                if (error == -EFSCORRUPTED) {
 848                        xfs_alert(args.mp,
 849        "invalid sparse inode record: ino 0x%llx holemask 0x%x count %u",
 850                                  XFS_AGINO_TO_INO(args.mp, agno,
 851                                                   rec.ir_startino),
 852                                  rec.ir_holemask, rec.ir_count);
 853                        xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE);
 854                }
 855                if (error)
 856                        return error;
 857
 858                /*
 859                 * We can't merge the part we've just allocated as for the inobt
 860                 * due to finobt semantics. The original record may or may not
 861                 * exist independent of whether physical inodes exist in this
 862                 * sparse chunk.
 863                 *
 864                 * We must update the finobt record based on the inobt record.
 865                 * rec contains the fully merged and up to date inobt record
 866                 * from the previous call. Set merge false to replace any
 867                 * existing record with this one.
 868                 */
 869                if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
 870                        error = xfs_inobt_insert_sprec(args.mp, tp, agbp,
 871                                                       XFS_BTNUM_FINO, &rec,
 872                                                       false);
 873                        if (error)
 874                                return error;
 875                }
 876        } else {
 877                /* full chunk - insert new records to both btrees */
 878                error = xfs_inobt_insert(args.mp, tp, agbp, newino, newlen,
 879                                         XFS_BTNUM_INO);
 880                if (error)
 881                        return error;
 882
 883                if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
 884                        error = xfs_inobt_insert(args.mp, tp, agbp, newino,
 885                                                 newlen, XFS_BTNUM_FINO);
 886                        if (error)
 887                                return error;
 888                }
 889        }
 890
 891        /*
 892         * Update AGI counts and newino.
 893         */
 894        be32_add_cpu(&agi->agi_count, newlen);
 895        be32_add_cpu(&agi->agi_freecount, newlen);
 896        pag = xfs_perag_get(args.mp, agno);
 897        pag->pagi_freecount += newlen;
 898        pag->pagi_count += newlen;
 899        xfs_perag_put(pag);
 900        agi->agi_newino = cpu_to_be32(newino);
 901
 902        /*
 903         * Log allocation group header fields
 904         */
 905        xfs_ialloc_log_agi(tp, agbp,
 906                XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO);
 907        /*
 908         * Modify/log superblock values for inode count and inode free count.
 909         */
 910        xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen);
 911        xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen);
 912        *alloc = 1;
 913        return 0;
 914}
 915
 916STATIC xfs_agnumber_t
 917xfs_ialloc_next_ag(
 918        xfs_mount_t     *mp)
 919{
 920        xfs_agnumber_t  agno;
 921
 922        spin_lock(&mp->m_agirotor_lock);
 923        agno = mp->m_agirotor;
 924        if (++mp->m_agirotor >= mp->m_maxagi)
 925                mp->m_agirotor = 0;
 926        spin_unlock(&mp->m_agirotor_lock);
 927
 928        return agno;
 929}
 930
 931/*
 932 * Select an allocation group to look for a free inode in, based on the parent
 933 * inode and the mode.  Return the allocation group buffer.
 934 */
 935STATIC xfs_agnumber_t
 936xfs_ialloc_ag_select(
 937        xfs_trans_t     *tp,            /* transaction pointer */
 938        xfs_ino_t       parent,         /* parent directory inode number */
 939        umode_t         mode)           /* bits set to indicate file type */
 940{
 941        xfs_agnumber_t  agcount;        /* number of ag's in the filesystem */
 942        xfs_agnumber_t  agno;           /* current ag number */
 943        int             flags;          /* alloc buffer locking flags */
 944        xfs_extlen_t    ineed;          /* blocks needed for inode allocation */
 945        xfs_extlen_t    longest = 0;    /* longest extent available */
 946        xfs_mount_t     *mp;            /* mount point structure */
 947        int             needspace;      /* file mode implies space allocated */
 948        xfs_perag_t     *pag;           /* per allocation group data */
 949        xfs_agnumber_t  pagno;          /* parent (starting) ag number */
 950        int             error;
 951
 952        /*
 953         * Files of these types need at least one block if length > 0
 954         * (and they won't fit in the inode, but that's hard to figure out).
 955         */
 956        needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode);
 957        mp = tp->t_mountp;
 958        agcount = mp->m_maxagi;
 959        if (S_ISDIR(mode))
 960                pagno = xfs_ialloc_next_ag(mp);
 961        else {
 962                pagno = XFS_INO_TO_AGNO(mp, parent);
 963                if (pagno >= agcount)
 964                        pagno = 0;
 965        }
 966
 967        ASSERT(pagno < agcount);
 968
 969        /*
 970         * Loop through allocation groups, looking for one with a little
 971         * free space in it.  Note we don't look for free inodes, exactly.
 972         * Instead, we include whether there is a need to allocate inodes
 973         * to mean that blocks must be allocated for them,
 974         * if none are currently free.
 975         */
 976        agno = pagno;
 977        flags = XFS_ALLOC_FLAG_TRYLOCK;
 978        for (;;) {
 979                pag = xfs_perag_get(mp, agno);
 980                if (!pag->pagi_inodeok) {
 981                        xfs_ialloc_next_ag(mp);
 982                        goto nextag;
 983                }
 984
 985                if (!pag->pagi_init) {
 986                        error = xfs_ialloc_pagi_init(mp, tp, agno);
 987                        if (error)
 988                                goto nextag;
 989                }
 990
 991                if (pag->pagi_freecount) {
 992                        xfs_perag_put(pag);
 993                        return agno;
 994                }
 995
 996                if (!pag->pagf_init) {
 997                        error = xfs_alloc_pagf_init(mp, tp, agno, flags);
 998                        if (error)
 999                                goto nextag;
1000                }
1001
1002                /*
1003                 * Check that there is enough free space for the file plus a
1004                 * chunk of inodes if we need to allocate some. If this is the
1005                 * first pass across the AGs, take into account the potential
1006                 * space needed for alignment of inode chunks when checking the
1007                 * longest contiguous free space in the AG - this prevents us
1008                 * from getting ENOSPC because we have free space larger than
1009                 * m_ialloc_blks but alignment constraints prevent us from using
1010                 * it.
1011                 *
1012                 * If we can't find an AG with space for full alignment slack to
1013                 * be taken into account, we must be near ENOSPC in all AGs.
1014                 * Hence we don't include alignment for the second pass and so
1015                 * if we fail allocation due to alignment issues then it is most
1016                 * likely a real ENOSPC condition.
1017                 */
1018                ineed = mp->m_ialloc_min_blks;
1019                if (flags && ineed > 1)
1020                        ineed += mp->m_cluster_align;
1021                longest = pag->pagf_longest;
1022                if (!longest)
1023                        longest = pag->pagf_flcount > 0;
1024
1025                if (pag->pagf_freeblks >= needspace + ineed &&
1026                    longest >= ineed) {
1027                        xfs_perag_put(pag);
1028                        return agno;
1029                }
1030nextag:
1031                xfs_perag_put(pag);
1032                /*
1033                 * No point in iterating over the rest, if we're shutting
1034                 * down.
1035                 */
1036                if (XFS_FORCED_SHUTDOWN(mp))
1037                        return NULLAGNUMBER;
1038                agno++;
1039                if (agno >= agcount)
1040                        agno = 0;
1041                if (agno == pagno) {
1042                        if (flags == 0)
1043                                return NULLAGNUMBER;
1044                        flags = 0;
1045                }
1046        }
1047}
1048
1049/*
1050 * Try to retrieve the next record to the left/right from the current one.
1051 */
1052STATIC int
1053xfs_ialloc_next_rec(
1054        struct xfs_btree_cur    *cur,
1055        xfs_inobt_rec_incore_t  *rec,
1056        int                     *done,
1057        int                     left)
1058{
1059        int                     error;
1060        int                     i;
1061
1062        if (left)
1063                error = xfs_btree_decrement(cur, 0, &i);
1064        else
1065                error = xfs_btree_increment(cur, 0, &i);
1066
1067        if (error)
1068                return error;
1069        *done = !i;
1070        if (i) {
1071                error = xfs_inobt_get_rec(cur, rec, &i);
1072                if (error)
1073                        return error;
1074                XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1075        }
1076
1077        return 0;
1078}
1079
1080STATIC int
1081xfs_ialloc_get_rec(
1082        struct xfs_btree_cur    *cur,
1083        xfs_agino_t             agino,
1084        xfs_inobt_rec_incore_t  *rec,
1085        int                     *done)
1086{
1087        int                     error;
1088        int                     i;
1089
1090        error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i);
1091        if (error)
1092                return error;
1093        *done = !i;
1094        if (i) {
1095                error = xfs_inobt_get_rec(cur, rec, &i);
1096                if (error)
1097                        return error;
1098                XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1099        }
1100
1101        return 0;
1102}
1103
1104/*
1105 * Return the offset of the first free inode in the record. If the inode chunk
1106 * is sparsely allocated, we convert the record holemask to inode granularity
1107 * and mask off the unallocated regions from the inode free mask.
