1/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */ 2#ifndef _BTRFS_CTREE_H_ 3#define _BTRFS_CTREE_H_ 4 5#include <linux/btrfs.h> 6#include <linux/types.h> 7 8/* 9 * This header contains the structure definitions and constants used 10 * by file system objects that can be retrieved using 11 * the BTRFS_IOC_SEARCH_TREE ioctl. That means basically anything that 12 * is needed to describe a leaf node's key or item contents. 13 */ 14 15/* holds pointers to all of the tree roots */ 16#define BTRFS_ROOT_TREE_OBJECTID 1ULL 17 18/* stores information about which extents are in use, and reference counts */ 19#define BTRFS_EXTENT_TREE_OBJECTID 2ULL 20 21/* 22 * chunk tree stores translations from logical -> physical block numbering 23 * the super block points to the chunk tree 24 */ 25#define BTRFS_CHUNK_TREE_OBJECTID 3ULL 26 27/* 28 * stores information about which areas of a given device are in use. 29 * one per device. The tree of tree roots points to the device tree 30 */ 31#define BTRFS_DEV_TREE_OBJECTID 4ULL 32 33/* one per subvolume, storing files and directories */ 34#define BTRFS_FS_TREE_OBJECTID 5ULL 35 36/* directory objectid inside the root tree */ 37#define BTRFS_ROOT_TREE_DIR_OBJECTID 6ULL 38 39/* holds checksums of all the data extents */ 40#define BTRFS_CSUM_TREE_OBJECTID 7ULL 41 42/* holds quota configuration and tracking */ 43#define BTRFS_QUOTA_TREE_OBJECTID 8ULL 44 45/* for storing items that use the BTRFS_UUID_KEY* types */ 46#define BTRFS_UUID_TREE_OBJECTID 9ULL 47 48/* tracks free space in block groups. */ 49#define BTRFS_FREE_SPACE_TREE_OBJECTID 10ULL 50 51/* device stats in the device tree */ 52#define BTRFS_DEV_STATS_OBJECTID 0ULL 53 54/* for storing balance parameters in the root tree */ 55#define BTRFS_BALANCE_OBJECTID -4ULL 56 57/* orhpan objectid for tracking unlinked/truncated files */ 58#define BTRFS_ORPHAN_OBJECTID -5ULL 59 60/* does write ahead logging to speed up fsyncs */ 61#define BTRFS_TREE_LOG_OBJECTID -6ULL 62#define BTRFS_TREE_LOG_FIXUP_OBJECTID -7ULL 63 64/* for space balancing */ 65#define BTRFS_TREE_RELOC_OBJECTID -8ULL 66#define BTRFS_DATA_RELOC_TREE_OBJECTID -9ULL 67 68/* 69 * extent checksums all have this objectid 70 * this allows them to share the logging tree 71 * for fsyncs 72 */ 73#define BTRFS_EXTENT_CSUM_OBJECTID -10ULL 74 75/* For storing free space cache */ 76#define BTRFS_FREE_SPACE_OBJECTID -11ULL 77 78/* 79 * The inode number assigned to the special inode for storing 80 * free ino cache 81 */ 82#define BTRFS_FREE_INO_OBJECTID -12ULL 83 84/* dummy objectid represents multiple objectids */ 85#define BTRFS_MULTIPLE_OBJECTIDS -255ULL 86 87/* 88 * All files have objectids in this range. 89 */ 90#define BTRFS_FIRST_FREE_OBJECTID 256ULL 91#define BTRFS_LAST_FREE_OBJECTID -256ULL 92#define BTRFS_FIRST_CHUNK_TREE_OBJECTID 256ULL 93 94 95/* 96 * the device items go into the chunk tree. The key is in the form 97 * [ 1 BTRFS_DEV_ITEM_KEY device_id ] 98 */ 99#define BTRFS_DEV_ITEMS_OBJECTID 1ULL 100 101#define BTRFS_BTREE_INODE_OBJECTID 1 102 103#define BTRFS_EMPTY_SUBVOL_DIR_OBJECTID 2 104 105#define BTRFS_DEV_REPLACE_DEVID 0ULL 106 107/* 108 * inode items have the data typically returned from stat and store other 109 * info about object characteristics. There is one for every file and dir in 110 * the FS 111 */ 112#define BTRFS_INODE_ITEM_KEY 1 113#define BTRFS_INODE_REF_KEY 12 114#define BTRFS_INODE_EXTREF_KEY 13 115#define BTRFS_XATTR_ITEM_KEY 24 116#define BTRFS_ORPHAN_ITEM_KEY 48 117/* reserve 2-15 close to the inode for later flexibility */ 118 119/* 120 * dir items are the name -> inode pointers in a directory. There is one 121 * for every name in a directory. 