linux/fs/xfs/xfs_buf_item.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   4 * All Rights Reserved.
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_format.h"
   9#include "xfs_log_format.h"
  10#include "xfs_trans_resv.h"
  11#include "xfs_bit.h"
  12#include "xfs_sb.h"
  13#include "xfs_mount.h"
  14#include "xfs_trans.h"
  15#include "xfs_buf_item.h"
  16#include "xfs_trans_priv.h"
  17#include "xfs_error.h"
  18#include "xfs_trace.h"
  19#include "xfs_log.h"
  20#include "xfs_inode.h"
  21
  22
  23kmem_zone_t     *xfs_buf_item_zone;
  24
  25static inline struct xfs_buf_log_item *BUF_ITEM(struct xfs_log_item *lip)
  26{
  27        return container_of(lip, struct xfs_buf_log_item, bli_item);
  28}
  29
  30STATIC void     xfs_buf_do_callbacks(struct xfs_buf *bp);
  31
  32static inline int
  33xfs_buf_log_format_size(
  34        struct xfs_buf_log_format *blfp)
  35{
  36        return offsetof(struct xfs_buf_log_format, blf_data_map) +
  37                        (blfp->blf_map_size * sizeof(blfp->blf_data_map[0]));
  38}
  39
  40/*
  41 * This returns the number of log iovecs needed to log the
  42 * given buf log item.
  43 *
  44 * It calculates this as 1 iovec for the buf log format structure
  45 * and 1 for each stretch of non-contiguous chunks to be logged.
  46 * Contiguous chunks are logged in a single iovec.
  47 *
  48 * If the XFS_BLI_STALE flag has been set, then log nothing.
  49 */
  50STATIC void
  51xfs_buf_item_size_segment(
  52        struct xfs_buf_log_item         *bip,
  53        struct xfs_buf_log_format       *blfp,
  54        int                             *nvecs,
  55        int                             *nbytes)
  56{
  57        struct xfs_buf                  *bp = bip->bli_buf;
  58        int                             next_bit;
  59        int                             last_bit;
  60
  61        last_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
  62        if (last_bit == -1)
  63                return;
  64
  65        /*
  66         * initial count for a dirty buffer is 2 vectors - the format structure
  67         * and the first dirty region.
  68         */
  69        *nvecs += 2;
  70        *nbytes += xfs_buf_log_format_size(blfp) + XFS_BLF_CHUNK;
  71
  72        while (last_bit != -1) {
  73                /*
  74                 * This takes the bit number to start looking from and
  75                 * returns the next set bit from there.  It returns -1
  76                 * if there are no more bits set or the start bit is
  77                 * beyond the end of the bitmap.
  78                 */
  79                next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
  80                                        last_bit + 1);
  81                /*
  82                 * If we run out of bits, leave the loop,
  83                 * else if we find a new set of bits bump the number of vecs,
  84                 * else keep scanning the current set of bits.
  85                 */
  86                if (next_bit == -1) {
  87                        break;
  88                } else if (next_bit != last_bit + 1) {
  89                        last_bit = next_bit;
  90                        (*nvecs)++;
  91                } else if (xfs_buf_offset(bp, next_bit * XFS_BLF_CHUNK) !=
  92                           (xfs_buf_offset(bp, last_bit * XFS_BLF_CHUNK) +
  93                            XFS_BLF_CHUNK)) {
  94                        last_bit = next_bit;
  95                        (*nvecs)++;
  96                } else {
  97                        last_bit++;
  98                }
  99                *nbytes += XFS_BLF_CHUNK;
 100        }
 101}
 102
 103/*
 104 * This returns the number of log iovecs needed to log the given buf log item.
 105 *
 106 * It calculates this as 1 iovec for the buf log format structure and 1 for each
 107 * stretch of non-contiguous chunks to be logged.  Contiguous chunks are logged
 108 * in a single iovec.
 109 *
 110 * Discontiguous buffers need a format structure per region that that is being
 111 * logged. This makes the changes in the buffer appear to log recovery as though
 112 * they came from separate buffers, just like would occur if multiple buffers
 113 * were used instead of a single discontiguous buffer. This enables
 114 * discontiguous buffers to be in-memory constructs, completely transparent to
 115 * what ends up on disk.
 116 *
 117 * If the XFS_BLI_STALE flag has been set, then log nothing but the buf log
 118 * format structures.
 119 */
 120STATIC void
 121xfs_buf_item_size(
 122        struct xfs_log_item     *lip,
 123        int                     *nvecs,
 124        int                     *nbytes)
 125{
 126        struct xfs_buf_log_item *bip = BUF_ITEM(lip);
 127        int                     i;
 128
 129        ASSERT(atomic_read(&bip->bli_refcount) > 0);
 130        if (bip->bli_flags & XFS_BLI_STALE) {
 131                /*
 132                 * The buffer is stale, so all we need to log
 133                 * is the buf log format structure with the
 134                 * cancel flag in it.
 135                 */
 136                trace_xfs_buf_item_size_stale(bip);
 137                ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
 138                *nvecs += bip->bli_format_count;
 139                for (i = 0; i < bip->bli_format_count; i++) {
 140                        *nbytes += xfs_buf_log_format_size(&bip->bli_formats[i]);
 141                }
 142                return;
 143        }
 144
 145        ASSERT(bip->bli_flags & XFS_BLI_LOGGED);
 146
 147        if (bip->bli_flags & XFS_BLI_ORDERED) {
 148                /*
 149                 * The buffer has been logged just to order it.
 150                 * It is not being included in the transaction
 151                 * commit, so no vectors are used at all.
 152                 */
 153                trace_xfs_buf_item_size_ordered(bip);
 154                *nvecs = XFS_LOG_VEC_ORDERED;
 155                return;
 156        }
 157
 158        /*
 159         * the vector count is based on the number of buffer vectors we have
 160         * dirty bits in. This will only be greater than one when we have a
 161         * compound buffer with more than one segment dirty. Hence for compound
 162         * buffers we need to track which segment the dirty bits correspond to,
 163         * and when we move from one segment to the next increment the vector
 164         * count for the extra buf log format structure that will need to be
 165         * written.