1108 */
1109STATIC int
1110xfs_inobt_first_free_inode(
1111        struct xfs_inobt_rec_incore     *rec)
1112{
1113        xfs_inofree_t                   realfree;
1114
1115        /* if there are no holes, return the first available offset */
1116        if (!xfs_inobt_issparse(rec->ir_holemask))
1117                return xfs_lowbit64(rec->ir_free);
1118
1119        realfree = xfs_inobt_irec_to_allocmask(rec);
1120        realfree &= rec->ir_free;
1121
1122        return xfs_lowbit64(realfree);
1123}
1124
1125/*
1126 * Allocate an inode using the inobt-only algorithm.
1127 */
1128STATIC int
1129xfs_dialloc_ag_inobt(
1130        struct xfs_trans        *tp,
1131        struct xfs_buf          *agbp,
1132        xfs_ino_t               parent,
1133        xfs_ino_t               *inop)
1134{
1135        struct xfs_mount        *mp = tp->t_mountp;
1136        struct xfs_agi          *agi = XFS_BUF_TO_AGI(agbp);
1137        xfs_agnumber_t          agno = be32_to_cpu(agi->agi_seqno);
1138        xfs_agnumber_t          pagno = XFS_INO_TO_AGNO(mp, parent);
1139        xfs_agino_t             pagino = XFS_INO_TO_AGINO(mp, parent);
1140        struct xfs_perag        *pag;
1141        struct xfs_btree_cur    *cur, *tcur;
1142        struct xfs_inobt_rec_incore rec, trec;
1143        xfs_ino_t               ino;
1144        int                     error;
1145        int                     offset;
1146        int                     i, j;
1147        int                     searchdistance = 10;
1148
1149        pag = xfs_perag_get(mp, agno);
1150
1151        ASSERT(pag->pagi_init);
1152        ASSERT(pag->pagi_inodeok);
1153        ASSERT(pag->pagi_freecount > 0);
1154
1155 restart_pagno:
1156        cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1157        /*
1158         * If pagino is 0 (this is the root inode allocation) use newino.
1159         * This must work because we've just allocated some.
1160         */
1161        if (!pagino)
1162                pagino = be32_to_cpu(agi->agi_newino);
1163
1164        error = xfs_check_agi_freecount(cur, agi);
1165        if (error)
1166                goto error0;
1167
1168        /*
1169         * If in the same AG as the parent, try to get near the parent.
1170         */
1171        if (pagno == agno) {
1172                int             doneleft;       /* done, to the left */
1173                int             doneright;      /* done, to the right */
1174
1175                error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i);
1176                if (error)
1177                        goto error0;
1178                XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1179
1180                error = xfs_inobt_get_rec(cur, &rec, &j);
1181                if (error)
1182                        goto error0;
1183                XFS_WANT_CORRUPTED_GOTO(mp, j == 1, error0);
1184
1185                if (rec.ir_freecount > 0) {
1186                        /*
1187                         * Found a free inode in the same chunk
1188                         * as the parent, done.
1189                         */
1190                        goto alloc_inode;
1191                }
1192
1193
1194                /*
1195                 * In the same AG as parent, but parent's chunk is full.
1196                 */
1197
1198                /* duplicate the cursor, search left & right simultaneously */
1199                error = xfs_btree_dup_cursor(cur, &tcur);
1200                if (error)
1201                        goto error0;
1202
1203                /*
1204                 * Skip to last blocks looked up if same parent inode.
1205                 */
1206                if (pagino != NULLAGINO &&
1207                    pag->pagl_pagino == pagino &&
1208                    pag->pagl_leftrec != NULLAGINO &&
1209                    pag->pagl_rightrec != NULLAGINO) {
1210                        error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec,
1211                                                   &trec, &doneleft);
1212                        if (error)
1213                                goto error1;
1214
1215                        error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec,
1216                                                   &rec, &doneright);
1217                        if (error)
1218                                goto error1;
1219                } else {
1220                        /* search left with tcur, back up 1 record */
1221                        error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1);
1222                        if (error)
1223                                goto error1;
1224
1225                        /* search right with cur, go forward 1 record. */
1226                        error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0);
1227                        if (error)
1228                                goto error1;
1229                }
1230
1231                /*
1232                 * Loop until we find an inode chunk with a free inode.
1233                 */
1234                while (--searchdistance > 0 && (!doneleft || !doneright)) {
1235                        int     useleft;  /* using left inode chunk this time */
1236
1237                        /* figure out the closer block if both are valid. */
1238                        if (!doneleft && !doneright) {
1239                                useleft = pagino -
1240                                 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) <
1241                                  rec.ir_startino - pagino;
1242                        } else {
1243                                useleft = !doneleft;
1244                        }
1245
1246                        /* free inodes to the left? */
1247                        if (useleft && trec.ir_freecount) {
1248                                xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1249                                cur = tcur;
1250
1251                                pag->pagl_leftrec = trec.ir_startino;
1252                                pag->pagl_rightrec = rec.ir_startino;
1253                                pag->pagl_pagino = pagino;
1254                                rec = trec;
1255                                goto alloc_inode;
1256                        }
1257
1258                        /* free inodes to the right? */
1259                        if (!useleft && rec.ir_freecount) {
1260                                xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1261
1262                                pag->pagl_leftrec = trec.ir_startino;
1263                                pag->pagl_rightrec = rec.ir_startino;
1264                                pag->pagl_pagino = pagino;
1265                                goto alloc_inode;
1266                        }
1267
1268                        /* get next record to check */
1269                        if (useleft) {
1270                                error = xfs_ialloc_next_rec(tcur, &trec,
1271                                                                 &doneleft, 1);
1272                        } else {
1273                                error = xfs_ialloc_next_rec(cur, &rec,
1274                                                                 &doneright, 0);
1275                        }
1276                        if (error)
1277                                goto error1;
1278                }
1279
1280                if (searchdistance <= 0) {
1281                        /*
1282                         * Not in range - save last search
1283                         * location and allocate a new inode
1284                         */
1285                        xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1286                        pag->pagl_leftrec = trec.ir_startino;
1287                        pag->pagl_rightrec = rec.ir_startino;
1288                        pag->pagl_pagino = pagino;
1289
1290                } else {
1291                        /*
1292                         * We've reached the end of the btree. because
1293                         * we are only searching a small chunk of the
1294                         * btree each search, there is obviously free
1295                         * inodes closer to the parent inode than we
1296                         * are now. restart the search again.
1297                         */
1298                        pag->pagl_pagino = NULLAGINO;
1299                        pag->pagl_leftrec = NULLAGINO;
1300                        pag->pagl_rightrec = NULLAGINO;
1301                        xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1302                        xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1303                        goto restart_pagno;
1304                }
1305        }
1306
1307        /*
1308         * In a different AG from the parent.
1309         * See if the most recently allocated block has any free.
1310         */
1311        if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1312                error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1313                                         XFS_LOOKUP_EQ, &i);
1314                if (error)
1315                        goto error0;
1316
1317                if (i == 1) {
1318                        error = xfs_inobt_get_rec(cur, &rec, &j);
1319                        if (error)
1320                                goto error0;
1321
1322                        if (j == 1 && rec.ir_freecount > 0) {
1323                                /*
1324                                 * The last chunk allocated in the group
1325                                 * still has a free inode.
