linux/fs/xfs/xfs_file.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   4 * All Rights Reserved.
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_shared.h"
   9#include "xfs_format.h"
  10#include "xfs_log_format.h"
  11#include "xfs_trans_resv.h"
  12#include "xfs_mount.h"
  13#include "xfs_da_format.h"
  14#include "xfs_da_btree.h"
  15#include "xfs_inode.h"
  16#include "xfs_trans.h"
  17#include "xfs_inode_item.h"
  18#include "xfs_bmap.h"
  19#include "xfs_bmap_util.h"
  20#include "xfs_error.h"
  21#include "xfs_dir2.h"
  22#include "xfs_dir2_priv.h"
  23#include "xfs_ioctl.h"
  24#include "xfs_trace.h"
  25#include "xfs_log.h"
  26#include "xfs_icache.h"
  27#include "xfs_pnfs.h"
  28#include "xfs_iomap.h"
  29#include "xfs_reflink.h"
  30
  31#include <linux/dcache.h>
  32#include <linux/falloc.h>
  33#include <linux/pagevec.h>
  34#include <linux/backing-dev.h>
  35#include <linux/mman.h>
  36
  37static const struct vm_operations_struct xfs_file_vm_ops;
  38
  39int
  40xfs_update_prealloc_flags(
  41        struct xfs_inode        *ip,
  42        enum xfs_prealloc_flags flags)
  43{
  44        struct xfs_trans        *tp;
  45        int                     error;
  46
  47        error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
  48                        0, 0, 0, &tp);
  49        if (error)
  50                return error;
  51
  52        xfs_ilock(ip, XFS_ILOCK_EXCL);
  53        xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
  54
  55        if (!(flags & XFS_PREALLOC_INVISIBLE)) {
  56                VFS_I(ip)->i_mode &= ~S_ISUID;
  57                if (VFS_I(ip)->i_mode & S_IXGRP)
  58                        VFS_I(ip)->i_mode &= ~S_ISGID;
  59                xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
  60        }
  61
  62        if (flags & XFS_PREALLOC_SET)
  63                ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
  64        if (flags & XFS_PREALLOC_CLEAR)
  65                ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
  66
  67        xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  68        if (flags & XFS_PREALLOC_SYNC)
  69                xfs_trans_set_sync(tp);
  70        return xfs_trans_commit(tp);
  71}
  72
  73/*
  74 * Fsync operations on directories are much simpler than on regular files,
  75 * as there is no file data to flush, and thus also no need for explicit
  76 * cache flush operations, and there are no non-transaction metadata updates
  77 * on directories either.
  78 */
  79STATIC int
  80xfs_dir_fsync(
  81        struct file             *file,
  82        loff_t                  start,
  83        loff_t                  end,
  84        int                     datasync)
  85{
  86        struct xfs_inode        *ip = XFS_I(file->f_mapping->host);
  87        struct xfs_mount        *mp = ip->i_mount;
  88        xfs_lsn_t               lsn = 0;
  89
  90        trace_xfs_dir_fsync(ip);
  91
  92        xfs_ilock(ip, XFS_ILOCK_SHARED);
  93        if (xfs_ipincount(ip))
  94                lsn = ip->i_itemp->ili_last_lsn;
  95        xfs_iunlock(ip, XFS_ILOCK_SHARED);
  96
  97        if (!lsn)
  98                return 0;
  99        return xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
 100}
 101
 102STATIC int
 103xfs_file_fsync(
 104        struct file             *file,
 105        loff_t                  start,
 106        loff_t                  end,
 107        int                     datasync)
 108{
 109        struct inode            *inode = file->f_mapping->host;
 110        struct xfs_inode        *ip = XFS_I(inode);
 111        struct xfs_mount        *mp = ip->i_mount;
 112        int                     error = 0;
 113        int                     log_flushed = 0;
 114        xfs_lsn_t               lsn = 0;
 115
 116        trace_xfs_file_fsync(ip);
 117
 118        error = file_write_and_wait_range(file, start, end);
 119        if (error)
 120                return error;
 121
 122        if (XFS_FORCED_SHUTDOWN(mp))
 123                return -EIO;
 124
 125        xfs_iflags_clear(ip, XFS_ITRUNCATED);
 126
 127        /*
 128         * If we have an RT and/or log subvolume we need to make sure to flush
 129         * the write cache the device used for file data first.  This is to
 130         * ensure newly written file data make it to disk before logging the new
 131         * inode size in case of an extending write.
 132         */
 133        if (XFS_IS_REALTIME_INODE(ip))
 134                xfs_blkdev_issue_flush(mp->m_rtdev_targp);
 135        else if (mp->m_logdev_targp != mp->m_ddev_targp)
 136                xfs_blkdev_issue_flush(mp->m_ddev_targp);
 137
 138        /*
 139         * All metadata updates are logged, which means that we just have to
 140         * flush the log up to the latest LSN that touched the inode. If we have
 141         * concurrent fsync/fdatasync() calls, we need them to all block on the
 142         * log force before we clear the ili_fsync_fields field. This ensures
 143         * that we don't get a racing sync operation that does not wait for the
 144         * metadata to hit the journal before returning. If we race with
 145         * clearing the ili_fsync_fields, then all that will happen is the log
 146         * force will do nothing as the lsn will already be on disk. We can't
 147         * race with setting ili_fsync_fields because that is done under
 148         * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
 149         * until after the ili_fsync_fields is cleared.
