linux/kernel/bpf/lpm_trie.c
<<
>>
Prefs
   1/*
   2 * Longest prefix match list implementation
   3 *
   4 * Copyright (c) 2016,2017 Daniel Mack
   5 * Copyright (c) 2016 David Herrmann
   6 *
   7 * This file is subject to the terms and conditions of version 2 of the GNU
   8 * General Public License.  See the file COPYING in the main directory of the
   9 * Linux distribution for more details.
  10 */
  11
  12#include <linux/bpf.h>
  13#include <linux/btf.h>
  14#include <linux/err.h>
  15#include <linux/slab.h>
  16#include <linux/spinlock.h>
  17#include <linux/vmalloc.h>
  18#include <net/ipv6.h>
  19#include <uapi/linux/btf.h>
  20
  21/* Intermediate node */
  22#define LPM_TREE_NODE_FLAG_IM BIT(0)
  23
  24struct lpm_trie_node;
  25
  26struct lpm_trie_node {
  27        struct rcu_head rcu;
  28        struct lpm_trie_node __rcu      *child[2];
  29        u32                             prefixlen;
  30        u32                             flags;
  31        u8                              data[0];
  32};
  33
  34struct lpm_trie {
  35        struct bpf_map                  map;
  36        struct lpm_trie_node __rcu      *root;
  37        size_t                          n_entries;
  38        size_t                          max_prefixlen;
  39        size_t                          data_size;
  40        raw_spinlock_t                  lock;
  41};
  42
  43/* This trie implements a longest prefix match algorithm that can be used to
  44 * match IP addresses to a stored set of ranges.
  45 *
  46 * Data stored in @data of struct bpf_lpm_key and struct lpm_trie_node is
  47 * interpreted as big endian, so data[0] stores the most significant byte.
  48 *
  49 * Match ranges are internally stored in instances of struct lpm_trie_node
  50 * which each contain their prefix length as well as two pointers that may
  51 * lead to more nodes containing more specific matches. Each node also stores
  52 * a value that is defined by and returned to userspace via the update_elem
  53 * and lookup functions.
  54 *
  55 * For instance, let's start with a trie that was created with a prefix length
  56 * of 32, so it can be used for IPv4 addresses, and one single element that
  57 * matches 192.168.0.0/16. The data array would hence contain
  58 * [0xc0, 0xa8, 0x00, 0x00] in big-endian notation. This documentation will
  59 * stick to IP-address notation for readability though.
  60 *
  61 * As the trie is empty initially, the new node (1) will be places as root
  62 * node, denoted as (R) in the example below. As there are no other node, both
  63 * child pointers are %NULL.
  64 *
  65 *              +----------------+
  66 *              |       (1)  (R) |
  67 *              | 192.168.0.0/16 |
  68 *              |    value: 1    |
  69 *              |   [0]    [1]   |
  70 *              +----------------+
  71 *
  72 * Next, let's add a new node (2) matching 192.168.0.0/24. As there is already
  73 * a node with the same data and a smaller prefix (ie, a less specific one),
  74 * node (2) will become a child of (1). In child index depends on the next bit
  75 * that is outside of what (1) matches, and that bit is 0, so (2) will be
  76 * child[0] of (1):
  77 *
  78 *              +----------------+
  79 *              |       (1)  (R) |
  80 *              | 192.168.0.0/16 |
  81 *              |    value: 1    |
  82 *              |   [0]    [1]   |
  83 *              +----------------+
  84 *                   |
  85 *    +----------------+
  86 *    |       (2)      |
  87 *    | 192.168.0.0/24 |
  88 *    |    value: 2    |
  89 *    |   [0]    [1]   |
  90 *    +----------------+
  91 *
  92 * The child[1] slot of (1) could be filled with another node which has bit #17
  93 * (the next bit after the ones that (1) matches on) set to 1. For instance,
  94 * 192.168.128.0/24:
  95 *
  96 *              +----------------+
  97 *              |       (1)  (R) |
  98 *              | 192.168.0.0/16 |
  99 *              |    value: 1    |
 100 *              |   [0]    [1]   |
 101 *              +----------------+
 102 *                   |      |
 103 *    +----------------+  +------------------+
 104 *    |       (2)      |  |        (3)       |
 105 *    | 192.168.0.0/24 |  | 192.168.128.0/24 |
 106 *    |    value: 2    |  |     value: 3     |
 107 *    |   [0]    [1]   |  |    [0]    [1]    |
 108 *    +----------------+  +------------------+
 109 *
 110 * Let's add another node (4) to the game for 192.168.1.0/24. In order to place
 111 * it, node (1) is looked at first, and because (4) of the semantics laid out
 112 * above (bit #17 is 0), it would normally be attached to (1) as child[0].