1326                                 */
1327                                goto alloc_inode;
1328                        }
1329                }
1330        }
1331
1332        /*
1333         * None left in the last group, search the whole AG
1334         */
1335        error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1336        if (error)
1337                goto error0;
1338        XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1339
1340        for (;;) {
1341                error = xfs_inobt_get_rec(cur, &rec, &i);
1342                if (error)
1343                        goto error0;
1344                XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1345                if (rec.ir_freecount > 0)
1346                        break;
1347                error = xfs_btree_increment(cur, 0, &i);
1348                if (error)
1349                        goto error0;
1350                XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1351        }
1352
1353alloc_inode:
1354        offset = xfs_inobt_first_free_inode(&rec);
1355        ASSERT(offset >= 0);
1356        ASSERT(offset < XFS_INODES_PER_CHUNK);
1357        ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1358                                   XFS_INODES_PER_CHUNK) == 0);
1359        ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
1360        rec.ir_free &= ~XFS_INOBT_MASK(offset);
1361        rec.ir_freecount--;
1362        error = xfs_inobt_update(cur, &rec);
1363        if (error)
1364                goto error0;
1365        be32_add_cpu(&agi->agi_freecount, -1);
1366        xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1367        pag->pagi_freecount--;
1368
1369        error = xfs_check_agi_freecount(cur, agi);
1370        if (error)
1371                goto error0;
1372
1373        xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1374        xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1375        xfs_perag_put(pag);
1376        *inop = ino;
1377        return 0;
1378error1:
1379        xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
1380error0:
1381        xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1382        xfs_perag_put(pag);
1383        return error;
1384}
1385
1386/*
1387 * Use the free inode btree to allocate an inode based on distance from the
1388 * parent. Note that the provided cursor may be deleted and replaced.
1389 */
1390STATIC int
1391xfs_dialloc_ag_finobt_near(
1392        xfs_agino_t                     pagino,
1393        struct xfs_btree_cur            **ocur,
1394        struct xfs_inobt_rec_incore     *rec)
1395{
1396        struct xfs_btree_cur            *lcur = *ocur;  /* left search cursor */
1397        struct xfs_btree_cur            *rcur;  /* right search cursor */
1398        struct xfs_inobt_rec_incore     rrec;
1399        int                             error;
1400        int                             i, j;
1401
1402        error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i);
1403        if (error)
1404                return error;
1405
1406        if (i == 1) {
1407                error = xfs_inobt_get_rec(lcur, rec, &i);
1408                if (error)
1409                        return error;
1410                XFS_WANT_CORRUPTED_RETURN(lcur->bc_mp, i == 1);
1411
1412                /*
1413                 * See if we've landed in the parent inode record. The finobt
1414                 * only tracks chunks with at least one free inode, so record
1415                 * existence is enough.
1416                 */
1417                if (pagino >= rec->ir_startino &&
1418                    pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK))
1419                        return 0;
1420        }
1421
1422        error = xfs_btree_dup_cursor(lcur, &rcur);
1423        if (error)
1424                return error;
1425
1426        error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j);
1427        if (error)
1428                goto error_rcur;
1429        if (j == 1) {
1430                error = xfs_inobt_get_rec(rcur, &rrec, &j);
1431                if (error)
1432                        goto error_rcur;
1433                XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, j == 1, error_rcur);
1434        }
1435
1436        XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, i == 1 || j == 1, error_rcur);
1437        if (i == 1 && j == 1) {
1438                /*
1439                 * Both the left and right records are valid. Choose the closer
1440                 * inode chunk to the target.
1441                 */
1442                if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) >
1443                    (rrec.ir_startino - pagino)) {
1444                        *rec = rrec;
1445                        xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1446                        *ocur = rcur;
1447                } else {
1448                        xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1449                }
1450        } else if (j == 1) {
1451                /* only the right record is valid */
1452                *rec = rrec;
1453                xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1454                *ocur = rcur;
1455        } else if (i == 1) {
1456                /* only the left record is valid */
1457                xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1458        }
1459
1460        return 0;
1461
1462error_rcur:
1463        xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR);
1464        return error;
1465}
1466
1467/*
1468 * Use the free inode btree to find a free inode based on a newino hint. If
1469 * the hint is NULL, find the first free inode in the AG.
1470 */
1471STATIC int
1472xfs_dialloc_ag_finobt_newino(
1473        struct xfs_agi                  *agi,
1474        struct xfs_btree_cur            *cur,
1475        struct xfs_inobt_rec_incore     *rec)
1476{
1477        int error;
1478        int i;
1479
1480        if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1481                error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1482                                         XFS_LOOKUP_EQ, &i);
1483                if (error)
1484                        return error;
1485                if (i == 1) {
1486                        error = xfs_inobt_get_rec(cur, rec, &i);
1487                        if (error)
1488                                return error;
1489                        XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1490                        return 0;
1491                }
1492        }
1493
1494        /*
1495         * Find the first inode available in the AG.
1496         */
1497        error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1498        if (error)
1499                return error;
1500        XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1501
1502        error = xfs_inobt_get_rec(cur, rec, &i);
1503        if (error)
1504                return error;
1505        XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1506
1507        return 0;
1508}
1509
1510/*
1511 * Update the inobt based on a modification made to the finobt. Also ensure that
1512 * the records from both trees are equivalent post-modification.
1513 */
1514STATIC int
1515xfs_dialloc_ag_update_inobt(
1516        struct xfs_btree_cur            *cur,   /* inobt cursor */
1517        struct xfs_inobt_rec_incore     *frec,  /* finobt record */
1518        int                             offset) /* inode offset */
1519{
1520        struct xfs_inobt_rec_incore     rec;
1521        int                             error;
1522        int                             i;
1523
1524        error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i);
1525        if (error)
1526                return error;
1527        XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1528
1529        error = xfs_inobt_get_rec(cur, &rec, &i);
1530        if (error)
1531                return error;
1532        XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1533        ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) %
1534                                   XFS_INODES_PER_CHUNK) == 0);
1535
1536        rec.ir_free &= ~XFS_INOBT_MASK(offset);
1537        rec.ir_freecount--;
1538
1539        XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, (rec.ir_free == frec->ir_free) &&
1540                                  (rec.ir_freecount == frec->ir_freecount));
1541
1542        return xfs_inobt_update(cur, &rec);
1543}
1544
1545/*
1546 * Allocate an inode using the free inode btree, if available. Otherwise, fall
1547 * back to the inobt search algorithm.
1548 *
1549 * The caller selected an AG for us, and made sure that free inodes are
1550 * available.
1551 */
1552STATIC int
1553xfs_dialloc_ag(
1554        struct xfs_trans        *tp,
1555        struct xfs_buf          *agbp,
1556        xfs_ino_t               parent,
1557        xfs_ino_t               *inop)
1558{
1559        struct xfs_mount                *mp = tp->t_mountp;
1560        struct xfs_agi                  *agi = XFS_BUF_TO_AGI(agbp);
1561        xfs_agnumber_t                  agno = be32_to_cpu(agi->agi_seqno);
1562        xfs_agnumber_t                  pagno = XFS_INO_TO_AGNO(mp, parent);
1563        xfs_agino_t                     pagino = XFS_INO_TO_AGINO(mp, parent);
1564        struct xfs_perag                *pag;
1565        struct xfs_btree_cur            *cur;   /* finobt cursor */
1566        struct xfs_btree_cur            *icur;  /* inobt cursor */
1567        struct xfs_inobt_rec_incore     rec;
1568        xfs_ino_t                       ino;
1569        int                             error;
1570        int                             offset;
1571        int                             i;
1572
1573        if (!xfs_sb_version_hasfinobt(&mp->m_sb))
1574                return xfs_dialloc_ag_inobt(tp, agbp, parent, inop);
1575
1576        pag = xfs_perag_get(mp, agno);
1577
1578        /*
1579         * If pagino is 0 (this is the root inode allocation) use newino.
1580         * This must work because we've just allocated some.
1581         */
1582        if (!pagino)
1583                pagino = be32_to_cpu(agi->agi_newino);
1584
1585        cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
1586
1587        error = xfs_check_agi_freecount(cur, agi);
1588        if (error)
1589                goto error_cur;
1590
1591        /*
1592         * The search algorithm depends on whether we're in the same AG as the
1593         * parent. If so, find the closest available inode to the parent. If
1594         * not, consider the agi hint or find the first free inode in the AG.
1595         */
1596        if (agno == pagno)
1597                error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec);
1598        else
1599                error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec);
1600        if (error)
1601                goto error_cur;
1602
1603        offset = xfs_inobt_first_free_inode(&rec);
1604        ASSERT(offset >= 0);
1605        ASSERT(offset < XFS_INODES_PER_CHUNK);
1606        ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1607                                   XFS_INODES_PER_CHUNK) == 0);
1608        ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
1609
1610        /*
1611         * Modify or remove the finobt record.
