linux/include/net/tcp.h
<<
>>
Prefs
   1/*
   2 * INET         An implementation of the TCP/IP protocol suite for the LINUX
   3 *              operating system.  INET is implemented using the  BSD Socket
   4 *              interface as the means of communication with the user level.
   5 *
   6 *              Definitions for the TCP module.
   7 *
   8 * Version:     @(#)tcp.h       1.0.5   05/23/93
   9 *
  10 * Authors:     Ross Biro
  11 *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12 *
  13 *              This program is free software; you can redistribute it and/or
  14 *              modify it under the terms of the GNU General Public License
  15 *              as published by the Free Software Foundation; either version
  16 *              2 of the License, or (at your option) any later version.
  17 */
  18#ifndef _TCP_H
  19#define _TCP_H
  20
  21#define FASTRETRANS_DEBUG 1
  22
  23#include <linux/list.h>
  24#include <linux/tcp.h>
  25#include <linux/bug.h>
  26#include <linux/slab.h>
  27#include <linux/cache.h>
  28#include <linux/percpu.h>
  29#include <linux/skbuff.h>
  30#include <linux/cryptohash.h>
  31#include <linux/kref.h>
  32#include <linux/ktime.h>
  33
  34#include <net/inet_connection_sock.h>
  35#include <net/inet_timewait_sock.h>
  36#include <net/inet_hashtables.h>
  37#include <net/checksum.h>
  38#include <net/request_sock.h>
  39#include <net/sock_reuseport.h>
  40#include <net/sock.h>
  41#include <net/snmp.h>
  42#include <net/ip.h>
  43#include <net/tcp_states.h>
  44#include <net/inet_ecn.h>
  45#include <net/dst.h>
  46
  47#include <linux/seq_file.h>
  48#include <linux/memcontrol.h>
  49#include <linux/bpf-cgroup.h>
  50
  51extern struct inet_hashinfo tcp_hashinfo;
  52
  53extern struct percpu_counter tcp_orphan_count;
  54void tcp_time_wait(struct sock *sk, int state, int timeo);
  55
  56#define MAX_TCP_HEADER  (128 + MAX_HEADER)
  57#define MAX_TCP_OPTION_SPACE 40
  58
  59/*
  60 * Never offer a window over 32767 without using window scaling. Some
  61 * poor stacks do signed 16bit maths!
  62 */
  63#define MAX_TCP_WINDOW          32767U
  64
  65/* Minimal accepted MSS. It is (60+60+8) - (20+20). */
  66#define TCP_MIN_MSS             88U
  67
  68/* The least MTU to use for probing */
  69#define TCP_BASE_MSS            1024
  70
  71/* probing interval, default to 10 minutes as per RFC4821 */
  72#define TCP_PROBE_INTERVAL      600
  73
  74/* Specify interval when tcp mtu probing will stop */
  75#define TCP_PROBE_THRESHOLD     8
  76
  77/* After receiving this amount of duplicate ACKs fast retransmit starts. */
  78#define TCP_FASTRETRANS_THRESH 3
  79
  80/* Maximal number of ACKs sent quickly to accelerate slow-start. */
  81#define TCP_MAX_QUICKACKS       16U
  82
  83/* Maximal number of window scale according to RFC1323 */
  84#define TCP_MAX_WSCALE          14U
  85
  86/* urg_data states */
  87#define TCP_URG_VALID   0x0100
  88#define TCP_URG_NOTYET  0x0200
  89#define TCP_URG_READ    0x0400
  90
  91#define TCP_RETR1       3       /*
  92                                 * This is how many retries it does before it
  93                                 * tries to figure out if the gateway is
  94                                 * down. Minimal RFC value is 3; it corresponds
  95                                 * to ~3sec-8min depending on RTO.
  96                                 */
  97
  98#define TCP_RETR2       15      /*
  99                                 * This should take at least
 100                                 * 90 minutes to time out.
 101                                 * RFC1122 says that the limit is 100 sec.
 102                                 * 15 is ~13-30min depending on RTO.
 103                                 */
 104
 105#define TCP_SYN_RETRIES  6      /* This is how many retries are done
 106                                 * when active opening a connection.
 107                                 * RFC1122 says the minimum retry MUST
 108                                 * be at least 180secs.  Nevertheless
 109                                 * this value is corresponding to
 110                                 * 63secs of retransmission with the
 111                                 * current initial RTO.
 112                                 */
 113
 114#define TCP_SYNACK_RETRIES 5    /* This is how may retries are done
 115                                 * when passive opening a connection.
 116                                 * This is corresponding to 31secs of
 117                                 * retransmission with the current
 118                                 * initial RTO.
 119                                 */
 120
 121#define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
 122                                  * state, about 60 seconds     */
 123#define TCP_FIN_TIMEOUT TCP_TIMEWAIT_LEN
 124                                 /* BSD style FIN_WAIT2 deadlock breaker.
 125                                  * It used to be 3min, new value is 60sec,
 126                                  * to combine FIN-WAIT-2 timeout with
 127                                  * TIME-WAIT timer.
 128                                  */
 129
 130#define TCP_DELACK_MAX  ((unsigned)(HZ/5))      /* maximal time to delay before sending an ACK */
 131#if HZ >= 100
 132#define TCP_DELACK_MIN  ((unsigned)(HZ/25))     /* minimal time to delay before sending an ACK */
 133#define TCP_ATO_MIN     ((unsigned)(HZ/25))
 134#else
 135#define TCP_DELACK_MIN  4U
 136#define TCP_ATO_MIN     4U
 137#endif
 138#define TCP_RTO_MAX     ((unsigned)(120*HZ))
 139#define TCP_RTO_MIN     ((unsigned)(HZ/5))
 140#define TCP_TIMEOUT_MIN (2U) /* Min timeout for TCP timers in jiffies */
 141#define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))     /* RFC6298 2.1 initial RTO value        */
 142#define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ)) /* RFC 1122 initial RTO value, now
 143                                                 * used as a fallback RTO for the
 144                                                 * initial data transmission if no
 145                                                 * valid RTT sample has been acquired,
 146                                                 * most likely due to retrans in 3WHS.
 147                                                 */
 148
 149#define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
 150                                                         * for local resources.
 151                                                         */
 152#define TCP_KEEPALIVE_TIME      (120*60*HZ)     /* two hours */
 153#define TCP_KEEPALIVE_PROBES    9               /* Max of 9 keepalive probes    */
 154#define TCP_KEEPALIVE_INTVL     (75*HZ)
 155
 156#define MAX_TCP_KEEPIDLE        32767
 157#define MAX_TCP_KEEPINTVL       32767
 158#define MAX_TCP_KEEPCNT         127
 159#define MAX_TCP_SYNCNT          127
 160
 161#define TCP_SYNQ_INTERVAL       (HZ/5)  /* Period of SYNACK timer */
 162
 163#define TCP_PAWS_24DAYS (60 * 60 * 24 * 24)
 164#define TCP_PAWS_MSL    60              /* Per-host timestamps are invalidated
 165                                         * after this time. It should be equal
 166                                         * (or greater than) TCP_TIMEWAIT_LEN
 167                                         * to provide reliability equal to one
 168                                         * provided by timewait state.
 169                                         */
 170#define TCP_PAWS_WINDOW 1               /* Replay window for per-host
 171                                         * timestamps. It must be less than
 172                                         * minimal timewait lifetime.
 173                                         */
 174/*
 175 *      TCP option
 176 */
 177
 178#define TCPOPT_NOP              1       /* Padding */
 179#define TCPOPT_EOL              0       /* End of options */
 180#define TCPOPT_MSS              2       /* Segment size negotiating */
 181#define TCPOPT_WINDOW           3       /* Window scaling */
 182#define TCPOPT_SACK_PERM        4       /* SACK Permitted */
 183#define TCPOPT_SACK             5       /* SACK Block */
 184#define TCPOPT_TIMESTAMP        8       /* Better RTT estimations/PAWS */
 185#define TCPOPT_MD5SIG           19      /* MD5 Signature (RFC2385) */
 186#define TCPOPT_FASTOPEN         34      /* Fast open (RFC7413) */
 187#define TCPOPT_EXP              254     /* Experimental */
 188/* Magic number to be after the option value for sharing TCP
 189 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
 190 */
 191#define TCPOPT_FASTOPEN_MAGIC   0xF989
 192#define TCPOPT_SMC_MAGIC        0xE2D4C3D9
 193
 194/*
 195 *     TCP option lengths
 196 */
 197
 198#define TCPOLEN_MSS            4
 199#define TCPOLEN_WINDOW         3
 200#define TCPOLEN_SACK_PERM      2
 201#define TCPOLEN_TIMESTAMP      10
 202#define TCPOLEN_MD5SIG         18
 203#define TCPOLEN_FASTOPEN_BASE  2
 204#define TCPOLEN_EXP_FASTOPEN_BASE  4
 205#define TCPOLEN_EXP_SMC_BASE   6
 206
 207/* But this is what stacks really send out. */
 208#define TCPOLEN_TSTAMP_ALIGNED          12
 209#define TCPOLEN_WSCALE_ALIGNED          4
 210#define TCPOLEN_SACKPERM_ALIGNED        4
 211#define TCPOLEN_SACK_BASE               2
 212#define TCPOLEN_SACK_BASE_ALIGNED       4
 213#define TCPOLEN_SACK_PERBLOCK           8
 214#define TCPOLEN_MD5SIG_ALIGNED          20
 215#define TCPOLEN_MSS_ALIGNED             4
 216#define TCPOLEN_EXP_SMC_BASE_ALIGNED    8
 217
 218/* Flags in tp->nonagle */
 219#define TCP_NAGLE_OFF           1       /* Nagle's algo is disabled */
 220#define TCP_NAGLE_CORK          2       /* Socket is corked         */
 221#define TCP_NAGLE_PUSH          4       /* Cork is overridden for already queued data */
 222
 223/* TCP thin-stream limits */
 224#define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
 225
 226/* TCP initial congestion window as per rfc6928 */
 227#define TCP_INIT_CWND           10
 228
 229/* Bit Flags for sysctl_tcp_fastopen */
 230#define TFO_CLIENT_ENABLE       1
 231#define TFO_SERVER_ENABLE       2
 232#define TFO_CLIENT_NO_COOKIE    4       /* Data in SYN w/o cookie option */
 233
 234/* Accept SYN data w/o any cookie option */
 235#define TFO_SERVER_COOKIE_NOT_REQD      0x200
 236
 237/* Force enable TFO on all listeners, i.e., not requiring the
 238 * TCP_FASTOPEN socket option.