122 */ 123#define BTRFS_DIR_LOG_ITEM_KEY 60 124#define BTRFS_DIR_LOG_INDEX_KEY 72 125#define BTRFS_DIR_ITEM_KEY 84 126#define BTRFS_DIR_INDEX_KEY 96 127/* 128 * extent data is for file data 129 */ 130#define BTRFS_EXTENT_DATA_KEY 108 131 132/* 133 * extent csums are stored in a separate tree and hold csums for 134 * an entire extent on disk. 135 */ 136#define BTRFS_EXTENT_CSUM_KEY 128 137 138/* 139 * root items point to tree roots. They are typically in the root 140 * tree used by the super block to find all the other trees 141 */ 142#define BTRFS_ROOT_ITEM_KEY 132 143 144/* 145 * root backrefs tie subvols and snapshots to the directory entries that 146 * reference them 147 */ 148#define BTRFS_ROOT_BACKREF_KEY 144 149 150/* 151 * root refs make a fast index for listing all of the snapshots and 152 * subvolumes referenced by a given root. They point directly to the 153 * directory item in the root that references the subvol 154 */ 155#define BTRFS_ROOT_REF_KEY 156 156 157/* 158 * extent items are in the extent map tree. These record which blocks 159 * are used, and how many references there are to each block 160 */ 161#define BTRFS_EXTENT_ITEM_KEY 168 162 163/* 164 * The same as the BTRFS_EXTENT_ITEM_KEY, except it's metadata we already know 165 * the length, so we save the level in key->offset instead of the length. 166 */ 167#define BTRFS_METADATA_ITEM_KEY 169 168 169#define BTRFS_TREE_BLOCK_REF_KEY 176 170 171#define BTRFS_EXTENT_DATA_REF_KEY 178 172 173#define BTRFS_EXTENT_REF_V0_KEY 180 174 175#define BTRFS_SHARED_BLOCK_REF_KEY 182 176 177#define BTRFS_SHARED_DATA_REF_KEY 184 178 179/* 180 * block groups give us hints into the extent allocation trees. Which 181 * blocks are free etc etc 182 */ 183#define BTRFS_BLOCK_GROUP_ITEM_KEY 192 184 185/* 186 * Every block group is represented in the free space tree by a free space info 187 * item, which stores some accounting information. It is keyed on 188 * (block_group_start, FREE_SPACE_INFO, block_group_length). 189 */ 190#define BTRFS_FREE_SPACE_INFO_KEY 198 191 192/* 193 * A free space extent tracks an extent of space that is free in a block group. 194 * It is keyed on (start, FREE_SPACE_EXTENT, length). 195 */ 196#define BTRFS_FREE_SPACE_EXTENT_KEY 199 197 198/* 199 * When a block group becomes very fragmented, we convert it to use bitmaps 200 * instead of extents. A free space bitmap is keyed on 201 * (start, FREE_SPACE_BITMAP, length); the corresponding item is a bitmap with 202 * (length / sectorsize) bits. 203 */ 204#define BTRFS_FREE_SPACE_BITMAP_KEY 200 205 206#define BTRFS_DEV_EXTENT_KEY 204 207#define BTRFS_DEV_ITEM_KEY 216 208#define BTRFS_CHUNK_ITEM_KEY 228 209 210/* 211 * Records the overall state of the qgroups. 212 * There's only one instance of this key present, 213 * (0, BTRFS_QGROUP_STATUS_KEY, 0) 214 */ 215#define BTRFS_QGROUP_STATUS_KEY 240 216/* 217 * Records the currently used space of the qgroup. 218 * One key per qgroup, (0, BTRFS_QGROUP_INFO_KEY, qgroupid). 219 */ 220#define BTRFS_QGROUP_INFO_KEY 242 221/* 222 * Contains the user configured limits for the qgroup. 223 * One key per qgroup, (0, BTRFS_QGROUP_LIMIT_KEY, qgroupid). 