 113 * However, that slot is already allocated, so a new node is needed in between.
 114 * That node does not have a value attached to it and it will never be
 115 * returned to users as result of a lookup. It is only there to differentiate
 116 * the traversal further. It will get a prefix as wide as necessary to
 117 * distinguish its two children:
 118 *
 119 *                      +----------------+
 120 *                      |       (1)  (R) |
 121 *                      | 192.168.0.0/16 |
 122 *                      |    value: 1    |
 123 *                      |   [0]    [1]   |
 124 *                      +----------------+
 125 *                           |      |
 126 *            +----------------+  +------------------+
 127 *            |       (4)  (I) |  |        (3)       |
 128 *            | 192.168.0.0/23 |  | 192.168.128.0/24 |
 129 *            |    value: ---  |  |     value: 3     |
 130 *            |   [0]    [1]   |  |    [0]    [1]    |
 131 *            +----------------+  +------------------+
 132 *                 |      |
 133 *  +----------------+  +----------------+
 134 *  |       (2)      |  |       (5)      |
 135 *  | 192.168.0.0/24 |  | 192.168.1.0/24 |
 136 *  |    value: 2    |  |     value: 5   |
 137 *  |   [0]    [1]   |  |   [0]    [1]   |
 138 *  +----------------+  +----------------+
 139 *
 140 * 192.168.1.1/32 would be a child of (5) etc.
 141 *
 142 * An intermediate node will be turned into a 'real' node on demand. In the
 143 * example above, (4) would be re-used if 192.168.0.0/23 is added to the trie.
 144 *
 145 * A fully populated trie would have a height of 32 nodes, as the trie was
 146 * created with a prefix length of 32.
 147 *
 148 * The lookup starts at the root node. If the current node matches and if there
 149 * is a child that can be used to become more specific, the trie is traversed
 150 * downwards. The last node in the traversal that is a non-intermediate one is
 151 * returned.
 152 */
 153
 154static inline int extract_bit(const u8 *data, size_t index)
 155{
 156        return !!(data[index / 8] & (1 << (7 - (index % 8))));
 157}
 158
 159/**
 160 * longest_prefix_match() - determine the longest prefix
 161 * @trie:       The trie to get internal sizes from
 162 * @node:       The node to operate on
 163 * @key:        The key to compare to @node
 164 *
 165 * Determine the longest prefix of @node that matches the bits in @key.
 166 */
 167static size_t longest_prefix_match(const struct lpm_trie *trie,
 168                                   const struct lpm_trie_node *node,
 169                                   const struct bpf_lpm_trie_key *key)
 170{
 171        u32 limit = min(node->prefixlen, key->prefixlen);
 172        u32 prefixlen = 0, i = 0;
 173
 174        BUILD_BUG_ON(offsetof(struct lpm_trie_node, data) % sizeof(u32));
 175        BUILD_BUG_ON(offsetof(struct bpf_lpm_trie_key, data) % sizeof(u32));
 176
 177#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && defined(CONFIG_64BIT)
 178
 179        /* data_size >= 16 has very small probability.
 180         * We do not use a loop for optimal code generation.