 166         */
 167        for (i = 0; i < bip->bli_format_count; i++) {
 168                xfs_buf_item_size_segment(bip, &bip->bli_formats[i],
 169                                          nvecs, nbytes);
 170        }
 171        trace_xfs_buf_item_size(bip);
 172}
 173
 174static inline void
 175xfs_buf_item_copy_iovec(
 176        struct xfs_log_vec      *lv,
 177        struct xfs_log_iovec    **vecp,
 178        struct xfs_buf          *bp,
 179        uint                    offset,
 180        int                     first_bit,
 181        uint                    nbits)
 182{
 183        offset += first_bit * XFS_BLF_CHUNK;
 184        xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_BCHUNK,
 185                        xfs_buf_offset(bp, offset),
 186                        nbits * XFS_BLF_CHUNK);
 187}
 188
 189static inline bool
 190xfs_buf_item_straddle(
 191        struct xfs_buf          *bp,
 192        uint                    offset,
 193        int                     next_bit,
 194        int                     last_bit)
 195{
 196        return xfs_buf_offset(bp, offset + (next_bit << XFS_BLF_SHIFT)) !=
 197                (xfs_buf_offset(bp, offset + (last_bit << XFS_BLF_SHIFT)) +
 198                 XFS_BLF_CHUNK);
 199}
 200
 201static void
 202xfs_buf_item_format_segment(
 203        struct xfs_buf_log_item *bip,
 204        struct xfs_log_vec      *lv,
 205        struct xfs_log_iovec    **vecp,
 206        uint                    offset,
 207        struct xfs_buf_log_format *blfp)
 208{
 209        struct xfs_buf          *bp = bip->bli_buf;
 210        uint                    base_size;
 211        int                     first_bit;
 212        int                     last_bit;
 213        int                     next_bit;
 214        uint                    nbits;
 215
 216        /* copy the flags across from the base format item */
 217        blfp->blf_flags = bip->__bli_format.blf_flags;
 218
 219        /*
 220         * Base size is the actual size of the ondisk structure - it reflects
 221         * the actual size of the dirty bitmap rather than the size of the in
 222         * memory structure.
 223         */
 224        base_size = xfs_buf_log_format_size(blfp);
 225
 226        first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
 227        if (!(bip->bli_flags & XFS_BLI_STALE) && first_bit == -1) {
 228                /*
 229                 * If the map is not be dirty in the transaction, mark
 230                 * the size as zero and do not advance the vector pointer.
 231                 */
 232                return;
 233        }
 234
 235        blfp = xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_BFORMAT, blfp, base_size);
 236        blfp->blf_size = 1;
 237
 238        if (bip->bli_flags & XFS_BLI_STALE) {
 239                /*
 240                 * The buffer is stale, so all we need to log
 241                 * is the buf log format structure with the
 242                 * cancel flag in it.
 243                 */
 244                trace_xfs_buf_item_format_stale(bip);
 245                ASSERT(blfp->blf_flags & XFS_BLF_CANCEL);
 246                return;
 247        }
 248
 249
 250        /*
 251         * Fill in an iovec for each set of contiguous chunks.
 252         */
 253        last_bit = first_bit;
 254        nbits = 1;
 255        for (;;) {
 256                /*
 257                 * This takes the bit number to start looking from and
 258                 * returns the next set bit from there.  It returns -1
 259                 * if there are no more bits set or the start bit is
 260                 * beyond the end of the bitmap.
 261                 */
 262                next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
 263                                        (uint)last_bit + 1);
 264                /*
 265                 * If we run out of bits fill in the last iovec and get out of
 266                 * the loop.  Else if we start a new set of bits then fill in
 267                 * the iovec for the series we were looking at and start
 268                 * counting the bits in the new one.  Else we're still in the
 269                 * same set of bits so just keep counting and scanning.
 270                 */
 271                if (next_bit == -1) {
 272                        xfs_buf_item_copy_iovec(lv, vecp, bp, offset,
 273                                                first_bit, nbits);
 274                        blfp->blf_size++;
 275                        break;
 276                } else if (next_bit != last_bit + 1 ||
 277                           xfs_buf_item_straddle(bp, offset, next_bit, last_bit)) {
 278                        xfs_buf_item_copy_iovec(lv, vecp, bp, offset,
 279                                                first_bit, nbits);
 280                        blfp->blf_size++;
 281                        first_bit = next_bit;
 282                        last_bit = next_bit;
 283                        nbits = 1;
 284                } else {
 285                        last_bit++;
 286                        nbits++;
 287                }
 288        }
 289}
 290
 291/*
 292 * This is called to fill in the vector of log iovecs for the
 293 * given log buf item.  It fills the first entry with a buf log
 294 * format structure, and the rest point to contiguous chunks
 295 * within the buffer.
 296 */
 297STATIC void
 298xfs_buf_item_format(
 299        struct xfs_log_item     *lip,
 300        struct xfs_log_vec      *lv)
 301{
 302        struct xfs_buf_log_item *bip = BUF_ITEM(lip);
 303        struct xfs_buf          *bp = bip->bli_buf;
 304        struct xfs_log_iovec    *vecp = NULL;
 305        uint                    offset = 0;
 306        int                     i;
 307
 308        ASSERT(atomic_read(&bip->bli_refcount) > 0);
 309        ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
 310               (bip->bli_flags & XFS_BLI_STALE));
 311        ASSERT((bip->bli_flags & XFS_BLI_STALE) ||
 312               (xfs_blft_from_flags(&bip->__bli_format) > XFS_BLFT_UNKNOWN_BUF
 313                && xfs_blft_from_flags(&bip->__bli_format) < XFS_BLFT_MAX_BUF));
 314        ASSERT(!(bip->bli_flags & XFS_BLI_ORDERED) ||
 315               (bip->bli_flags & XFS_BLI_STALE));
 316
 317
 318        /*
 319         * If it is an inode buffer, transfer the in-memory state to the
 320         * format flags and clear the in-memory state.
 321         *
 322         * For buffer based inode allocation, we do not transfer
 323         * this state if the inode buffer allocation has not yet been committed
 324         * to the log as setting the XFS_BLI_INODE_BUF flag will prevent
 325         * correct replay of the inode allocation.
