linux/kernel/power/snapshot.c
<<
>>
Prefs
   1/*
   2 * linux/kernel/power/snapshot.c
   3 *
   4 * This file provides system snapshot/restore functionality for swsusp.
   5 *
   6 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
   7 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
   8 *
   9 * This file is released under the GPLv2.
  10 *
  11 */
  12
  13#define pr_fmt(fmt) "PM: " fmt
  14
  15#include <linux/version.h>
  16#include <linux/module.h>
  17#include <linux/mm.h>
  18#include <linux/suspend.h>
  19#include <linux/delay.h>
  20#include <linux/bitops.h>
  21#include <linux/spinlock.h>
  22#include <linux/kernel.h>
  23#include <linux/pm.h>
  24#include <linux/device.h>
  25#include <linux/init.h>
  26#include <linux/memblock.h>
  27#include <linux/nmi.h>
  28#include <linux/syscalls.h>
  29#include <linux/console.h>
  30#include <linux/highmem.h>
  31#include <linux/list.h>
  32#include <linux/slab.h>
  33#include <linux/compiler.h>
  34#include <linux/ktime.h>
  35#include <linux/set_memory.h>
  36
  37#include <linux/uaccess.h>
  38#include <asm/mmu_context.h>
  39#include <asm/pgtable.h>
  40#include <asm/tlbflush.h>
  41#include <asm/io.h>
  42
  43#include "power.h"
  44
  45#if defined(CONFIG_STRICT_KERNEL_RWX) && defined(CONFIG_ARCH_HAS_SET_MEMORY)
  46static bool hibernate_restore_protection;
  47static bool hibernate_restore_protection_active;
  48
  49void enable_restore_image_protection(void)
  50{
  51        hibernate_restore_protection = true;
  52}
  53
  54static inline void hibernate_restore_protection_begin(void)
  55{
  56        hibernate_restore_protection_active = hibernate_restore_protection;
  57}
  58
  59static inline void hibernate_restore_protection_end(void)
  60{
  61        hibernate_restore_protection_active = false;
  62}
  63
  64static inline void hibernate_restore_protect_page(void *page_address)
  65{
  66        if (hibernate_restore_protection_active)
  67                set_memory_ro((unsigned long)page_address, 1);
  68}
  69
  70static inline void hibernate_restore_unprotect_page(void *page_address)
  71{
  72        if (hibernate_restore_protection_active)
  73                set_memory_rw((unsigned long)page_address, 1);
  74}
  75#else
  76static inline void hibernate_restore_protection_begin(void) {}
  77static inline void hibernate_restore_protection_end(void) {}
  78static inline void hibernate_restore_protect_page(void *page_address) {}
  79static inline void hibernate_restore_unprotect_page(void *page_address) {}
  80#endif /* CONFIG_STRICT_KERNEL_RWX  && CONFIG_ARCH_HAS_SET_MEMORY */
  81
  82static int swsusp_page_is_free(struct page *);
  83static void swsusp_set_page_forbidden(struct page *);
  84static void swsusp_unset_page_forbidden(struct page *);
  85
  86/*
  87 * Number of bytes to reserve for memory allocations made by device drivers
  88 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
  89 * cause image creation to fail (tunable via /sys/power/reserved_size).
  90 */
  91unsigned long reserved_size;
  92
  93void __init hibernate_reserved_size_init(void)
  94{
  95        reserved_size = SPARE_PAGES * PAGE_SIZE;
  96}
  97
  98/*
  99 * Preferred image size in bytes (tunable via /sys/power/image_size).
 100 * When it is set to N, swsusp will do its best to ensure the image
 101 * size will not exceed N bytes, but if that is impossible, it will
 102 * try to create the smallest image possible.
 103 */
 104unsigned long image_size;
 105
 106void __init hibernate_image_size_init(void)
 107{
 108        image_size = ((totalram_pages() * 2) / 5) * PAGE_SIZE;
 109}
 110
 111/*
 112 * List of PBEs needed for restoring the pages that were allocated before
 113 * the suspend and included in the suspend image, but have also been
 114 * allocated by the "resume" kernel, so their contents cannot be written
 115 * directly to their "original" page frames.
 116 */
 117struct pbe *restore_pblist;
 118
 119/* struct linked_page is used to build chains of pages */
 120
 121#define LINKED_PAGE_DATA_SIZE   (PAGE_SIZE - sizeof(void *))
 122
 123struct linked_page {
 124        struct linked_page *next;
 125        char data[LINKED_PAGE_DATA_SIZE];
 126} __packed;
 127
 128/*
 129 * List of "safe" pages (ie. pages that were not used by the image kernel
 130 * before hibernation) that may be used as temporary storage for image kernel
 131 * memory contents.
 132 */
 133static struct linked_page *safe_pages_list;
 134
 135/* Pointer to an auxiliary buffer (1 page) */
 136static void *buffer;
 137
 138#define PG_ANY          0
 139#define PG_SAFE         1
 140#define PG_UNSAFE_CLEAR 1
 141#define PG_UNSAFE_KEEP  0
 142
 143static unsigned int allocated_unsafe_pages;
 144
 145/**
 146 * get_image_page - Allocate a page for a hibernation image.
 147 * @gfp_mask: GFP mask for the allocation.
 148 * @safe_needed: Get pages that were not used before hibernation (restore only)
 149 *
 150 * During image restoration, for storing the PBE list and the image data, we can
 151 * only use memory pages that do not conflict with the pages used before
 152 * hibernation.  The "unsafe" pages have PageNosaveFree set and we count them
 153 * using allocated_unsafe_pages.
 154 *
 155 * Each allocated image page is marked as PageNosave and PageNosaveFree so that
 156 * swsusp_free() can release it.
 157 */
 158static void *get_image_page(gfp_t gfp_mask, int safe_needed)
 159{
 160        void *res;
 161
 162        res = (void *)get_zeroed_page(gfp_mask);
 163        if (safe_needed)
 164                while (res && swsusp_page_is_free(virt_to_page(res))) {
 165                        /* The page is unsafe, mark it for swsusp_free() */
 166                        swsusp_set_page_forbidden(virt_to_page(res));
 167                        allocated_unsafe_pages++;
 168                        res = (void *)get_zeroed_page(gfp_mask);
 169                }
 170        if (res) {
 171                swsusp_set_page_forbidden(virt_to_page(res));
 172                swsusp_set_page_free(virt_to_page(res));
 173        }
 174        return res;
 175}
 176
 177static void *__get_safe_page(gfp_t gfp_mask)
 178{
 179        if (safe_pages_list) {
 180                void *ret = safe_pages_list;
 181
 182                safe_pages_list = safe_pages_list->next;
 183                memset(ret, 0, PAGE_SIZE);
 184                return ret;
 185        }
 186        return get_image_page(gfp_mask, PG_SAFE);
 187}
 188
 189unsigned long get_safe_page(gfp_t gfp_mask)
 190{
 191        return (unsigned long)__get_safe_page(gfp_mask);
 192}
 193
 194static struct page *alloc_image_page(gfp_t gfp_mask)
 195{
 196        struct page *page;
 197
 198        page = alloc_page(gfp_mask);
 199        if (page) {
 200                swsusp_set_page_forbidden(page);
 201                swsusp_set_page_free(page);
 202        }
 203        return page;
 204}
 205
 206static void recycle_safe_page(void *page_address)
 207{
 208        struct linked_page *lp = page_address;
 209
 210        lp->next = safe_pages_list;
 211        safe_pages_list = lp;
 212}
 213
 214/**
 215 * free_image_page - Free a page allocated for hibernation image.