 239 */
 240#define TFO_SERVER_WO_SOCKOPT1  0x400
 241
 242
 243/* sysctl variables for tcp */
 244extern int sysctl_tcp_max_orphans;
 245extern long sysctl_tcp_mem[3];
 246
 247#define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
 248#define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
 249#define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
 250
 251extern atomic_long_t tcp_memory_allocated;
 252extern struct percpu_counter tcp_sockets_allocated;
 253extern unsigned long tcp_memory_pressure;
 254
 255/* optimized version of sk_under_memory_pressure() for TCP sockets */
 256static inline bool tcp_under_memory_pressure(const struct sock *sk)
 257{
 258        if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
 259            mem_cgroup_under_socket_pressure(sk->sk_memcg))
 260                return true;
 261
 262        return tcp_memory_pressure;
 263}
 264/*
 265 * The next routines deal with comparing 32 bit unsigned ints
 266 * and worry about wraparound (automatic with unsigned arithmetic).
 267 */
 268
 269static inline bool before(__u32 seq1, __u32 seq2)
 270{
 271        return (__s32)(seq1-seq2) < 0;
 272}
 273#define after(seq2, seq1)       before(seq1, seq2)
 274
 275/* is s2<=s1<=s3 ? */
 276static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
 277{
 278        return seq3 - seq2 >= seq1 - seq2;
 279}
 280
 281static inline bool tcp_out_of_memory(struct sock *sk)
 282{
 283        if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
 284            sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
 285                return true;
 286        return false;
 287}
 288
 289void sk_forced_mem_schedule(struct sock *sk, int size);
 290
 291static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
 292{
 293        struct percpu_counter *ocp = sk->sk_prot->orphan_count;
 294        int orphans = percpu_counter_read_positive(ocp);
 295
 296        if (orphans << shift > sysctl_tcp_max_orphans) {
 297                orphans = percpu_counter_sum_positive(ocp);
 298                if (orphans << shift > sysctl_tcp_max_orphans)
 299                        return true;
 300        }
 301        return false;
 302}
 303
 304bool tcp_check_oom(struct sock *sk, int shift);
 305
 306
 307extern struct proto tcp_prot;
 308
 309#define TCP_INC_STATS(net, field)       SNMP_INC_STATS((net)->mib.tcp_statistics, field)
 310#define __TCP_INC_STATS(net, field)     __SNMP_INC_STATS((net)->mib.tcp_statistics, field)
 311#define TCP_DEC_STATS(net, field)       SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
 312#define TCP_ADD_STATS(net, field, val)  SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
 313
 314void tcp_tasklet_init(void);
 315
 316int tcp_v4_err(struct sk_buff *skb, u32);
 317
 318void tcp_shutdown(struct sock *sk, int how);
 319
 320int tcp_v4_early_demux(struct sk_buff *skb);
 321int tcp_v4_rcv(struct sk_buff *skb);
 322
 323int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
 324int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
 325int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
 326int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
 327                 int flags);
 328int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
 329                        size_t size, int flags);
 330ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
 331                 size_t size, int flags);
 332void tcp_release_cb(struct sock *sk);
 333void tcp_wfree(struct sk_buff *skb);
 334void tcp_write_timer_handler(struct sock *sk);
 335void tcp_delack_timer_handler(struct sock *sk);
 336int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
 337int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
 338void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
 339void tcp_rcv_space_adjust(struct sock *sk);
 340int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
 341void tcp_twsk_destructor(struct sock *sk);
 342ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
 343                        struct pipe_inode_info *pipe, size_t len,
 344                        unsigned int flags);
 345
 346void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks);
 347static inline void tcp_dec_quickack_mode(struct sock *sk,
 348                                         const unsigned int pkts)
 349{
 350        struct inet_connection_sock *icsk = inet_csk(sk);
 351
 352        if (icsk->icsk_ack.quick) {
 353                if (pkts >= icsk->icsk_ack.quick) {
 354                        icsk->icsk_ack.quick = 0;
 355                        /* Leaving quickack mode we deflate ATO. */
 356                        icsk->icsk_ack.ato   = TCP_ATO_MIN;
 357                } else
 358                        icsk->icsk_ack.quick -= pkts;
 359        }
 360}
 361
 362#define TCP_ECN_OK              1
 363#define TCP_ECN_QUEUE_CWR       2
 364#define TCP_ECN_DEMAND_CWR      4
 365#define TCP_ECN_SEEN            8
 366
 367enum tcp_tw_status {
 368        TCP_TW_SUCCESS = 0,
 369        TCP_TW_RST = 1,
 370        TCP_TW_ACK = 2,
 371        TCP_TW_SYN = 3
 372};
 373
 374
 375enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
 376                                              struct sk_buff *skb,
 377                                              const struct tcphdr *th);
 378struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
 379                           struct request_sock *req, bool fastopen,
 380                           bool *lost_race);
 381int tcp_child_process(struct sock *parent, struct sock *child,
 382                      struct sk_buff *skb);
 383void tcp_enter_loss(struct sock *sk);
 384void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag);
 385void tcp_clear_retrans(struct tcp_sock *tp);
 386void tcp_update_metrics(struct sock *sk);
 387void tcp_init_metrics(struct sock *sk);
 388void tcp_metrics_init(void);
 389bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
 390void tcp_close(struct sock *sk, long timeout);
 391void tcp_init_sock(struct sock *sk);
 392void tcp_init_transfer(struct sock *sk, int bpf_op);
 393__poll_t tcp_poll(struct file *file, struct socket *sock,
 394                      struct poll_table_struct *wait);
 395int tcp_getsockopt(struct sock *sk, int level, int optname,
 396                   char __user *optval, int __user *optlen);
 397int tcp_setsockopt(struct sock *sk, int level, int optname,
 398                   char __user *optval, unsigned int optlen);
 399int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
 400                          char __user *optval, int __user *optlen);
 401int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
 402                          char __user *optval, unsigned int optlen);
 403void tcp_set_keepalive(struct sock *sk, int val);
 404void tcp_syn_ack_timeout(const struct request_sock *req);
 405int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
 406                int flags, int *addr_len);
 407int tcp_set_rcvlowat(struct sock *sk, int val);
 408void tcp_data_ready(struct sock *sk);
 409int tcp_mmap(struct file *file, struct socket *sock,
 410             struct vm_area_struct *vma);
 411void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
 412                       struct tcp_options_received *opt_rx,
 413                       int estab, struct tcp_fastopen_cookie *foc);
 414const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
 415
 416/*
 417 *      TCP v4 functions exported for the inet6 API
 418 */
 419
 420void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
 421void tcp_v4_mtu_reduced(struct sock *sk);
 422void tcp_req_err(struct sock *sk, u32 seq, bool abort);
 423int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
 424struct sock *tcp_create_openreq_child(const struct sock *sk,
 425                                      struct request_sock *req,
 426                                      struct sk_buff *skb);
 427void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
 428struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
 429                                  struct request_sock *req,
 430                                  struct dst_entry *dst,
 431                                  struct request_sock *req_unhash,
 432                                  bool *own_req);
 433int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
 434int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
 435int tcp_connect(struct sock *sk);
 436enum tcp_synack_type {
 437        TCP_SYNACK_NORMAL,
 438        TCP_SYNACK_FASTOPEN,
 439        TCP_SYNACK_COOKIE,
 440};
 441struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
 442                                struct request_sock *req,
 443                                struct tcp_fastopen_cookie *foc,
 444                                enum tcp_synack_type synack_type);
 445int tcp_disconnect(struct sock *sk, int flags);
 446
 447void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
 448int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
 449void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
 450
 451/* From syncookies.c */
 452struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
 453                                 struct request_sock *req,
 454                                 struct dst_entry *dst, u32 tsoff);
 455int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
 456                      u32 cookie);
 457struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
 458#ifdef CONFIG_SYN_COOKIES
 459
 460/* Syncookies use a monotonic timer which increments every 60 seconds.
 461 * This counter is used both as a hash input and partially encoded into
 462 * the cookie value.  A cookie is only validated further if the delta
 463 * between the current counter value and the encoded one is less than this,
 464 * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
 465 * the counter advances immediately after a cookie is generated).
 466 */
 467#define MAX_SYNCOOKIE_AGE       2
 468#define TCP_SYNCOOKIE_PERIOD    (60 * HZ)
 469#define TCP_SYNCOOKIE_VALID     (MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
 470
 471/* syncookies: remember time of last synqueue overflow
 472 * But do not dirty this field too often (once per second is enough)
 473 * It is racy as we do not hold a lock, but race is very minor.