 150         */
 151        xfs_ilock(ip, XFS_ILOCK_SHARED);
 152        if (xfs_ipincount(ip)) {
 153                if (!datasync ||
 154                    (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
 155                        lsn = ip->i_itemp->ili_last_lsn;
 156        }
 157
 158        if (lsn) {
 159                error = xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
 160                ip->i_itemp->ili_fsync_fields = 0;
 161        }
 162        xfs_iunlock(ip, XFS_ILOCK_SHARED);
 163
 164        /*
 165         * If we only have a single device, and the log force about was
 166         * a no-op we might have to flush the data device cache here.
 167         * This can only happen for fdatasync/O_DSYNC if we were overwriting
 168         * an already allocated file and thus do not have any metadata to
 169         * commit.
 170         */
 171        if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) &&
 172            mp->m_logdev_targp == mp->m_ddev_targp)
 173                xfs_blkdev_issue_flush(mp->m_ddev_targp);
 174
 175        return error;
 176}
 177
 178STATIC ssize_t
 179xfs_file_dio_aio_read(
 180        struct kiocb            *iocb,
 181        struct iov_iter         *to)
 182{
 183        struct xfs_inode        *ip = XFS_I(file_inode(iocb->ki_filp));
 184        size_t                  count = iov_iter_count(to);
 185        ssize_t                 ret;
 186
 187        trace_xfs_file_direct_read(ip, count, iocb->ki_pos);
 188
 189        if (!count)
 190                return 0; /* skip atime */
 191
 192        file_accessed(iocb->ki_filp);
 193
 194        xfs_ilock(ip, XFS_IOLOCK_SHARED);
 195        ret = iomap_dio_rw(iocb, to, &xfs_iomap_ops, NULL);
 196        xfs_iunlock(ip, XFS_IOLOCK_SHARED);
 197
 198        return ret;
 199}
 200
 201static noinline ssize_t
 202xfs_file_dax_read(
 203        struct kiocb            *iocb,
 204        struct iov_iter         *to)
 205{
 206        struct xfs_inode        *ip = XFS_I(iocb->ki_filp->f_mapping->host);
 207        size_t                  count = iov_iter_count(to);
 208        ssize_t                 ret = 0;
 209
 210        trace_xfs_file_dax_read(ip, count, iocb->ki_pos);
 211
 212        if (!count)
 213                return 0; /* skip atime */
 214
 215        if (iocb->ki_flags & IOCB_NOWAIT) {
 216                if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
 217                        return -EAGAIN;
 218        } else {
 219                xfs_ilock(ip, XFS_IOLOCK_SHARED);
 220        }
 221
 222        ret = dax_iomap_rw(iocb, to, &xfs_iomap_ops);
 223        xfs_iunlock(ip, XFS_IOLOCK_SHARED);
 224
 225        file_accessed(iocb->ki_filp);
 226        return ret;
 227}
 228
 229STATIC ssize_t
 230xfs_file_buffered_aio_read(
 231        struct kiocb            *iocb,
 232        struct iov_iter         *to)
 233{
 234        struct xfs_inode        *ip = XFS_I(file_inode(iocb->ki_filp));
 235        ssize_t                 ret;
 236
 237        trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos);
 238
 239        if (iocb->ki_flags & IOCB_NOWAIT) {
 240                if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
 241                        return -EAGAIN;
 242        } else {
 243                xfs_ilock(ip, XFS_IOLOCK_SHARED);
 244        }
 245        ret = generic_file_read_iter(iocb, to);
 246        xfs_iunlock(ip, XFS_IOLOCK_SHARED);
 247
 248        return ret;
 249}
 250
 251STATIC ssize_t
 252xfs_file_read_iter(
 253        struct kiocb            *iocb,
 254        struct iov_iter         *to)
 255{
 256        struct inode            *inode = file_inode(iocb->ki_filp);
 257        struct xfs_mount        *mp = XFS_I(inode)->i_mount;
 258        ssize_t                 ret = 0;
 259
 260        XFS_STATS_INC(mp, xs_read_calls);
 261
 262        if (XFS_FORCED_SHUTDOWN(mp))
 263                return -EIO;
 264
 265        if (IS_DAX(inode))
 266                ret = xfs_file_dax_read(iocb, to);
 267        else if (iocb->ki_flags & IOCB_DIRECT)
 268                ret = xfs_file_dio_aio_read(iocb, to);
 269        else
 270                ret = xfs_file_buffered_aio_read(iocb, to);
 271
 272        if (ret > 0)
 273                XFS_STATS_ADD(mp, xs_read_bytes, ret);
 274        return ret;
 275}
 276
 277/*
 278 * Common pre-write limit and setup checks.
 279 *
 280 * Called with the iolocked held either shared and exclusive according to
 281 * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
 282 * if called for a direct write beyond i_size.
 283 */
 284STATIC ssize_t
 285xfs_file_aio_write_checks(
 286        struct kiocb            *iocb,
 287        struct iov_iter         *from,
 288        int                     *iolock)
 289{
 290        struct file             *file = iocb->ki_filp;
 291        struct inode            *inode = file->f_mapping->host;
 292        struct xfs_inode        *ip = XFS_I(inode);
 293        ssize_t                 error = 0;
 294        size_t                  count = iov_iter_count(from);
 295        bool                    drained_dio = false;
 296        loff_t                  isize;
 297
 298restart:
 299        error = generic_write_checks(iocb, from);
 300        if (error <= 0)
 301                return error;
 302
 303        error = xfs_break_layouts(inode, iolock, BREAK_WRITE);
 304        if (error)
 305                return error;
 306
 307        /*
 308         * For changing security info in file_remove_privs() we need i_rwsem
 309         * exclusively.