 181         */
 182        if (trie->data_size >= 8) {
 183                u64 diff = be64_to_cpu(*(__be64 *)node->data ^
 184                                       *(__be64 *)key->data);
 185
 186                prefixlen = 64 - fls64(diff);
 187                if (prefixlen >= limit)
 188                        return limit;
 189                if (diff)
 190                        return prefixlen;
 191                i = 8;
 192        }
 193#endif
 194
 195        while (trie->data_size >= i + 4) {
 196                u32 diff = be32_to_cpu(*(__be32 *)&node->data[i] ^
 197                                       *(__be32 *)&key->data[i]);
 198
 199                prefixlen += 32 - fls(diff);
 200                if (prefixlen >= limit)
 201                        return limit;
 202                if (diff)
 203                        return prefixlen;
 204                i += 4;
 205        }
 206
 207        if (trie->data_size >= i + 2) {
 208                u16 diff = be16_to_cpu(*(__be16 *)&node->data[i] ^
 209                                       *(__be16 *)&key->data[i]);
 210
 211                prefixlen += 16 - fls(diff);
 212                if (prefixlen >= limit)
 213                        return limit;
 214                if (diff)
 215                        return prefixlen;
 216                i += 2;
 217        }
 218
 219        if (trie->data_size >= i + 1) {
 220                prefixlen += 8 - fls(node->data[i] ^ key->data[i]);
 221
 222                if (prefixlen >= limit)
 223                        return limit;
 224        }
 225
 226        return prefixlen;
 227}
 228
 229/* Called from syscall or from eBPF program */
 230static void *trie_lookup_elem(struct bpf_map *map, void *_key)
 231{
 232        struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
 233        struct lpm_trie_node *node, *found = NULL;
 234        struct bpf_lpm_trie_key *key = _key;
 235
 236        /* Start walking the trie from the root node ... */
 237
 238        for (node = rcu_dereference(trie->root); node;) {
 239                unsigned int next_bit;
 240                size_t matchlen;
 241
 242                /* Determine the longest prefix of @node that matches @key.
 243                 * If it's the maximum possible prefix for this trie, we have
 244                 * an exact match and can return it directly.
 245                 */
 246                matchlen = longest_prefix_match(trie, node, key);
 247                if (matchlen == trie->max_prefixlen) {
 248                        found = node;
 249                        break;
 250                }
 251
 252                /* If the number of bits that match is smaller than the prefix
 253                 * length of @node, bail out and return the node we have seen
 254                 * last in the traversal (ie, the parent).
 255                 */
 256                if (matchlen < node->prefixlen)
 257                        break;
 258
 259                /* Consider this node as return candidate unless it is an
 260                 * artificially added intermediate one.
 261                 */
 262                if (!(node->flags & LPM_TREE_NODE_FLAG_IM))
 263                        found = node;
 264
 265                /* If the node match is fully satisfied, let's see if we can
 266                 * become more specific. Determine the next bit in the key and
 267                 * traverse down.
 268                 */
 269                next_bit = extract_bit(key->data, node->prefixlen);
 270                node = rcu_dereference(node->child[next_bit]);
 271        }
 272
 273        if (!found)
 274                return NULL;
 275
 276        return found->data + trie->data_size;
 277}
 278
 279static struct lpm_trie_node *lpm_trie_node_alloc(const struct lpm_trie *trie,
 280                                                 const void *value)
 281{
 282        struct lpm_trie_node *node;
 283        size_t size = sizeof(struct lpm_trie_node) + trie->data_size;
 284
 285        if (value)
 286                size += trie->map.value_size;
 287
 288        node = kmalloc_node(size, GFP_ATOMIC | __GFP_NOWARN,
 289                            trie->map.numa_node);
 290        if (!node)
 291                return NULL;
 292
 293        node->flags = 0;
 294
 295        if (value)
 296                memcpy(node->data + trie->data_size, value,
 297                       trie->map.value_size);
 298
 299        return node;
 300}
 301
 302/* Called from syscall or from eBPF program */
 303static int trie_update_elem(struct bpf_map *map,
 304                            void *_key, void *value, u64 flags)
 305{
 306        struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
 307        struct lpm_trie_node *node, *im_node = NULL, *new_node = NULL;
 308        struct lpm_trie_node __rcu **slot;
 309        struct bpf_lpm_trie_key *key = _key;
 310        unsigned long irq_flags;
 311        unsigned int next_bit;
 312        size_t matchlen = 0;
 313        int ret = 0;
 314
 315        if (unlikely(flags > BPF_EXIST))
 316                return -EINVAL;
 317
 318        if (key->prefixlen > trie->max_prefixlen)
 319                return -EINVAL;
 320
 321        raw_spin_lock_irqsave(&trie->lock, irq_flags);
 322
 323        /* Allocate and fill a new node */
 324
 325        if (trie->n_entries == trie->map.max_entries) {
 326                ret = -ENOSPC;
 327                goto out;
 328        }
 329
 330        new_node = lpm_trie_node_alloc(trie, value);
 331        if (!new_node) {
 332                ret = -ENOMEM;
 333                goto out;
 334        }
 335
 336        trie->n_entries++;
 337
 338        new_node->prefixlen = key->prefixlen;
 339        RCU_INIT_POINTER(new_node->child[0], NULL);
 340        RCU_INIT_POINTER(new_node->child[1], NULL);
 341        memcpy(new_node->data, key->data, trie->data_size);
 342
 343        /* Now find a slot to attach the new node. To do that, walk the tree
 344         * from the root and match as many bits as possible for each node until
 345         * we either find an empty slot or a slot that needs to be replaced by
 346         * an intermediate node.