 326         *
 327         * For icreate item based inode allocation, the buffers aren't written
 328         * to the journal during allocation, and hence we should always tag the
 329         * buffer as an inode buffer so that the correct unlinked list replay
 330         * occurs during recovery.
 331         */
 332        if (bip->bli_flags & XFS_BLI_INODE_BUF) {
 333                if (xfs_sb_version_hascrc(&lip->li_mountp->m_sb) ||
 334                    !((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) &&
 335                      xfs_log_item_in_current_chkpt(lip)))
 336                        bip->__bli_format.blf_flags |= XFS_BLF_INODE_BUF;
 337                bip->bli_flags &= ~XFS_BLI_INODE_BUF;
 338        }
 339
 340        for (i = 0; i < bip->bli_format_count; i++) {
 341                xfs_buf_item_format_segment(bip, lv, &vecp, offset,
 342                                            &bip->bli_formats[i]);
 343                offset += BBTOB(bp->b_maps[i].bm_len);
 344        }
 345
 346        /*
 347         * Check to make sure everything is consistent.
 348         */
 349        trace_xfs_buf_item_format(bip);
 350}
 351
 352/*
 353 * This is called to pin the buffer associated with the buf log item in memory
 354 * so it cannot be written out.
 355 *
 356 * We also always take a reference to the buffer log item here so that the bli
 357 * is held while the item is pinned in memory. This means that we can
 358 * unconditionally drop the reference count a transaction holds when the
 359 * transaction is completed.
 360 */
 361STATIC void
 362xfs_buf_item_pin(
 363        struct xfs_log_item     *lip)
 364{
 365        struct xfs_buf_log_item *bip = BUF_ITEM(lip);
 366
 367        ASSERT(atomic_read(&bip->bli_refcount) > 0);
 368        ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
 369               (bip->bli_flags & XFS_BLI_ORDERED) ||
 370               (bip->bli_flags & XFS_BLI_STALE));
 371
 372        trace_xfs_buf_item_pin(bip);
 373
 374        atomic_inc(&bip->bli_refcount);
 375        atomic_inc(&bip->bli_buf->b_pin_count);
 376}
 377
 378/*
 379 * This is called to unpin the buffer associated with the buf log
 380 * item which was previously pinned with a call to xfs_buf_item_pin().
 381 *
 382 * Also drop the reference to the buf item for the current transaction.
 383 * If the XFS_BLI_STALE flag is set and we are the last reference,
 384 * then free up the buf log item and unlock the buffer.
 385 *
 386 * If the remove flag is set we are called from uncommit in the
 387 * forced-shutdown path.  If that is true and the reference count on
 388 * the log item is going to drop to zero we need to free the item's
 389 * descriptor in the transaction.
 390 */
 391STATIC void
 392xfs_buf_item_unpin(
 393        struct xfs_log_item     *lip,
 394        int                     remove)
 395{
 396        struct xfs_buf_log_item *bip = BUF_ITEM(lip);
 397        xfs_buf_t               *bp = bip->bli_buf;
 398        struct xfs_ail          *ailp = lip->li_ailp;
 399        int                     stale = bip->bli_flags & XFS_BLI_STALE;
 400        int                     freed;
 401
 402        ASSERT(bp->b_log_item == bip);
 403        ASSERT(atomic_read(&bip->bli_refcount) > 0);
 404
 405        trace_xfs_buf_item_unpin(bip);
 406
 407        freed = atomic_dec_and_test(&bip->bli_refcount);
 408
 409        if (atomic_dec_and_test(&bp->b_pin_count))
 410                wake_up_all(&bp->b_waiters);
 411
 412        if (freed && stale) {
 413                ASSERT(bip->bli_flags & XFS_BLI_STALE);
 414                ASSERT(xfs_buf_islocked(bp));
 415                ASSERT(bp->b_flags & XBF_STALE);
 416                ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
 417
 418                trace_xfs_buf_item_unpin_stale(bip);
 419
 420                if (remove) {
 421                        /*
 422                         * If we are in a transaction context, we have to
 423                         * remove the log item from the transaction as we are
 424                         * about to release our reference to the buffer.  If we
 425                         * don't, the unlock that occurs later in
 426                         * xfs_trans_uncommit() will try to reference the
 427                         * buffer which we no longer have a hold on.
 428                         */
 429                        if (!list_empty(&lip->li_trans))
 430                                xfs_trans_del_item(lip);
 431
 432                        /*
 433                         * Since the transaction no longer refers to the buffer,
 434                         * the buffer should no longer refer to the transaction.
 435                         */
 436                        bp->b_transp = NULL;
 437                }
 438
 439                /*
 440                 * If we get called here because of an IO error, we may
 441                 * or may not have the item on the AIL. xfs_trans_ail_delete()
 442                 * will take care of that situation.
 443                 * xfs_trans_ail_delete() drops the AIL lock.
 444                 */
 445                if (bip->bli_flags & XFS_BLI_STALE_INODE) {
 446                        xfs_buf_do_callbacks(bp);
 447                        bp->b_log_item = NULL;
 448                        list_del_init(&bp->b_li_list);
 449                        bp->b_iodone = NULL;
 450                } else {
 451                        spin_lock(&ailp->ail_lock);
 452                        xfs_trans_ail_delete(ailp, lip, SHUTDOWN_LOG_IO_ERROR);
 453                        xfs_buf_item_relse(bp);
 454                        ASSERT(bp->b_log_item == NULL);
 455                }
 456                xfs_buf_relse(bp);
 457        } else if (freed && remove) {
 458                /*
 459                 * There are currently two references to the buffer - the active
 460                 * LRU reference and the buf log item. What we are about to do
 461                 * here - simulate a failed IO completion - requires 3
 462                 * references.
 463                 *
 464                 * The LRU reference is removed by the xfs_buf_stale() call. The
 465                 * buf item reference is removed by the xfs_buf_iodone()
 466                 * callback that is run by xfs_buf_do_callbacks() during ioend
 467                 * processing (via the bp->b_iodone callback), and then finally
 468                 * the ioend processing will drop the IO reference if the buffer
 469                 * is marked XBF_ASYNC.