 310         */
 311        if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
 312                xfs_iunlock(ip, *iolock);
 313                *iolock = XFS_IOLOCK_EXCL;
 314                xfs_ilock(ip, *iolock);
 315                goto restart;
 316        }
 317        /*
 318         * If the offset is beyond the size of the file, we need to zero any
 319         * blocks that fall between the existing EOF and the start of this
 320         * write.  If zeroing is needed and we are currently holding the
 321         * iolock shared, we need to update it to exclusive which implies
 322         * having to redo all checks before.
 323         *
 324         * We need to serialise against EOF updates that occur in IO
 325         * completions here. We want to make sure that nobody is changing the
 326         * size while we do this check until we have placed an IO barrier (i.e.
 327         * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
 328         * The spinlock effectively forms a memory barrier once we have the
 329         * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
 330         * and hence be able to correctly determine if we need to run zeroing.
 331         */
 332        spin_lock(&ip->i_flags_lock);
 333        isize = i_size_read(inode);
 334        if (iocb->ki_pos > isize) {
 335                spin_unlock(&ip->i_flags_lock);
 336                if (!drained_dio) {
 337                        if (*iolock == XFS_IOLOCK_SHARED) {
 338                                xfs_iunlock(ip, *iolock);
 339                                *iolock = XFS_IOLOCK_EXCL;
 340                                xfs_ilock(ip, *iolock);
 341                                iov_iter_reexpand(from, count);
 342                        }
 343                        /*
 344                         * We now have an IO submission barrier in place, but
 345                         * AIO can do EOF updates during IO completion and hence
 346                         * we now need to wait for all of them to drain. Non-AIO
 347                         * DIO will have drained before we are given the
 348                         * XFS_IOLOCK_EXCL, and so for most cases this wait is a
 349                         * no-op.
 350                         */
 351                        inode_dio_wait(inode);
 352                        drained_dio = true;
 353                        goto restart;
 354                }
 355        
 356                trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize);
 357                error = iomap_zero_range(inode, isize, iocb->ki_pos - isize,
 358                                NULL, &xfs_iomap_ops);
 359                if (error)
 360                        return error;
 361        } else
 362                spin_unlock(&ip->i_flags_lock);
 363
 364        /*
 365         * Updating the timestamps will grab the ilock again from
 366         * xfs_fs_dirty_inode, so we have to call it after dropping the
 367         * lock above.  Eventually we should look into a way to avoid
 368         * the pointless lock roundtrip.
 369         */
 370        if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
 371                error = file_update_time(file);
 372                if (error)
 373                        return error;
 374        }
 375
 376        /*
 377         * If we're writing the file then make sure to clear the setuid and
 378         * setgid bits if the process is not being run by root.  This keeps
 379         * people from modifying setuid and setgid binaries.
 380         */
 381        if (!IS_NOSEC(inode))
 382                return file_remove_privs(file);
 383        return 0;
 384}
 385
 386static int
 387xfs_dio_write_end_io(
 388        struct kiocb            *iocb,
 389        ssize_t                 size,
 390        unsigned                flags)
 391{
 392        struct inode            *inode = file_inode(iocb->ki_filp);
 393        struct xfs_inode        *ip = XFS_I(inode);
 394        loff_t                  offset = iocb->ki_pos;
 395        int                     error = 0;
 396
 397        trace_xfs_end_io_direct_write(ip, offset, size);
 398
 399        if (XFS_FORCED_SHUTDOWN(ip->i_mount))
 400                return -EIO;
 401
 402        if (size <= 0)
 403                return size;
 404
 405        /*
 406         * Capture amount written on completion as we can't reliably account
 407         * for it on submission.
 408         */
 409        XFS_STATS_ADD(ip->i_mount, xs_write_bytes, size);
 410
 411        if (flags & IOMAP_DIO_COW) {
 412                error = xfs_reflink_end_cow(ip, offset, size);
 413                if (error)
 414                        return error;
 415        }
 416
 417        /*
 418         * Unwritten conversion updates the in-core isize after extent
 419         * conversion but before updating the on-disk size. Updating isize any
 420         * earlier allows a racing dio read to find unwritten extents before
 421         * they are converted.
 422         */
 423        if (flags & IOMAP_DIO_UNWRITTEN)
 424                return xfs_iomap_write_unwritten(ip, offset, size, true);
 425
 426        /*
 427         * We need to update the in-core inode size here so that we don't end up
 428         * with the on-disk inode size being outside the in-core inode size. We
 429         * have no other method of updating EOF for AIO, so always do it here
 430         * if necessary.
 431         *
 432         * We need to lock the test/set EOF update as we can be racing with
 433         * other IO completions here to update the EOF. Failing to serialise
 434         * here can result in EOF moving backwards and Bad Things Happen when
 435         * that occurs.
 436         */
 437        spin_lock(&ip->i_flags_lock);
 438        if (offset + size > i_size_read(inode)) {
 439                i_size_write(inode, offset + size);
 440                spin_unlock(&ip->i_flags_lock);
 441                error = xfs_setfilesize(ip, offset, size);
 442        } else {
 443                spin_unlock(&ip->i_flags_lock);
 444        }
 445
 446        return error;
 447}
 448
 449/*
 450 * xfs_file_dio_aio_write - handle direct IO writes
 451 *
 452 * Lock the inode appropriately to prepare for and issue a direct IO write.
 453 * By separating it from the buffered write path we remove all the tricky to
 454 * follow locking changes and looping.