224 */ 225#define BTRFS_QGROUP_LIMIT_KEY 244 226/* 227 * Records the child-parent relationship of qgroups. For 228 * each relation, 2 keys are present: 229 * (childid, BTRFS_QGROUP_RELATION_KEY, parentid) 230 * (parentid, BTRFS_QGROUP_RELATION_KEY, childid) 231 */ 232#define BTRFS_QGROUP_RELATION_KEY 246 233 234/* 235 * Obsolete name, see BTRFS_TEMPORARY_ITEM_KEY. 236 */ 237#define BTRFS_BALANCE_ITEM_KEY 248 238 239/* 240 * The key type for tree items that are stored persistently, but do not need to 241 * exist for extended period of time. The items can exist in any tree. 242 * 243 * [subtype, BTRFS_TEMPORARY_ITEM_KEY, data] 244 * 245 * Existing items: 246 * 247 * - balance status item 248 * (BTRFS_BALANCE_OBJECTID, BTRFS_TEMPORARY_ITEM_KEY, 0) 249 */ 250#define BTRFS_TEMPORARY_ITEM_KEY 248 251 252/* 253 * Obsolete name, see BTRFS_PERSISTENT_ITEM_KEY 254 */ 255#define BTRFS_DEV_STATS_KEY 249 256 257/* 258 * The key type for tree items that are stored persistently and usually exist 259 * for a long period, eg. filesystem lifetime. The item kinds can be status 260 * information, stats or preference values. The item can exist in any tree. 261 * 262 * [subtype, BTRFS_PERSISTENT_ITEM_KEY, data] 263 * 264 * Existing items: 265 * 266 * - device statistics, store IO stats in the device tree, one key for all 267 * stats 268 * (BTRFS_DEV_STATS_OBJECTID, BTRFS_DEV_STATS_KEY, 0) 269 */ 270#define BTRFS_PERSISTENT_ITEM_KEY 249 271 272/* 273 * Persistantly stores the device replace state in the device tree. 274 * The key is built like this: (0, BTRFS_DEV_REPLACE_KEY, 0). 275 */ 276#define BTRFS_DEV_REPLACE_KEY 250 277 278/* 279 * Stores items that allow to quickly map UUIDs to something else. 280 * These items are part of the filesystem UUID tree. 281 * The key is built like this: 282 * (UUID_upper_64_bits, BTRFS_UUID_KEY*, UUID_lower_64_bits). 283 */ 284#if BTRFS_UUID_SIZE != 16 285#error "UUID items require BTRFS_UUID_SIZE == 16!" 286#endif 287#define BTRFS_UUID_KEY_SUBVOL 251 /* for UUIDs assigned to subvols */ 288#define BTRFS_UUID_KEY_RECEIVED_SUBVOL 252 /* for UUIDs assigned to 289 * received subvols */ 290 291/* 292 * string items are for debugging. They just store a short string of 293 * data in the FS 294 */ 295#define BTRFS_STRING_ITEM_KEY 253 296 297 298 299/* 32 bytes in various csum fields */ 300#define BTRFS_CSUM_SIZE 32 301 302/* csum types */ 303#define BTRFS_CSUM_TYPE_CRC32 0 304 305/* 306 * flags definitions for directory entry item type 307 * 308 * Used by: 309 * struct btrfs_dir_item.type 310 */ 311#define BTRFS_FT_UNKNOWN 0 312#define BTRFS_FT_REG_FILE 1 313#define BTRFS_FT_DIR 2 314#define BTRFS_FT_CHRDEV 3 315#define BTRFS_FT_BLKDEV 4 316#define BTRFS_FT_FIFO 5 317#define BTRFS_FT_SOCK 6 318#define BTRFS_FT_SYMLINK 7 319#define BTRFS_FT_XATTR 8 320#define BTRFS_FT_MAX 9 321 322/* 323 * The key defines the order in the tree, and so it also defines (optimal) 324 * block layout. 325 * 326 * objectid corresponds to the inode number. 327 * 328 * type tells us things about the object, and is a kind of stream selector. 329 * so for a given inode, keys with type of 1 might refer to the inode data, 330 * type of 2 may point to file data in the btree and type == 3 may point to 331 * extents. 332 * 333 * offset is the starting byte offset for this key in the stream. 