1612         */
1613        rec.ir_free &= ~XFS_INOBT_MASK(offset);
1614        rec.ir_freecount--;
1615        if (rec.ir_freecount)
1616                error = xfs_inobt_update(cur, &rec);
1617        else
1618                error = xfs_btree_delete(cur, &i);
1619        if (error)
1620                goto error_cur;
1621
1622        /*
1623         * The finobt has now been updated appropriately. We haven't updated the
1624         * agi and superblock yet, so we can create an inobt cursor and validate
1625         * the original freecount. If all is well, make the equivalent update to
1626         * the inobt using the finobt record and offset information.
1627         */
1628        icur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1629
1630        error = xfs_check_agi_freecount(icur, agi);
1631        if (error)
1632                goto error_icur;
1633
1634        error = xfs_dialloc_ag_update_inobt(icur, &rec, offset);
1635        if (error)
1636                goto error_icur;
1637
1638        /*
1639         * Both trees have now been updated. We must update the perag and
1640         * superblock before we can check the freecount for each btree.
1641         */
1642        be32_add_cpu(&agi->agi_freecount, -1);
1643        xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1644        pag->pagi_freecount--;
1645
1646        xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1647
1648        error = xfs_check_agi_freecount(icur, agi);
1649        if (error)
1650                goto error_icur;
1651        error = xfs_check_agi_freecount(cur, agi);
1652        if (error)
1653                goto error_icur;
1654
1655        xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR);
1656        xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1657        xfs_perag_put(pag);
1658        *inop = ino;
1659        return 0;
1660
1661error_icur:
1662        xfs_btree_del_cursor(icur, XFS_BTREE_ERROR);
1663error_cur:
1664        xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1665        xfs_perag_put(pag);
1666        return error;
1667}
1668
1669/*
1670 * Allocate an inode on disk.
1671 *
1672 * Mode is used to tell whether the new inode will need space, and whether it
1673 * is a directory.
1674 *
1675 * This function is designed to be called twice if it has to do an allocation
1676 * to make more free inodes.  On the first call, *IO_agbp should be set to NULL.
1677 * If an inode is available without having to performn an allocation, an inode
1678 * number is returned.  In this case, *IO_agbp is set to NULL.  If an allocation
1679 * needs to be done, xfs_dialloc returns the current AGI buffer in *IO_agbp.
1680 * The caller should then commit the current transaction, allocate a
1681 * new transaction, and call xfs_dialloc() again, passing in the previous value
1682 * of *IO_agbp.  IO_agbp should be held across the transactions. Since the AGI
1683 * buffer is locked across the two calls, the second call is guaranteed to have
1684 * a free inode available.
1685 *
1686 * Once we successfully pick an inode its number is returned and the on-disk
1687 * data structures are updated.  The inode itself is not read in, since doing so
1688 * would break ordering constraints with xfs_reclaim.
1689 */
1690int
1691xfs_dialloc(
1692        struct xfs_trans        *tp,
1693        xfs_ino_t               parent,
1694        umode_t                 mode,
1695        struct xfs_buf          **IO_agbp,
1696        xfs_ino_t               *inop)
1697{
1698        struct xfs_mount        *mp = tp->t_mountp;
1699        struct xfs_buf          *agbp;
1700        xfs_agnumber_t          agno;
1701        int                     error;
1702        int                     ialloced;
1703        int                     noroom = 0;
1704        xfs_agnumber_t          start_agno;
1705        struct xfs_perag        *pag;
1706        int                     okalloc = 1;
1707
1708        if (*IO_agbp) {
1709                /*
1710                 * If the caller passes in a pointer to the AGI buffer,
1711                 * continue where we left off before.  In this case, we
1712                 * know that the allocation group has free inodes.
1713                 */
1714                agbp = *IO_agbp;
1715                goto out_alloc;
1716        }
1717
1718        /*
1719         * We do not have an agbp, so select an initial allocation
1720         * group for inode allocation.
1721         */
1722        start_agno = xfs_ialloc_ag_select(tp, parent, mode);
1723        if (start_agno == NULLAGNUMBER) {
1724                *inop = NULLFSINO;
1725                return 0;
1726        }
1727
1728        /*
1729         * If we have already hit the ceiling of inode blocks then clear
1730         * okalloc so we scan all available agi structures for a free
1731         * inode.
1732         *
1733         * Read rough value of mp->m_icount by percpu_counter_read_positive,
1734         * which will sacrifice the preciseness but improve the performance.
1735         */
1736        if (mp->m_maxicount &&
1737            percpu_counter_read_positive(&mp->m_icount) + mp->m_ialloc_inos
1738                                                        > mp->m_maxicount) {
1739                noroom = 1;
1740                okalloc = 0;
1741        }
1742
1743        /*
1744         * Loop until we find an allocation group that either has free inodes
1745         * or in which we can allocate some inodes.  Iterate through the
1746         * allocation groups upward, wrapping at the end.
1747         */
1748        agno = start_agno;
1749        for (;;) {
1750                pag = xfs_perag_get(mp, agno);
1751                if (!pag->pagi_inodeok) {
1752                        xfs_ialloc_next_ag(mp);
1753                        goto nextag;
1754                }
1755
1756                if (!pag->pagi_init) {
1757                        error = xfs_ialloc_pagi_init(mp, tp, agno);
1758                        if (error)
1759                                goto out_error;
1760                }
1761
1762                /*
1763                 * Do a first racy fast path check if this AG is usable.
1764                 */
1765                if (!pag->pagi_freecount && !okalloc)
1766                        goto nextag;
1767
1768                /*
1769                 * Then read in the AGI buffer and recheck with the AGI buffer
1770                 * lock held.
1771                 */
1772                error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
1773                if (error)
1774                        goto out_error;
1775
1776                if (pag->pagi_freecount) {
1777                        xfs_perag_put(pag);
1778                        goto out_alloc;
1779                }
1780
1781                if (!okalloc)
1782                        goto nextag_relse_buffer;
1783
1784
1785                error = xfs_ialloc_ag_alloc(tp, agbp, &ialloced);
1786                if (error) {
1787                        xfs_trans_brelse(tp, agbp);
1788
1789                        if (error != -ENOSPC)
1790                                goto out_error;
1791
1792                        xfs_perag_put(pag);
1793                        *inop = NULLFSINO;
1794                        return 0;
1795                }
1796
1797                if (ialloced) {
1798                        /*
1799                         * We successfully allocated some inodes, return
1800                         * the current context to the caller so that it
1801                         * can commit the current transaction and call
1802                         * us again where we left off.
1803                         */
1804                        ASSERT(pag->pagi_freecount > 0);
1805                        xfs_perag_put(pag);
1806
1807                        *IO_agbp = agbp;
1808                        *inop = NULLFSINO;
1809                        return 0;
1810                }
1811
1812nextag_relse_buffer:
1813                xfs_trans_brelse(tp, agbp);
1814nextag:
1815                xfs_perag_put(pag);
1816                if (++agno == mp->m_sb.sb_agcount)
1817                        agno = 0;
1818                if (agno == start_agno) {
1819                        *inop = NULLFSINO;
1820                        return noroom ? -ENOSPC : 0;
1821                }
1822        }
1823
1824out_alloc:
1825        *IO_agbp = NULL;
1826        return xfs_dialloc_ag(tp, agbp, parent, inop);
1827out_error:
1828        xfs_perag_put(pag);
1829        return error;
1830}
1831
1832/*
1833 * Free the blocks of an inode chunk. We must consider that the inode chunk
1834 * might be sparse and only free the regions that are allocated as part of the
1835 * chunk.
1836 */
1837STATIC void
1838xfs_difree_inode_chunk(
1839        struct xfs_trans                *tp,
1840        xfs_agnumber_t                  agno,
1841        struct xfs_inobt_rec_incore     *rec)
1842{
1843        struct xfs_mount                *mp = tp->t_mountp;
1844        xfs_agblock_t                   sagbno = XFS_AGINO_TO_AGBNO(mp,
1845                                                        rec->ir_startino);
1846        int                             startidx, endidx;
1847        int                             nextbit;
1848        xfs_agblock_t                   agbno;
1849        int                             contigblk;
1850        DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS);
1851
1852        if (!xfs_inobt_issparse(rec->ir_holemask)) {
1853                /* not sparse, calculate extent info directly */
1854                xfs_bmap_add_free(tp, XFS_AGB_TO_FSB(mp, agno, sagbno),
1855                                  mp->m_ialloc_blks, &XFS_RMAP_OINFO_INODES);
1856                return;
1857        }
1858
1859        /* holemask is only 16-bits (fits in an unsigned long) */
1860        ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0]));
1861        holemask[0] = rec->ir_holemask;
1862
1863        /*
1864         * Find contiguous ranges of zeroes (i.e., allocated regions) in the
1865         * holemask and convert the start/end index of each range to an extent.