 455 *
 456 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
 457 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
 458 * pages are flushed out.
 459 *
 460 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
 461 * allowing them to be done in parallel with reads and other direct IO writes.
 462 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
 463 * needs to do sub-block zeroing and that requires serialisation against other
 464 * direct IOs to the same block. In this case we need to serialise the
 465 * submission of the unaligned IOs so that we don't get racing block zeroing in
 466 * the dio layer.  To avoid the problem with aio, we also need to wait for
 467 * outstanding IOs to complete so that unwritten extent conversion is completed
 468 * before we try to map the overlapping block. This is currently implemented by
 469 * hitting it with a big hammer (i.e. inode_dio_wait()).
 470 *
 471 * Returns with locks held indicated by @iolock and errors indicated by
 472 * negative return values.
 473 */
 474STATIC ssize_t
 475xfs_file_dio_aio_write(
 476        struct kiocb            *iocb,
 477        struct iov_iter         *from)
 478{
 479        struct file             *file = iocb->ki_filp;
 480        struct address_space    *mapping = file->f_mapping;
 481        struct inode            *inode = mapping->host;
 482        struct xfs_inode        *ip = XFS_I(inode);
 483        struct xfs_mount        *mp = ip->i_mount;
 484        ssize_t                 ret = 0;
 485        int                     unaligned_io = 0;
 486        int                     iolock;
 487        size_t                  count = iov_iter_count(from);
 488        struct xfs_buftarg      *target = XFS_IS_REALTIME_INODE(ip) ?
 489                                        mp->m_rtdev_targp : mp->m_ddev_targp;
 490
 491        /* DIO must be aligned to device logical sector size */
 492        if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
 493                return -EINVAL;
 494
 495        /*
 496         * Don't take the exclusive iolock here unless the I/O is unaligned to
 497         * the file system block size.  We don't need to consider the EOF
 498         * extension case here because xfs_file_aio_write_checks() will relock
 499         * the inode as necessary for EOF zeroing cases and fill out the new
 500         * inode size as appropriate.
 501         */
 502        if ((iocb->ki_pos & mp->m_blockmask) ||
 503            ((iocb->ki_pos + count) & mp->m_blockmask)) {
 504                unaligned_io = 1;
 505
 506                /*
 507                 * We can't properly handle unaligned direct I/O to reflink
 508                 * files yet, as we can't unshare a partial block.
 509                 */
 510                if (xfs_is_reflink_inode(ip)) {
 511                        trace_xfs_reflink_bounce_dio_write(ip, iocb->ki_pos, count);
 512                        return -EREMCHG;
 513                }
 514                iolock = XFS_IOLOCK_EXCL;
 515        } else {
 516                iolock = XFS_IOLOCK_SHARED;
 517        }
 518
 519        if (iocb->ki_flags & IOCB_NOWAIT) {
 520                if (!xfs_ilock_nowait(ip, iolock))
 521                        return -EAGAIN;
 522        } else {
 523                xfs_ilock(ip, iolock);
 524        }
 525
 526        ret = xfs_file_aio_write_checks(iocb, from, &iolock);
 527        if (ret)
 528                goto out;
 529        count = iov_iter_count(from);
 530
 531        /*
 532         * If we are doing unaligned IO, wait for all other IO to drain,
 533         * otherwise demote the lock if we had to take the exclusive lock
 534         * for other reasons in xfs_file_aio_write_checks.
 535         */
 536        if (unaligned_io) {
 537                /* If we are going to wait for other DIO to finish, bail */
 538                if (iocb->ki_flags & IOCB_NOWAIT) {
 539                        if (atomic_read(&inode->i_dio_count))
 540                                return -EAGAIN;
 541                } else {
 542                        inode_dio_wait(inode);
 543                }
 544        } else if (iolock == XFS_IOLOCK_EXCL) {
 545                xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
 546                iolock = XFS_IOLOCK_SHARED;
 547        }
 548
 549        trace_xfs_file_direct_write(ip, count, iocb->ki_pos);
 550        ret = iomap_dio_rw(iocb, from, &xfs_iomap_ops, xfs_dio_write_end_io);
 551out:
 552        xfs_iunlock(ip, iolock);
 553
 554        /*
 555         * No fallback to buffered IO on errors for XFS, direct IO will either
 556         * complete fully or fail.