 474 */
 475static inline void tcp_synq_overflow(const struct sock *sk)
 476{
 477        unsigned int last_overflow;
 478        unsigned int now = jiffies;
 479
 480        if (sk->sk_reuseport) {
 481                struct sock_reuseport *reuse;
 482
 483                reuse = rcu_dereference(sk->sk_reuseport_cb);
 484                if (likely(reuse)) {
 485                        last_overflow = READ_ONCE(reuse->synq_overflow_ts);
 486                        if (time_after32(now, last_overflow + HZ))
 487                                WRITE_ONCE(reuse->synq_overflow_ts, now);
 488                        return;
 489                }
 490        }
 491
 492        last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
 493        if (time_after32(now, last_overflow + HZ))
 494                tcp_sk(sk)->rx_opt.ts_recent_stamp = now;
 495}
 496
 497/* syncookies: no recent synqueue overflow on this listening socket? */
 498static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
 499{
 500        unsigned int last_overflow;
 501        unsigned int now = jiffies;
 502
 503        if (sk->sk_reuseport) {
 504                struct sock_reuseport *reuse;
 505
 506                reuse = rcu_dereference(sk->sk_reuseport_cb);
 507                if (likely(reuse)) {
 508                        last_overflow = READ_ONCE(reuse->synq_overflow_ts);
 509                        return time_after32(now, last_overflow +
 510                                            TCP_SYNCOOKIE_VALID);
 511                }
 512        }
 513
 514        last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
 515        return time_after32(now, last_overflow + TCP_SYNCOOKIE_VALID);
 516}
 517
 518static inline u32 tcp_cookie_time(void)
 519{
 520        u64 val = get_jiffies_64();
 521
 522        do_div(val, TCP_SYNCOOKIE_PERIOD);
 523        return val;
 524}
 525
 526u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
 527                              u16 *mssp);
 528__u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
 529u64 cookie_init_timestamp(struct request_sock *req);
 530bool cookie_timestamp_decode(const struct net *net,
 531                             struct tcp_options_received *opt);
 532bool cookie_ecn_ok(const struct tcp_options_received *opt,
 533                   const struct net *net, const struct dst_entry *dst);
 534
 535/* From net/ipv6/syncookies.c */
 536int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
 537                      u32 cookie);
 538struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
 539
 540u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
 541                              const struct tcphdr *th, u16 *mssp);
 542__u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
 543#endif
 544/* tcp_output.c */
 545
 546void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
 547                               int nonagle);
 548int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
 549int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
 550void tcp_retransmit_timer(struct sock *sk);
 551void tcp_xmit_retransmit_queue(struct sock *);
 552void tcp_simple_retransmit(struct sock *);
 553void tcp_enter_recovery(struct sock *sk, bool ece_ack);
 554int tcp_trim_head(struct sock *, struct sk_buff *, u32);
 555enum tcp_queue {
 556        TCP_FRAG_IN_WRITE_QUEUE,
 557        TCP_FRAG_IN_RTX_QUEUE,
 558};
 559int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
 560                 struct sk_buff *skb, u32 len,
 561                 unsigned int mss_now, gfp_t gfp);
 562
 563void tcp_send_probe0(struct sock *);
 564void tcp_send_partial(struct sock *);
 565int tcp_write_wakeup(struct sock *, int mib);
 566void tcp_send_fin(struct sock *sk);
 567void tcp_send_active_reset(struct sock *sk, gfp_t priority);
 568int tcp_send_synack(struct sock *);
 569void tcp_push_one(struct sock *, unsigned int mss_now);
 570void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
 571void tcp_send_ack(struct sock *sk);
 572void tcp_send_delayed_ack(struct sock *sk);
 573void tcp_send_loss_probe(struct sock *sk);
 574bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
 575void tcp_skb_collapse_tstamp(struct sk_buff *skb,
 576                             const struct sk_buff *next_skb);
 577
 578/* tcp_input.c */
 579void tcp_rearm_rto(struct sock *sk);
 580void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
 581void tcp_reset(struct sock *sk);
 582void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
 583void tcp_fin(struct sock *sk);
 584
 585/* tcp_timer.c */
 586void tcp_init_xmit_timers(struct sock *);
 587static inline void tcp_clear_xmit_timers(struct sock *sk)
 588{
 589        if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
 590                __sock_put(sk);
 591
 592        if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
 593                __sock_put(sk);
 594
 595        inet_csk_clear_xmit_timers(sk);
 596}
 597
 598unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
 599unsigned int tcp_current_mss(struct sock *sk);
 600
 601/* Bound MSS / TSO packet size with the half of the window */
 602static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
 603{
 604        int cutoff;
 605
 606        /* When peer uses tiny windows, there is no use in packetizing
 607         * to sub-MSS pieces for the sake of SWS or making sure there
 608         * are enough packets in the pipe for fast recovery.
 609         *
 610         * On the other hand, for extremely large MSS devices, handling
 611         * smaller than MSS windows in this way does make sense.
 612         */
 613        if (tp->max_window > TCP_MSS_DEFAULT)
 614                cutoff = (tp->max_window >> 1);
 615        else
 616                cutoff = tp->max_window;
 617
 618        if (cutoff && pktsize > cutoff)
 619                return max_t(int, cutoff, 68U - tp->tcp_header_len);
 620        else
 621                return pktsize;
 622}
 623
 624/* tcp.c */
 625void tcp_get_info(struct sock *, struct tcp_info *);
 626
 627/* Read 'sendfile()'-style from a TCP socket */
 628int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
 629                  sk_read_actor_t recv_actor);
 630
 631void tcp_initialize_rcv_mss(struct sock *sk);
 632
 633int tcp_mtu_to_mss(struct sock *sk, int pmtu);
 634int tcp_mss_to_mtu(struct sock *sk, int mss);
 635void tcp_mtup_init(struct sock *sk);
 636void tcp_init_buffer_space(struct sock *sk);
 637
 638static inline void tcp_bound_rto(const struct sock *sk)
 639{
 640        if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
 641                inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
 642}
 643
 644static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
 645{
 646        return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
 647}
 648
 649static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
 650{
 651        tp->pred_flags = htonl((tp->tcp_header_len << 26) |
 652                               ntohl(TCP_FLAG_ACK) |
 653                               snd_wnd);
 654}
 655
 656static inline void tcp_fast_path_on(struct tcp_sock *tp)
 657{
 658        __tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
 659}
 660
 661static inline void tcp_fast_path_check(struct sock *sk)
 662{
 663        struct tcp_sock *tp = tcp_sk(sk);
 664
 665        if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
 666            tp->rcv_wnd &&
 667            atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
 668            !tp->urg_data)
 669                tcp_fast_path_on(tp);
 670}
 671
 672/* Compute the actual rto_min value */
 673static inline u32 tcp_rto_min(struct sock *sk)
 674{
 675        const struct dst_entry *dst = __sk_dst_get(sk);
 676        u32 rto_min = TCP_RTO_MIN;
 677
 678        if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
 679                rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
 680        return rto_min;
 681}
 682
 683static inline u32 tcp_rto_min_us(struct sock *sk)
 684{
 685        return jiffies_to_usecs(tcp_rto_min(sk));
 686}
 687
 688static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
 689{
 690        return dst_metric_locked(dst, RTAX_CC_ALGO);
 691}
 692
 693/* Minimum RTT in usec. ~0 means not available. */
 694static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
 695{
 696        return minmax_get(&tp->rtt_min);
 697}
 698
 699/* Compute the actual receive window we are currently advertising.
 700 * Rcv_nxt can be after the window if our peer push more data
 701 * than the offered window.
 702 */
 703static inline u32 tcp_receive_window(const struct tcp_sock *tp)
 704{
 705        s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
 706
 707        if (win < 0)
 708                win = 0;
 709        return (u32) win;
 710}
 711
 712/* Choose a new window, without checks for shrinking, and without
 713 * scaling applied to the result.  The caller does these things
 714 * if necessary.  This is a "raw" window selection.
 715 */
 716u32 __tcp_select_window(struct sock *sk);
 717
 718void tcp_send_window_probe(struct sock *sk);
 719
 720/* TCP uses 32bit jiffies to save some space.
 721 * Note that this is different from tcp_time_stamp, which
 722 * historically has been the same until linux-4.13.
 723 */
 724#define tcp_jiffies32 ((u32)jiffies)
 725
 726/*
 727 * Deliver a 32bit value for TCP timestamp option (RFC 7323)
 728 * It is no longer tied to jiffies, but to 1 ms clock.
 729 * Note: double check if you want to use tcp_jiffies32 instead of this.
 730 */
 731#define TCP_TS_HZ       1000
 732
 733static inline u64 tcp_clock_ns(void)
 734{
 735        return ktime_get_ns();
 736}
 737
 738static inline u64 tcp_clock_us(void)
 739{
 740        return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
 741}
 742
 743/* This should only be used in contexts where tp->tcp_mstamp is up to date */
 744static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
 745{
 746        return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
 747}
 748
 749/* Could use tcp_clock_us() / 1000, but this version uses a single divide */
 750static inline u32 tcp_time_stamp_raw(void)
 751{
 752        return div_u64(tcp_clock_ns(), NSEC_PER_SEC / TCP_TS_HZ);
 753}
 754
 755void tcp_mstamp_refresh(struct tcp_sock *tp);
 756
 757static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
 758{
 759        return max_t(s64, t1 - t0, 0);
 760}
 761
 762static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
 763{
 764        return div_u64(skb->skb_mstamp_ns, NSEC_PER_SEC / TCP_TS_HZ);
 765}
 766
 767/* provide the departure time in us unit */
 768static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
 769{
 770        return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
 771}
 772
 773
 774#define tcp_flag_byte(th) (((u_int8_t *)th)[13])
 775
 776#define TCPHDR_FIN 0x01
 777#define TCPHDR_SYN 0x02
 778#define TCPHDR_RST 0x04
 779#define TCPHDR_PSH 0x08
 780#define TCPHDR_ACK 0x10
 781#define TCPHDR_URG 0x20
 782#define TCPHDR_ECE 0x40
 783#define TCPHDR_CWR 0x80
 784
 785#define TCPHDR_SYN_ECN  (TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
 786
 787/* This is what the send packet queuing engine uses to pass
 788 * TCP per-packet control information to the transmission code.