 216 * @addr: Address of the page to free.
 217 * @clear_nosave_free: If set, clear the PageNosaveFree bit for the page.
 218 *
 219 * The page to free should have been allocated by get_image_page() (page flags
 220 * set by it are affected).
 221 */
 222static inline void free_image_page(void *addr, int clear_nosave_free)
 223{
 224        struct page *page;
 225
 226        BUG_ON(!virt_addr_valid(addr));
 227
 228        page = virt_to_page(addr);
 229
 230        swsusp_unset_page_forbidden(page);
 231        if (clear_nosave_free)
 232                swsusp_unset_page_free(page);
 233
 234        __free_page(page);
 235}
 236
 237static inline void free_list_of_pages(struct linked_page *list,
 238                                      int clear_page_nosave)
 239{
 240        while (list) {
 241                struct linked_page *lp = list->next;
 242
 243                free_image_page(list, clear_page_nosave);
 244                list = lp;
 245        }
 246}
 247
 248/*
 249 * struct chain_allocator is used for allocating small objects out of
 250 * a linked list of pages called 'the chain'.
 251 *
 252 * The chain grows each time when there is no room for a new object in
 253 * the current page.  The allocated objects cannot be freed individually.
 254 * It is only possible to free them all at once, by freeing the entire
 255 * chain.
 256 *
 257 * NOTE: The chain allocator may be inefficient if the allocated objects
 258 * are not much smaller than PAGE_SIZE.
 259 */
 260struct chain_allocator {
 261        struct linked_page *chain;      /* the chain */
 262        unsigned int used_space;        /* total size of objects allocated out
 263                                           of the current page */
 264        gfp_t gfp_mask;         /* mask for allocating pages */
 265        int safe_needed;        /* if set, only "safe" pages are allocated */
 266};
 267
 268static void chain_init(struct chain_allocator *ca, gfp_t gfp_mask,
 269                       int safe_needed)
 270{
 271        ca->chain = NULL;
 272        ca->used_space = LINKED_PAGE_DATA_SIZE;
 273        ca->gfp_mask = gfp_mask;
 274        ca->safe_needed = safe_needed;
 275}
 276
 277static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
 278{
 279        void *ret;
 280
 281        if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
 282                struct linked_page *lp;
 283
 284                lp = ca->safe_needed ? __get_safe_page(ca->gfp_mask) :
 285                                        get_image_page(ca->gfp_mask, PG_ANY);
 286                if (!lp)
 287                        return NULL;
 288
 289                lp->next = ca->chain;
 290                ca->chain = lp;
 291                ca->used_space = 0;
 292        }
 293        ret = ca->chain->data + ca->used_space;
 294        ca->used_space += size;
 295        return ret;
 296}
 297
 298/**
 299 * Data types related to memory bitmaps.
 300 *
 301 * Memory bitmap is a structure consiting of many linked lists of
 302 * objects.  The main list's elements are of type struct zone_bitmap
 303 * and each of them corresonds to one zone.  For each zone bitmap
 304 * object there is a list of objects of type struct bm_block that
 305 * represent each blocks of bitmap in which information is stored.
 306 *
 307 * struct memory_bitmap contains a pointer to the main list of zone
 308 * bitmap objects, a struct bm_position used for browsing the bitmap,
 309 * and a pointer to the list of pages used for allocating all of the
 310 * zone bitmap objects and bitmap block objects.
 311 *
 312 * NOTE: It has to be possible to lay out the bitmap in memory
 313 * using only allocations of order 0.  Additionally, the bitmap is
 314 * designed to work with arbitrary number of zones (this is over the
 315 * top for now, but let's avoid making unnecessary assumptions ;-).
 316 *
 317 * struct zone_bitmap contains a pointer to a list of bitmap block
 318 * objects and a pointer to the bitmap block object that has been
 319 * most recently used for setting bits.  Additionally, it contains the
 320 * PFNs that correspond to the start and end of the represented zone.
 321 *
 322 * struct bm_block contains a pointer to the memory page in which
 323 * information is stored (in the form of a block of bitmap)
 324 * It also contains the pfns that correspond to the start and end of
 325 * the represented memory area.
 326 *
 327 * The memory bitmap is organized as a radix tree to guarantee fast random
 328 * access to the bits. There is one radix tree for each zone (as returned
 329 * from create_mem_extents).
 330 *
 331 * One radix tree is represented by one struct mem_zone_bm_rtree. There are
 332 * two linked lists for the nodes of the tree, one for the inner nodes and
 333 * one for the leave nodes. The linked leave nodes are used for fast linear
 334 * access of the memory bitmap.
 335 *
 336 * The struct rtree_node represents one node of the radix tree.
 337 */
 338
 339#define BM_END_OF_MAP   (~0UL)
 340
 341#define BM_BITS_PER_BLOCK       (PAGE_SIZE * BITS_PER_BYTE)
 342#define BM_BLOCK_SHIFT          (PAGE_SHIFT + 3)
 343#define BM_BLOCK_MASK           ((1UL << BM_BLOCK_SHIFT) - 1)
 344
 345/*
 346 * struct rtree_node is a wrapper struct to link the nodes
 347 * of the rtree together for easy linear iteration over
 348 * bits and easy freeing
 349 */
 350struct rtree_node {
 351        struct list_head list;
 352        unsigned long *data;
 353};
 354
 355/*
 356 * struct mem_zone_bm_rtree represents a bitmap used for one
 357 * populated memory zone.
 358 */
 359struct mem_zone_bm_rtree {
 360        struct list_head list;          /* Link Zones together         */
 361        struct list_head nodes;         /* Radix Tree inner nodes      */
 362        struct list_head leaves;        /* Radix Tree leaves           */
 363        unsigned long start_pfn;        /* Zone start page frame       */
 364        unsigned long end_pfn;          /* Zone end page frame + 1     */
 365        struct rtree_node *rtree;       /* Radix Tree Root             */
 366        int levels;                     /* Number of Radix Tree Levels */
 367        unsigned int blocks;            /* Number of Bitmap Blocks     */
 368};
 369
 370/* strcut bm_position is used for browsing memory bitmaps */
 371
 372struct bm_position {
 373        struct mem_zone_bm_rtree *zone;
 374        struct rtree_node *node;
 375        unsigned long node_pfn;
 376        int node_bit;
 377};
 378
 379struct memory_bitmap {
 380        struct list_head zones;
 381        struct linked_page *p_list;     /* list of pages used to store zone
 382                                           bitmap objects and bitmap block
 383                                           objects */
 384        struct bm_position cur; /* most recently used bit position */
 385};
 386
 387/* Functions that operate on memory bitmaps */
 388
 389#define BM_ENTRIES_PER_LEVEL    (PAGE_SIZE / sizeof(unsigned long))
 390#if BITS_PER_LONG == 32
 391#define BM_RTREE_LEVEL_SHIFT    (PAGE_SHIFT - 2)
 392#else
 393#define BM_RTREE_LEVEL_SHIFT    (PAGE_SHIFT - 3)
 394#endif
 395#define BM_RTREE_LEVEL_MASK     ((1UL << BM_RTREE_LEVEL_SHIFT) - 1)
 396
 397/**
 398 * alloc_rtree_node - Allocate a new node and add it to the radix tree.
 399 *
 400 * This function is used to allocate inner nodes as well as the
 401 * leave nodes of the radix tree. It also adds the node to the
 402 * corresponding linked list passed in by the *list parameter.