 557         */
 558        ASSERT(ret < 0 || ret == count);
 559        return ret;
 560}
 561
 562static noinline ssize_t
 563xfs_file_dax_write(
 564        struct kiocb            *iocb,
 565        struct iov_iter         *from)
 566{
 567        struct inode            *inode = iocb->ki_filp->f_mapping->host;
 568        struct xfs_inode        *ip = XFS_I(inode);
 569        int                     iolock = XFS_IOLOCK_EXCL;
 570        ssize_t                 ret, error = 0;
 571        size_t                  count;
 572        loff_t                  pos;
 573
 574        if (iocb->ki_flags & IOCB_NOWAIT) {
 575                if (!xfs_ilock_nowait(ip, iolock))
 576                        return -EAGAIN;
 577        } else {
 578                xfs_ilock(ip, iolock);
 579        }
 580
 581        ret = xfs_file_aio_write_checks(iocb, from, &iolock);
 582        if (ret)
 583                goto out;
 584
 585        pos = iocb->ki_pos;
 586        count = iov_iter_count(from);
 587
 588        trace_xfs_file_dax_write(ip, count, pos);
 589        ret = dax_iomap_rw(iocb, from, &xfs_iomap_ops);
 590        if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
 591                i_size_write(inode, iocb->ki_pos);
 592                error = xfs_setfilesize(ip, pos, ret);
 593        }
 594out:
 595        xfs_iunlock(ip, iolock);
 596        if (error)
 597                return error;
 598
 599        if (ret > 0) {
 600                XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
 601
 602                /* Handle various SYNC-type writes */
 603                ret = generic_write_sync(iocb, ret);
 604        }
 605        return ret;
 606}
 607
 608STATIC ssize_t
 609xfs_file_buffered_aio_write(
 610        struct kiocb            *iocb,
 611        struct iov_iter         *from)
 612{
 613        struct file             *file = iocb->ki_filp;
 614        struct address_space    *mapping = file->f_mapping;
 615        struct inode            *inode = mapping->host;
 616        struct xfs_inode        *ip = XFS_I(inode);
 617        ssize_t                 ret;
 618        int                     enospc = 0;
 619        int                     iolock;
 620
 621        if (iocb->ki_flags & IOCB_NOWAIT)
 622                return -EOPNOTSUPP;
 623
 624write_retry:
 625        iolock = XFS_IOLOCK_EXCL;
 626        xfs_ilock(ip, iolock);
 627
 628        ret = xfs_file_aio_write_checks(iocb, from, &iolock);
 629        if (ret)
 630                goto out;
 631
 632        /* We can write back this queue in page reclaim */
 633        current->backing_dev_info = inode_to_bdi(inode);
 634
 635        trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos);
 636        ret = iomap_file_buffered_write(iocb, from, &xfs_iomap_ops);
 637        if (likely(ret >= 0))
 638                iocb->ki_pos += ret;
 639
 640        /*
 641         * If we hit a space limit, try to free up some lingering preallocated
 642         * space before returning an error. In the case of ENOSPC, first try to
 643         * write back all dirty inodes to free up some of the excess reserved
 644         * metadata space. This reduces the chances that the eofblocks scan
 645         * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
 646         * also behaves as a filter to prevent too many eofblocks scans from
 647         * running at the same time.
 648         */
 649        if (ret == -EDQUOT && !enospc) {
 650                xfs_iunlock(ip, iolock);
 651                enospc = xfs_inode_free_quota_eofblocks(ip);
 652                if (enospc)
 653                        goto write_retry;
 654                enospc = xfs_inode_free_quota_cowblocks(ip);
 655                if (enospc)
 656                        goto write_retry;
 657                iolock = 0;
 658        } else if (ret == -ENOSPC && !enospc) {
 659                struct xfs_eofblocks eofb = {0};
 660
 661                enospc = 1;
 662                xfs_flush_inodes(ip->i_mount);
 663
 664                xfs_iunlock(ip, iolock);
 665                eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
 666                xfs_icache_free_eofblocks(ip->i_mount, &eofb);
 667                xfs_icache_free_cowblocks(ip->i_mount, &eofb);
 668                goto write_retry;
 669        }
 670
 671        current->backing_dev_info = NULL;
 672out:
 673        if (iolock)
 674                xfs_iunlock(ip, iolock);
 675
 676        if (ret > 0) {
 677                XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
 678                /* Handle various SYNC-type writes */
 679                ret = generic_write_sync(iocb, ret);
 680        }
 681        return ret;
 682}
 683
 684STATIC ssize_t
 685xfs_file_write_iter(
 686        struct kiocb            *iocb,
 687        struct iov_iter         *from)
 688{
 689        struct file             *file = iocb->ki_filp;
 690        struct address_space    *mapping = file->f_mapping;
 691        struct inode            *inode = mapping->host;
 692        struct xfs_inode        *ip = XFS_I(inode);
 693        ssize_t                 ret;
 694        size_t                  ocount = iov_iter_count(from);
 695
 696        XFS_STATS_INC(ip->i_mount, xs_write_calls);
 697
 698        if (ocount == 0)
 699                return 0;
 700
 701        if (XFS_FORCED_SHUTDOWN(ip->i_mount))
 702                return -EIO;
 703
 704        if (IS_DAX(inode))
 705                return xfs_file_dax_write(iocb, from);
 706
 707        if (iocb->ki_flags & IOCB_DIRECT) {
 708                /*
 709                 * Allow a directio write to fall back to a buffered
 710                 * write *only* in the case that we're doing a reflink
 711                 * CoW.  In all other directio scenarios we do not
 712                 * allow an operation to fall back to buffered mode.