334 * 335 * btrfs_disk_key is in disk byte order. struct btrfs_key is always 336 * in cpu native order. Otherwise they are identical and their sizes 337 * should be the same (ie both packed) 338 */ 339struct btrfs_disk_key { 340 __le64 objectid; 341 __u8 type; 342 __le64 offset; 343} __attribute__ ((__packed__)); 344 345struct btrfs_key { 346 __u64 objectid; 347 __u8 type; 348 __u64 offset; 349} __attribute__ ((__packed__)); 350 351struct btrfs_dev_item { 352 /* the internal btrfs device id */ 353 __le64 devid; 354 355 /* size of the device */ 356 __le64 total_bytes; 357 358 /* bytes used */ 359 __le64 bytes_used; 360 361 /* optimal io alignment for this device */ 362 __le32 io_align; 363 364 /* optimal io width for this device */ 365 __le32 io_width; 366 367 /* minimal io size for this device */ 368 __le32 sector_size; 369 370 /* type and info about this device */ 371 __le64 type; 372 373 /* expected generation for this device */ 374 __le64 generation; 375 376 /* 377 * starting byte of this partition on the device, 378 * to allow for stripe alignment in the future 379 */ 380 __le64 start_offset; 381 382 /* grouping information for allocation decisions */ 383 __le32 dev_group; 384 385 /* seek speed 0-100 where 100 is fastest */ 386 __u8 seek_speed; 387 388 /* bandwidth 0-100 where 100 is fastest */ 389 __u8 bandwidth; 390 391 /* btrfs generated uuid for this device */ 392 __u8 uuid[BTRFS_UUID_SIZE]; 393 394 /* uuid of FS who owns this device */ 395 __u8 fsid[BTRFS_UUID_SIZE]; 396} __attribute__ ((__packed__)); 397 398struct btrfs_stripe { 399 __le64 devid; 400 __le64 offset; 401 __u8 dev_uuid[BTRFS_UUID_SIZE]; 402} __attribute__ ((__packed__)); 403 404struct btrfs_chunk { 405 /* size of this chunk in bytes */ 406 __le64 length; 407 408 /* objectid of the root referencing this chunk */ 409 __le64 owner; 410 411 __le64 stripe_len; 412 __le64 type; 413 414 /* optimal io alignment for this chunk */ 415 __le32 io_align; 416 417 /* optimal io width for this chunk */ 418 __le32 io_width; 419 420 /* minimal io size for this chunk */ 421 __le32 sector_size; 422 423 /* 2^16 stripes is quite a lot, a second limit is the size of a single 424 * item in the btree 425 */ 426 __le16 num_stripes; 427 428 /* sub stripes only matter for raid10 */ 429 __le16 sub_stripes; 430 struct btrfs_stripe stripe; 431 /* additional stripes go here */ 432} __attribute__ ((__packed__)); 433 434#define BTRFS_FREE_SPACE_EXTENT 1 435#define BTRFS_FREE_SPACE_BITMAP 2 436 437struct btrfs_free_space_entry { 438 __le64 offset; 439 __le64 bytes; 440 __u8 type; 441} __attribute__ ((__packed__)); 442 443struct btrfs_free_space_header { 444 struct btrfs_disk_key location; 445 __le64 generation; 446 __le64 num_entries; 447 __le64 num_bitmaps; 448} __attribute__ ((__packed__)); 449 450#define BTRFS_HEADER_FLAG_WRITTEN (1ULL << 0) 451#define BTRFS_HEADER_FLAG_RELOC (1ULL << 1) 452 453/* Super block flags */ 454/* Errors detected */ 455#define BTRFS_SUPER_FLAG_ERROR (1ULL << 2) 456 457#define BTRFS_SUPER_FLAG_SEEDING (1ULL << 32) 458#define BTRFS_SUPER_FLAG_METADUMP (1ULL << 33) 459#define BTRFS_SUPER_FLAG_METADUMP_V2 (1ULL << 34) 460#define BTRFS_SUPER_FLAG_CHANGING_FSID (1ULL << 35) 461#define BTRFS_SUPER_FLAG_CHANGING_FSID_V2 (1ULL << 36) 462 463 464/* 465 * items in the extent btree are used to record the objectid of the 466 * owner of the block and the number of references 467 */ 468 469struct btrfs_extent_item { 470 __le64 refs; 471 __le64 generation; 472 __le64 flags; 473} __attribute__ ((__packed__)); 474 475struct btrfs_extent_item_v0 { 476 __le32 refs; 477} __attribute__ ((__packed__)); 478 479 480#define BTRFS_EXTENT_FLAG_DATA (1ULL << 0) 481#define BTRFS_EXTENT_FLAG_TREE_BLOCK (1ULL << 1) 482 483/* following flags only apply to tree blocks */ 484 