 403 */
 404static struct rtree_node *alloc_rtree_node(gfp_t gfp_mask, int safe_needed,
 405                                           struct chain_allocator *ca,
 406                                           struct list_head *list)
 407{
 408        struct rtree_node *node;
 409
 410        node = chain_alloc(ca, sizeof(struct rtree_node));
 411        if (!node)
 412                return NULL;
 413
 414        node->data = get_image_page(gfp_mask, safe_needed);
 415        if (!node->data)
 416                return NULL;
 417
 418        list_add_tail(&node->list, list);
 419
 420        return node;
 421}
 422
 423/**
 424 * add_rtree_block - Add a new leave node to the radix tree.
 425 *
 426 * The leave nodes need to be allocated in order to keep the leaves
 427 * linked list in order. This is guaranteed by the zone->blocks
 428 * counter.
 429 */
 430static int add_rtree_block(struct mem_zone_bm_rtree *zone, gfp_t gfp_mask,
 431                           int safe_needed, struct chain_allocator *ca)
 432{
 433        struct rtree_node *node, *block, **dst;
 434        unsigned int levels_needed, block_nr;
 435        int i;
 436
 437        block_nr = zone->blocks;
 438        levels_needed = 0;
 439
 440        /* How many levels do we need for this block nr? */
 441        while (block_nr) {
 442                levels_needed += 1;
 443                block_nr >>= BM_RTREE_LEVEL_SHIFT;
 444        }
 445
 446        /* Make sure the rtree has enough levels */
 447        for (i = zone->levels; i < levels_needed; i++) {
 448                node = alloc_rtree_node(gfp_mask, safe_needed, ca,
 449                                        &zone->nodes);
 450                if (!node)
 451                        return -ENOMEM;
 452
 453                node->data[0] = (unsigned long)zone->rtree;
 454                zone->rtree = node;
 455                zone->levels += 1;
 456        }
 457
 458        /* Allocate new block */
 459        block = alloc_rtree_node(gfp_mask, safe_needed, ca, &zone->leaves);
 460        if (!block)
 461                return -ENOMEM;
 462
 463        /* Now walk the rtree to insert the block */
 464        node = zone->rtree;
 465        dst = &zone->rtree;
 466        block_nr = zone->blocks;
 467        for (i = zone->levels; i > 0; i--) {
 468                int index;
 469
 470                if (!node) {
 471                        node = alloc_rtree_node(gfp_mask, safe_needed, ca,
 472                                                &zone->nodes);
 473                        if (!node)
 474                                return -ENOMEM;
 475                        *dst = node;
 476                }
 477
 478                index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
 479                index &= BM_RTREE_LEVEL_MASK;
 480                dst = (struct rtree_node **)&((*dst)->data[index]);
 481                node = *dst;
 482        }
 483
 484        zone->blocks += 1;
 485        *dst = block;
 486
 487        return 0;
 488}
 489
 490static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
 491                               int clear_nosave_free);
 492
 493/**
 494 * create_zone_bm_rtree - Create a radix tree for one zone.
 495 *
 496 * Allocated the mem_zone_bm_rtree structure and initializes it.
 497 * This function also allocated and builds the radix tree for the
 498 * zone.
 499 */
 500static struct mem_zone_bm_rtree *create_zone_bm_rtree(gfp_t gfp_mask,
 501                                                      int safe_needed,
 502                                                      struct chain_allocator *ca,
 503                                                      unsigned long start,
 504                                                      unsigned long end)
 505{
 506        struct mem_zone_bm_rtree *zone;
 507        unsigned int i, nr_blocks;
 508        unsigned long pages;
 509
 510        pages = end - start;
 511        zone  = chain_alloc(ca, sizeof(struct mem_zone_bm_rtree));
 512        if (!zone)
 513                return NULL;
 514
 515        INIT_LIST_HEAD(&zone->nodes);
 516        INIT_LIST_HEAD(&zone->leaves);
 517        zone->start_pfn = start;
 518        zone->end_pfn = end;
 519        nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
 520
 521        for (i = 0; i < nr_blocks; i++) {
 522                if (add_rtree_block(zone, gfp_mask, safe_needed, ca)) {
 523                        free_zone_bm_rtree(zone, PG_UNSAFE_CLEAR);
 524                        return NULL;
 525                }
 526        }
 527
 528        return zone;
 529}
 530
 531/**
 532 * free_zone_bm_rtree - Free the memory of the radix tree.
 533 *
 534 * Free all node pages of the radix tree. The mem_zone_bm_rtree
 535 * structure itself is not freed here nor are the rtree_node
 536 * structs.
 537 */
 538static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
 539                               int clear_nosave_free)
 540{
 541        struct rtree_node *node;
 542
 543        list_for_each_entry(node, &zone->nodes, list)
 544                free_image_page(node->data, clear_nosave_free);
 545
 546        list_for_each_entry(node, &zone->leaves, list)
 547                free_image_page(node->data, clear_nosave_free);
 548}
 549
 550static void memory_bm_position_reset(struct memory_bitmap *bm)
 551{
 552        bm->cur.zone = list_entry(bm->zones.next, struct mem_zone_bm_rtree,
 553                                  list);
 554        bm->cur.node = list_entry(bm->cur.zone->leaves.next,
 555                                  struct rtree_node, list);
 556        bm->cur.node_pfn = 0;
 557        bm->cur.node_bit = 0;
 558}
 559
 560static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
 561
 562struct mem_extent {
 563        struct list_head hook;
 564        unsigned long start;
 565        unsigned long end;
 566};
 567
 568/**
 569 * free_mem_extents - Free a list of memory extents.
 570 * @list: List of extents to free.
 571 */
 572static void free_mem_extents(struct list_head *list)
 573{
 574        struct mem_extent *ext, *aux;
 575
 576        list_for_each_entry_safe(ext, aux, list, hook) {
 577                list_del(&ext->hook);
 578                kfree(ext);
 579        }
 580}
 581
 582/**
 583 * create_mem_extents - Create a list of memory extents.
 584 * @list: List to put the extents into.
 585 * @gfp_mask: Mask to use for memory allocations.
 586 *
 587 * The extents represent contiguous ranges of PFNs.
 588 */
 589static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
 590{
 591        struct zone *zone;
 592
 593        INIT_LIST_HEAD(list);
 594
 595        for_each_populated_zone(zone) {
 596                unsigned long zone_start, zone_end;
 597                struct mem_extent *ext, *cur, *aux;
 598
 599                zone_start = zone->zone_start_pfn;
 600                zone_end = zone_end_pfn(zone);
 601
 602                list_for_each_entry(ext, list, hook)
 603                        if (zone_start <= ext->end)
 604                                break;
 605
 606                if (&ext->hook == list || zone_end < ext->start) {
 607                        /* New extent is necessary */
 608                        struct mem_extent *new_ext;
 609
 610                        new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
 611                        if (!new_ext) {
 612                                free_mem_extents(list);
 613                                return -ENOMEM;
 614                        }
 615                        new_ext->start = zone_start;
 616                        new_ext->end = zone_end;
 617                        list_add_tail(&new_ext->hook, &ext->hook);
 618                        continue;
 619                }
 620
 621                /* Merge this zone's range of PFNs with the existing one */
 622                if (zone_start < ext->start)
 623                        ext->start = zone_start;
 624                if (zone_end > ext->end)
 625                        ext->end = zone_end;
 626
 627                /* More merging may be possible */
 628                cur = ext;
 629                list_for_each_entry_safe_continue(cur, aux, list, hook) {
 630                        if (zone_end < cur->start)
 631                                break;
 632                        if (zone_end < cur->end)
 633                                ext->end = cur->end;
 634                        list_del(&cur->hook);
 635                        kfree(cur);
 636                }
 637        }
 638
 639        return 0;
 640}
 641
 642/**
 643 * memory_bm_create - Allocate memory for a memory bitmap.