 713                 */
 714                ret = xfs_file_dio_aio_write(iocb, from);
 715                if (ret != -EREMCHG)
 716                        return ret;
 717        }
 718
 719        return xfs_file_buffered_aio_write(iocb, from);
 720}
 721
 722static void
 723xfs_wait_dax_page(
 724        struct inode            *inode)
 725{
 726        struct xfs_inode        *ip = XFS_I(inode);
 727
 728        xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
 729        schedule();
 730        xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
 731}
 732
 733static int
 734xfs_break_dax_layouts(
 735        struct inode            *inode,
 736        bool                    *retry)
 737{
 738        struct page             *page;
 739
 740        ASSERT(xfs_isilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL));
 741
 742        page = dax_layout_busy_page(inode->i_mapping);
 743        if (!page)
 744                return 0;
 745
 746        *retry = true;
 747        return ___wait_var_event(&page->_refcount,
 748                        atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE,
 749                        0, 0, xfs_wait_dax_page(inode));
 750}
 751
 752int
 753xfs_break_layouts(
 754        struct inode            *inode,
 755        uint                    *iolock,
 756        enum layout_break_reason reason)
 757{
 758        bool                    retry;
 759        int                     error;
 760
 761        ASSERT(xfs_isilocked(XFS_I(inode), XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL));
 762
 763        do {
 764                retry = false;
 765                switch (reason) {
 766                case BREAK_UNMAP:
 767                        error = xfs_break_dax_layouts(inode, &retry);
 768                        if (error || retry)
 769                                break;
 770                        /* fall through */
 771                case BREAK_WRITE:
 772                        error = xfs_break_leased_layouts(inode, iolock, &retry);
 773                        break;
 774                default:
 775                        WARN_ON_ONCE(1);
 776                        error = -EINVAL;
 777                }
 778        } while (error == 0 && retry);
 779
 780        return error;
 781}
 782
 783#define XFS_FALLOC_FL_SUPPORTED                                         \
 784                (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |           \
 785                 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |      \
 786                 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
 787
 788STATIC long
 789xfs_file_fallocate(
 790        struct file             *file,
 791        int                     mode,
 792        loff_t                  offset,
 793        loff_t                  len)
 794{
 795        struct inode            *inode = file_inode(file);
 796        struct xfs_inode        *ip = XFS_I(inode);
 797        long                    error;
 798        enum xfs_prealloc_flags flags = 0;
 799        uint                    iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
 800        loff_t                  new_size = 0;
 801        bool                    do_file_insert = false;
 802
 803        if (!S_ISREG(inode->i_mode))
 804                return -EINVAL;
 805        if (mode & ~XFS_FALLOC_FL_SUPPORTED)
 806                return -EOPNOTSUPP;
 807
 808        xfs_ilock(ip, iolock);
 809        error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP);
 810        if (error)
 811                goto out_unlock;
 812
 813        if (mode & FALLOC_FL_PUNCH_HOLE) {
 814                error = xfs_free_file_space(ip, offset, len);
 815                if (error)
 816                        goto out_unlock;
 817        } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
 818                unsigned int blksize_mask = i_blocksize(inode) - 1;
 819
 820                if (offset & blksize_mask || len & blksize_mask) {
 821                        error = -EINVAL;
 822                        goto out_unlock;
 823                }
 824
 825                /*
 826                 * There is no need to overlap collapse range with EOF,
 827                 * in which case it is effectively a truncate operation
 828                 */
 829                if (offset + len >= i_size_read(inode)) {
 830                        error = -EINVAL;
 831                        goto out_unlock;
 832                }
 833
 834                new_size = i_size_read(inode) - len;
 835
 836                error = xfs_collapse_file_space(ip, offset, len);
 837                if (error)
 838                        goto out_unlock;
 839        } else if (mode & FALLOC_FL_INSERT_RANGE) {
 840                unsigned int    blksize_mask = i_blocksize(inode) - 1;
 841                loff_t          isize = i_size_read(inode);
 842
 843                if (offset & blksize_mask || len & blksize_mask) {
 844                        error = -EINVAL;
 845                        goto out_unlock;
 846                }
 847
 848                /*
 849                 * New inode size must not exceed ->s_maxbytes, accounting for
 850                 * possible signed overflow.
 851                 */
 852                if (inode->i_sb->s_maxbytes - isize < len) {
 853                        error = -EFBIG;
 854                        goto out_unlock;
 855                }
 856                new_size = isize + len;
 857
 858                /* Offset should be less than i_size */
 859                if (offset >= isize) {
 860                        error = -EINVAL;
 861                        goto out_unlock;
 862                }
 863                do_file_insert = true;
 864        } else {
 865                flags |= XFS_PREALLOC_SET;
 866
 867                if (!(mode & FALLOC_FL_KEEP_SIZE) &&
 868                    offset + len > i_size_read(inode)) {
 869                        new_size = offset + len;
 870                        error = inode_newsize_ok(inode, new_size);
 871                        if (error)
 872                                goto out_unlock;
 873                }
 874
 875                if (mode & FALLOC_FL_ZERO_RANGE)
 876                        error = xfs_zero_file_space(ip, offset, len);
 877                else {
 878                        if (mode & FALLOC_FL_UNSHARE_RANGE) {
 879                                error = xfs_reflink_unshare(ip, offset, len);
 880                                if (error)
 881                                        goto out_unlock;
 882                        }
 883                        error = xfs_alloc_file_space(ip, offset, len,
 884                                                     XFS_BMAPI_PREALLOC);
 885                }
 886                if (error)
 887                        goto out_unlock;
 888        }
 889
 890        if (file->f_flags & O_DSYNC)
 891                flags |= XFS_PREALLOC_SYNC;
 892
 893        error = xfs_update_prealloc_flags(ip, flags);
 894        if (error)
 895                goto out_unlock;
 896
 897        /* Change file size if needed */
 898        if (new_size) {
 899                struct iattr iattr;
 900
 901                iattr.ia_valid = ATTR_SIZE;
 902                iattr.ia_size = new_size;
 903                error = xfs_vn_setattr_size(file_dentry(file), &iattr);
 904                if (error)
 905                        goto out_unlock;
 906        }
 907
 908        /*
 909         * Perform hole insertion now that the file size has been
 910         * updated so that if we crash during the operation we don't
 911         * leave shifted extents past EOF and hence losing access to
 912         * the data that is contained within them.