 347         */
 348        slot = &trie->root;
 349
 350        while ((node = rcu_dereference_protected(*slot,
 351                                        lockdep_is_held(&trie->lock)))) {
 352                matchlen = longest_prefix_match(trie, node, key);
 353
 354                if (node->prefixlen != matchlen ||
 355                    node->prefixlen == key->prefixlen ||
 356                    node->prefixlen == trie->max_prefixlen)
 357                        break;
 358
 359                next_bit = extract_bit(key->data, node->prefixlen);
 360                slot = &node->child[next_bit];
 361        }
 362
 363        /* If the slot is empty (a free child pointer or an empty root),
 364         * simply assign the @new_node to that slot and be done.
 365         */
 366        if (!node) {
 367                rcu_assign_pointer(*slot, new_node);
 368                goto out;
 369        }
 370
 371        /* If the slot we picked already exists, replace it with @new_node
 372         * which already has the correct data array set.
 373         */
 374        if (node->prefixlen == matchlen) {
 375                new_node->child[0] = node->child[0];
 376                new_node->child[1] = node->child[1];
 377
 378                if (!(node->flags & LPM_TREE_NODE_FLAG_IM))
 379                        trie->n_entries--;
 380
 381                rcu_assign_pointer(*slot, new_node);
 382                kfree_rcu(node, rcu);
 383
 384                goto out;
 385        }
 386
 387        /* If the new node matches the prefix completely, it must be inserted
 388         * as an ancestor. Simply insert it between @node and *@slot.
 389         */
 390        if (matchlen == key->prefixlen) {
 391                next_bit = extract_bit(node->data, matchlen);
 392                rcu_assign_pointer(new_node->child[next_bit], node);
 393                rcu_assign_pointer(*slot, new_node);
 394                goto out;
 395        }
 396
 397        im_node = lpm_trie_node_alloc(trie, NULL);
 398        if (!im_node) {
 399                ret = -ENOMEM;
 400                goto out;
 401        }
 402
 403        im_node->prefixlen = matchlen;
 404        im_node->flags |= LPM_TREE_NODE_FLAG_IM;
 405        memcpy(im_node->data, node->data, trie->data_size);
 406
 407        /* Now determine which child to install in which slot */
 408        if (extract_bit(key->data, matchlen)) {
 409                rcu_assign_pointer(im_node->child[0], node);
 410                rcu_assign_pointer(im_node->child[1], new_node);
 411        } else {
 412                rcu_assign_pointer(im_node->child[0], new_node);
 413                rcu_assign_pointer(im_node->child[1], node);
 414        }
 415
 416        /* Finally, assign the intermediate node to the determined spot */
 417        rcu_assign_pointer(*slot, im_node);
 418
 419out:
 420        if (ret) {
 421                if (new_node)
 422                        trie->n_entries--;
 423
 424                kfree(new_node);
 425                kfree(im_node);
 426        }
 427
 428        raw_spin_unlock_irqrestore(&trie->lock, irq_flags);
 429
 430        return ret;
 431}
 432
 433/* Called from syscall or from eBPF program */
 434static int trie_delete_elem(struct bpf_map *map, void *_key)
 435{
 436        struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
 437        struct bpf_lpm_trie_key *key = _key;
 438        struct lpm_trie_node __rcu **trim, **trim2;
 439        struct lpm_trie_node *node, *parent;
 440        unsigned long irq_flags;
 441        unsigned int next_bit;
 442        size_t matchlen = 0;
 443        int ret = 0;
 444
 445        if (key->prefixlen > trie->max_prefixlen)
 446                return -EINVAL;
 447
 448        raw_spin_lock_irqsave(&trie->lock, irq_flags);
 449
 450        /* Walk the tree looking for an exact key/length match and keeping
 451         * track of the path we traverse.  We will need to know the node
 452         * we wish to delete, and the slot that points to the node we want
 453         * to delete.  We may also need to know the nodes parent and the
 454         * slot that contains it.