 644 */
 645static int memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask,
 646                            int safe_needed)
 647{
 648        struct chain_allocator ca;
 649        struct list_head mem_extents;
 650        struct mem_extent *ext;
 651        int error;
 652
 653        chain_init(&ca, gfp_mask, safe_needed);
 654        INIT_LIST_HEAD(&bm->zones);
 655
 656        error = create_mem_extents(&mem_extents, gfp_mask);
 657        if (error)
 658                return error;
 659
 660        list_for_each_entry(ext, &mem_extents, hook) {
 661                struct mem_zone_bm_rtree *zone;
 662
 663                zone = create_zone_bm_rtree(gfp_mask, safe_needed, &ca,
 664                                            ext->start, ext->end);
 665                if (!zone) {
 666                        error = -ENOMEM;
 667                        goto Error;
 668                }
 669                list_add_tail(&zone->list, &bm->zones);
 670        }
 671
 672        bm->p_list = ca.chain;
 673        memory_bm_position_reset(bm);
 674 Exit:
 675        free_mem_extents(&mem_extents);
 676        return error;
 677
 678 Error:
 679        bm->p_list = ca.chain;
 680        memory_bm_free(bm, PG_UNSAFE_CLEAR);
 681        goto Exit;
 682}
 683
 684/**
 685 * memory_bm_free - Free memory occupied by the memory bitmap.
 686 * @bm: Memory bitmap.
 687 */
 688static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
 689{
 690        struct mem_zone_bm_rtree *zone;
 691
 692        list_for_each_entry(zone, &bm->zones, list)
 693                free_zone_bm_rtree(zone, clear_nosave_free);
 694
 695        free_list_of_pages(bm->p_list, clear_nosave_free);
 696
 697        INIT_LIST_HEAD(&bm->zones);
 698}
 699
 700/**
 701 * memory_bm_find_bit - Find the bit for a given PFN in a memory bitmap.
 702 *
 703 * Find the bit in memory bitmap @bm that corresponds to the given PFN.
 704 * The cur.zone, cur.block and cur.node_pfn members of @bm are updated.
 705 *
 706 * Walk the radix tree to find the page containing the bit that represents @pfn
 707 * and return the position of the bit in @addr and @bit_nr.
 708 */
 709static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
 710                              void **addr, unsigned int *bit_nr)
 711{
 712        struct mem_zone_bm_rtree *curr, *zone;
 713        struct rtree_node *node;
 714        int i, block_nr;
 715
 716        zone = bm->cur.zone;
 717
 718        if (pfn >= zone->start_pfn && pfn < zone->end_pfn)
 719                goto zone_found;
 720
 721        zone = NULL;
 722
 723        /* Find the right zone */
 724        list_for_each_entry(curr, &bm->zones, list) {
 725                if (pfn >= curr->start_pfn && pfn < curr->end_pfn) {
 726                        zone = curr;
 727                        break;
 728                }
 729        }
 730
 731        if (!zone)
 732                return -EFAULT;
 733
 734zone_found:
 735        /*
 736         * We have found the zone. Now walk the radix tree to find the leaf node
 737         * for our PFN.
 738         */
 739        node = bm->cur.node;
 740        if (((pfn - zone->start_pfn) & ~BM_BLOCK_MASK) == bm->cur.node_pfn)
 741                goto node_found;
 742
 743        node      = zone->rtree;
 744        block_nr  = (pfn - zone->start_pfn) >> BM_BLOCK_SHIFT;
 745
 746        for (i = zone->levels; i > 0; i--) {
 747                int index;
 748
 749                index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
 750                index &= BM_RTREE_LEVEL_MASK;
 751                BUG_ON(node->data[index] == 0);
 752                node = (struct rtree_node *)node->data[index];
 753        }
 754
 755node_found:
 756        /* Update last position */
 757        bm->cur.zone = zone;
 758        bm->cur.node = node;
 759        bm->cur.node_pfn = (pfn - zone->start_pfn) & ~BM_BLOCK_MASK;
 760
 761        /* Set return values */
 762        *addr = node->data;
 763        *bit_nr = (pfn - zone->start_pfn) & BM_BLOCK_MASK;
 764
 765        return 0;
 766}
 767
 768static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
 769{
 770        void *addr;
 771        unsigned int bit;
 772        int error;
 773
 774        error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 775        BUG_ON(error);
 776        set_bit(bit, addr);
 777}
 778
 779static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
 780{
 781        void *addr;
 782        unsigned int bit;
 783        int error;
 784
 785        error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 786        if (!error)
 787                set_bit(bit, addr);
 788
 789        return error;
 790}
 791
 792static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
 793{
 794        void *addr;
 795        unsigned int bit;
 796        int error;
 797
 798        error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 799        BUG_ON(error);
 800        clear_bit(bit, addr);
 801}
 802
 803static void memory_bm_clear_current(struct memory_bitmap *bm)
 804{
 805        int bit;
 806
 807        bit = max(bm->cur.node_bit - 1, 0);
 808        clear_bit(bit, bm->cur.node->data);
 809}
 810
 811static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
 812{
 813        void *addr;
 814        unsigned int bit;
 815        int error;
 816
 817        error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 818        BUG_ON(error);
 819        return test_bit(bit, addr);
 820}
 821
 822static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
 823{
 824        void *addr;
 825        unsigned int bit;
 826
 827        return !memory_bm_find_bit(bm, pfn, &addr, &bit);
 828}
 829
 830/*
 831 * rtree_next_node - Jump to the next leaf node.
 832 *
 833 * Set the position to the beginning of the next node in the
 834 * memory bitmap. This is either the next node in the current
 835 * zone's radix tree or the first node in the radix tree of the
 836 * next zone.
 837 *
 838 * Return true if there is a next node, false otherwise.
 839 */
 840static bool rtree_next_node(struct memory_bitmap *bm)
 841{
 842        if (!list_is_last(&bm->cur.node->list, &bm->cur.zone->leaves)) {
 843                bm->cur.node = list_entry(bm->cur.node->list.next,
 844                                          struct rtree_node, list);
 845                bm->cur.node_pfn += BM_BITS_PER_BLOCK;
 846                bm->cur.node_bit  = 0;
 847                touch_softlockup_watchdog();
 848                return true;
 849        }
 850
 851        /* No more nodes, goto next zone */
 852        if (!list_is_last(&bm->cur.zone->list, &bm->zones)) {
 853                bm->cur.zone = list_entry(bm->cur.zone->list.next,
 854                                  struct mem_zone_bm_rtree, list);
 855                bm->cur.node = list_entry(bm->cur.zone->leaves.next,
 856                                          struct rtree_node, list);
 857                bm->cur.node_pfn = 0;
 858                bm->cur.node_bit = 0;
 859                return true;
 860        }
 861
 862        /* No more zones */
 863        return false;
 864}
 865
 866/**
 867 * memory_bm_rtree_next_pfn - Find the next set bit in a memory bitmap.
 868 * @bm: Memory bitmap.