 913         */
 914        if (do_file_insert)
 915                error = xfs_insert_file_space(ip, offset, len);
 916
 917out_unlock:
 918        xfs_iunlock(ip, iolock);
 919        return error;
 920}
 921
 922
 923STATIC loff_t
 924xfs_file_remap_range(
 925        struct file             *file_in,
 926        loff_t                  pos_in,
 927        struct file             *file_out,
 928        loff_t                  pos_out,
 929        loff_t                  len,
 930        unsigned int            remap_flags)
 931{
 932        struct inode            *inode_in = file_inode(file_in);
 933        struct xfs_inode        *src = XFS_I(inode_in);
 934        struct inode            *inode_out = file_inode(file_out);
 935        struct xfs_inode        *dest = XFS_I(inode_out);
 936        struct xfs_mount        *mp = src->i_mount;
 937        loff_t                  remapped = 0;
 938        xfs_extlen_t            cowextsize;
 939        int                     ret;
 940
 941        if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
 942                return -EINVAL;
 943
 944        if (!xfs_sb_version_hasreflink(&mp->m_sb))
 945                return -EOPNOTSUPP;
 946
 947        if (XFS_FORCED_SHUTDOWN(mp))
 948                return -EIO;
 949
 950        /* Prepare and then clone file data. */
 951        ret = xfs_reflink_remap_prep(file_in, pos_in, file_out, pos_out,
 952                        &len, remap_flags);
 953        if (ret < 0 || len == 0)
 954                return ret;
 955
 956        trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out);
 957
 958        ret = xfs_reflink_remap_blocks(src, pos_in, dest, pos_out, len,
 959                        &remapped);
 960        if (ret)
 961                goto out_unlock;
 962
 963        /*
 964         * Carry the cowextsize hint from src to dest if we're sharing the
 965         * entire source file to the entire destination file, the source file
 966         * has a cowextsize hint, and the destination file does not.
 967         */
 968        cowextsize = 0;
 969        if (pos_in == 0 && len == i_size_read(inode_in) &&
 970            (src->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) &&
 971            pos_out == 0 && len >= i_size_read(inode_out) &&
 972            !(dest->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE))
 973                cowextsize = src->i_d.di_cowextsize;
 974
 975        ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize,
 976                        remap_flags);
 977
 978out_unlock:
 979        xfs_reflink_remap_unlock(file_in, file_out);
 980        if (ret)
 981                trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_);
 982        return remapped > 0 ? remapped : ret;
 983}
 984
 985STATIC int
 986xfs_file_open(
 987        struct inode    *inode,
 988        struct file     *file)
 989{
 990        if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
 991                return -EFBIG;
 992        if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
 993                return -EIO;
 994        file->f_mode |= FMODE_NOWAIT;
 995        return 0;
 996}
 997
 998STATIC int
 999xfs_dir_open(
1000        struct inode    *inode,
1001        struct file     *file)
1002{
1003        struct xfs_inode *ip = XFS_I(inode);
1004        int             mode;
1005        int             error;
1006
1007        error = xfs_file_open(inode, file);
1008        if (error)
1009                return error;
1010
1011        /*
1012         * If there are any blocks, read-ahead block 0 as we're almost
1013         * certain to have the next operation be a read there.
1014         */
1015        mode = xfs_ilock_data_map_shared(ip);
1016        if (ip->i_d.di_nextents > 0)
1017                error = xfs_dir3_data_readahead(ip, 0, -1);
1018        xfs_iunlock(ip, mode);
1019        return error;
1020}
1021
1022STATIC int
1023xfs_file_release(
1024        struct inode    *inode,
1025        struct file     *filp)
1026{
1027        return xfs_release(XFS_I(inode));
1028}
1029
1030STATIC int
1031xfs_file_readdir(
1032        struct file     *file,
1033        struct dir_context *ctx)
1034{
1035        struct inode    *inode = file_inode(file);
1036        xfs_inode_t     *ip = XFS_I(inode);
1037        size_t          bufsize;
1038
1039        /*
1040         * The Linux API doesn't pass down the total size of the buffer
1041         * we read into down to the filesystem.  With the filldir concept
1042         * it's not needed for correct information, but the XFS dir2 leaf
1043         * code wants an estimate of the buffer size to calculate it's
1044         * readahead window and size the buffers used for mapping to
1045         * physical blocks.
1046         *
1047         * Try to give it an estimate that's good enough, maybe at some
1048         * point we can change the ->readdir prototype to include the
1049         * buffer size.  For now we use the current glibc buffer size.