 789 * We also store the host-order sequence numbers in here too.
 790 * This is 44 bytes if IPV6 is enabled.
 791 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
 792 */
 793struct tcp_skb_cb {
 794        __u32           seq;            /* Starting sequence number     */
 795        __u32           end_seq;        /* SEQ + FIN + SYN + datalen    */
 796        union {
 797                /* Note : tcp_tw_isn is used in input path only
 798                 *        (isn chosen by tcp_timewait_state_process())
 799                 *
 800                 *        tcp_gso_segs/size are used in write queue only,
 801                 *        cf tcp_skb_pcount()/tcp_skb_mss()
 802                 */
 803                __u32           tcp_tw_isn;
 804                struct {
 805                        u16     tcp_gso_segs;
 806                        u16     tcp_gso_size;
 807                };
 808        };
 809        __u8            tcp_flags;      /* TCP header flags. (tcp[13])  */
 810
 811        __u8            sacked;         /* State flags for SACK.        */
 812#define TCPCB_SACKED_ACKED      0x01    /* SKB ACK'd by a SACK block    */
 813#define TCPCB_SACKED_RETRANS    0x02    /* SKB retransmitted            */
 814#define TCPCB_LOST              0x04    /* SKB is lost                  */
 815#define TCPCB_TAGBITS           0x07    /* All tag bits                 */
 816#define TCPCB_REPAIRED          0x10    /* SKB repaired (no skb_mstamp_ns)      */
 817#define TCPCB_EVER_RETRANS      0x80    /* Ever retransmitted frame     */
 818#define TCPCB_RETRANS           (TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
 819                                TCPCB_REPAIRED)
 820
 821        __u8            ip_dsfield;     /* IPv4 tos or IPv6 dsfield     */
 822        __u8            txstamp_ack:1,  /* Record TX timestamp for ack? */
 823                        eor:1,          /* Is skb MSG_EOR marked? */
 824                        has_rxtstamp:1, /* SKB has a RX timestamp       */
 825                        unused:5;
 826        __u32           ack_seq;        /* Sequence number ACK'd        */
 827        union {
 828                struct {
 829                        /* There is space for up to 24 bytes */
 830                        __u32 in_flight:30,/* Bytes in flight at transmit */
 831                              is_app_limited:1, /* cwnd not fully used? */
 832                              unused:1;
 833                        /* pkts S/ACKed so far upon tx of skb, incl retrans: */
 834                        __u32 delivered;
 835                        /* start of send pipeline phase */
 836                        u64 first_tx_mstamp;
 837                        /* when we reached the "delivered" count */
 838                        u64 delivered_mstamp;
 839                } tx;   /* only used for outgoing skbs */
 840                union {
 841                        struct inet_skb_parm    h4;
 842#if IS_ENABLED(CONFIG_IPV6)
 843                        struct inet6_skb_parm   h6;
 844#endif
 845                } header;       /* For incoming skbs */
 846                struct {
 847                        __u32 flags;
 848                        struct sock *sk_redir;
 849                        void *data_end;
 850                } bpf;
 851        };
 852};
 853
 854#define TCP_SKB_CB(__skb)       ((struct tcp_skb_cb *)&((__skb)->cb[0]))
 855
 856static inline void bpf_compute_data_end_sk_skb(struct sk_buff *skb)
 857{
 858        TCP_SKB_CB(skb)->bpf.data_end = skb->data + skb_headlen(skb);
 859}
 860
 861static inline bool tcp_skb_bpf_ingress(const struct sk_buff *skb)
 862{
 863        return TCP_SKB_CB(skb)->bpf.flags & BPF_F_INGRESS;
 864}
 865
 866static inline struct sock *tcp_skb_bpf_redirect_fetch(struct sk_buff *skb)
 867{
 868        return TCP_SKB_CB(skb)->bpf.sk_redir;
 869}
 870
 871static inline void tcp_skb_bpf_redirect_clear(struct sk_buff *skb)
 872{
 873        TCP_SKB_CB(skb)->bpf.sk_redir = NULL;
 874}
 875
 876#if IS_ENABLED(CONFIG_IPV6)
 877/* This is the variant of inet6_iif() that must be used by TCP,
 878 * as TCP moves IP6CB into a different location in skb->cb[]
 879 */
 880static inline int tcp_v6_iif(const struct sk_buff *skb)
 881{
 882        return TCP_SKB_CB(skb)->header.h6.iif;
 883}
 884
 885static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
 886{
 887        bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
 888
 889        return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
 890}
 891
 892/* TCP_SKB_CB reference means this can not be used from early demux */
 893static inline int tcp_v6_sdif(const struct sk_buff *skb)
 894{
 895#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
 896        if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
 897                return TCP_SKB_CB(skb)->header.h6.iif;
 898#endif
 899        return 0;
 900}
 901#endif
 902
 903static inline bool inet_exact_dif_match(struct net *net, struct sk_buff *skb)
 904{
 905#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
 906        if (!net->ipv4.sysctl_tcp_l3mdev_accept &&
 907            skb && ipv4_l3mdev_skb(IPCB(skb)->flags))
 908                return true;
 909#endif
 910        return false;
 911}
 912
 913/* TCP_SKB_CB reference means this can not be used from early demux */
 914static inline int tcp_v4_sdif(struct sk_buff *skb)
 915{
 916#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
 917        if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
 918                return TCP_SKB_CB(skb)->header.h4.iif;
 919#endif
 920        return 0;
 921}
 922
 923/* Due to TSO, an SKB can be composed of multiple actual
 924 * packets.  To keep these tracked properly, we use this.
 925 */
 926static inline int tcp_skb_pcount(const struct sk_buff *skb)
 927{
 928        return TCP_SKB_CB(skb)->tcp_gso_segs;
 929}
 930
 931static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
 932{
 933        TCP_SKB_CB(skb)->tcp_gso_segs = segs;
 934}
 935
 936static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
 937{
 938        TCP_SKB_CB(skb)->tcp_gso_segs += segs;
 939}
 940
 941/* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
 942static inline int tcp_skb_mss(const struct sk_buff *skb)
 943{
 944        return TCP_SKB_CB(skb)->tcp_gso_size;
 945}
 946
 947static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
 948{
 949        return likely(!TCP_SKB_CB(skb)->eor);
 950}
 951
 952/* Events passed to congestion control interface */
 953enum tcp_ca_event {
 954        CA_EVENT_TX_START,      /* first transmit when no packets in flight */
 955        CA_EVENT_CWND_RESTART,  /* congestion window restart */
 956        CA_EVENT_COMPLETE_CWR,  /* end of congestion recovery */
 957        CA_EVENT_LOSS,          /* loss timeout */
 958        CA_EVENT_ECN_NO_CE,     /* ECT set, but not CE marked */
 959        CA_EVENT_ECN_IS_CE,     /* received CE marked IP packet */
 960};
 961
 962/* Information about inbound ACK, passed to cong_ops->in_ack_event() */
 963enum tcp_ca_ack_event_flags {
 964        CA_ACK_SLOWPATH         = (1 << 0),     /* In slow path processing */
 965        CA_ACK_WIN_UPDATE       = (1 << 1),     /* ACK updated window */
 966        CA_ACK_ECE              = (1 << 2),     /* ECE bit is set on ack */
 967};
 968
 969/*
 970 * Interface for adding new TCP congestion control handlers
 971 */
 972#define TCP_CA_NAME_MAX 16
 973#define TCP_CA_MAX      128
 974#define TCP_CA_BUF_MAX  (TCP_CA_NAME_MAX*TCP_CA_MAX)
 975
 976#define TCP_CA_UNSPEC   0
 977
 978/* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
 979#define TCP_CONG_NON_RESTRICTED 0x1
 980/* Requires ECN/ECT set on all packets */
 981#define TCP_CONG_NEEDS_ECN      0x2
 982
 983union tcp_cc_info;
 984
 985struct ack_sample {
 986        u32 pkts_acked;
 987        s32 rtt_us;
 988        u32 in_flight;
 989};
 990
 991/* A rate sample measures the number of (original/retransmitted) data
 992 * packets delivered "delivered" over an interval of time "interval_us".
 993 * The tcp_rate.c code fills in the rate sample, and congestion
 994 * control modules that define a cong_control function to run at the end
 995 * of ACK processing can optionally chose to consult this sample when
 996 * setting cwnd and pacing rate.
 997 * A sample is invalid if "delivered" or "interval_us" is negative.