485/* use full backrefs for extent pointers in the block */ 486#define BTRFS_BLOCK_FLAG_FULL_BACKREF (1ULL << 8) 487 488/* 489 * this flag is only used internally by scrub and may be changed at any time 490 * it is only declared here to avoid collisions 491 */ 492#define BTRFS_EXTENT_FLAG_SUPER (1ULL << 48) 493 494struct btrfs_tree_block_info { 495 struct btrfs_disk_key key; 496 __u8 level; 497} __attribute__ ((__packed__)); 498 499struct btrfs_extent_data_ref { 500 __le64 root; 501 __le64 objectid; 502 __le64 offset; 503 __le32 count; 504} __attribute__ ((__packed__)); 505 506struct btrfs_shared_data_ref { 507 __le32 count; 508} __attribute__ ((__packed__)); 509 510struct btrfs_extent_inline_ref { 511 __u8 type; 512 __le64 offset; 513} __attribute__ ((__packed__)); 514 515/* old style backrefs item */ 516struct btrfs_extent_ref_v0 { 517 __le64 root; 518 __le64 generation; 519 __le64 objectid; 520 __le32 count; 521} __attribute__ ((__packed__)); 522 523 524/* dev extents record free space on individual devices. The owner 525 * field points back to the chunk allocation mapping tree that allocated 526 * the extent. The chunk tree uuid field is a way to double check the owner 527 */ 528struct btrfs_dev_extent { 529 __le64 chunk_tree; 530 __le64 chunk_objectid; 531 __le64 chunk_offset; 532 __le64 length; 533 __u8 chunk_tree_uuid[BTRFS_UUID_SIZE]; 534} __attribute__ ((__packed__)); 535 536struct btrfs_inode_ref { 537 __le64 index; 538 __le16 name_len; 539 /* name goes here */ 540} __attribute__ ((__packed__)); 541 542struct btrfs_inode_extref { 543 __le64 parent_objectid; 544 __le64 index; 545 __le16 name_len; 546 __u8 name[0]; 547 /* name goes here */ 548} __attribute__ ((__packed__)); 549 550struct btrfs_timespec { 551 __le64 sec; 552 __le32 nsec; 553} __attribute__ ((__packed__)); 554 555struct btrfs_inode_item { 556 /* nfs style generation number */ 557 __le64 generation; 558 /* transid that last touched this inode */ 559 __le64 transid; 560 __le64 size; 561 __le64 nbytes; 562 __le64 block_group; 563 __le32 nlink; 564 __le32 uid; 565 __le32 gid; 566 __le32 mode; 567 __le64 rdev; 568 __le64 flags; 569 570 /* modification sequence number for NFS */ 571 __le64 sequence; 572 573 /* 574 * a little future expansion, for more than this we can 575 * just grow the inode item and version it 576 */ 577 __le64 reserved[4]; 578 struct btrfs_timespec atime; 579 struct btrfs_timespec ctime; 580 struct btrfs_timespec mtime; 581 struct btrfs_timespec otime; 582} __attribute__ ((__packed__)); 583 584struct btrfs_dir_log_item { 585 __le64 end; 586} __attribute__ ((__packed__)); 587 588struct btrfs_dir_item { 589 struct btrfs_disk_key location; 590 __le64 transid; 591 __le16 data_len; 592 __le16 name_len; 593 __u8 type; 594} __attribute__ ((__packed__)); 595 596#define BTRFS_ROOT_SUBVOL_RDONLY (1ULL << 0) 597 598/* 599 * Internal in-memory flag that a subvolume has been marked for deletion but 600 * still visible as a directory 601 */ 602#define BTRFS_ROOT_SUBVOL_DEAD (1ULL << 48) 603 604struct btrfs_root_item { 605 struct btrfs_inode_item inode; 606 __le64 generation; 607 __le64 root_dirid; 608 __le64 bytenr; 609 __le64 byte_limit; 610 __le64 bytes_used; 611 __le64 last_snapshot; 612 __le64 flags; 613 __le32 refs; 614 struct btrfs_disk_key drop_progress; 615 __u8 drop_level; 616 __u8 level; 617 618 /* 619 * The following fields appear after subvol_uuids+subvol_times 620 * were introduced. 