 455         */
 456        trim = &trie->root;
 457        trim2 = trim;
 458        parent = NULL;
 459        while ((node = rcu_dereference_protected(
 460                       *trim, lockdep_is_held(&trie->lock)))) {
 461                matchlen = longest_prefix_match(trie, node, key);
 462
 463                if (node->prefixlen != matchlen ||
 464                    node->prefixlen == key->prefixlen)
 465                        break;
 466
 467                parent = node;
 468                trim2 = trim;
 469                next_bit = extract_bit(key->data, node->prefixlen);
 470                trim = &node->child[next_bit];
 471        }
 472
 473        if (!node || node->prefixlen != key->prefixlen ||
 474            node->prefixlen != matchlen ||
 475            (node->flags & LPM_TREE_NODE_FLAG_IM)) {
 476                ret = -ENOENT;
 477                goto out;
 478        }
 479
 480        trie->n_entries--;
 481
 482        /* If the node we are removing has two children, simply mark it
 483         * as intermediate and we are done.
 484         */
 485        if (rcu_access_pointer(node->child[0]) &&
 486            rcu_access_pointer(node->child[1])) {
 487                node->flags |= LPM_TREE_NODE_FLAG_IM;
 488                goto out;
 489        }
 490
 491        /* If the parent of the node we are about to delete is an intermediate
 492         * node, and the deleted node doesn't have any children, we can delete
 493         * the intermediate parent as well and promote its other child
 494         * up the tree.  Doing this maintains the invariant that all
 495         * intermediate nodes have exactly 2 children and that there are no
 496         * unnecessary intermediate nodes in the tree.
 497         */
 498        if (parent && (parent->flags & LPM_TREE_NODE_FLAG_IM) &&
 499            !node->child[0] && !node->child[1]) {
 500                if (node == rcu_access_pointer(parent->child[0]))
 501                        rcu_assign_pointer(
 502                                *trim2, rcu_access_pointer(parent->child[1]));
 503                else
 504                        rcu_assign_pointer(
 505                                *trim2, rcu_access_pointer(parent->child[0]));
 506                kfree_rcu(parent, rcu);
 507                kfree_rcu(node, rcu);
 508                goto out;
 509        }
 510
 511        /* The node we are removing has either zero or one child. If there
 512         * is a child, move it into the removed node's slot then delete
 513         * the node.  Otherwise just clear the slot and delete the node.