1866         * We start with the start and end index both pointing at the first 0 in
1867         * the mask.
1868         */
1869        startidx = endidx = find_first_zero_bit(holemask,
1870                                                XFS_INOBT_HOLEMASK_BITS);
1871        nextbit = startidx + 1;
1872        while (startidx < XFS_INOBT_HOLEMASK_BITS) {
1873                nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS,
1874                                             nextbit);
1875                /*
1876                 * If the next zero bit is contiguous, update the end index of
1877                 * the current range and continue.
1878                 */
1879                if (nextbit != XFS_INOBT_HOLEMASK_BITS &&
1880                    nextbit == endidx + 1) {
1881                        endidx = nextbit;
1882                        goto next;
1883                }
1884
1885                /*
1886                 * nextbit is not contiguous with the current end index. Convert
1887                 * the current start/end to an extent and add it to the free
1888                 * list.
1889                 */
1890                agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) /
1891                                  mp->m_sb.sb_inopblock;
1892                contigblk = ((endidx - startidx + 1) *
1893                             XFS_INODES_PER_HOLEMASK_BIT) /
1894                            mp->m_sb.sb_inopblock;
1895
1896                ASSERT(agbno % mp->m_sb.sb_spino_align == 0);
1897                ASSERT(contigblk % mp->m_sb.sb_spino_align == 0);
1898                xfs_bmap_add_free(tp, XFS_AGB_TO_FSB(mp, agno, agbno),
1899                                  contigblk, &XFS_RMAP_OINFO_INODES);
1900
1901                /* reset range to current bit and carry on... */
1902                startidx = endidx = nextbit;
1903
1904next:
1905                nextbit++;
1906        }
1907}
1908
1909STATIC int
1910xfs_difree_inobt(
1911        struct xfs_mount                *mp,
1912        struct xfs_trans                *tp,
1913        struct xfs_buf                  *agbp,
1914        xfs_agino_t                     agino,
1915        struct xfs_icluster             *xic,
1916        struct xfs_inobt_rec_incore     *orec)
1917{
1918        struct xfs_agi                  *agi = XFS_BUF_TO_AGI(agbp);
1919        xfs_agnumber_t                  agno = be32_to_cpu(agi->agi_seqno);
1920        struct xfs_perag                *pag;
1921        struct xfs_btree_cur            *cur;
1922        struct xfs_inobt_rec_incore     rec;
1923        int                             ilen;
1924        int                             error;
1925        int                             i;
1926        int                             off;
1927
1928        ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
1929        ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length));
1930
1931        /*
1932         * Initialize the cursor.
1933         */
1934        cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1935
1936        error = xfs_check_agi_freecount(cur, agi);
1937        if (error)
1938                goto error0;
1939
1940        /*
1941         * Look for the entry describing this inode.
1942         */
1943        if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) {
1944                xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.",
1945                        __func__, error);
1946                goto error0;
1947        }
1948        XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1949        error = xfs_inobt_get_rec(cur, &rec, &i);
1950        if (error) {
1951                xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.",
1952                        __func__, error);
1953                goto error0;
1954        }
1955        XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1956        /*
1957         * Get the offset in the inode chunk.
1958         */
1959        off = agino - rec.ir_startino;
1960        ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK);
1961        ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off)));
1962        /*
1963         * Mark the inode free & increment the count.
1964         */
1965        rec.ir_free |= XFS_INOBT_MASK(off);
1966        rec.ir_freecount++;
1967
1968        /*
1969         * When an inode chunk is free, it becomes eligible for removal. Don't
1970         * remove the chunk if the block size is large enough for multiple inode
1971         * chunks (that might not be free).
1972         */
1973        if (!(mp->m_flags & XFS_MOUNT_IKEEP) &&
1974            rec.ir_free == XFS_INOBT_ALL_FREE &&
1975            mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
1976                xic->deleted = true;
1977                xic->first_ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino);
1978                xic->alloc = xfs_inobt_irec_to_allocmask(&rec);
1979
1980                /*
1981                 * Remove the inode cluster from the AGI B+Tree, adjust the
1982                 * AGI and Superblock inode counts, and mark the disk space
1983                 * to be freed when the transaction is committed.
1984                 */
1985                ilen = rec.ir_freecount;
1986                be32_add_cpu(&agi->agi_count, -ilen);
1987                be32_add_cpu(&agi->agi_freecount, -(ilen - 1));
1988                xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
1989                pag = xfs_perag_get(mp, agno);
1990                pag->pagi_freecount -= ilen - 1;
1991                pag->pagi_count -= ilen;
1992                xfs_perag_put(pag);
1993                xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen);
1994                xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1));
1995
1996                if ((error = xfs_btree_delete(cur, &i))) {
1997                        xfs_warn(mp, "%s: xfs_btree_delete returned error %d.",
1998                                __func__, error);
1999                        goto error0;
2000                }
2001
2002                xfs_difree_inode_chunk(tp, agno, &rec);
2003        } else {
2004                xic->deleted = false;
2005
2006                error = xfs_inobt_update(cur, &rec);
2007                if (error) {
2008                        xfs_warn(mp, "%s: xfs_inobt_update returned error %d.",
2009                                __func__, error);
2010                        goto error0;
2011                }
2012
2013                /* 
2014                 * Change the inode free counts and log the ag/sb changes.
2015                 */
2016                be32_add_cpu(&agi->agi_freecount, 1);
2017                xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
2018                pag = xfs_perag_get(mp, agno);
2019                pag->pagi_freecount++;
2020                xfs_perag_put(pag);
2021                xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1);
2022        }
2023
2024        error = xfs_check_agi_freecount(cur, agi);
2025        if (error)
2026                goto error0;
2027
2028        *orec = rec;
2029        xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2030        return 0;
2031
2032error0:
2033        xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2034        return error;
2035}
2036
2037/*
2038 * Free an inode in the free inode btree.
2039 */
2040STATIC int
2041xfs_difree_finobt(
2042        struct xfs_mount                *mp,
2043        struct xfs_trans                *tp,
2044        struct xfs_buf                  *agbp,
2045        xfs_agino_t                     agino,
2046        struct xfs_inobt_rec_incore     *ibtrec) /* inobt record */
2047{
2048        struct xfs_agi                  *agi = XFS_BUF_TO_AGI(agbp);
2049        xfs_agnumber_t                  agno = be32_to_cpu(agi->agi_seqno);
2050        struct xfs_btree_cur            *cur;
2051        struct xfs_inobt_rec_incore     rec;
2052        int                             offset = agino - ibtrec->ir_startino;
2053        int                             error;
2054        int                             i;
2055
2056        cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
2057
2058        error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i);
2059        if (error)
2060                goto error;
2061        if (i == 0) {
2062                /*
2063                 * If the record does not exist in the finobt, we must have just
2064                 * freed an inode in a previously fully allocated chunk. If not,
2065                 * something is out of sync.
2066                 */
2067                XFS_WANT_CORRUPTED_GOTO(mp, ibtrec->ir_freecount == 1, error);
2068
2069                error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask,
2070                                             ibtrec->ir_count,
2071                                             ibtrec->ir_freecount,
2072                                             ibtrec->ir_free, &i);
2073                if (error)
2074                        goto error;
2075                ASSERT(i == 1);
2076
2077                goto out;
2078        }
2079
2080        /*
2081         * Read and update the existing record. We could just copy the ibtrec
2082         * across here, but that would defeat the purpose of having redundant
2083         * metadata. By making the modifications independently, we can catch
2084         * corruptions that we wouldn't see if we just copied from one record
2085         * to another.