 470                 *
 471                 * Hence we need to take an additional reference here so that IO
 472                 * completion processing doesn't free the buffer prematurely.
 473                 */
 474                xfs_buf_lock(bp);
 475                xfs_buf_hold(bp);
 476                bp->b_flags |= XBF_ASYNC;
 477                xfs_buf_ioerror(bp, -EIO);
 478                bp->b_flags &= ~XBF_DONE;
 479                xfs_buf_stale(bp);
 480                xfs_buf_ioend(bp);
 481        }
 482}
 483
 484/*
 485 * Buffer IO error rate limiting. Limit it to no more than 10 messages per 30
 486 * seconds so as to not spam logs too much on repeated detection of the same
 487 * buffer being bad..
 488 */
 489
 490static DEFINE_RATELIMIT_STATE(xfs_buf_write_fail_rl_state, 30 * HZ, 10);
 491
 492STATIC uint
 493xfs_buf_item_push(
 494        struct xfs_log_item     *lip,
 495        struct list_head        *buffer_list)
 496{
 497        struct xfs_buf_log_item *bip = BUF_ITEM(lip);
 498        struct xfs_buf          *bp = bip->bli_buf;
 499        uint                    rval = XFS_ITEM_SUCCESS;
 500
 501        if (xfs_buf_ispinned(bp))
 502                return XFS_ITEM_PINNED;
 503        if (!xfs_buf_trylock(bp)) {
 504                /*
 505                 * If we have just raced with a buffer being pinned and it has
 506                 * been marked stale, we could end up stalling until someone else
 507                 * issues a log force to unpin the stale buffer. Check for the
 508                 * race condition here so xfsaild recognizes the buffer is pinned
 509                 * and queues a log force to move it along.
 510                 */
 511                if (xfs_buf_ispinned(bp))
 512                        return XFS_ITEM_PINNED;
 513                return XFS_ITEM_LOCKED;
 514        }
 515
 516        ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
 517
 518        trace_xfs_buf_item_push(bip);
 519
 520        /* has a previous flush failed due to IO errors? */
 521        if ((bp->b_flags & XBF_WRITE_FAIL) &&
 522            ___ratelimit(&xfs_buf_write_fail_rl_state, "XFS: Failing async write")) {
 523                xfs_warn(bp->b_target->bt_mount,
 524"Failing async write on buffer block 0x%llx. Retrying async write.",
 525                         (long long)bp->b_bn);
 526        }
 527
 528        if (!xfs_buf_delwri_queue(bp, buffer_list))
 529                rval = XFS_ITEM_FLUSHING;
 530        xfs_buf_unlock(bp);
 531        return rval;
 532}
 533
 534/*
 535 * Drop the buffer log item refcount and take appropriate action. This helper
 536 * determines whether the bli must be freed or not, since a decrement to zero
 537 * does not necessarily mean the bli is unused.
 538 *
 539 * Return true if the bli is freed, false otherwise.
 540 */
 541bool
 542xfs_buf_item_put(
 543        struct xfs_buf_log_item *bip)
 544{
 545        struct xfs_log_item     *lip = &bip->bli_item;
 546        bool                    aborted;
 547        bool                    dirty;
 548
 549        /* drop the bli ref and return if it wasn't the last one */
 550        if (!atomic_dec_and_test(&bip->bli_refcount))
 551                return false;
 552
 553        /*
 554         * We dropped the last ref and must free the item if clean or aborted.
 555         * If the bli is dirty and non-aborted, the buffer was clean in the
 556         * transaction but still awaiting writeback from previous changes. In
 557         * that case, the bli is freed on buffer writeback completion.
 558         */
 559        aborted = test_bit(XFS_LI_ABORTED, &lip->li_flags) ||
 560                  XFS_FORCED_SHUTDOWN(lip->li_mountp);
 561        dirty = bip->bli_flags & XFS_BLI_DIRTY;
 562        if (dirty && !aborted)
 563                return false;
 564
 565        /*
 566         * The bli is aborted or clean. An aborted item may be in the AIL
 567         * regardless of dirty state.  For example, consider an aborted
 568         * transaction that invalidated a dirty bli and cleared the dirty
 569         * state.
 570         */
 571        if (aborted)
 572                xfs_trans_ail_remove(lip, SHUTDOWN_LOG_IO_ERROR);
 573        xfs_buf_item_relse(bip->bli_buf);
 574        return true;
 575}
 576
 577/*
 578 * Release the buffer associated with the buf log item.  If there is no dirty
 579 * logged data associated with the buffer recorded in the buf log item, then
 580 * free the buf log item and remove the reference to it in the buffer.
 581 *
 582 * This call ignores the recursion count.  It is only called when the buffer
 583 * should REALLY be unlocked, regardless of the recursion count.
 584 *
 585 * We unconditionally drop the transaction's reference to the log item. If the
 586 * item was logged, then another reference was taken when it was pinned, so we
 587 * can safely drop the transaction reference now.  This also allows us to avoid
 588 * potential races with the unpin code freeing the bli by not referencing the
 589 * bli after we've dropped the reference count.
 590 *
 591 * If the XFS_BLI_HOLD flag is set in the buf log item, then free the log item
 592 * if necessary but do not unlock the buffer.  This is for support of
 593 * xfs_trans_bhold(). Make sure the XFS_BLI_HOLD field is cleared if we don't
 594 * free the item.
 595 */
 596STATIC void
 597xfs_buf_item_unlock(
 598        struct xfs_log_item     *lip)
 599{
 600        struct xfs_buf_log_item *bip = BUF_ITEM(lip);
 601        struct xfs_buf          *bp = bip->bli_buf;
 602        bool                    released;
 603        bool                    hold = bip->bli_flags & XFS_BLI_HOLD;
 604        bool                    stale = bip->bli_flags & XFS_BLI_STALE;
 605#if defined(DEBUG) || defined(XFS_WARN)
 606        bool                    ordered = bip->bli_flags & XFS_BLI_ORDERED;
 607        bool                    dirty = bip->bli_flags & XFS_BLI_DIRTY;
 608#endif
 609
 610        trace_xfs_buf_item_unlock(bip);
 611
 612        /*
 613         * The bli dirty state should match whether the blf has logged segments
 614         * except for ordered buffers, where only the bli should be dirty.