621 */ 622 623 /* 624 * This generation number is used to test if the new fields are valid 625 * and up to date while reading the root item. Every time the root item 626 * is written out, the "generation" field is copied into this field. If 627 * anyone ever mounted the fs with an older kernel, we will have 628 * mismatching generation values here and thus must invalidate the 629 * new fields. See btrfs_update_root and btrfs_find_last_root for 630 * details. 631 * the offset of generation_v2 is also used as the start for the memset 632 * when invalidating the fields. 633 */ 634 __le64 generation_v2; 635 __u8 uuid[BTRFS_UUID_SIZE]; 636 __u8 parent_uuid[BTRFS_UUID_SIZE]; 637 __u8 received_uuid[BTRFS_UUID_SIZE]; 638 __le64 ctransid; /* updated when an inode changes */ 639 __le64 otransid; /* trans when created */ 640 __le64 stransid; /* trans when sent. non-zero for received subvol */ 641 __le64 rtransid; /* trans when received. non-zero for received subvol */ 642 struct btrfs_timespec ctime; 643 struct btrfs_timespec otime; 644 struct btrfs_timespec stime; 645 struct btrfs_timespec rtime; 646 __le64 reserved[8]; /* for future */ 647} __attribute__ ((__packed__)); 648 649/* 650 * this is used for both forward and backward root refs 651 */ 652struct btrfs_root_ref { 653 __le64 dirid; 654 __le64 sequence; 655 __le16 name_len; 656} __attribute__ ((__packed__)); 657 658struct btrfs_disk_balance_args { 659 /* 660 * profiles to operate on, single is denoted by 661 * BTRFS_AVAIL_ALLOC_BIT_SINGLE 662 */ 663 __le64 profiles; 664 665 /* 666 * usage filter 667 * BTRFS_BALANCE_ARGS_USAGE with a single value means '0..N' 668 * BTRFS_BALANCE_ARGS_USAGE_RANGE - range syntax, min..max 669 */ 670 union { 671 __le64 usage; 672 struct { 673 __le32 usage_min; 674 __le32 usage_max; 675 }; 676 }; 677 678 /* devid filter */ 679 __le64 devid; 680 681 /* devid subset filter [pstart..pend) */ 682 __le64 pstart; 683 __le64 pend; 684 685 /* btrfs virtual address space subset filter [vstart..vend) */ 686 __le64 vstart; 687 __le64 vend; 688 689 /* 690 * profile to convert to, single is denoted by 691 * BTRFS_AVAIL_ALLOC_BIT_SINGLE 692 */ 693 __le64 target; 694 695 /* BTRFS_BALANCE_ARGS_* */ 696 __le64 flags; 697 698 /* 699 * BTRFS_BALANCE_ARGS_LIMIT with value 'limit' 700 * BTRFS_BALANCE_ARGS_LIMIT_RANGE - the extend version can use minimum 701 * and maximum 702 */ 703 union { 704 __le64 limit; 705 struct { 706 __le32 limit_min; 707 __le32 limit_max; 708 }; 709 }; 710 711 /* 712 * Process chunks that cross stripes_min..stripes_max devices, 713 * BTRFS_BALANCE_ARGS_STRIPES_RANGE 714 */ 715 __le32 stripes_min; 716 __le32 stripes_max; 717 718 __le64 unused[6]; 719} __attribute__ ((__packed__)); 720 721/* 722 * store balance parameters to disk so that balance can be properly 723 * resumed after crash or unmount 724 */ 725struct btrfs_balance_item { 726 /* BTRFS_BALANCE_* */ 727 __le64 flags; 728 729 struct btrfs_disk_balance_args data; 730 struct btrfs_disk_balance_args meta; 731 struct btrfs_disk_balance_args sys; 732 733 __le64 unused[4]; 734} __attribute__ ((__packed__)); 735 736#define BTRFS_FILE_EXTENT_INLINE 0 737#define BTRFS_FILE_EXTENT_REG 1 738#define BTRFS_FILE_EXTENT_PREALLOC 2 739#define BTRFS_FILE_EXTENT_TYPES 2 740 741struct btrfs_file_extent_item { 742 /* 743 * transaction id that created this extent 744 */ 745 __le64 generation; 746 /* 747 * max number of bytes to hold this extent in ram 748 * when we split a compressed extent we can't know how big 749 * each of the resulting pieces will be. So, this is 750 * an upper limit on the size of the extent in ram instead of 751 * an exact limit. 