 998 */
 999struct rate_sample {
1000        u64  prior_mstamp; /* starting timestamp for interval */
1001        u32  prior_delivered;   /* tp->delivered at "prior_mstamp" */
1002        s32  delivered;         /* number of packets delivered over interval */
1003        long interval_us;       /* time for tp->delivered to incr "delivered" */
1004        u32 snd_interval_us;    /* snd interval for delivered packets */
1005        u32 rcv_interval_us;    /* rcv interval for delivered packets */
1006        long rtt_us;            /* RTT of last (S)ACKed packet (or -1) */
1007        int  losses;            /* number of packets marked lost upon ACK */
1008        u32  acked_sacked;      /* number of packets newly (S)ACKed upon ACK */
1009        u32  prior_in_flight;   /* in flight before this ACK */
1010        bool is_app_limited;    /* is sample from packet with bubble in pipe? */
1011        bool is_retrans;        /* is sample from retransmission? */
1012        bool is_ack_delayed;    /* is this (likely) a delayed ACK? */
1013};
1014
1015struct tcp_congestion_ops {
1016        struct list_head        list;
1017        u32 key;
1018        u32 flags;
1019
1020        /* initialize private data (optional) */
1021        void (*init)(struct sock *sk);
1022        /* cleanup private data  (optional) */
1023        void (*release)(struct sock *sk);
1024
1025        /* return slow start threshold (required) */
1026        u32 (*ssthresh)(struct sock *sk);
1027        /* do new cwnd calculation (required) */
1028        void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1029        /* call before changing ca_state (optional) */
1030        void (*set_state)(struct sock *sk, u8 new_state);
1031        /* call when cwnd event occurs (optional) */
1032        void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1033        /* call when ack arrives (optional) */
1034        void (*in_ack_event)(struct sock *sk, u32 flags);
1035        /* new value of cwnd after loss (required) */
1036        u32  (*undo_cwnd)(struct sock *sk);
1037        /* hook for packet ack accounting (optional) */
1038        void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1039        /* override sysctl_tcp_min_tso_segs */
1040        u32 (*min_tso_segs)(struct sock *sk);
1041        /* returns the multiplier used in tcp_sndbuf_expand (optional) */
1042        u32 (*sndbuf_expand)(struct sock *sk);
1043        /* call when packets are delivered to update cwnd and pacing rate,
1044         * after all the ca_state processing. (optional)
1045         */
1046        void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1047        /* get info for inet_diag (optional) */
1048        size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1049                           union tcp_cc_info *info);
1050
1051        char            name[TCP_CA_NAME_MAX];
1052        struct module   *owner;
1053};
1054
1055int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1056void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1057
1058void tcp_assign_congestion_control(struct sock *sk);
1059void tcp_init_congestion_control(struct sock *sk);
1060void tcp_cleanup_congestion_control(struct sock *sk);
1061int tcp_set_default_congestion_control(struct net *net, const char *name);
1062void tcp_get_default_congestion_control(struct net *net, char *name);
1063void tcp_get_available_congestion_control(char *buf, size_t len);
1064void tcp_get_allowed_congestion_control(char *buf, size_t len);
1065int tcp_set_allowed_congestion_control(char *allowed);
1066int tcp_set_congestion_control(struct sock *sk, const char *name, bool load, bool reinit);
1067u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1068void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1069
1070u32 tcp_reno_ssthresh(struct sock *sk);
1071u32 tcp_reno_undo_cwnd(struct sock *sk);
1072void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1073extern struct tcp_congestion_ops tcp_reno;
1074
1075struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1076u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1077#ifdef CONFIG_INET
1078char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1079#else
1080static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1081{
1082        return NULL;
1083}
1084#endif
1085
1086static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1087{
1088        const struct inet_connection_sock *icsk = inet_csk(sk);
1089
1090        return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1091}
1092
1093static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
1094{
1095        struct inet_connection_sock *icsk = inet_csk(sk);
1096
1097        if (icsk->icsk_ca_ops->set_state)
1098                icsk->icsk_ca_ops->set_state(sk, ca_state);
1099        icsk->icsk_ca_state = ca_state;
1100}
1101
1102static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1103{
1104        const struct inet_connection_sock *icsk = inet_csk(sk);
1105
1106        if (icsk->icsk_ca_ops->cwnd_event)
1107                icsk->icsk_ca_ops->cwnd_event(sk, event);
1108}
1109
1110/* From tcp_rate.c */
1111void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1112void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1113                            struct rate_sample *rs);
1114void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1115                  bool is_sack_reneg, struct rate_sample *rs);
1116void tcp_rate_check_app_limited(struct sock *sk);
1117
1118/* These functions determine how the current flow behaves in respect of SACK
1119 * handling. SACK is negotiated with the peer, and therefore it can vary
1120 * between different flows.
1121 *
1122 * tcp_is_sack - SACK enabled
1123 * tcp_is_reno - No SACK
1124 */
1125static inline int tcp_is_sack(const struct tcp_sock *tp)
1126{
1127        return likely(tp->rx_opt.sack_ok);
1128}
1129
1130static inline bool tcp_is_reno(const struct tcp_sock *tp)
1131{
1132        return !tcp_is_sack(tp);
1133}
1134
1135static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1136{
1137        return tp->sacked_out + tp->lost_out;
1138}
1139
1140/* This determines how many packets are "in the network" to the best
1141 * of our knowledge.  In many cases it is conservative, but where
1142 * detailed information is available from the receiver (via SACK
1143 * blocks etc.) we can make more aggressive calculations.
1144 *
1145 * Use this for decisions involving congestion control, use just
1146 * tp->packets_out to determine if the send queue is empty or not.
1147 *
1148 * Read this equation as:
1149 *
1150 *      "Packets sent once on transmission queue" MINUS
1151 *      "Packets left network, but not honestly ACKed yet" PLUS
1152 *      "Packets fast retransmitted"
1153 */
1154static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1155{
1156        return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1157}
1158
1159#define TCP_INFINITE_SSTHRESH   0x7fffffff
1160
1161static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1162{
1163        return tp->snd_cwnd < tp->snd_ssthresh;
1164}
1165
1166static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1167{
1168        return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1169}
1170
1171static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1172{
1173        return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1174               (1 << inet_csk(sk)->icsk_ca_state);
1175}
1176
1177/* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1178 * The exception is cwnd reduction phase, when cwnd is decreasing towards
1179 * ssthresh.
1180 */
1181static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1182{
1183        const struct tcp_sock *tp = tcp_sk(sk);
1184
1185        if (tcp_in_cwnd_reduction(sk))
1186                return tp->snd_ssthresh;
1187        else
1188                return max(tp->snd_ssthresh,
1189                           ((tp->snd_cwnd >> 1) +
1190                            (tp->snd_cwnd >> 2)));
1191}
1192
1193/* Use define here intentionally to get WARN_ON location shown at the caller */
1194#define tcp_verify_left_out(tp) WARN_ON(tcp_left_out(tp) > tp->packets_out)
1195
1196void tcp_enter_cwr(struct sock *sk);
1197__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1198
1199/* The maximum number of MSS of available cwnd for which TSO defers
1200 * sending if not using sysctl_tcp_tso_win_divisor.
1201 */
1202static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1203{
1204        return 3;
1205}
1206
1207/* Returns end sequence number of the receiver's advertised window */
1208static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1209{
1210        return tp->snd_una + tp->snd_wnd;
1211}
1212
1213/* We follow the spirit of RFC2861 to validate cwnd but implement a more
1214 * flexible approach. The RFC suggests cwnd should not be raised unless
1215 * it was fully used previously. And that's exactly what we do in
1216 * congestion avoidance mode. But in slow start we allow cwnd to grow
1217 * as long as the application has used half the cwnd.
1218 * Example :
1219 *    cwnd is 10 (IW10), but application sends 9 frames.
1220 *    We allow cwnd to reach 18 when all frames are ACKed.
1221 * This check is safe because it's as aggressive as slow start which already
1222 * risks 100% overshoot. The advantage is that we discourage application to
1223 * either send more filler packets or data to artificially blow up the cwnd
1224 * usage, and allow application-limited process to probe bw more aggressively.
1225 */
1226static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1227{
1228        const struct tcp_sock *tp = tcp_sk(sk);
1229
1230        /* If in slow start, ensure cwnd grows to twice what was ACKed. */
1231        if (tcp_in_slow_start(tp))
1232                return tp->snd_cwnd < 2 * tp->max_packets_out;
1233
1234        return tp->is_cwnd_limited;
1235}
1236
1237/* BBR congestion control needs pacing.
1238 * Same remark for SO_MAX_PACING_RATE.
1239 * sch_fq packet scheduler is efficiently handling pacing,
1240 * but is not always installed/used.
1241 * Return true if TCP stack should pace packets itself.
1242 */
1243static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1244{
1245        return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1246}
1247
1248/* Return in jiffies the delay before one skb is sent.
1249 * If @skb is NULL, we look at EDT for next packet being sent on the socket.
1250 */
1251static inline unsigned long tcp_pacing_delay(const struct sock *sk,
1252                                             const struct sk_buff *skb)
1253{
1254        s64 pacing_delay = skb ? skb->tstamp : tcp_sk(sk)->tcp_wstamp_ns;
1255
1256        pacing_delay -= tcp_sk(sk)->tcp_clock_cache;
1257
1258        return pacing_delay > 0 ? nsecs_to_jiffies(pacing_delay) : 0;
1259}
1260
1261static inline void tcp_reset_xmit_timer(struct sock *sk,
1262                                        const int what,
1263                                        unsigned long when,
1264                                        const unsigned long max_when,
1265                                        const struct sk_buff *skb)
1266{
1267        inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk, skb),
1268                                  max_when);
1269}
1270
1271/* Something is really bad, we could not queue an additional packet,
1272 * because qdisc is full or receiver sent a 0 window, or we are paced.