 615         */
 616        ASSERT((!ordered && dirty == xfs_buf_item_dirty_format(bip)) ||
 617               (ordered && dirty && !xfs_buf_item_dirty_format(bip)));
 618        ASSERT(!stale || (bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
 619
 620        /*
 621         * Clear the buffer's association with this transaction and
 622         * per-transaction state from the bli, which has been copied above.
 623         */
 624        bp->b_transp = NULL;
 625        bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_HOLD | XFS_BLI_ORDERED);
 626
 627        /*
 628         * Unref the item and unlock the buffer unless held or stale. Stale
 629         * buffers remain locked until final unpin unless the bli is freed by
 630         * the unref call. The latter implies shutdown because buffer
 631         * invalidation dirties the bli and transaction.
 632         */
 633        released = xfs_buf_item_put(bip);
 634        if (hold || (stale && !released))
 635                return;
 636        ASSERT(!stale || test_bit(XFS_LI_ABORTED, &lip->li_flags));
 637        xfs_buf_relse(bp);
 638}
 639
 640/*
 641 * This is called to find out where the oldest active copy of the
 642 * buf log item in the on disk log resides now that the last log
 643 * write of it completed at the given lsn.
 644 * We always re-log all the dirty data in a buffer, so usually the
 645 * latest copy in the on disk log is the only one that matters.  For
 646 * those cases we simply return the given lsn.
 647 *
 648 * The one exception to this is for buffers full of newly allocated
 649 * inodes.  These buffers are only relogged with the XFS_BLI_INODE_BUF
 650 * flag set, indicating that only the di_next_unlinked fields from the
 651 * inodes in the buffers will be replayed during recovery.  If the
 652 * original newly allocated inode images have not yet been flushed
 653 * when the buffer is so relogged, then we need to make sure that we
 654 * keep the old images in the 'active' portion of the log.  We do this
 655 * by returning the original lsn of that transaction here rather than
 656 * the current one.
 657 */
 658STATIC xfs_lsn_t
 659xfs_buf_item_committed(
 660        struct xfs_log_item     *lip,
 661        xfs_lsn_t               lsn)
 662{
 663        struct xfs_buf_log_item *bip = BUF_ITEM(lip);
 664
 665        trace_xfs_buf_item_committed(bip);
 666
 667        if ((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && lip->li_lsn != 0)
 668                return lip->li_lsn;
 669        return lsn;
 670}
 671
 672STATIC void
 673xfs_buf_item_committing(
 674        struct xfs_log_item     *lip,
 675        xfs_lsn_t               commit_lsn)
 676{
 677}
 678
 679/*
 680 * This is the ops vector shared by all buf log items.
 681 */
 682static const struct xfs_item_ops xfs_buf_item_ops = {
 683        .iop_size       = xfs_buf_item_size,
 684        .iop_format     = xfs_buf_item_format,
 685        .iop_pin        = xfs_buf_item_pin,
 686        .iop_unpin      = xfs_buf_item_unpin,
 687        .iop_unlock     = xfs_buf_item_unlock,
 688        .iop_committed  = xfs_buf_item_committed,
 689        .iop_push       = xfs_buf_item_push,
 690        .iop_committing = xfs_buf_item_committing
 691};
 692
 693STATIC int
 694xfs_buf_item_get_format(
 695        struct xfs_buf_log_item *bip,
 696        int                     count)
 697{
 698        ASSERT(bip->bli_formats == NULL);
 699        bip->bli_format_count = count;
 700
 701        if (count == 1) {
 702                bip->bli_formats = &bip->__bli_format;
 703                return 0;
 704        }
 705
 706        bip->bli_formats = kmem_zalloc(count * sizeof(struct xfs_buf_log_format),
 707                                KM_SLEEP);
 708        if (!bip->bli_formats)
 709                return -ENOMEM;
 710        return 0;
 711}
 712
 713STATIC void
 714xfs_buf_item_free_format(
 715        struct xfs_buf_log_item *bip)
 716{
 717        if (bip->bli_formats != &bip->__bli_format) {
 718                kmem_free(bip->bli_formats);
 719                bip->bli_formats = NULL;
 720        }
 721}
 722
 723/*
 724 * Allocate a new buf log item to go with the given buffer.
 725 * Set the buffer's b_log_item field to point to the new
 726 * buf log item.
 727 */
 728int
 729xfs_buf_item_init(
 730        struct xfs_buf  *bp,
 731        struct xfs_mount *mp)
 732{
 733        struct xfs_buf_log_item *bip = bp->b_log_item;
 734        int                     chunks;
 735        int                     map_size;
 736        int                     error;
 737        int                     i;
 738
 739        /*
 740         * Check to see if there is already a buf log item for
 741         * this buffer. If we do already have one, there is
 742         * nothing to do here so return.
 743         */
 744        ASSERT(bp->b_target->bt_mount == mp);
 745        if (bip) {
 746                ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
 747                ASSERT(!bp->b_transp);
 748                ASSERT(bip->bli_buf == bp);
 749                return 0;
 750        }
 751
 752        bip = kmem_zone_zalloc(xfs_buf_item_zone, KM_SLEEP);
 753        xfs_log_item_init(mp, &bip->bli_item, XFS_LI_BUF, &xfs_buf_item_ops);
 754        bip->bli_buf = bp;
 755
 756        /*
 757         * chunks is the number of XFS_BLF_CHUNK size pieces the buffer
 758         * can be divided into. Make sure not to truncate any pieces.
 759         * map_size is the size of the bitmap needed to describe the
 760         * chunks of the buffer.
 761         *
 762         * Discontiguous buffer support follows the layout of the underlying
 763         * buffer. This makes the implementation as simple as possible.