2086         */
2087        error = xfs_inobt_get_rec(cur, &rec, &i);
2088        if (error)
2089                goto error;
2090        XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
2091
2092        rec.ir_free |= XFS_INOBT_MASK(offset);
2093        rec.ir_freecount++;
2094
2095        XFS_WANT_CORRUPTED_GOTO(mp, (rec.ir_free == ibtrec->ir_free) &&
2096                                (rec.ir_freecount == ibtrec->ir_freecount),
2097                                error);
2098
2099        /*
2100         * The content of inobt records should always match between the inobt
2101         * and finobt. The lifecycle of records in the finobt is different from
2102         * the inobt in that the finobt only tracks records with at least one
2103         * free inode. Hence, if all of the inodes are free and we aren't
2104         * keeping inode chunks permanently on disk, remove the record.
2105         * Otherwise, update the record with the new information.
2106         *
2107         * Note that we currently can't free chunks when the block size is large
2108         * enough for multiple chunks. Leave the finobt record to remain in sync
2109         * with the inobt.
2110         */
2111        if (rec.ir_free == XFS_INOBT_ALL_FREE &&
2112            mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK &&
2113            !(mp->m_flags & XFS_MOUNT_IKEEP)) {
2114                error = xfs_btree_delete(cur, &i);
2115                if (error)
2116                        goto error;
2117                ASSERT(i == 1);
2118        } else {
2119                error = xfs_inobt_update(cur, &rec);
2120                if (error)
2121                        goto error;
2122        }
2123
2124out:
2125        error = xfs_check_agi_freecount(cur, agi);
2126        if (error)
2127                goto error;
2128
2129        xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2130        return 0;
2131
2132error:
2133        xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2134        return error;
2135}
2136
2137/*
2138 * Free disk inode.  Carefully avoids touching the incore inode, all
2139 * manipulations incore are the caller's responsibility.
2140 * The on-disk inode is not changed by this operation, only the
2141 * btree (free inode mask) is changed.
2142 */
2143int
2144xfs_difree(
2145        struct xfs_trans        *tp,            /* transaction pointer */
2146        xfs_ino_t               inode,          /* inode to be freed */
2147        struct xfs_icluster     *xic)   /* cluster info if deleted */
2148{
2149        /* REFERENCED */
2150        xfs_agblock_t           agbno;  /* block number containing inode */
2151        struct xfs_buf          *agbp;  /* buffer for allocation group header */
2152        xfs_agino_t             agino;  /* allocation group inode number */
2153        xfs_agnumber_t          agno;   /* allocation group number */
2154        int                     error;  /* error return value */
2155        struct xfs_mount        *mp;    /* mount structure for filesystem */
2156        struct xfs_inobt_rec_incore rec;/* btree record */
2157
2158        mp = tp->t_mountp;
2159
2160        /*
2161         * Break up inode number into its components.
2162         */
2163        agno = XFS_INO_TO_AGNO(mp, inode);
2164        if (agno >= mp->m_sb.sb_agcount)  {
2165                xfs_warn(mp, "%s: agno >= mp->m_sb.sb_agcount (%d >= %d).",
2166                        __func__, agno, mp->m_sb.sb_agcount);
2167                ASSERT(0);
2168                return -EINVAL;
2169        }
2170        agino = XFS_INO_TO_AGINO(mp, inode);
2171        if (inode != XFS_AGINO_TO_INO(mp, agno, agino))  {
2172                xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).",
2173                        __func__, (unsigned long long)inode,
2174                        (unsigned long long)XFS_AGINO_TO_INO(mp, agno, agino));
2175                ASSERT(0);
2176                return -EINVAL;
2177        }
2178        agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2179        if (agbno >= mp->m_sb.sb_agblocks)  {
2180                xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).",
2181                        __func__, agbno, mp->m_sb.sb_agblocks);
2182                ASSERT(0);
2183                return -EINVAL;
2184        }
2185        /*
2186         * Get the allocation group header.
2187         */
2188        error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
2189        if (error) {
2190                xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.",
2191                        __func__, error);
2192                return error;
2193        }
2194
2195        /*
2196         * Fix up the inode allocation btree.
2197         */
2198        error = xfs_difree_inobt(mp, tp, agbp, agino, xic, &rec);
2199        if (error)
2200                goto error0;
2201
2202        /*
2203         * Fix up the free inode btree.
2204         */
2205        if (xfs_sb_version_hasfinobt(&mp->m_sb)) {
2206                error = xfs_difree_finobt(mp, tp, agbp, agino, &rec);
2207                if (error)
2208                        goto error0;
2209        }
2210
2211        return 0;
2212
2213error0:
2214        return error;
2215}
2216
2217STATIC int
2218xfs_imap_lookup(
2219        struct xfs_mount        *mp,
2220        struct xfs_trans        *tp,
2221        xfs_agnumber_t          agno,
2222        xfs_agino_t             agino,
2223        xfs_agblock_t           agbno,
2224        xfs_agblock_t           *chunk_agbno,
2225        xfs_agblock_t           *offset_agbno,
2226        int                     flags)
2227{
2228        struct xfs_inobt_rec_incore rec;
2229        struct xfs_btree_cur    *cur;
2230        struct xfs_buf          *agbp;
2231        int                     error;
2232        int                     i;
2233
2234        error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
2235        if (error) {
2236                xfs_alert(mp,
2237                        "%s: xfs_ialloc_read_agi() returned error %d, agno %d",
2238                        __func__, error, agno);
2239                return error;
2240        }
2241
2242        /*
2243         * Lookup the inode record for the given agino. If the record cannot be
2244         * found, then it's an invalid inode number and we should abort. Once
2245         * we have a record, we need to ensure it contains the inode number
2246         * we are looking up.
2247         */
2248        cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
2249        error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i);
2250        if (!error) {
2251                if (i)
2252                        error = xfs_inobt_get_rec(cur, &rec, &i);
2253                if (!error && i == 0)
2254                        error = -EINVAL;
2255        }
2256
2257        xfs_trans_brelse(tp, agbp);
2258        xfs_btree_del_cursor(cur, error);
2259        if (error)
2260                return error;
2261
2262        /* check that the returned record contains the required inode */
2263        if (rec.ir_startino > agino ||
2264            rec.ir_startino + mp->m_ialloc_inos <= agino)
2265                return -EINVAL;
2266
2267        /* for untrusted inodes check it is allocated first */
2268        if ((flags & XFS_IGET_UNTRUSTED) &&
2269            (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino)))
2270                return -EINVAL;
2271
2272        *chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino);
2273        *offset_agbno = agbno - *chunk_agbno;
2274        return 0;
2275}
2276
2277/*
2278 * Return the location of the inode in imap, for mapping it into a buffer.
2279 */
2280int
2281xfs_imap(
2282        xfs_mount_t      *mp,   /* file system mount structure */
2283        xfs_trans_t      *tp,   /* transaction pointer */
2284        xfs_ino_t       ino,    /* inode to locate */
2285        struct xfs_imap *imap,  /* location map structure */
2286        uint            flags)  /* flags for inode btree lookup */
2287{
2288        xfs_agblock_t   agbno;  /* block number of inode in the alloc group */
2289        xfs_agino_t     agino;  /* inode number within alloc group */
2290        xfs_agnumber_t  agno;   /* allocation group number */
2291        xfs_agblock_t   chunk_agbno;    /* first block in inode chunk */
2292        xfs_agblock_t   cluster_agbno;  /* first block in inode cluster */
2293        int             error;  /* error code */
2294        int             offset; /* index of inode in its buffer */
2295        xfs_agblock_t   offset_agbno;   /* blks from chunk start to inode */
2296
2297        ASSERT(ino != NULLFSINO);
2298
2299        /*
2300         * Split up the inode number into its parts.
2301         */
2302        agno = XFS_INO_TO_AGNO(mp, ino);
2303        agino = XFS_INO_TO_AGINO(mp, ino);
2304        agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2305        if (agno >= mp->m_sb.sb_agcount || agbno >= mp->m_sb.sb_agblocks ||
2306            ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
2307#ifdef DEBUG
2308                /*
2309                 * Don't output diagnostic information for untrusted inodes
2310                 * as they can be invalid without implying corruption.