1273 * We do not want to add fuel to the fire, or abort too early,
1274 * so make sure the timer we arm now is at least 200ms in the future,
1275 * regardless of current icsk_rto value (as it could be ~2ms)
1276 */
1277static inline unsigned long tcp_probe0_base(const struct sock *sk)
1278{
1279        return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1280}
1281
1282/* Variant of inet_csk_rto_backoff() used for zero window probes */
1283static inline unsigned long tcp_probe0_when(const struct sock *sk,
1284                                            unsigned long max_when)
1285{
1286        u64 when = (u64)tcp_probe0_base(sk) << inet_csk(sk)->icsk_backoff;
1287
1288        return (unsigned long)min_t(u64, when, max_when);
1289}
1290
1291static inline void tcp_check_probe_timer(struct sock *sk)
1292{
1293        if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1294                tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1295                                     tcp_probe0_base(sk), TCP_RTO_MAX,
1296                                     NULL);
1297}
1298
1299static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1300{
1301        tp->snd_wl1 = seq;
1302}
1303
1304static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1305{
1306        tp->snd_wl1 = seq;
1307}
1308
1309/*
1310 * Calculate(/check) TCP checksum
1311 */
1312static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1313                                   __be32 daddr, __wsum base)
1314{
1315        return csum_tcpudp_magic(saddr,daddr,len,IPPROTO_TCP,base);
1316}
1317
1318static inline bool tcp_checksum_complete(struct sk_buff *skb)
1319{
1320        return !skb_csum_unnecessary(skb) &&
1321                __skb_checksum_complete(skb);
1322}
1323
1324bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb);
1325int tcp_filter(struct sock *sk, struct sk_buff *skb);
1326void tcp_set_state(struct sock *sk, int state);
1327void tcp_done(struct sock *sk);
1328int tcp_abort(struct sock *sk, int err);
1329
1330static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1331{
1332        rx_opt->dsack = 0;
1333        rx_opt->num_sacks = 0;
1334}
1335
1336u32 tcp_default_init_rwnd(u32 mss);
1337void tcp_cwnd_restart(struct sock *sk, s32 delta);
1338
1339static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1340{
1341        const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1342        struct tcp_sock *tp = tcp_sk(sk);
1343        s32 delta;
1344
1345        if (!sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle || tp->packets_out ||
1346            ca_ops->cong_control)
1347                return;
1348        delta = tcp_jiffies32 - tp->lsndtime;
1349        if (delta > inet_csk(sk)->icsk_rto)
1350                tcp_cwnd_restart(sk, delta);
1351}
1352
1353/* Determine a window scaling and initial window to offer. */
1354void tcp_select_initial_window(const struct sock *sk, int __space,
1355                               __u32 mss, __u32 *rcv_wnd,
1356                               __u32 *window_clamp, int wscale_ok,
1357                               __u8 *rcv_wscale, __u32 init_rcv_wnd);
1358
1359static inline int tcp_win_from_space(const struct sock *sk, int space)
1360{
1361        int tcp_adv_win_scale = sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale;
1362
1363        return tcp_adv_win_scale <= 0 ?
1364                (space>>(-tcp_adv_win_scale)) :
1365                space - (space>>tcp_adv_win_scale);
1366}
1367
1368/* Note: caller must be prepared to deal with negative returns */
1369static inline int tcp_space(const struct sock *sk)
1370{
1371        return tcp_win_from_space(sk, sk->sk_rcvbuf - sk->sk_backlog.len -
1372                                  atomic_read(&sk->sk_rmem_alloc));
1373}
1374
1375static inline int tcp_full_space(const struct sock *sk)
1376{
1377        return tcp_win_from_space(sk, sk->sk_rcvbuf);
1378}
1379
1380extern void tcp_openreq_init_rwin(struct request_sock *req,
1381                                  const struct sock *sk_listener,
1382                                  const struct dst_entry *dst);
1383
1384void tcp_enter_memory_pressure(struct sock *sk);
1385void tcp_leave_memory_pressure(struct sock *sk);
1386
1387static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1388{
1389        struct net *net = sock_net((struct sock *)tp);
1390
1391        return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl;
1392}
1393
1394static inline int keepalive_time_when(const struct tcp_sock *tp)
1395{
1396        struct net *net = sock_net((struct sock *)tp);
1397
1398        return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time;
1399}
1400
1401static inline int keepalive_probes(const struct tcp_sock *tp)
1402{
1403        struct net *net = sock_net((struct sock *)tp);
1404
1405        return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes;
1406}
1407
1408static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1409{
1410        const struct inet_connection_sock *icsk = &tp->inet_conn;
1411
1412        return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1413                          tcp_jiffies32 - tp->rcv_tstamp);
1414}
1415
1416static inline int tcp_fin_time(const struct sock *sk)
1417{
1418        int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout;
1419        const int rto = inet_csk(sk)->icsk_rto;
1420
1421        if (fin_timeout < (rto << 2) - (rto >> 1))
1422                fin_timeout = (rto << 2) - (rto >> 1);
1423
1424        return fin_timeout;
1425}
1426
1427static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1428                                  int paws_win)
1429{
1430        if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1431                return true;
1432        if (unlikely(!time_before32(ktime_get_seconds(),
1433                                    rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS)))
1434                return true;
1435        /*
1436         * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1437         * then following tcp messages have valid values. Ignore 0 value,
1438         * or else 'negative' tsval might forbid us to accept their packets.
1439         */
1440        if (!rx_opt->ts_recent)
1441                return true;
1442        return false;
1443}
1444
1445static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1446                                   int rst)
1447{
1448        if (tcp_paws_check(rx_opt, 0))
1449                return false;
1450
1451        /* RST segments are not recommended to carry timestamp,
1452           and, if they do, it is recommended to ignore PAWS because
1453           "their cleanup function should take precedence over timestamps."
1454           Certainly, it is mistake. It is necessary to understand the reasons
1455           of this constraint to relax it: if peer reboots, clock may go
1456           out-of-sync and half-open connections will not be reset.
1457           Actually, the problem would be not existing if all
1458           the implementations followed draft about maintaining clock
1459           via reboots. Linux-2.2 DOES NOT!
1460
1461           However, we can relax time bounds for RST segments to MSL.
1462         */
1463        if (rst && !time_before32(ktime_get_seconds(),
1464                                  rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1465                return false;
1466        return true;
1467}
1468
1469bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1470                          int mib_idx, u32 *last_oow_ack_time);
1471
1472static inline void tcp_mib_init(struct net *net)
1473{
1474        /* See RFC 2012 */
1475        TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1476        TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1477        TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1478        TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1479}
1480
1481/* from STCP */
1482static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1483{
1484        tp->lost_skb_hint = NULL;
1485}
1486
1487static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1488{
1489        tcp_clear_retrans_hints_partial(tp);
1490        tp->retransmit_skb_hint = NULL;
1491}
1492
1493union tcp_md5_addr {
1494        struct in_addr  a4;
1495#if IS_ENABLED(CONFIG_IPV6)
1496        struct in6_addr a6;
1497#endif
1498};
1499
1500/* - key database */
1501struct tcp_md5sig_key {
1502        struct hlist_node       node;
1503        u8                      keylen;
1504        u8                      family; /* AF_INET or AF_INET6 */
1505        union tcp_md5_addr      addr;
1506        u8                      prefixlen;
1507        u8                      key[TCP_MD5SIG_MAXKEYLEN];
1508        struct rcu_head         rcu;
1509};
1510
1511/* - sock block */
1512struct tcp_md5sig_info {
1513        struct hlist_head       head;
1514        struct rcu_head         rcu;
1515};
1516
1517/* - pseudo header */
1518struct tcp4_pseudohdr {
1519        __be32          saddr;
1520        __be32          daddr;
1521        __u8            pad;
1522        __u8            protocol;
1523        __be16          len;
1524};
1525
1526struct tcp6_pseudohdr {
1527        struct in6_addr saddr;
1528        struct in6_addr daddr;
1529        __be32          len;
1530        __be32          protocol;       /* including padding */
1531};
1532
1533union tcp_md5sum_block {
1534        struct tcp4_pseudohdr ip4;
1535#if IS_ENABLED(CONFIG_IPV6)
1536        struct tcp6_pseudohdr ip6;
1537#endif
1538};
1539
1540/* - pool: digest algorithm, hash description and scratch buffer */
1541struct tcp_md5sig_pool {
1542        struct ahash_request    *md5_req;
1543        void                    *scratch;
1544};
1545
1546/* - functions */
1547int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1548                        const struct sock *sk, const struct sk_buff *skb);
1549int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1550                   int family, u8 prefixlen, const u8 *newkey, u8 newkeylen,
1551                   gfp_t gfp);
1552int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1553                   int family, u8 prefixlen);
1554struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1555                                         const struct sock *addr_sk);
1556
1557#ifdef CONFIG_TCP_MD5SIG
1558#include <linux/jump_label.h>
1559extern struct static_key tcp_md5_needed;
1560struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk,
1561                                           const union tcp_md5_addr *addr,
1562                                           int family);
1563static inline struct tcp_md5sig_key *
1564tcp_md5_do_lookup(const struct sock *sk,
1565                  const union tcp_md5_addr *addr,
1566                  int family)
1567{
1568        if (!static_key_false(&tcp_md5_needed))
1569                return NULL;
1570        return __tcp_md5_do_lookup(sk, addr, family);
1571}
1572
1573#define tcp_twsk_md5_key(twsk)  ((twsk)->tw_md5_key)
1574#else
1575static inline struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1576                                         const union tcp_md5_addr *addr,
1577                                         int family)
1578{
1579        return NULL;
1580}
1581#define tcp_twsk_md5_key(twsk)  NULL
1582#endif
1583
1584bool tcp_alloc_md5sig_pool(void);
1585
1586struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1587static inline void tcp_put_md5sig_pool(void)
1588{
1589        local_bh_enable();
1590}
1591
1592int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1593                          unsigned int header_len);
1594int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1595                     const struct tcp_md5sig_key *key);
1596
1597/* From tcp_fastopen.c */
1598void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1599                            struct tcp_fastopen_cookie *cookie);
1600void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1601                            struct tcp_fastopen_cookie *cookie, bool syn_lost,
1602                            u16 try_exp);
1603struct tcp_fastopen_request {
1604        /* Fast Open cookie. Size 0 means a cookie request */
1605        struct tcp_fastopen_cookie      cookie;
1606        struct msghdr                   *data;  /* data in MSG_FASTOPEN */
1607        size_t                          size;
1608        int                             copied; /* queued in tcp_connect() */
1609};
1610void tcp_free_fastopen_req(struct tcp_sock *tp);
1611void tcp_fastopen_destroy_cipher(struct sock *sk);
1612void tcp_fastopen_ctx_destroy(struct net *net);
1613int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1614                              void *key, unsigned int len);
1615void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1616struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1617                              struct request_sock *req,
1618                              struct tcp_fastopen_cookie *foc,
1619                              const struct dst_entry *dst);
1620void tcp_fastopen_init_key_once(struct net *net);
1621bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1622                             struct tcp_fastopen_cookie *cookie);
1623bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1624#define TCP_FASTOPEN_KEY_LENGTH 16
1625
1626/* Fastopen key context */
1627struct tcp_fastopen_context {
1628        struct crypto_cipher    *tfm;
1629        __u8                    key[TCP_FASTOPEN_KEY_LENGTH];
1630        struct rcu_head         rcu;
1631};
1632
1633extern unsigned int sysctl_tcp_fastopen_blackhole_timeout;
1634void tcp_fastopen_active_disable(struct sock *sk);
1635bool tcp_fastopen_active_should_disable(struct sock *sk);
1636void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1637void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1638
1639/* Latencies incurred by various limits for a sender. They are
1640 * chronograph-like stats that are mutually exclusive.