 764         */
 765        error = xfs_buf_item_get_format(bip, bp->b_map_count);
 766        ASSERT(error == 0);
 767        if (error) {    /* to stop gcc throwing set-but-unused warnings */
 768                kmem_zone_free(xfs_buf_item_zone, bip);
 769                return error;
 770        }
 771
 772
 773        for (i = 0; i < bip->bli_format_count; i++) {
 774                chunks = DIV_ROUND_UP(BBTOB(bp->b_maps[i].bm_len),
 775                                      XFS_BLF_CHUNK);
 776                map_size = DIV_ROUND_UP(chunks, NBWORD);
 777
 778                bip->bli_formats[i].blf_type = XFS_LI_BUF;
 779                bip->bli_formats[i].blf_blkno = bp->b_maps[i].bm_bn;
 780                bip->bli_formats[i].blf_len = bp->b_maps[i].bm_len;
 781                bip->bli_formats[i].blf_map_size = map_size;
 782        }
 783
 784        bp->b_log_item = bip;
 785        xfs_buf_hold(bp);
 786        return 0;
 787}
 788
 789
 790/*
 791 * Mark bytes first through last inclusive as dirty in the buf
 792 * item's bitmap.
 793 */
 794static void
 795xfs_buf_item_log_segment(
 796        uint                    first,
 797        uint                    last,
 798        uint                    *map)
 799{
 800        uint            first_bit;
 801        uint            last_bit;
 802        uint            bits_to_set;
 803        uint            bits_set;
 804        uint            word_num;
 805        uint            *wordp;
 806        uint            bit;
 807        uint            end_bit;
 808        uint            mask;
 809
 810        /*
 811         * Convert byte offsets to bit numbers.
 812         */
 813        first_bit = first >> XFS_BLF_SHIFT;
 814        last_bit = last >> XFS_BLF_SHIFT;
 815
 816        /*
 817         * Calculate the total number of bits to be set.
 818         */
 819        bits_to_set = last_bit - first_bit + 1;
 820
 821        /*
 822         * Get a pointer to the first word in the bitmap
 823         * to set a bit in.
 824         */
 825        word_num = first_bit >> BIT_TO_WORD_SHIFT;
 826        wordp = &map[word_num];
 827
 828        /*
 829         * Calculate the starting bit in the first word.
 830         */
 831        bit = first_bit & (uint)(NBWORD - 1);
 832
 833        /*
 834         * First set any bits in the first word of our range.
 835         * If it starts at bit 0 of the word, it will be
 836         * set below rather than here.  That is what the variable
 837         * bit tells us. The variable bits_set tracks the number
 838         * of bits that have been set so far.  End_bit is the number
 839         * of the last bit to be set in this word plus one.
 840         */
 841        if (bit) {
 842                end_bit = min(bit + bits_to_set, (uint)NBWORD);
 843                mask = ((1U << (end_bit - bit)) - 1) << bit;
 844                *wordp |= mask;
 845                wordp++;
 846                bits_set = end_bit - bit;
 847        } else {
 848                bits_set = 0;
 849        }
 850
 851        /*
 852         * Now set bits a whole word at a time that are between
 853         * first_bit and last_bit.
 854         */
 855        while ((bits_to_set - bits_set) >= NBWORD) {
 856                *wordp |= 0xffffffff;
 857                bits_set += NBWORD;
 858                wordp++;
 859        }
 860
 861        /*
 862         * Finally, set any bits left to be set in one last partial word.
 863         */
 864        end_bit = bits_to_set - bits_set;
 865        if (end_bit) {
 866                mask = (1U << end_bit) - 1;
 867                *wordp |= mask;
 868        }
 869}
 870
 871/*
 872 * Mark bytes first through last inclusive as dirty in the buf
 873 * item's bitmap.
 874 */
 875void
 876xfs_buf_item_log(
 877        struct xfs_buf_log_item *bip,
 878        uint                    first,
 879        uint                    last)
 880{
 881        int                     i;
 882        uint                    start;
 883        uint                    end;
 884        struct xfs_buf          *bp = bip->bli_buf;
 885
 886        /*
 887         * walk each buffer segment and mark them dirty appropriately.
 888         */
 889        start = 0;
 890        for (i = 0; i < bip->bli_format_count; i++) {
 891                if (start > last)
 892                        break;
 893                end = start + BBTOB(bp->b_maps[i].bm_len) - 1;
 894
 895                /* skip to the map that includes the first byte to log */
 896                if (first > end) {
 897                        start += BBTOB(bp->b_maps[i].bm_len);
 898                        continue;
 899                }
 900
 901                /*
 902                 * Trim the range to this segment and mark it in the bitmap.
 903                 * Note that we must convert buffer offsets to segment relative
 904                 * offsets (e.g., the first byte of each segment is byte 0 of
 905                 * that segment).
 906                 */
 907                if (first < start)
 908                        first = start;
 909                if (end > last)
 910                        end = last;
 911                xfs_buf_item_log_segment(first - start, end - start,
 912                                         &bip->bli_formats[i].blf_data_map[0]);
 913
 914                start += BBTOB(bp->b_maps[i].bm_len);
 915        }
 916}
 917
 918
 919/*
 920 * Return true if the buffer has any ranges logged/dirtied by a transaction,
 921 * false otherwise.
 922 */
 923bool
 924xfs_buf_item_dirty_format(
 925        struct xfs_buf_log_item *bip)
 926{
 927        int                     i;
 928
 929        for (i = 0; i < bip->bli_format_count; i++) {
 930                if (!xfs_bitmap_empty(bip->bli_formats[i].blf_data_map,
 931                             bip->bli_formats[i].blf_map_size))
 932                        return true;
 933        }
 934
 935        return false;
 936}
 937
 938STATIC void
 939xfs_buf_item_free(
 940        struct xfs_buf_log_item *bip)
 941{
 942        xfs_buf_item_free_format(bip);
 943        kmem_free(bip->bli_item.li_lv_shadow);
 944        kmem_zone_free(xfs_buf_item_zone, bip);
 945}
 946
 947/*
 948 * This is called when the buf log item is no longer needed.  It should
 949 * free the buf log item associated with the given buffer and clear
 950 * the buffer's pointer to the buf log item.  If there are no more
 951 * items in the list, clear the b_iodone field of the buffer (see
 952 * xfs_buf_attach_iodone() below).