1050         */
1051        bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_d.di_size);
1052
1053        return xfs_readdir(NULL, ip, ctx, bufsize);
1054}
1055
1056STATIC loff_t
1057xfs_file_llseek(
1058        struct file     *file,
1059        loff_t          offset,
1060        int             whence)
1061{
1062        struct inode            *inode = file->f_mapping->host;
1063
1064        if (XFS_FORCED_SHUTDOWN(XFS_I(inode)->i_mount))
1065                return -EIO;
1066
1067        switch (whence) {
1068        default:
1069                return generic_file_llseek(file, offset, whence);
1070        case SEEK_HOLE:
1071                offset = iomap_seek_hole(inode, offset, &xfs_iomap_ops);
1072                break;
1073        case SEEK_DATA:
1074                offset = iomap_seek_data(inode, offset, &xfs_iomap_ops);
1075                break;
1076        }
1077
1078        if (offset < 0)
1079                return offset;
1080        return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1081}
1082
1083/*
1084 * Locking for serialisation of IO during page faults. This results in a lock
1085 * ordering of:
1086 *
1087 * mmap_sem (MM)
1088 *   sb_start_pagefault(vfs, freeze)
1089 *     i_mmaplock (XFS - truncate serialisation)
1090 *       page_lock (MM)
1091 *         i_lock (XFS - extent map serialisation)
1092 */
1093static vm_fault_t
1094__xfs_filemap_fault(
1095        struct vm_fault         *vmf,
1096        enum page_entry_size    pe_size,
1097        bool                    write_fault)
1098{
1099        struct inode            *inode = file_inode(vmf->vma->vm_file);
1100        struct xfs_inode        *ip = XFS_I(inode);
1101        vm_fault_t              ret;
1102
1103        trace_xfs_filemap_fault(ip, pe_size, write_fault);
1104
1105        if (write_fault) {
1106                sb_start_pagefault(inode->i_sb);
1107                file_update_time(vmf->vma->vm_file);
1108        }
1109
1110        xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1111        if (IS_DAX(inode)) {
1112                pfn_t pfn;
1113
1114                ret = dax_iomap_fault(vmf, pe_size, &pfn, NULL, &xfs_iomap_ops);
1115                if (ret & VM_FAULT_NEEDDSYNC)
1116                        ret = dax_finish_sync_fault(vmf, pe_size, pfn);
1117        } else {
1118                if (write_fault)
1119                        ret = iomap_page_mkwrite(vmf, &xfs_iomap_ops);
1120                else
1121                        ret = filemap_fault(vmf);
1122        }
1123        xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1124
1125        if (write_fault)
1126                sb_end_pagefault(inode->i_sb);
1127        return ret;
1128}
1129
1130static vm_fault_t
1131xfs_filemap_fault(
1132        struct vm_fault         *vmf)
1133{
1134        /* DAX can shortcut the normal fault path on write faults! */
1135        return __xfs_filemap_fault(vmf, PE_SIZE_PTE,
1136                        IS_DAX(file_inode(vmf->vma->vm_file)) &&
1137                        (vmf->flags & FAULT_FLAG_WRITE));
1138}
1139
1140static vm_fault_t
1141xfs_filemap_huge_fault(
1142        struct vm_fault         *vmf,
1143        enum page_entry_size    pe_size)
1144{
1145        if (!IS_DAX(file_inode(vmf->vma->vm_file)))
1146                return VM_FAULT_FALLBACK;
1147
1148        /* DAX can shortcut the normal fault path on write faults! */
1149        return __xfs_filemap_fault(vmf, pe_size,
1150                        (vmf->flags & FAULT_FLAG_WRITE));
1151}
1152
1153static vm_fault_t
1154xfs_filemap_page_mkwrite(
1155        struct vm_fault         *vmf)
1156{
1157        return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1158}
1159
1160/*
1161 * pfn_mkwrite was originally intended to ensure we capture time stamp updates
1162 * on write faults. In reality, it needs to serialise against truncate and
1163 * prepare memory for writing so handle is as standard write fault.
1164 */
1165static vm_fault_t
1166xfs_filemap_pfn_mkwrite(
1167        struct vm_fault         *vmf)
1168{
1169
1170        return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1171}
1172
1173static const struct vm_operations_struct xfs_file_vm_ops = {
1174        .fault          = xfs_filemap_fault,
1175        .huge_fault     = xfs_filemap_huge_fault,
1176        .map_pages      = filemap_map_pages,
1177        .page_mkwrite   = xfs_filemap_page_mkwrite,
1178        .pfn_mkwrite    = xfs_filemap_pfn_mkwrite,
1179};
1180
1181STATIC int
1182xfs_file_mmap(
1183        struct file     *filp,
1184        struct vm_area_struct *vma)
1185{
1186        /*
1187         * We don't support synchronous mappings for non-DAX files. At least
1188         * until someone comes with a sensible use case.
1189         */
1190        if (!IS_DAX(file_inode(filp)) && (vma->vm_flags & VM_SYNC))
1191                return -EOPNOTSUPP;
1192
1193        file_accessed(filp);
1194        vma->vm_ops = &xfs_file_vm_ops;
1195        if (IS_DAX(file_inode(filp)))
1196                vma->vm_flags |= VM_HUGEPAGE;
1197        return 0;
1198}
1199
1200const struct file_operations xfs_file_operations = {
1201        .llseek         = xfs_file_llseek,
1202        .read_iter      = xfs_file_read_iter,
1203        .write_iter     = xfs_file_write_iter,
1204        .splice_read    = generic_file_splice_read,
1205        .splice_write   = iter_file_splice_write,
1206        .unlocked_ioctl = xfs_file_ioctl,
1207#ifdef CONFIG_COMPAT
1208        .compat_ioctl   = xfs_file_compat_ioctl,
1209#endif
1210        .mmap           = xfs_file_mmap,
1211        .mmap_supported_flags = MAP_SYNC,
1212        .open           = xfs_file_open,
1213        .release        = xfs_file_release,
1214        .fsync          = xfs_file_fsync,
1215        .get_unmapped_area = thp_get_unmapped_area,
1216        .fallocate      = xfs_file_fallocate,
1217        .remap_file_range = xfs_file_remap_range,
1218};
1219
1220const struct file_operations xfs_dir_file_operations = {
1221        .open           = xfs_dir_open,
1222        .read           = generic_read_dir,
1223        .iterate_shared = xfs_file_readdir,
1224        .llseek         = generic_file_llseek,
1225        .unlocked_ioctl = xfs_file_ioctl,
1226#ifdef CONFIG_COMPAT
1227        .compat_ioctl   = xfs_file_compat_ioctl,
1228#endif
1229        .fsync          = xfs_dir_fsync,
1230};
1231