 869 *
 870 * Starting from the last returned position this function searches for the next
 871 * set bit in @bm and returns the PFN represented by it.  If no more bits are
 872 * set, BM_END_OF_MAP is returned.
 873 *
 874 * It is required to run memory_bm_position_reset() before the first call to
 875 * this function for the given memory bitmap.
 876 */
 877static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
 878{
 879        unsigned long bits, pfn, pages;
 880        int bit;
 881
 882        do {
 883                pages     = bm->cur.zone->end_pfn - bm->cur.zone->start_pfn;
 884                bits      = min(pages - bm->cur.node_pfn, BM_BITS_PER_BLOCK);
 885                bit       = find_next_bit(bm->cur.node->data, bits,
 886                                          bm->cur.node_bit);
 887                if (bit < bits) {
 888                        pfn = bm->cur.zone->start_pfn + bm->cur.node_pfn + bit;
 889                        bm->cur.node_bit = bit + 1;
 890                        return pfn;
 891                }
 892        } while (rtree_next_node(bm));
 893
 894        return BM_END_OF_MAP;
 895}
 896
 897/*
 898 * This structure represents a range of page frames the contents of which
 899 * should not be saved during hibernation.
 900 */
 901struct nosave_region {
 902        struct list_head list;
 903        unsigned long start_pfn;
 904        unsigned long end_pfn;
 905};
 906
 907static LIST_HEAD(nosave_regions);
 908
 909static void recycle_zone_bm_rtree(struct mem_zone_bm_rtree *zone)
 910{
 911        struct rtree_node *node;
 912
 913        list_for_each_entry(node, &zone->nodes, list)
 914                recycle_safe_page(node->data);
 915
 916        list_for_each_entry(node, &zone->leaves, list)
 917                recycle_safe_page(node->data);
 918}
 919
 920static void memory_bm_recycle(struct memory_bitmap *bm)
 921{
 922        struct mem_zone_bm_rtree *zone;
 923        struct linked_page *p_list;
 924
 925        list_for_each_entry(zone, &bm->zones, list)
 926                recycle_zone_bm_rtree(zone);
 927
 928        p_list = bm->p_list;
 929        while (p_list) {
 930                struct linked_page *lp = p_list;
 931
 932                p_list = lp->next;
 933                recycle_safe_page(lp);
 934        }
 935}
 936
 937/**
 938 * register_nosave_region - Register a region of unsaveable memory.
 939 *
 940 * Register a range of page frames the contents of which should not be saved
 941 * during hibernation (to be used in the early initialization code).
 942 */
 943void __init __register_nosave_region(unsigned long start_pfn,
 944                                     unsigned long end_pfn, int use_kmalloc)
 945{
 946        struct nosave_region *region;
 947
 948        if (start_pfn >= end_pfn)
 949                return;
 950
 951        if (!list_empty(&nosave_regions)) {
 952                /* Try to extend the previous region (they should be sorted) */
 953                region = list_entry(nosave_regions.prev,
 954                                        struct nosave_region, list);
 955                if (region->end_pfn == start_pfn) {
 956                        region->end_pfn = end_pfn;
 957                        goto Report;
 958                }
 959        }
 960        if (use_kmalloc) {
 961                /* During init, this shouldn't fail */
 962                region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
 963                BUG_ON(!region);
 964        } else {
 965                /* This allocation cannot fail */
 966                region = memblock_alloc(sizeof(struct nosave_region),
 967                                        SMP_CACHE_BYTES);
 968        }
 969        region->start_pfn = start_pfn;
 970        region->end_pfn = end_pfn;
 971        list_add_tail(&region->list, &nosave_regions);
 972 Report:
 973        pr_info("Registered nosave memory: [mem %#010llx-%#010llx]\n",
 974                (unsigned long long) start_pfn << PAGE_SHIFT,
 975                ((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
 976}
 977
 978/*
 979 * Set bits in this map correspond to the page frames the contents of which
 980 * should not be saved during the suspend.
 981 */
 982static struct memory_bitmap *forbidden_pages_map;
 983
 984/* Set bits in this map correspond to free page frames. */
 985static struct memory_bitmap *free_pages_map;
 986
 987/*
 988 * Each page frame allocated for creating the image is marked by setting the
 989 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
 990 */
 991
 992void swsusp_set_page_free(struct page *page)
 993{
 994        if (free_pages_map)
 995                memory_bm_set_bit(free_pages_map, page_to_pfn(page));
 996}
 997
 998static int swsusp_page_is_free(struct page *page)
 999{
1000        return free_pages_map ?
1001                memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
1002}
1003
1004void swsusp_unset_page_free(struct page *page)
1005{
1006        if (free_pages_map)
1007                memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
1008}
1009
1010static void swsusp_set_page_forbidden(struct page *page)
1011{
1012        if (forbidden_pages_map)
1013                memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
1014}
1015
1016int swsusp_page_is_forbidden(struct page *page)
1017{
1018        return forbidden_pages_map ?
1019                memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
1020}
1021
1022static void swsusp_unset_page_forbidden(struct page *page)
1023{
1024        if (forbidden_pages_map)
1025                memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
1026}
1027
1028/**
1029 * mark_nosave_pages - Mark pages that should not be saved.
1030 * @bm: Memory bitmap.
1031 *
1032 * Set the bits in @bm that correspond to the page frames the contents of which
1033 * should not be saved.
1034 */
1035static void mark_nosave_pages(struct memory_bitmap *bm)
1036{
1037        struct nosave_region *region;
1038
1039        if (list_empty(&nosave_regions))
1040                return;
1041
1042        list_for_each_entry(region, &nosave_regions, list) {
1043                unsigned long pfn;
1044
1045                pr_debug("Marking nosave pages: [mem %#010llx-%#010llx]\n",
1046                         (unsigned long long) region->start_pfn << PAGE_SHIFT,
1047                         ((unsigned long long) region->end_pfn << PAGE_SHIFT)
1048                                - 1);
1049
1050                for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
1051                        if (pfn_valid(pfn)) {
1052                                /*
1053                                 * It is safe to ignore the result of
1054                                 * mem_bm_set_bit_check() here, since we won't
1055                                 * touch the PFNs for which the error is
1056                                 * returned anyway.
1057                                 */
1058                                mem_bm_set_bit_check(bm, pfn);
1059                        }
1060        }
1061}
1062
1063/**
1064 * create_basic_memory_bitmaps - Create bitmaps to hold basic page information.
1065 *
1066 * Create bitmaps needed for marking page frames that should not be saved and
1067 * free page frames.  The forbidden_pages_map and free_pages_map pointers are
1068 * only modified if everything goes well, because we don't want the bits to be
1069 * touched before both bitmaps are set up.
1070 */
1071int create_basic_memory_bitmaps(void)
1072{
1073        struct memory_bitmap *bm1, *bm2;
1074        int error = 0;
1075
1076        if (forbidden_pages_map && free_pages_map)
1077                return 0;
1078        else
1079                BUG_ON(forbidden_pages_map || free_pages_map);
1080
1081        bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1082        if (!bm1)
1083                return -ENOMEM;
1084
1085        error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
1086        if (error)
1087                goto Free_first_object;
1088
1089        bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1090        if (!bm2)
1091                goto Free_first_bitmap;
1092
1093        error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
1094        if (error)
1095                goto Free_second_object;
1096
1097        forbidden_pages_map = bm1;
1098        free_pages_map = bm2;
1099        mark_nosave_pages(forbidden_pages_map);
1100
1101        pr_debug("Basic memory bitmaps created\n");
1102
1103        return 0;
1104
1105 Free_second_object:
1106        kfree(bm2);
1107 Free_first_bitmap:
1108        memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1109 Free_first_object:
1110        kfree(bm1);
1111        return -ENOMEM;
1112}
1113
1114/**
1115 * free_basic_memory_bitmaps - Free memory bitmaps holding basic information.