 953 */
 954void
 955xfs_buf_item_relse(
 956        xfs_buf_t       *bp)
 957{
 958        struct xfs_buf_log_item *bip = bp->b_log_item;
 959
 960        trace_xfs_buf_item_relse(bp, _RET_IP_);
 961        ASSERT(!(bip->bli_item.li_flags & XFS_LI_IN_AIL));
 962
 963        bp->b_log_item = NULL;
 964        if (list_empty(&bp->b_li_list))
 965                bp->b_iodone = NULL;
 966
 967        xfs_buf_rele(bp);
 968        xfs_buf_item_free(bip);
 969}
 970
 971
 972/*
 973 * Add the given log item with its callback to the list of callbacks
 974 * to be called when the buffer's I/O completes.  If it is not set
 975 * already, set the buffer's b_iodone() routine to be
 976 * xfs_buf_iodone_callbacks() and link the log item into the list of
 977 * items rooted at b_li_list.
 978 */
 979void
 980xfs_buf_attach_iodone(
 981        xfs_buf_t       *bp,
 982        void            (*cb)(xfs_buf_t *, xfs_log_item_t *),
 983        xfs_log_item_t  *lip)
 984{
 985        ASSERT(xfs_buf_islocked(bp));
 986
 987        lip->li_cb = cb;
 988        list_add_tail(&lip->li_bio_list, &bp->b_li_list);
 989
 990        ASSERT(bp->b_iodone == NULL ||
 991               bp->b_iodone == xfs_buf_iodone_callbacks);
 992        bp->b_iodone = xfs_buf_iodone_callbacks;
 993}
 994
 995/*
 996 * We can have many callbacks on a buffer. Running the callbacks individually
 997 * can cause a lot of contention on the AIL lock, so we allow for a single
 998 * callback to be able to scan the remaining items in bp->b_li_list for other
 999 * items of the same type and callback to be processed in the first call.
1000 *
1001 * As a result, the loop walking the callback list below will also modify the
1002 * list. it removes the first item from the list and then runs the callback.
1003 * The loop then restarts from the new first item int the list. This allows the
1004 * callback to scan and modify the list attached to the buffer and we don't
1005 * have to care about maintaining a next item pointer.
1006 */
1007STATIC void
1008xfs_buf_do_callbacks(
1009        struct xfs_buf          *bp)
1010{
1011        struct xfs_buf_log_item *blip = bp->b_log_item;
1012        struct xfs_log_item     *lip;
1013
1014        /* If there is a buf_log_item attached, run its callback */
1015        if (blip) {
1016                lip = &blip->bli_item;
1017                lip->li_cb(bp, lip);
1018        }
1019
1020        while (!list_empty(&bp->b_li_list)) {
1021                lip = list_first_entry(&bp->b_li_list, struct xfs_log_item,
1022                                       li_bio_list);
1023
1024                /*
1025                 * Remove the item from the list, so we don't have any
1026                 * confusion if the item is added to another buf.
1027                 * Don't touch the log item after calling its
1028                 * callback, because it could have freed itself.
1029                 */
1030                list_del_init(&lip->li_bio_list);
1031                lip->li_cb(bp, lip);
1032        }
1033}
1034
1035/*
1036 * Invoke the error state callback for each log item affected by the failed I/O.
1037 *
1038 * If a metadata buffer write fails with a non-permanent error, the buffer is
1039 * eventually resubmitted and so the completion callbacks are not run. The error
1040 * state may need to be propagated to the log items attached to the buffer,
1041 * however, so the next AIL push of the item knows hot to handle it correctly.
1042 */
1043STATIC void
1044xfs_buf_do_callbacks_fail(
1045        struct xfs_buf          *bp)
1046{
1047        struct xfs_log_item     *lip;
1048        struct xfs_ail          *ailp;
1049
1050        /*
1051         * Buffer log item errors are handled directly by xfs_buf_item_push()
1052         * and xfs_buf_iodone_callback_error, and they have no IO error
1053         * callbacks. Check only for items in b_li_list.
1054         */
1055        if (list_empty(&bp->b_li_list))
1056                return;
1057
1058        lip = list_first_entry(&bp->b_li_list, struct xfs_log_item,
1059                        li_bio_list);
1060        ailp = lip->li_ailp;
1061        spin_lock(&ailp->ail_lock);
1062        list_for_each_entry(lip, &bp->b_li_list, li_bio_list) {
1063                if (lip->li_ops->iop_error)
1064                        lip->li_ops->iop_error(lip, bp);
1065        }
1066        spin_unlock(&ailp->ail_lock);
1067}
1068
1069static bool
1070xfs_buf_iodone_callback_error(
1071        struct xfs_buf          *bp)
1072{
1073        struct xfs_buf_log_item *bip = bp->b_log_item;
1074        struct xfs_log_item     *lip;
1075        struct xfs_mount        *mp;
1076        static ulong            lasttime;
1077        static xfs_buftarg_t    *lasttarg;
1078        struct xfs_error_cfg    *cfg;
1079
1080        /*
1081         * The failed buffer might not have a buf_log_item attached or the
1082         * log_item list might be empty. Get the mp from the available
1083         * xfs_log_item
1084         */
1085        lip = list_first_entry_or_null(&bp->b_li_list, struct xfs_log_item,
1086                                       li_bio_list);
1087        mp = lip ? lip->li_mountp : bip->bli_item.li_mountp;
1088
1089        /*
1090         * If we've already decided to shutdown the filesystem because of
1091         * I/O errors, there's no point in giving this a retry.
1092         */
1093        if (XFS_FORCED_SHUTDOWN(mp))
1094                goto out_stale;
1095
1096        if (bp->b_target != lasttarg ||
1097            time_after(jiffies, (lasttime + 5*HZ))) {
1098                lasttime = jiffies;
1099                xfs_buf_ioerror_alert(bp, __func__);
1100        }
1101        lasttarg = bp->b_target;
1102
1103        /* synchronous writes will have callers process the error */
1104        if (!(bp->b_flags & XBF_ASYNC))
1105                goto out_stale;
1106
1107        trace_xfs_buf_item_iodone_async(bp, _RET_IP_);
1108        ASSERT(bp->b_iodone != NULL);
1109
1110        cfg = xfs_error_get_cfg(mp, XFS_ERR_METADATA, bp->b_error);
1111
1112        /*
1113         * If the write was asynchronous then no one will be looking for the
1114         * error.  If this is the first failure of this type, clear the error
1115         * state and write the buffer out again. This means we always retry an
1116         * async write failure at least once, but we also need to set the buffer
1117         * up to behave correctly now for repeated failures.