2311                 */
2312                if (flags & XFS_IGET_UNTRUSTED)
2313                        return -EINVAL;
2314                if (agno >= mp->m_sb.sb_agcount) {
2315                        xfs_alert(mp,
2316                                "%s: agno (%d) >= mp->m_sb.sb_agcount (%d)",
2317                                __func__, agno, mp->m_sb.sb_agcount);
2318                }
2319                if (agbno >= mp->m_sb.sb_agblocks) {
2320                        xfs_alert(mp,
2321                "%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
2322                                __func__, (unsigned long long)agbno,
2323                                (unsigned long)mp->m_sb.sb_agblocks);
2324                }
2325                if (ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
2326                        xfs_alert(mp,
2327                "%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)",
2328                                __func__, ino,
2329                                XFS_AGINO_TO_INO(mp, agno, agino));
2330                }
2331                xfs_stack_trace();
2332#endif /* DEBUG */
2333                return -EINVAL;
2334        }
2335
2336        /*
2337         * For bulkstat and handle lookups, we have an untrusted inode number
2338         * that we have to verify is valid. We cannot do this just by reading
2339         * the inode buffer as it may have been unlinked and removed leaving
2340         * inodes in stale state on disk. Hence we have to do a btree lookup
2341         * in all cases where an untrusted inode number is passed.
2342         */
2343        if (flags & XFS_IGET_UNTRUSTED) {
2344                error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
2345                                        &chunk_agbno, &offset_agbno, flags);
2346                if (error)
2347                        return error;
2348                goto out_map;
2349        }
2350
2351        /*
2352         * If the inode cluster size is the same as the blocksize or
2353         * smaller we get to the buffer by simple arithmetics.
2354         */
2355        if (mp->m_blocks_per_cluster == 1) {
2356                offset = XFS_INO_TO_OFFSET(mp, ino);
2357                ASSERT(offset < mp->m_sb.sb_inopblock);
2358
2359                imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, agbno);
2360                imap->im_len = XFS_FSB_TO_BB(mp, 1);
2361                imap->im_boffset = (unsigned short)(offset <<
2362                                                        mp->m_sb.sb_inodelog);
2363                return 0;
2364        }
2365
2366        /*
2367         * If the inode chunks are aligned then use simple maths to
2368         * find the location. Otherwise we have to do a btree
2369         * lookup to find the location.
2370         */
2371        if (mp->m_inoalign_mask) {
2372                offset_agbno = agbno & mp->m_inoalign_mask;
2373                chunk_agbno = agbno - offset_agbno;
2374        } else {
2375                error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
2376                                        &chunk_agbno, &offset_agbno, flags);
2377                if (error)
2378                        return error;
2379        }
2380
2381out_map:
2382        ASSERT(agbno >= chunk_agbno);
2383        cluster_agbno = chunk_agbno +
2384                ((offset_agbno / mp->m_blocks_per_cluster) *
2385                 mp->m_blocks_per_cluster);
2386        offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) +
2387                XFS_INO_TO_OFFSET(mp, ino);
2388
2389        imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, cluster_agbno);
2390        imap->im_len = XFS_FSB_TO_BB(mp, mp->m_blocks_per_cluster);
2391        imap->im_boffset = (unsigned short)(offset << mp->m_sb.sb_inodelog);
2392
2393        /*
2394         * If the inode number maps to a block outside the bounds
2395         * of the file system then return NULL rather than calling
2396         * read_buf and panicing when we get an error from the
2397         * driver.
2398         */
2399        if ((imap->im_blkno + imap->im_len) >
2400            XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
2401                xfs_alert(mp,
2402        "%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
2403                        __func__, (unsigned long long) imap->im_blkno,
2404                        (unsigned long long) imap->im_len,
2405                        XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
2406                return -EINVAL;
2407        }
2408        return 0;
2409}
2410
2411/*
2412 * Compute and fill in value of m_in_maxlevels.
2413 */
2414void
2415xfs_ialloc_compute_maxlevels(
2416        xfs_mount_t     *mp)            /* file system mount structure */
2417{
2418        uint            inodes;
2419
2420        inodes = (1LL << XFS_INO_AGINO_BITS(mp)) >> XFS_INODES_PER_CHUNK_LOG;
2421        mp->m_in_maxlevels = xfs_btree_compute_maxlevels(mp->m_inobt_mnr,
2422                                                         inodes);
2423}
2424
2425/*
2426 * Log specified fields for the ag hdr (inode section). The growth of the agi
2427 * structure over time requires that we interpret the buffer as two logical
2428 * regions delineated by the end of the unlinked list. This is due to the size
2429 * of the hash table and its location in the middle of the agi.
2430 *
2431 * For example, a request to log a field before agi_unlinked and a field after
2432 * agi_unlinked could cause us to log the entire hash table and use an excessive
2433 * amount of log space. To avoid this behavior, log the region up through
2434 * agi_unlinked in one call and the region after agi_unlinked through the end of
2435 * the structure in another.
2436 */
2437void
2438xfs_ialloc_log_agi(
2439        xfs_trans_t     *tp,            /* transaction pointer */
2440        xfs_buf_t       *bp,            /* allocation group header buffer */
2441        int             fields)         /* bitmask of fields to log */
2442{
2443        int                     first;          /* first byte number */
2444        int                     last;           /* last byte number */
2445        static const short      offsets[] = {   /* field starting offsets */
2446                                        /* keep in sync with bit definitions */
2447                offsetof(xfs_agi_t, agi_magicnum),
2448                offsetof(xfs_agi_t, agi_versionnum),
2449                offsetof(xfs_agi_t, agi_seqno),
2450                offsetof(xfs_agi_t, agi_length),
2451                offsetof(xfs_agi_t, agi_count),
2452                offsetof(xfs_agi_t, agi_root),
2453                offsetof(xfs_agi_t, agi_level),
2454                offsetof(xfs_agi_t, agi_freecount),
2455                offsetof(xfs_agi_t, agi_newino),
2456                offsetof(xfs_agi_t, agi_dirino),
2457                offsetof(xfs_agi_t, agi_unlinked),
2458                offsetof(xfs_agi_t, agi_free_root),
2459                offsetof(xfs_agi_t, agi_free_level),
2460                sizeof(xfs_agi_t)
2461        };
2462#ifdef DEBUG
2463        xfs_agi_t               *agi;   /* allocation group header */
2464
2465        agi = XFS_BUF_TO_AGI(bp);
2466        ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
2467#endif
2468
2469        /*
2470         * Compute byte offsets for the first and last fields in the first
2471         * region and log the agi buffer. This only logs up through
2472         * agi_unlinked.
2473         */
2474        if (fields & XFS_AGI_ALL_BITS_R1) {
2475                xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1,
2476                                  &first, &last);
2477                xfs_trans_log_buf(tp, bp, first, last);
2478        }
2479
2480        /*
2481         * Mask off the bits in the first region and calculate the first and
2482         * last field offsets for any bits in the second region.
2483         */
2484        fields &= ~XFS_AGI_ALL_BITS_R1;
2485        if (fields) {
2486                xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2,
2487                                  &first, &last);
2488                xfs_trans_log_buf(tp, bp, first, last);
2489        }
2490}
2491
2492static xfs_failaddr_t
2493xfs_agi_verify(
2494        struct xfs_buf  *bp)
2495{
2496        struct xfs_mount *mp = bp->b_target->bt_mount;
2497        struct xfs_agi  *agi = XFS_BUF_TO_AGI(bp);
2498        int             i;
2499
2500        if (xfs_sb_version_hascrc(&mp->m_sb)) {
2501                if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid))
2502                        return __this_address;
2503                if (!xfs_log_check_lsn(mp,
2504                                be64_to_cpu(XFS_BUF_TO_AGI(bp)->agi_lsn)))
2505                        return __this_address;
2506        }
2507
2508        /*
2509         * Validate the magic number of the agi block.
2510         */
2511        if (agi->agi_magicnum != cpu_to_be32(XFS_AGI_MAGIC))
2512                return __this_address;
2513        if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)))
2514                return __this_address;
2515
2516        if (be32_to_cpu(agi->agi_level) < 1 ||
2517            be32_to_cpu(agi->agi_level) > XFS_BTREE_MAXLEVELS)
2518                return __this_address;
2519
2520        if (xfs_sb_version_hasfinobt(&mp->m_sb) &&
2521            (be32_to_cpu(agi->agi_free_level) < 1 ||
2522             be32_to_cpu(agi->agi_free_level) > XFS_BTREE_MAXLEVELS))
2523                return __this_address;
2524
2525        /*
2526         * during growfs operations, the perag is not fully initialised,
2527         * so we can't use it for any useful checking. growfs ensures we can't
2528         * use it by using uncached buffers that don't have the perag attached
2529         * so we can detect and avoid this problem.