752 */ 753 __le64 ram_bytes; 754 755 /* 756 * 32 bits for the various ways we might encode the data, 757 * including compression and encryption. If any of these 758 * are set to something a given disk format doesn't understand 759 * it is treated like an incompat flag for reading and writing, 760 * but not for stat. 761 */ 762 __u8 compression; 763 __u8 encryption; 764 __le16 other_encoding; /* spare for later use */ 765 766 /* are we inline data or a real extent? */ 767 __u8 type; 768 769 /* 770 * disk space consumed by the extent, checksum blocks are included 771 * in these numbers 772 * 773 * At this offset in the structure, the inline extent data start. 774 */ 775 __le64 disk_bytenr; 776 __le64 disk_num_bytes; 777 /* 778 * the logical offset in file blocks (no csums) 779 * this extent record is for. This allows a file extent to point 780 * into the middle of an existing extent on disk, sharing it 781 * between two snapshots (useful if some bytes in the middle of the 782 * extent have changed 783 */ 784 __le64 offset; 785 /* 786 * the logical number of file blocks (no csums included). This 787 * always reflects the size uncompressed and without encoding. 788 */ 789 __le64 num_bytes; 790 791} __attribute__ ((__packed__)); 792 793struct btrfs_csum_item { 794 __u8 csum; 795} __attribute__ ((__packed__)); 796 797struct btrfs_dev_stats_item { 798 /* 799 * grow this item struct at the end for future enhancements and keep 800 * the existing values unchanged 801 */ 802 __le64 values[BTRFS_DEV_STAT_VALUES_MAX]; 803} __attribute__ ((__packed__)); 804 805#define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_ALWAYS 0 806#define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID 1 807#define BTRFS_DEV_REPLACE_ITEM_STATE_NEVER_STARTED 0 808#define BTRFS_DEV_REPLACE_ITEM_STATE_STARTED 1 809#define BTRFS_DEV_REPLACE_ITEM_STATE_SUSPENDED 2 810#define BTRFS_DEV_REPLACE_ITEM_STATE_FINISHED 3 811#define BTRFS_DEV_REPLACE_ITEM_STATE_CANCELED 4 812 813struct btrfs_dev_replace_item { 814 /* 815 * grow this item struct at the end for future enhancements and keep 816 * the existing values unchanged 817 */ 818 __le64 src_devid; 819 __le64 cursor_left; 820 __le64 cursor_right; 821 __le64 cont_reading_from_srcdev_mode; 822 823 __le64 replace_state; 824 __le64 time_started; 825 __le64 time_stopped; 826 __le64 num_write_errors; 827 __le64 num_uncorrectable_read_errors; 828} __attribute__ ((__packed__)); 829 830/* different types of block groups (and chunks) */ 831#define BTRFS_BLOCK_GROUP_DATA (1ULL << 0) 832#define BTRFS_BLOCK_GROUP_SYSTEM (1ULL << 1) 833#define BTRFS_BLOCK_GROUP_METADATA (1ULL << 2) 834#define BTRFS_BLOCK_GROUP_RAID0 (1ULL << 3) 835#define BTRFS_BLOCK_GROUP_RAID1 (1ULL << 4) 836#define BTRFS_BLOCK_GROUP_DUP (1ULL << 5) 837#define BTRFS_BLOCK_GROUP_RAID10 (1ULL << 6) 838#define BTRFS_BLOCK_GROUP_RAID5 (1ULL << 7) 839#define BTRFS_BLOCK_GROUP_RAID6 (1ULL << 8) 840#define BTRFS_BLOCK_GROUP_RESERVED (BTRFS_AVAIL_ALLOC_BIT_SINGLE | \ 841 BTRFS_SPACE_INFO_GLOBAL_RSV) 842 843enum btrfs_raid_types { 844 BTRFS_RAID_RAID10, 845 BTRFS_RAID_RAID1, 846 BTRFS_RAID_DUP, 847 BTRFS_RAID_RAID0, 848 BTRFS_RAID_SINGLE, 849 BTRFS_RAID_RAID5, 850 BTRFS_RAID_RAID6, 851 BTRFS_NR_RAID_TYPES 852}; 853 854#define BTRFS_BLOCK_GROUP_TYPE_MASK (BTRFS_BLOCK_GROUP_DATA | \ 855 BTRFS_BLOCK_GROUP_SYSTEM | \ 856 BTRFS_BLOCK_GROUP_METADATA) 857 858#define