1118         */
1119        if (!(bp->b_flags & (XBF_STALE | XBF_WRITE_FAIL)) ||
1120             bp->b_last_error != bp->b_error) {
1121                bp->b_flags |= (XBF_WRITE | XBF_DONE | XBF_WRITE_FAIL);
1122                bp->b_last_error = bp->b_error;
1123                if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1124                    !bp->b_first_retry_time)
1125                        bp->b_first_retry_time = jiffies;
1126
1127                xfs_buf_ioerror(bp, 0);
1128                xfs_buf_submit(bp);
1129                return true;
1130        }
1131
1132        /*
1133         * Repeated failure on an async write. Take action according to the
1134         * error configuration we have been set up to use.
1135         */
1136
1137        if (cfg->max_retries != XFS_ERR_RETRY_FOREVER &&
1138            ++bp->b_retries > cfg->max_retries)
1139                        goto permanent_error;
1140        if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1141            time_after(jiffies, cfg->retry_timeout + bp->b_first_retry_time))
1142                        goto permanent_error;
1143
1144        /* At unmount we may treat errors differently */
1145        if ((mp->m_flags & XFS_MOUNT_UNMOUNTING) && mp->m_fail_unmount)
1146                goto permanent_error;
1147
1148        /*
1149         * Still a transient error, run IO completion failure callbacks and let
1150         * the higher layers retry the buffer.
1151         */
1152        xfs_buf_do_callbacks_fail(bp);
1153        xfs_buf_ioerror(bp, 0);
1154        xfs_buf_relse(bp);
1155        return true;
1156
1157        /*
1158         * Permanent error - we need to trigger a shutdown if we haven't already
1159         * to indicate that inconsistency will result from this action.
1160         */
1161permanent_error:
1162        xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1163out_stale:
1164        xfs_buf_stale(bp);
1165        bp->b_flags |= XBF_DONE;
1166        trace_xfs_buf_error_relse(bp, _RET_IP_);
1167        return false;
1168}
1169
1170/*
1171 * This is the iodone() function for buffers which have had callbacks attached
1172 * to them by xfs_buf_attach_iodone(). We need to iterate the items on the
1173 * callback list, mark the buffer as having no more callbacks and then push the
1174 * buffer through IO completion processing.
1175 */
1176void
1177xfs_buf_iodone_callbacks(
1178        struct xfs_buf          *bp)
1179{
1180        /*
1181         * If there is an error, process it. Some errors require us
1182         * to run callbacks after failure processing is done so we
1183         * detect that and take appropriate action.
1184         */
1185        if (bp->b_error && xfs_buf_iodone_callback_error(bp))
1186                return;
1187
1188        /*
1189         * Successful IO or permanent error. Either way, we can clear the
1190         * retry state here in preparation for the next error that may occur.
1191         */
1192        bp->b_last_error = 0;
1193        bp->b_retries = 0;
1194        bp->b_first_retry_time = 0;
1195
1196        xfs_buf_do_callbacks(bp);
1197        bp->b_log_item = NULL;
1198        list_del_init(&bp->b_li_list);
1199        bp->b_iodone = NULL;
1200        xfs_buf_ioend(bp);
1201}
1202
1203/*
1204 * This is the iodone() function for buffers which have been
1205 * logged.  It is called when they are eventually flushed out.
1206 * It should remove the buf item from the AIL, and free the buf item.
1207 * It is called by xfs_buf_iodone_callbacks() above which will take
1208 * care of cleaning up the buffer itself.
1209 */
1210void
1211xfs_buf_iodone(
1212        struct xfs_buf          *bp,
1213        struct xfs_log_item     *lip)
1214{
1215        struct xfs_ail          *ailp = lip->li_ailp;
1216
1217        ASSERT(BUF_ITEM(lip)->bli_buf == bp);
1218
1219        xfs_buf_rele(bp);
1220
1221        /*
1222         * If we are forcibly shutting down, this may well be
1223         * off the AIL already. That's because we simulate the
1224         * log-committed callbacks to unpin these buffers. Or we may never
1225         * have put this item on AIL because of the transaction was
1226         * aborted forcibly. xfs_trans_ail_delete() takes care of these.
1227         *
1228         * Either way, AIL is useless if we're forcing a shutdown.
1229         */
1230        spin_lock(&ailp->ail_lock);
1231        xfs_trans_ail_delete(ailp, lip, SHUTDOWN_CORRUPT_INCORE);
1232        xfs_buf_item_free(BUF_ITEM(lip));
1233}
1234
1235/*
1236 * Requeue a failed buffer for writeback.
1237 *
1238 * We clear the log item failed state here as well, but we have to be careful
1239 * about reference counts because the only active reference counts on the buffer
1240 * may be the failed log items. Hence if we clear the log item failed state
1241 * before queuing the buffer for IO we can release all active references to
1242 * the buffer and free it, leading to use after free problems in
1243 * xfs_buf_delwri_queue. It makes no difference to the buffer or log items which
1244 * order we process them in - the buffer is locked, and we own the buffer list
1245 * so nothing on them is going to change while we are performing this action.
1246 *
1247 * Hence we can safely queue the buffer for IO before we clear the failed log
1248 * item state, therefore  always having an active reference to the buffer and
1249 * avoiding the transient zero-reference state that leads to use-after-free.
1250 *
1251 * Return true if the buffer was added to the buffer list, false if it was
1252 * already on the buffer list.
1253 */
1254bool
1255xfs_buf_resubmit_failed_buffers(
1256        struct xfs_buf          *bp,
1257        struct list_head        *buffer_list)
1258{
1259        struct xfs_log_item     *lip;
1260        bool                    ret;
1261
1262        ret = xfs_buf_delwri_queue(bp, buffer_list);
1263
1264        /*
1265         * XFS_LI_FAILED set/clear is protected by ail_lock, caller of this
1266         * function already have it acquired
1267         */
1268        list_for_each_entry(lip, &bp->b_li_list, li_bio_list)
1269                xfs_clear_li_failed(lip);
1270
1271        return ret;
1272}
1273