1116 *
1117 * Free memory bitmaps allocated by create_basic_memory_bitmaps().  The
1118 * auxiliary pointers are necessary so that the bitmaps themselves are not
1119 * referred to while they are being freed.
1120 */
1121void free_basic_memory_bitmaps(void)
1122{
1123        struct memory_bitmap *bm1, *bm2;
1124
1125        if (WARN_ON(!(forbidden_pages_map && free_pages_map)))
1126                return;
1127
1128        bm1 = forbidden_pages_map;
1129        bm2 = free_pages_map;
1130        forbidden_pages_map = NULL;
1131        free_pages_map = NULL;
1132        memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1133        kfree(bm1);
1134        memory_bm_free(bm2, PG_UNSAFE_CLEAR);
1135        kfree(bm2);
1136
1137        pr_debug("Basic memory bitmaps freed\n");
1138}
1139
1140void clear_free_pages(void)
1141{
1142#ifdef CONFIG_PAGE_POISONING_ZERO
1143        struct memory_bitmap *bm = free_pages_map;
1144        unsigned long pfn;
1145
1146        if (WARN_ON(!(free_pages_map)))
1147                return;
1148
1149        memory_bm_position_reset(bm);
1150        pfn = memory_bm_next_pfn(bm);
1151        while (pfn != BM_END_OF_MAP) {
1152                if (pfn_valid(pfn))
1153                        clear_highpage(pfn_to_page(pfn));
1154
1155                pfn = memory_bm_next_pfn(bm);
1156        }
1157        memory_bm_position_reset(bm);
1158        pr_info("free pages cleared after restore\n");
1159#endif /* PAGE_POISONING_ZERO */
1160}
1161
1162/**
1163 * snapshot_additional_pages - Estimate the number of extra pages needed.
1164 * @zone: Memory zone to carry out the computation for.
1165 *
1166 * Estimate the number of additional pages needed for setting up a hibernation
1167 * image data structures for @zone (usually, the returned value is greater than
1168 * the exact number).
1169 */
1170unsigned int snapshot_additional_pages(struct zone *zone)
1171{
1172        unsigned int rtree, nodes;
1173
1174        rtree = nodes = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
1175        rtree += DIV_ROUND_UP(rtree * sizeof(struct rtree_node),
1176                              LINKED_PAGE_DATA_SIZE);
1177        while (nodes > 1) {
1178                nodes = DIV_ROUND_UP(nodes, BM_ENTRIES_PER_LEVEL);
1179                rtree += nodes;
1180        }
1181
1182        return 2 * rtree;
1183}
1184
1185#ifdef CONFIG_HIGHMEM
1186/**
1187 * count_free_highmem_pages - Compute the total number of free highmem pages.
1188 *
1189 * The returned number is system-wide.
1190 */
1191static unsigned int count_free_highmem_pages(void)
1192{
1193        struct zone *zone;
1194        unsigned int cnt = 0;
1195
1196        for_each_populated_zone(zone)
1197                if (is_highmem(zone))
1198                        cnt += zone_page_state(zone, NR_FREE_PAGES);
1199
1200        return cnt;
1201}
1202
1203/**
1204 * saveable_highmem_page - Check if a highmem page is saveable.
1205 *
1206 * Determine whether a highmem page should be included in a hibernation image.
1207 *
1208 * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
1209 * and it isn't part of a free chunk of pages.
1210 */
1211static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
1212{
1213        struct page *page;
1214
1215        if (!pfn_valid(pfn))
1216                return NULL;
1217
1218        page = pfn_to_page(pfn);
1219        if (page_zone(page) != zone)
1220                return NULL;
1221
1222        BUG_ON(!PageHighMem(page));
1223
1224        if (swsusp_page_is_forbidden(page) ||  swsusp_page_is_free(page) ||
1225            PageReserved(page))
1226                return NULL;
1227
1228        if (page_is_guard(page))
1229                return NULL;
1230
1231        return page;
1232}
1233
1234/**
1235 * count_highmem_pages - Compute the total number of saveable highmem pages.
1236 */
1237static unsigned int count_highmem_pages(void)
1238{
1239        struct zone *zone;
1240        unsigned int n = 0;
1241
1242        for_each_populated_zone(zone) {
1243                unsigned long pfn, max_zone_pfn;
1244
1245                if (!is_highmem(zone))
1246                        continue;
1247
1248                mark_free_pages(zone);
1249                max_zone_pfn = zone_end_pfn(zone);
1250                for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1251                        if (saveable_highmem_page(zone, pfn))
1252                                n++;
1253        }
1254        return n;
1255}
1256#else
1257static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
1258{
1259        return NULL;
1260}
1261#endif /* CONFIG_HIGHMEM */
1262
1263/**
1264 * saveable_page - Check if the given page is saveable.
1265 *
1266 * Determine whether a non-highmem page should be included in a hibernation
1267 * image.
1268 *
1269 * We should save the page if it isn't Nosave, and is not in the range
1270 * of pages statically defined as 'unsaveable', and it isn't part of
1271 * a free chunk of pages.
1272 */
1273static struct page *saveable_page(struct zone *zone, unsigned long pfn)
1274{
1275        struct page *page;
1276
1277        if (!pfn_valid(pfn))
1278                return NULL;
1279
1280        page = pfn_to_page(pfn);
1281        if (page_zone(page) != zone)
1282                return NULL;
1283
1284        BUG_ON(PageHighMem(page));
1285
1286        if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
1287                return NULL;
1288
1289        if (PageReserved(page)
1290            && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
1291                return NULL;
1292
1293        if (page_is_guard(page))
1294                return NULL;
1295
1296        return page;
1297}
1298
1299/**
1300 * count_data_pages - Compute the total number of saveable non-highmem pages.
1301 */
1302static unsigned int count_data_pages(void)
1303{
1304        struct zone *zone;
1305        unsigned long pfn, max_zone_pfn;
1306        unsigned int n = 0;
1307
1308        for_each_populated_zone(zone) {
1309                if (is_highmem(zone))
1310                        continue;
1311
1312                mark_free_pages(zone);
1313                max_zone_pfn = zone_end_pfn(zone);
1314                for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1315                        if (saveable_page(zone, pfn))
1316                                n++;
1317        }
1318        return n;
1319}
1320
1321/*
1322 * This is needed, because copy_page and memcpy are not usable for copying
1323 * task structs.
1324 */
1325static inline void do_copy_page(long *dst, long *src)
1326{
1327        int n;
1328
1329        for (n = PAGE_SIZE / sizeof(long); n; n--)
1330                *dst++ = *src++;
1331}
1332
1333/**
1334 * safe_copy_page - Copy a page in a safe way.
1335 *
1336 * Check if the page we are going to copy is marked as present in the kernel
1337 * page tables (this always is the case if CONFIG_DEBUG_PAGEALLOC is not set
1338 * and in that case kernel_page_present() always returns 'true').