BTRFS_BLOCK_GROUP_PROFILE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \ 859 BTRFS_BLOCK_GROUP_RAID1 | \ 860 BTRFS_BLOCK_GROUP_RAID5 | \ 861 BTRFS_BLOCK_GROUP_RAID6 | \ 862 BTRFS_BLOCK_GROUP_DUP | \ 863 BTRFS_BLOCK_GROUP_RAID10) 864#define BTRFS_BLOCK_GROUP_RAID56_MASK (BTRFS_BLOCK_GROUP_RAID5 | \ 865 BTRFS_BLOCK_GROUP_RAID6) 866 867/* 868 * We need a bit for restriper to be able to tell when chunks of type 869 * SINGLE are available. This "extended" profile format is used in 870 * fs_info->avail_*_alloc_bits (in-memory) and balance item fields 871 * (on-disk). The corresponding on-disk bit in chunk.type is reserved 872 * to avoid remappings between two formats in future. 873 */ 874#define BTRFS_AVAIL_ALLOC_BIT_SINGLE (1ULL << 48) 875 876/* 877 * A fake block group type that is used to communicate global block reserve 878 * size to userspace via the SPACE_INFO ioctl. 879 */ 880#define BTRFS_SPACE_INFO_GLOBAL_RSV (1ULL << 49) 881 882#define BTRFS_EXTENDED_PROFILE_MASK (BTRFS_BLOCK_GROUP_PROFILE_MASK | \ 883 BTRFS_AVAIL_ALLOC_BIT_SINGLE) 884 885static inline __u64 chunk_to_extended(__u64 flags) 886{ 887 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0) 888 flags |= BTRFS_AVAIL_ALLOC_BIT_SINGLE; 889 890 return flags; 891} 892static inline __u64 extended_to_chunk(__u64 flags) 893{ 894 return flags & ~BTRFS_AVAIL_ALLOC_BIT_SINGLE; 895} 896 897struct btrfs_block_group_item { 898 __le64 used; 899 __le64 chunk_objectid; 900 __le64 flags; 901} __attribute__ ((__packed__)); 902 903struct btrfs_free_space_info { 904 __le32 extent_count; 905 __le32 flags; 906} __attribute__ ((__packed__)); 907 908#define BTRFS_FREE_SPACE_USING_BITMAPS (1ULL << 0) 909 910#define BTRFS_QGROUP_LEVEL_SHIFT 48 911static inline __u64 btrfs_qgroup_level(__u64 qgroupid) 912{ 913 return qgroupid >> BTRFS_QGROUP_LEVEL_SHIFT; 914} 915 916/* 917 * is subvolume quota turned on? 918 */ 919#define BTRFS_QGROUP_STATUS_FLAG_ON (1ULL << 0) 920/* 921 * RESCAN is set during the initialization phase 922 */ 923#define BTRFS_QGROUP_STATUS_FLAG_RESCAN (1ULL << 1) 924/* 925 * Some qgroup entries are known to be out of date, 926 * either because the configuration has changed in a way that 927 * makes a rescan necessary, or because the fs has been mounted 928 * with a non-qgroup-aware version. 929 * Turning qouta off and on again makes it inconsistent, too. 930 */ 931#define BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT (1ULL << 2) 932 933#define BTRFS_QGROUP_STATUS_VERSION 1 934 935struct btrfs_qgroup_status_item { 936 __le64 version; 937 /* 938 * the generation is updated during every commit. As older 939 * versions of btrfs are not aware of qgroups, it will be 940 * possible to detect inconsistencies by checking the 941 * generation on mount time 942 */ 943 __le64 generation; 944 945 /* flag definitions see above */ 946 __le64 flags; 947 948 /* 949 * only used during scanning to record the progress 950 * of the scan. It contains a logical address 951 */ 952 __le64 rescan; 953} __attribute__ ((__packed__)); 954 955struct btrfs_qgroup_info_item { 956 __le64 generation; 957 __le64 rfer; 958 __le64 rfer_cmpr; 959 __le64 excl; 960 __le64 excl_cmpr; 961} __attribute__ ((__packed__)); 962 963struct btrfs_qgroup_limit_item { 964 /* 965 * only updated when any of the other values change 966 */ 967 __le64 flags; 968 __le64 max_rfer; 969 __le64 max_excl; 970 __le64 rsv_rfer; 971 __le64 rsv_excl; 972} __attribute__ ((__packed__)); 973 974#endif /* _BTRFS_CTREE_H_ */ 975