1641 */
1642enum tcp_chrono {
1643        TCP_CHRONO_UNSPEC,
1644        TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1645        TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1646        TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1647        __TCP_CHRONO_MAX,
1648};
1649
1650void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1651void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1652
1653/* This helper is needed, because skb->tcp_tsorted_anchor uses
1654 * the same memory storage than skb->destructor/_skb_refdst
1655 */
1656static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1657{
1658        skb->destructor = NULL;
1659        skb->_skb_refdst = 0UL;
1660}
1661
1662#define tcp_skb_tsorted_save(skb) {             \
1663        unsigned long _save = skb->_skb_refdst; \
1664        skb->_skb_refdst = 0UL;
1665
1666#define tcp_skb_tsorted_restore(skb)            \
1667        skb->_skb_refdst = _save;               \
1668}
1669
1670void tcp_write_queue_purge(struct sock *sk);
1671
1672static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1673{
1674        return skb_rb_first(&sk->tcp_rtx_queue);
1675}
1676
1677static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1678{
1679        return skb_peek(&sk->sk_write_queue);
1680}
1681
1682static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1683{
1684        return skb_peek_tail(&sk->sk_write_queue);
1685}
1686
1687#define tcp_for_write_queue_from_safe(skb, tmp, sk)                     \
1688        skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1689
1690static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1691{
1692        return skb_peek(&sk->sk_write_queue);
1693}
1694
1695static inline bool tcp_skb_is_last(const struct sock *sk,
1696                                   const struct sk_buff *skb)
1697{
1698        return skb_queue_is_last(&sk->sk_write_queue, skb);
1699}
1700
1701static inline bool tcp_write_queue_empty(const struct sock *sk)
1702{
1703        return skb_queue_empty(&sk->sk_write_queue);
1704}
1705
1706static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1707{
1708        return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1709}
1710
1711static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1712{
1713        return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1714}
1715
1716static inline void tcp_check_send_head(struct sock *sk, struct sk_buff *skb_unlinked)
1717{
1718        if (tcp_write_queue_empty(sk))
1719                tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
1720}
1721
1722static inline void __tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1723{
1724        __skb_queue_tail(&sk->sk_write_queue, skb);
1725}
1726
1727static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1728{
1729        __tcp_add_write_queue_tail(sk, skb);
1730
1731        /* Queue it, remembering where we must start sending. */
1732        if (sk->sk_write_queue.next == skb)
1733                tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1734}
1735
1736/* Insert new before skb on the write queue of sk.  */
1737static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1738                                                  struct sk_buff *skb,
1739                                                  struct sock *sk)
1740{
1741        __skb_queue_before(&sk->sk_write_queue, skb, new);
1742}
1743
1744static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1745{
1746        tcp_skb_tsorted_anchor_cleanup(skb);
1747        __skb_unlink(skb, &sk->sk_write_queue);
1748}
1749
1750void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1751
1752static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1753{
1754        tcp_skb_tsorted_anchor_cleanup(skb);
1755        rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1756}
1757
1758static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1759{
1760        list_del(&skb->tcp_tsorted_anchor);
1761        tcp_rtx_queue_unlink(skb, sk);
1762        sk_wmem_free_skb(sk, skb);
1763}
1764
1765static inline void tcp_push_pending_frames(struct sock *sk)
1766{
1767        if (tcp_send_head(sk)) {
1768                struct tcp_sock *tp = tcp_sk(sk);
1769
1770                __tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1771        }
1772}
1773
1774/* Start sequence of the skb just after the highest skb with SACKed
1775 * bit, valid only if sacked_out > 0 or when the caller has ensured
1776 * validity by itself.
1777 */
1778static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1779{
1780        if (!tp->sacked_out)
1781                return tp->snd_una;
1782
1783        if (tp->highest_sack == NULL)
1784                return tp->snd_nxt;
1785
1786        return TCP_SKB_CB(tp->highest_sack)->seq;
1787}
1788
1789static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1790{
1791        tcp_sk(sk)->highest_sack = skb_rb_next(skb);
1792}
1793
1794static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1795{
1796        return tcp_sk(sk)->highest_sack;
1797}
1798
1799static inline void tcp_highest_sack_reset(struct sock *sk)
1800{
1801        tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
1802}
1803
1804/* Called when old skb is about to be deleted and replaced by new skb */
1805static inline void tcp_highest_sack_replace(struct sock *sk,
1806                                            struct sk_buff *old,
1807                                            struct sk_buff *new)
1808{
1809        if (old == tcp_highest_sack(sk))
1810                tcp_sk(sk)->highest_sack = new;
1811}
1812
1813/* This helper checks if socket has IP_TRANSPARENT set */
1814static inline bool inet_sk_transparent(const struct sock *sk)
1815{
1816        switch (sk->sk_state) {
1817        case TCP_TIME_WAIT:
1818                return inet_twsk(sk)->tw_transparent;
1819        case TCP_NEW_SYN_RECV:
1820                return inet_rsk(inet_reqsk(sk))->no_srccheck;
1821        }
1822        return inet_sk(sk)->transparent;
1823}
1824
1825/* Determines whether this is a thin stream (which may suffer from
1826 * increased latency). Used to trigger latency-reducing mechanisms.
1827 */
1828static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1829{
1830        return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1831}
1832
1833/* /proc */
1834enum tcp_seq_states {
1835        TCP_SEQ_STATE_LISTENING,
1836        TCP_SEQ_STATE_ESTABLISHED,
1837};
1838
1839void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
1840void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
1841void tcp_seq_stop(struct seq_file *seq, void *v);
1842
1843struct tcp_seq_afinfo {
1844        sa_family_t                     family;
1845};
1846
1847struct tcp_iter_state {
1848        struct seq_net_private  p;
1849        enum tcp_seq_states     state;
1850        struct sock             *syn_wait_sk;
1851        int                     bucket, offset, sbucket, num;
1852        loff_t                  last_pos;
1853};
1854
1855extern struct request_sock_ops tcp_request_sock_ops;
1856extern struct request_sock_ops tcp6_request_sock_ops;
1857
1858void tcp_v4_destroy_sock(struct sock *sk);
1859
1860struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1861                                netdev_features_t features);
1862struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
1863int tcp_gro_complete(struct sk_buff *skb);
1864
1865void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1866
1867static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1868{
1869        struct net *net = sock_net((struct sock *)tp);
1870        return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat;
1871}
1872
1873/* @wake is one when sk_stream_write_space() calls us.
1874 * This sends EPOLLOUT only if notsent_bytes is half the limit.
1875 * This mimics the strategy used in sock_def_write_space().