1339 */
1340static void safe_copy_page(void *dst, struct page *s_page)
1341{
1342        if (kernel_page_present(s_page)) {
1343                do_copy_page(dst, page_address(s_page));
1344        } else {
1345                kernel_map_pages(s_page, 1, 1);
1346                do_copy_page(dst, page_address(s_page));
1347                kernel_map_pages(s_page, 1, 0);
1348        }
1349}
1350
1351#ifdef CONFIG_HIGHMEM
1352static inline struct page *page_is_saveable(struct zone *zone, unsigned long pfn)
1353{
1354        return is_highmem(zone) ?
1355                saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
1356}
1357
1358static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1359{
1360        struct page *s_page, *d_page;
1361        void *src, *dst;
1362
1363        s_page = pfn_to_page(src_pfn);
1364        d_page = pfn_to_page(dst_pfn);
1365        if (PageHighMem(s_page)) {
1366                src = kmap_atomic(s_page);
1367                dst = kmap_atomic(d_page);
1368                do_copy_page(dst, src);
1369                kunmap_atomic(dst);
1370                kunmap_atomic(src);
1371        } else {
1372                if (PageHighMem(d_page)) {
1373                        /*
1374                         * The page pointed to by src may contain some kernel
1375                         * data modified by kmap_atomic()
1376                         */
1377                        safe_copy_page(buffer, s_page);
1378                        dst = kmap_atomic(d_page);
1379                        copy_page(dst, buffer);
1380                        kunmap_atomic(dst);
1381                } else {
1382                        safe_copy_page(page_address(d_page), s_page);
1383                }
1384        }
1385}
1386#else
1387#define page_is_saveable(zone, pfn)     saveable_page(zone, pfn)
1388
1389static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1390{
1391        safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1392                                pfn_to_page(src_pfn));
1393}
1394#endif /* CONFIG_HIGHMEM */
1395
1396static void copy_data_pages(struct memory_bitmap *copy_bm,
1397                            struct memory_bitmap *orig_bm)
1398{
1399        struct zone *zone;
1400        unsigned long pfn;
1401
1402        for_each_populated_zone(zone) {
1403                unsigned long max_zone_pfn;
1404
1405                mark_free_pages(zone);
1406                max_zone_pfn = zone_end_pfn(zone);
1407                for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1408                        if (page_is_saveable(zone, pfn))
1409                                memory_bm_set_bit(orig_bm, pfn);
1410        }
1411        memory_bm_position_reset(orig_bm);
1412        memory_bm_position_reset(copy_bm);
1413        for(;;) {
1414                pfn = memory_bm_next_pfn(orig_bm);
1415                if (unlikely(pfn == BM_END_OF_MAP))
1416                        break;
1417                copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1418        }
1419}
1420
1421/* Total number of image pages */
1422static unsigned int nr_copy_pages;
1423/* Number of pages needed for saving the original pfns of the image pages */
1424static unsigned int nr_meta_pages;
1425/*
1426 * Numbers of normal and highmem page frames allocated for hibernation image
1427 * before suspending devices.
1428 */
1429static unsigned int alloc_normal, alloc_highmem;
1430/*
1431 * Memory bitmap used for marking saveable pages (during hibernation) or
1432 * hibernation image pages (during restore)
1433 */
1434static struct memory_bitmap orig_bm;
1435/*
1436 * Memory bitmap used during hibernation for marking allocated page frames that
1437 * will contain copies of saveable pages.  During restore it is initially used
1438 * for marking hibernation image pages, but then the set bits from it are
1439 * duplicated in @orig_bm and it is released.  On highmem systems it is next
1440 * used for marking "safe" highmem pages, but it has to be reinitialized for
1441 * this purpose.
1442 */
1443static struct memory_bitmap copy_bm;
1444
1445/**
1446 * swsusp_free - Free pages allocated for hibernation image.
1447 *
1448 * Image pages are alocated before snapshot creation, so they need to be
1449 * released after resume.
1450 */
1451void swsusp_free(void)
1452{
1453        unsigned long fb_pfn, fr_pfn;
1454
1455        if (!forbidden_pages_map || !free_pages_map)
1456                goto out;
1457
1458        memory_bm_position_reset(forbidden_pages_map);
1459        memory_bm_position_reset(free_pages_map);
1460
1461loop:
1462        fr_pfn = memory_bm_next_pfn(free_pages_map);
1463        fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1464
1465        /*
1466         * Find the next bit set in both bitmaps. This is guaranteed to
1467         * terminate when fb_pfn == fr_pfn == BM_END_OF_MAP.
1468         */
1469        do {
1470                if (fb_pfn < fr_pfn)
1471                        fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1472                if (fr_pfn < fb_pfn)
1473                        fr_pfn = memory_bm_next_pfn(free_pages_map);
1474        } while (fb_pfn != fr_pfn);
1475
1476        if (fr_pfn != BM_END_OF_MAP && pfn_valid(fr_pfn)) {
1477                struct page *page = pfn_to_page(fr_pfn);
1478
1479                memory_bm_clear_current(forbidden_pages_map);
1480                memory_bm_clear_current(free_pages_map);
1481                hibernate_restore_unprotect_page(page_address(page));
1482                __free_page(page);
1483                goto loop;
1484        }
1485
1486out:
1487        nr_copy_pages = 0;
1488        nr_meta_pages = 0;
1489        restore_pblist = NULL;
1490        buffer = NULL;
1491        alloc_normal = 0;
1492        alloc_highmem = 0;
1493        hibernate_restore_protection_end();
1494}
1495
1496/* Helper functions used for the shrinking of memory. */
1497
1498#define GFP_IMAGE       (GFP_KERNEL | __GFP_NOWARN)
1499
1500/**
1501 * preallocate_image_pages - Allocate a number of pages for hibernation image.
1502 * @nr_pages: Number of page frames to allocate.
1503 * @mask: GFP flags to use for the allocation.
1504 *
1505 * Return value: Number of page frames actually allocated
1506 */
1507static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1508{
1509        unsigned long nr_alloc = 0;
1510
1511        while (nr_pages > 0) {
1512                struct page *page;
1513
1514                page = alloc_image_page(mask);
1515                if (!page)
1516                        break;
1517                memory_bm_set_bit(&copy_bm, page_to_pfn(page));
1518                if (PageHighMem(page))
1519                        alloc_highmem++;
1520                else
1521                        alloc_normal++;
1522                nr_pages--;
1523                nr_alloc++;
1524        }
1525
1526        return nr_alloc;
1527}
1528
1529static unsigned long preallocate_image_memory(unsigned long nr_pages,
1530                                              unsigned long avail_normal)
1531{
1532        unsigned long alloc;
1533
1534        if (avail_normal <= alloc_normal)
1535                return 0;
1536
1537        alloc = avail_normal - alloc_normal;
1538        if (nr_pages < alloc)
1539                alloc = nr_pages;
1540
1541        return preallocate_image_pages(alloc, GFP_IMAGE);
1542}
1543
1544#ifdef CONFIG_HIGHMEM
1545static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1546{
1547        return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1548}
1549
1550/**
1551 *  __fraction - Compute (an approximation of) x * (multiplier / base).
1552 */
1553static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1554{
1555        x *= multiplier;
1556        do_div(x, base);
1557        return (unsigned long)x;
1558}
1559
1560static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1561                                                  unsigned long highmem,
1562                                                  unsigned long total)
1563{
1564        unsigned long alloc = __fraction(nr_pages, highmem, total);
1565
1566        return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1567}
1568#else /* CONFIG_HIGHMEM */
1569static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1570{
1571        return 0;
1572}
1573
1574static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1575                                                         unsigned long highmem,
1576                                                         unsigned long total)
1577{
1578        return 0;
1579}
1580#endif /* CONFIG_HIGHMEM */
1581
1582/**
1583 * free_unnecessary_pages - Release preallocated pages not needed for the image.