 514         */
 515        if (node->child[0])
 516                rcu_assign_pointer(*trim, rcu_access_pointer(node->child[0]));
 517        else if (node->child[1])
 518                rcu_assign_pointer(*trim, rcu_access_pointer(node->child[1]));
 519        else
 520                RCU_INIT_POINTER(*trim, NULL);
 521        kfree_rcu(node, rcu);
 522
 523out:
 524        raw_spin_unlock_irqrestore(&trie->lock, irq_flags);
 525
 526        return ret;
 527}
 528
 529#define LPM_DATA_SIZE_MAX       256
 530#define LPM_DATA_SIZE_MIN       1
 531
 532#define LPM_VAL_SIZE_MAX        (KMALLOC_MAX_SIZE - LPM_DATA_SIZE_MAX - \
 533                                 sizeof(struct lpm_trie_node))
 534#define LPM_VAL_SIZE_MIN        1
 535
 536#define LPM_KEY_SIZE(X)         (sizeof(struct bpf_lpm_trie_key) + (X))
 537#define LPM_KEY_SIZE_MAX        LPM_KEY_SIZE(LPM_DATA_SIZE_MAX)
 538#define LPM_KEY_SIZE_MIN        LPM_KEY_SIZE(LPM_DATA_SIZE_MIN)
 539
 540#define LPM_CREATE_FLAG_MASK    (BPF_F_NO_PREALLOC | BPF_F_NUMA_NODE |  \
 541                                 BPF_F_RDONLY | BPF_F_WRONLY)
 542
 543static struct bpf_map *trie_alloc(union bpf_attr *attr)
 544{
 545        struct lpm_trie *trie;
 546        u64 cost = sizeof(*trie), cost_per_node;
 547        int ret;
 548
 549        if (!capable(CAP_SYS_ADMIN))
 550                return ERR_PTR(-EPERM);
 551
 552        /* check sanity of attributes */
 553        if (attr->max_entries == 0 ||
 554            !(attr->map_flags & BPF_F_NO_PREALLOC) ||
 555            attr->map_flags & ~LPM_CREATE_FLAG_MASK ||
 556            attr->key_size < LPM_KEY_SIZE_MIN ||
 557            attr->key_size > LPM_KEY_SIZE_MAX ||
 558            attr->value_size < LPM_VAL_SIZE_MIN ||
 559            attr->value_size > LPM_VAL_SIZE_MAX)
 560                return ERR_PTR(-EINVAL);
 561
 562        trie = kzalloc(sizeof(*trie), GFP_USER | __GFP_NOWARN);
 563        if (!trie)
 564                return ERR_PTR(-ENOMEM);
 565
 566        /* copy mandatory map attributes */
 567        bpf_map_init_from_attr(&trie->map, attr);
 568        trie->data_size = attr->key_size -
 569                          offsetof(struct bpf_lpm_trie_key, data);
 570        trie->max_prefixlen = trie->data_size * 8;
 571
 572        cost_per_node = sizeof(struct lpm_trie_node) +
 573                        attr->value_size + trie->data_size;
 574        cost += (u64) attr->max_entries * cost_per_node;
 575        if (cost >= U32_MAX - PAGE_SIZE) {
 576                ret = -E2BIG;
 577                goto out_err;
 578        }
 579
 580        trie->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT;
 581
 582        ret = bpf_map_precharge_memlock(trie->map.pages);
 583        if (ret)
 584                goto out_err;
 585
 586        raw_spin_lock_init(&trie->lock);
 587
 588        return &trie->map;
 589out_err:
 590        kfree(trie);
 591        return ERR_PTR(ret);
 592}
 593
 594static void trie_free(struct bpf_map *map)
 595{
 596        struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
 597        struct lpm_trie_node __rcu **slot;
 598        struct lpm_trie_node *node;
 599
 600        /* Wait for outstanding programs to complete
 601         * update/lookup/delete/get_next_key and free the trie.
 602         */
 603        synchronize_rcu();
 604
 605        /* Always start at the root and walk down to a node that has no
 606         * children. Then free that node, nullify its reference in the parent
 607         * and start over.
 608         */
 609
 610        for (;;) {
 611                slot = &trie->root;
 612
 613                for (;;) {
 614                        node = rcu_dereference_protected(*slot, 1);
 615                        if (!node)
 616                                goto out;
 617
 618                        if (rcu_access_pointer(node->child[0])) {
 619                                slot = &node->child[0];
 620                                continue;
 621                        }
 622
 623                        if (rcu_access_pointer(node->child[1])) {
 624                                slot = &node->child[1];
 625                                continue;
 626                        }
 627
 628                        kfree(node);
 629                        RCU_INIT_POINTER(*slot, NULL);
 630                        break;
 631                }
 632        }
 633
 634out:
 635        kfree(trie);
 636}
 637
 638static int trie_get_next_key(struct bpf_map *map, void *_key, void *_next_key)
 639{
 640        struct lpm_trie_node *node, *next_node = NULL, *parent, *search_root;
 641        struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
 642        struct bpf_lpm_trie_key *key = _key, *next_key = _next_key;
 643        struct lpm_trie_node **node_stack = NULL;
 644        int err = 0, stack_ptr = -1;
 645        unsigned int next_bit;
 646        size_t matchlen;
 647
 648        /* The get_next_key follows postorder. For the 4 node example in
 649         * the top of this file, the trie_get_next_key() returns the following
 650         * one after another:
 651         *   192.168.0.0/24
 652         *   192.168.1.0/24
 653         *   192.168.128.0/24
 654         *   192.168.0.0/16
 655         *
 656         * The idea is to return more specific keys before less specific ones.