1876 */
1877static inline bool tcp_stream_memory_free(const struct sock *sk, int wake)
1878{
1879        const struct tcp_sock *tp = tcp_sk(sk);
1880        u32 notsent_bytes = tp->write_seq - tp->snd_nxt;
1881
1882        return (notsent_bytes << wake) < tcp_notsent_lowat(tp);
1883}
1884
1885#ifdef CONFIG_PROC_FS
1886int tcp4_proc_init(void);
1887void tcp4_proc_exit(void);
1888#endif
1889
1890int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
1891int tcp_conn_request(struct request_sock_ops *rsk_ops,
1892                     const struct tcp_request_sock_ops *af_ops,
1893                     struct sock *sk, struct sk_buff *skb);
1894
1895/* TCP af-specific functions */
1896struct tcp_sock_af_ops {
1897#ifdef CONFIG_TCP_MD5SIG
1898        struct tcp_md5sig_key   *(*md5_lookup) (const struct sock *sk,
1899                                                const struct sock *addr_sk);
1900        int             (*calc_md5_hash)(char *location,
1901                                         const struct tcp_md5sig_key *md5,
1902                                         const struct sock *sk,
1903                                         const struct sk_buff *skb);
1904        int             (*md5_parse)(struct sock *sk,
1905                                     int optname,
1906                                     char __user *optval,
1907                                     int optlen);
1908#endif
1909};
1910
1911struct tcp_request_sock_ops {
1912        u16 mss_clamp;
1913#ifdef CONFIG_TCP_MD5SIG
1914        struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
1915                                                 const struct sock *addr_sk);
1916        int             (*calc_md5_hash) (char *location,
1917                                          const struct tcp_md5sig_key *md5,
1918                                          const struct sock *sk,
1919                                          const struct sk_buff *skb);
1920#endif
1921        void (*init_req)(struct request_sock *req,
1922                         const struct sock *sk_listener,
1923                         struct sk_buff *skb);
1924#ifdef CONFIG_SYN_COOKIES
1925        __u32 (*cookie_init_seq)(const struct sk_buff *skb,
1926                                 __u16 *mss);
1927#endif
1928        struct dst_entry *(*route_req)(const struct sock *sk, struct flowi *fl,
1929                                       const struct request_sock *req);
1930        u32 (*init_seq)(const struct sk_buff *skb);
1931        u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
1932        int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
1933                           struct flowi *fl, struct request_sock *req,
1934                           struct tcp_fastopen_cookie *foc,
1935                           enum tcp_synack_type synack_type);
1936};
1937
1938#ifdef CONFIG_SYN_COOKIES
1939static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1940                                         const struct sock *sk, struct sk_buff *skb,
1941                                         __u16 *mss)
1942{
1943        tcp_synq_overflow(sk);
1944        __NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
1945        return ops->cookie_init_seq(skb, mss);
1946}
1947#else
1948static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1949                                         const struct sock *sk, struct sk_buff *skb,
1950                                         __u16 *mss)
1951{
1952        return 0;
1953}
1954#endif
1955
1956int tcpv4_offload_init(void);
1957
1958void tcp_v4_init(void);
1959void tcp_init(void);
1960
1961/* tcp_recovery.c */
1962void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
1963void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
1964extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
1965                                u32 reo_wnd);
1966extern void tcp_rack_mark_lost(struct sock *sk);
1967extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
1968                             u64 xmit_time);
1969extern void tcp_rack_reo_timeout(struct sock *sk);
1970extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
1971
1972/* At how many usecs into the future should the RTO fire? */
1973static inline s64 tcp_rto_delta_us(const struct sock *sk)
1974{
1975        const struct sk_buff *skb = tcp_rtx_queue_head(sk);
1976        u32 rto = inet_csk(sk)->icsk_rto;
1977        u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
1978
1979        return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
1980}
1981
1982/*
1983 * Save and compile IPv4 options, return a pointer to it
1984 */
1985static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
1986                                                         struct sk_buff *skb)
1987{
1988        const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
1989        struct ip_options_rcu *dopt = NULL;
1990
1991        if (opt->optlen) {
1992                int opt_size = sizeof(*dopt) + opt->optlen;
1993
1994                dopt = kmalloc(opt_size, GFP_ATOMIC);
1995                if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
1996                        kfree(dopt);
1997                        dopt = NULL;
1998                }
1999        }
2000        return dopt;
2001}
2002
2003/* locally generated TCP pure ACKs have skb->truesize == 2
2004 * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2005 * This is much faster than dissecting the packet to find out.
2006 * (Think of GRE encapsulations, IPv4, IPv6, ...)
2007 */
2008static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2009{
2010        return skb->truesize == 2;
2011}
2012
2013static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2014{
2015        skb->truesize = 2;
2016}
2017
2018static inline int tcp_inq(struct sock *sk)
2019{
2020        struct tcp_sock *tp = tcp_sk(sk);
2021        int answ;
2022
2023        if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2024                answ = 0;
2025        } else if (sock_flag(sk, SOCK_URGINLINE) ||
2026                   !tp->urg_data ||
2027                   before(tp->urg_seq, tp->copied_seq) ||
2028                   !before(tp->urg_seq, tp->rcv_nxt)) {
2029
2030                answ = tp->rcv_nxt - tp->copied_seq;
2031
2032                /* Subtract 1, if FIN was received */
2033                if (answ && sock_flag(sk, SOCK_DONE))
2034                        answ--;
2035        } else {
2036                answ = tp->urg_seq - tp->copied_seq;
2037        }
2038
2039        return answ;
2040}
2041
2042int tcp_peek_len(struct socket *sock);
2043
2044static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2045{
2046        u16 segs_in;
2047
2048        segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2049        tp->segs_in += segs_in;
2050        if (skb->len > tcp_hdrlen(skb))
2051                tp->data_segs_in += segs_in;
2052}
2053
2054/*
2055 * TCP listen path runs lockless.
2056 * We forced "struct sock" to be const qualified to make sure
2057 * we don't modify one of its field by mistake.
2058 * Here, we increment sk_drops which is an atomic_t, so we can safely
2059 * make sock writable again.
2060 */
2061static inline void tcp_listendrop(const struct sock *sk)
2062{
2063        atomic_inc(&((struct sock *)sk)->sk_drops);
2064        __NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2065}
2066
2067enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2068
2069/*
2070 * Interface for adding Upper Level Protocols over TCP
2071 */
2072
2073#define TCP_ULP_NAME_MAX        16
2074#define TCP_ULP_MAX             128
2075#define TCP_ULP_BUF_MAX         (TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2076
2077struct tcp_ulp_ops {
2078        struct list_head        list;
2079
2080        /* initialize ulp */
2081        int (*init)(struct sock *sk);
2082        /* cleanup ulp */
2083        void (*release)(struct sock *sk);
2084
2085        char            name[TCP_ULP_NAME_MAX];
2086        struct module   *owner;
2087};
2088int tcp_register_ulp(struct tcp_ulp_ops *type);
2089void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2090int tcp_set_ulp(struct sock *sk, const char *name);
2091void tcp_get_available_ulp(char *buf, size_t len);
2092void tcp_cleanup_ulp(struct sock *sk);
2093
2094#define MODULE_ALIAS_TCP_ULP(name)                              \
2095        __MODULE_INFO(alias, alias_userspace, name);            \
2096        __MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2097
2098struct sk_msg;
2099struct sk_psock;
2100
2101int tcp_bpf_init(struct sock *sk);
2102void tcp_bpf_reinit(struct sock *sk);
2103int tcp_bpf_sendmsg_redir(struct sock *sk, struct sk_msg *msg, u32 bytes,
2104                          int flags);
2105int tcp_bpf_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2106                    int nonblock, int flags, int *addr_len);
2107int __tcp_bpf_recvmsg(struct sock *sk, struct sk_psock *psock,
2108                      struct msghdr *msg, int len, int flags);
2109
2110/* Call BPF_SOCK_OPS program that returns an int. If the return value
2111 * is < 0, then the BPF op failed (for example if the loaded BPF
2112 * program does not support the chosen operation or there is no BPF
2113 * program loaded).
2114 */
2115#ifdef CONFIG_BPF
2116static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2117{
2118        struct bpf_sock_ops_kern sock_ops;
2119        int ret;
2120
2121        memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2122        if (sk_fullsock(sk)) {
2123                sock_ops.is_fullsock = 1;
2124                sock_owned_by_me(sk);
2125        }
2126
2127        sock_ops.sk = sk;
2128        sock_ops.op = op;
2129        if (nargs > 0)
2130                memcpy(sock_ops.args, args, nargs * sizeof(*args));
2131
2132        ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2133        if (ret == 0)
2134                ret = sock_ops.reply;
2135        else
2136                ret = -1;
2137        return ret;
2138}
2139
2140static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2141{
2142        u32 args[2] = {arg1, arg2};
2143
2144        return tcp_call_bpf(sk, op, 2, args);
2145}
2146
2147static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2148                                    u32 arg3)
2149{
2150        u32 args[3] = {arg1, arg2, arg3};
2151
2152        return tcp_call_bpf(sk, op, 3, args);
2153}
2154
2155#else
2156static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2157{
2158        return -EPERM;
2159}
2160
2161static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2162{
2163        return -EPERM;
2164}
2165
2166static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2167                                    u32 arg3)
2168{
2169        return -EPERM;
2170}
2171
2172#endif
2173
2174static inline u32 tcp_timeout_init(struct sock *sk)
2175{
2176        int timeout;
2177
2178        timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2179
2180        if (timeout <= 0)
2181                timeout = TCP_TIMEOUT_INIT;
2182        return timeout;
2183}
2184
2185static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2186{
2187        int rwnd;
2188
2189        rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2190
2191        if (rwnd < 0)
2192                rwnd = 0;
2193        return rwnd;
2194}
2195
2196static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2197{
2198        return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2199}
2200
2201#if IS_ENABLED(CONFIG_SMC)
2202extern struct static_key_false tcp_have_smc;
2203#endif
2204
2205#if IS_ENABLED(CONFIG_TLS_DEVICE)
2206void clean_acked_data_enable(struct inet_connection_sock *icsk,
2207                             void (*cad)(struct sock *sk, u32 ack_seq));
2208void clean_acked_data_disable(struct inet_connection_sock *icsk);
2209
2210#endif
2211
2212#endif  /* _TCP_H */
2213