2530         */
2531        if (bp->b_pag && be32_to_cpu(agi->agi_seqno) != bp->b_pag->pag_agno)
2532                return __this_address;
2533
2534        for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++) {
2535                if (agi->agi_unlinked[i] == cpu_to_be32(NULLAGINO))
2536                        continue;
2537                if (!xfs_verify_ino(mp, be32_to_cpu(agi->agi_unlinked[i])))
2538                        return __this_address;
2539        }
2540
2541        return NULL;
2542}
2543
2544static void
2545xfs_agi_read_verify(
2546        struct xfs_buf  *bp)
2547{
2548        struct xfs_mount *mp = bp->b_target->bt_mount;
2549        xfs_failaddr_t  fa;
2550
2551        if (xfs_sb_version_hascrc(&mp->m_sb) &&
2552            !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF))
2553                xfs_verifier_error(bp, -EFSBADCRC, __this_address);
2554        else {
2555                fa = xfs_agi_verify(bp);
2556                if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_IALLOC_READ_AGI))
2557                        xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2558        }
2559}
2560
2561static void
2562xfs_agi_write_verify(
2563        struct xfs_buf  *bp)
2564{
2565        struct xfs_mount        *mp = bp->b_target->bt_mount;
2566        struct xfs_buf_log_item *bip = bp->b_log_item;
2567        xfs_failaddr_t          fa;
2568
2569        fa = xfs_agi_verify(bp);
2570        if (fa) {
2571                xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2572                return;
2573        }
2574
2575        if (!xfs_sb_version_hascrc(&mp->m_sb))
2576                return;
2577
2578        if (bip)
2579                XFS_BUF_TO_AGI(bp)->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn);
2580        xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF);
2581}
2582
2583const struct xfs_buf_ops xfs_agi_buf_ops = {
2584        .name = "xfs_agi",
2585        .verify_read = xfs_agi_read_verify,
2586        .verify_write = xfs_agi_write_verify,
2587        .verify_struct = xfs_agi_verify,
2588};
2589
2590/*
2591 * Read in the allocation group header (inode allocation section)
2592 */
2593int
2594xfs_read_agi(
2595        struct xfs_mount        *mp,    /* file system mount structure */
2596        struct xfs_trans        *tp,    /* transaction pointer */
2597        xfs_agnumber_t          agno,   /* allocation group number */
2598        struct xfs_buf          **bpp)  /* allocation group hdr buf */
2599{
2600        int                     error;
2601
2602        trace_xfs_read_agi(mp, agno);
2603
2604        ASSERT(agno != NULLAGNUMBER);
2605        error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
2606                        XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
2607                        XFS_FSS_TO_BB(mp, 1), 0, bpp, &xfs_agi_buf_ops);
2608        if (error)
2609                return error;
2610        if (tp)
2611                xfs_trans_buf_set_type(tp, *bpp, XFS_BLFT_AGI_BUF);
2612
2613        xfs_buf_set_ref(*bpp, XFS_AGI_REF);
2614        return 0;
2615}
2616
2617int
2618xfs_ialloc_read_agi(
2619        struct xfs_mount        *mp,    /* file system mount structure */
2620        struct xfs_trans        *tp,    /* transaction pointer */
2621        xfs_agnumber_t          agno,   /* allocation group number */
2622        struct xfs_buf          **bpp)  /* allocation group hdr buf */
2623{
2624        struct xfs_agi          *agi;   /* allocation group header */
2625        struct xfs_perag        *pag;   /* per allocation group data */
2626        int                     error;
2627
2628        trace_xfs_ialloc_read_agi(mp, agno);
2629
2630        error = xfs_read_agi(mp, tp, agno, bpp);
2631        if (error)
2632                return error;
2633
2634        agi = XFS_BUF_TO_AGI(*bpp);
2635        pag = xfs_perag_get(mp, agno);
2636        if (!pag->pagi_init) {
2637                pag->pagi_freecount = be32_to_cpu(agi->agi_freecount);
2638                pag->pagi_count = be32_to_cpu(agi->agi_count);
2639                pag->pagi_init = 1;
2640        }
2641
2642        /*
2643         * It's possible for these to be out of sync if
2644         * we are in the middle of a forced shutdown.
2645         */
2646        ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) ||
2647                XFS_FORCED_SHUTDOWN(mp));
2648        xfs_perag_put(pag);
2649        return 0;
2650}
2651
2652/*
2653 * Read in the agi to initialise the per-ag data in the mount structure
2654 */
2655int
2656xfs_ialloc_pagi_init(
2657        xfs_mount_t     *mp,            /* file system mount structure */
2658        xfs_trans_t     *tp,            /* transaction pointer */
2659        xfs_agnumber_t  agno)           /* allocation group number */
2660{
2661        xfs_buf_t       *bp = NULL;
2662        int             error;
2663
2664        error = xfs_ialloc_read_agi(mp, tp, agno, &bp);
2665        if (error)
2666                return error;
2667        if (bp)
2668                xfs_trans_brelse(tp, bp);
2669        return 0;
2670}
2671
2672/* Is there an inode record covering a given range of inode numbers? */
2673int
2674xfs_ialloc_has_inode_record(
2675        struct xfs_btree_cur    *cur,
2676        xfs_agino_t             low,
2677        xfs_agino_t             high,
2678        bool                    *exists)
2679{
2680        struct xfs_inobt_rec_incore     irec;
2681        xfs_agino_t             agino;
2682        uint16_t                holemask;
2683        int                     has_record;
2684        int                     i;
2685        int                     error;
2686
2687        *exists = false;
2688        error = xfs_inobt_lookup(cur, low, XFS_LOOKUP_LE, &has_record);
2689        while (error == 0 && has_record) {
2690                error = xfs_inobt_get_rec(cur, &irec, &has_record);
2691                if (error || irec.ir_startino > high)
2692                        break;
2693
2694                agino = irec.ir_startino;
2695                holemask = irec.ir_holemask;
2696                for (i = 0; i < XFS_INOBT_HOLEMASK_BITS; holemask >>= 1,
2697                                i++, agino += XFS_INODES_PER_HOLEMASK_BIT) {
2698                        if (holemask & 1)
2699                                continue;
2700                        if (agino + XFS_INODES_PER_HOLEMASK_BIT > low &&
2701                                        agino <= high) {
2702                                *exists = true;
2703                                return 0;
2704                        }
2705                }
2706
2707                error = xfs_btree_increment(cur, 0, &has_record);
2708        }
2709        return error;
2710}
2711
2712/* Is there an inode record covering a given extent? */
2713int
2714xfs_ialloc_has_inodes_at_extent(
2715        struct xfs_btree_cur    *cur,
2716        xfs_agblock_t           bno,
2717        xfs_extlen_t            len,
2718        bool                    *exists)
2719{
2720        xfs_agino_t             low;
2721        xfs_agino_t             high;
2722
2723        low = XFS_AGB_TO_AGINO(cur->bc_mp, bno);
2724        high = XFS_AGB_TO_AGINO(cur->bc_mp, bno + len) - 1;
2725
2726        return xfs_ialloc_has_inode_record(cur, low, high, exists);
2727}
2728
2729struct xfs_ialloc_count_inodes {
2730        xfs_agino_t                     count;
2731        xfs_agino_t                     freecount;
2732};
2733
2734/* Record inode counts across all inobt records. */
2735STATIC int
2736xfs_ialloc_count_inodes_rec(
2737        struct xfs_btree_cur            *cur,
2738        union xfs_btree_rec             *rec,
2739        void                            *priv)
2740{
2741        struct xfs_inobt_rec_incore     irec;
2742        struct xfs_ialloc_count_inodes  *ci = priv;
2743
2744        xfs_inobt_btrec_to_irec(cur->bc_mp, rec, &irec);
2745        ci->count += irec.ir_count;
2746        ci->freecount += irec.ir_freecount;
2747
2748        return 0;
2749}
2750
2751/* Count allocated and free inodes under an inobt. */
2752int
2753xfs_ialloc_count_inodes(
2754        struct xfs_btree_cur            *cur,
2755        xfs_agino_t                     *count,
2756        xfs_agino_t                     *freecount)
2757{
2758        struct xfs_ialloc_count_inodes  ci = {0};
2759        int                             error;
2760
2761        ASSERT(cur->bc_btnum == XFS_BTNUM_INO);
2762        error = xfs_btree_query_all(cur, xfs_ialloc_count_inodes_rec, &ci);
2763        if (error)
2764                return error;
2765
2766        *count = ci.count;
2767        *freecount = ci.freecount;
2768        return 0;
2769}
2770