 657         */
 658
 659        /* Empty trie */
 660        search_root = rcu_dereference(trie->root);
 661        if (!search_root)
 662                return -ENOENT;
 663
 664        /* For invalid key, find the leftmost node in the trie */
 665        if (!key || key->prefixlen > trie->max_prefixlen)
 666                goto find_leftmost;
 667
 668        node_stack = kmalloc_array(trie->max_prefixlen,
 669                                   sizeof(struct lpm_trie_node *),
 670                                   GFP_ATOMIC | __GFP_NOWARN);
 671        if (!node_stack)
 672                return -ENOMEM;
 673
 674        /* Try to find the exact node for the given key */
 675        for (node = search_root; node;) {
 676                node_stack[++stack_ptr] = node;
 677                matchlen = longest_prefix_match(trie, node, key);
 678                if (node->prefixlen != matchlen ||
 679                    node->prefixlen == key->prefixlen)
 680                        break;
 681
 682                next_bit = extract_bit(key->data, node->prefixlen);
 683                node = rcu_dereference(node->child[next_bit]);
 684        }
 685        if (!node || node->prefixlen != key->prefixlen ||
 686            (node->flags & LPM_TREE_NODE_FLAG_IM))
 687                goto find_leftmost;
 688
 689        /* The node with the exactly-matching key has been found,
 690         * find the first node in postorder after the matched node.
 691         */
 692        node = node_stack[stack_ptr];
 693        while (stack_ptr > 0) {
 694                parent = node_stack[stack_ptr - 1];
 695                if (rcu_dereference(parent->child[0]) == node) {
 696                        search_root = rcu_dereference(parent->child[1]);
 697                        if (search_root)
 698                                goto find_leftmost;
 699                }
 700                if (!(parent->flags & LPM_TREE_NODE_FLAG_IM)) {
 701                        next_node = parent;
 702                        goto do_copy;
 703                }
 704
 705                node = parent;
 706                stack_ptr--;
 707        }
 708
 709        /* did not find anything */
 710        err = -ENOENT;
 711        goto free_stack;
 712
 713find_leftmost:
 714        /* Find the leftmost non-intermediate node, all intermediate nodes
 715         * have exact two children, so this function will never return NULL.
 716         */
 717        for (node = search_root; node;) {
 718                if (!(node->flags & LPM_TREE_NODE_FLAG_IM))
 719                        next_node = node;
 720                node = rcu_dereference(node->child[0]);
 721        }
 722do_copy:
 723        next_key->prefixlen = next_node->prefixlen;
 724        memcpy((void *)next_key + offsetof(struct bpf_lpm_trie_key, data),
 725               next_node->data, trie->data_size);
 726free_stack:
 727        kfree(node_stack);
 728        return err;
 729}
 730
 731static int trie_check_btf(const struct bpf_map *map,
 732                          const struct btf *btf,
 733                          const struct btf_type *key_type,
 734                          const struct btf_type *value_type)
 735{
 736        /* Keys must have struct bpf_lpm_trie_key embedded. */
 737        return BTF_INFO_KIND(key_type->info) != BTF_KIND_STRUCT ?
 738               -EINVAL : 0;
 739}
 740
 741const struct bpf_map_ops trie_map_ops = {
 742        .map_alloc = trie_alloc,
 743        .map_free = trie_free,
 744        .map_get_next_key = trie_get_next_key,
 745        .map_lookup_elem = trie_lookup_elem,
 746        .map_update_elem = trie_update_elem,
 747        .map_delete_elem = trie_delete_elem,
 748        .map_check_btf = trie_check_btf,
 749};
 750