1584 */
1585static unsigned long free_unnecessary_pages(void)
1586{
1587        unsigned long save, to_free_normal, to_free_highmem, free;
1588
1589        save = count_data_pages();
1590        if (alloc_normal >= save) {
1591                to_free_normal = alloc_normal - save;
1592                save = 0;
1593        } else {
1594                to_free_normal = 0;
1595                save -= alloc_normal;
1596        }
1597        save += count_highmem_pages();
1598        if (alloc_highmem >= save) {
1599                to_free_highmem = alloc_highmem - save;
1600        } else {
1601                to_free_highmem = 0;
1602                save -= alloc_highmem;
1603                if (to_free_normal > save)
1604                        to_free_normal -= save;
1605                else
1606                        to_free_normal = 0;
1607        }
1608        free = to_free_normal + to_free_highmem;
1609
1610        memory_bm_position_reset(&copy_bm);
1611
1612        while (to_free_normal > 0 || to_free_highmem > 0) {
1613                unsigned long pfn = memory_bm_next_pfn(&copy_bm);
1614                struct page *page = pfn_to_page(pfn);
1615
1616                if (PageHighMem(page)) {
1617                        if (!to_free_highmem)
1618                                continue;
1619                        to_free_highmem--;
1620                        alloc_highmem--;
1621                } else {
1622                        if (!to_free_normal)
1623                                continue;
1624                        to_free_normal--;
1625                        alloc_normal--;
1626                }
1627                memory_bm_clear_bit(&copy_bm, pfn);
1628                swsusp_unset_page_forbidden(page);
1629                swsusp_unset_page_free(page);
1630                __free_page(page);
1631        }
1632
1633        return free;
1634}
1635
1636/**
1637 * minimum_image_size - Estimate the minimum acceptable size of an image.
1638 * @saveable: Number of saveable pages in the system.
1639 *
1640 * We want to avoid attempting to free too much memory too hard, so estimate the
1641 * minimum acceptable size of a hibernation image to use as the lower limit for
1642 * preallocating memory.
1643 *
1644 * We assume that the minimum image size should be proportional to
1645 *
1646 * [number of saveable pages] - [number of pages that can be freed in theory]
1647 *
1648 * where the second term is the sum of (1) reclaimable slab pages, (2) active
1649 * and (3) inactive anonymous pages, (4) active and (5) inactive file pages.
1650 */
1651static unsigned long minimum_image_size(unsigned long saveable)
1652{
1653        unsigned long size;
1654
1655        size = global_node_page_state(NR_SLAB_RECLAIMABLE)
1656                + global_node_page_state(NR_ACTIVE_ANON)
1657                + global_node_page_state(NR_INACTIVE_ANON)
1658                + global_node_page_state(NR_ACTIVE_FILE)
1659                + global_node_page_state(NR_INACTIVE_FILE);
1660
1661        return saveable <= size ? 0 : saveable - size;
1662}
1663
1664/**
1665 * hibernate_preallocate_memory - Preallocate memory for hibernation image.
1666 *
1667 * To create a hibernation image it is necessary to make a copy of every page
1668 * frame in use.  We also need a number of page frames to be free during
1669 * hibernation for allocations made while saving the image and for device
1670 * drivers, in case they need to allocate memory from their hibernation
1671 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
1672 * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through
1673 * /sys/power/reserved_size, respectively).  To make this happen, we compute the
1674 * total number of available page frames and allocate at least
1675 *
1676 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
1677 *  + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1678 *
1679 * of them, which corresponds to the maximum size of a hibernation image.
1680 *
1681 * If image_size is set below the number following from the above formula,
1682 * the preallocation of memory is continued until the total number of saveable
1683 * pages in the system is below the requested image size or the minimum
1684 * acceptable image size returned by minimum_image_size(), whichever is greater.
1685 */
1686int hibernate_preallocate_memory(void)
1687{
1688        struct zone *zone;
1689        unsigned long saveable, size, max_size, count, highmem, pages = 0;
1690        unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1691        ktime_t start, stop;
1692        int error;
1693
1694        pr_info("Preallocating image memory... ");
1695        start = ktime_get();
1696
1697        error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1698        if (error)
1699                goto err_out;
1700
1701        error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
1702        if (error)
1703                goto err_out;
1704
1705        alloc_normal = 0;
1706        alloc_highmem = 0;
1707
1708        /* Count the number of saveable data pages. */
1709        save_highmem = count_highmem_pages();
1710        saveable = count_data_pages();
1711
1712        /*
1713         * Compute the total number of page frames we can use (count) and the
1714         * number of pages needed for image metadata (size).
1715         */
1716        count = saveable;
1717        saveable += save_highmem;
1718        highmem = save_highmem;
1719        size = 0;
1720        for_each_populated_zone(zone) {
1721                size += snapshot_additional_pages(zone);
1722                if (is_highmem(zone))
1723                        highmem += zone_page_state(zone, NR_FREE_PAGES);
1724                else
1725                        count += zone_page_state(zone, NR_FREE_PAGES);
1726        }
1727        avail_normal = count;
1728        count += highmem;
1729        count -= totalreserve_pages;
1730
1731        /* Add number of pages required for page keys (s390 only). */
1732        size += page_key_additional_pages(saveable);
1733
1734        /* Compute the maximum number of saveable pages to leave in memory. */
1735        max_size = (count - (size + PAGES_FOR_IO)) / 2
1736                        - 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
1737        /* Compute the desired number of image pages specified by image_size. */
1738        size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1739        if (size > max_size)
1740                size = max_size;
1741        /*
1742         * If the desired number of image pages is at least as large as the
1743         * current number of saveable pages in memory, allocate page frames for
1744         * the image and we're done.
1745         */
1746        if (size >= saveable) {
1747                pages = preallocate_image_highmem(save_highmem);
1748                pages += preallocate_image_memory(saveable - pages, avail_normal);
1749                goto out;
1750        }
1751
1752        /* Estimate the minimum size of the image. */
1753        pages = minimum_image_size(saveable);
1754        /*
1755         * To avoid excessive pressure on the normal zone, leave room in it to
1756         * accommodate an image of the minimum size (unless it's already too
1757         * small, in which case don't preallocate pages from it at all).
1758         */
1759        if (avail_normal > pages)
1760                avail_normal -= pages;
1761        else
1762                avail_normal = 0;
1763        if (size < pages)
1764                size = min_t(unsigned long, pages, max_size);
1765
1766        /*
1767         * Let the memory management subsystem know that we're going to need a
1768         * large number of page frames to allocate and make it free some memory.
1769         * NOTE: If this is not done, performance will be hurt badly in some
1770         * test cases.
1771         */
1772        shrink_all_memory(saveable - size);
1773
1774        /*
1775         * The number of saveable pages in memory was too high, so apply some
1776         * pressure to decrease it.  First, make room for the largest possible
1777         * image and fail if that doesn't work.  Next, try to decrease the size
1778         * of the image as much as indicated by 'size' using allocations from
1779         * highmem and non-highmem zones separately.
1780         */
1781        pages_highmem = preallocate_image_highmem(highmem / 2);
1782        alloc = count - max_size;
1783        if (alloc > pages_highmem)
1784                alloc -= pages_highmem;
1785        else
1786                alloc = 0;
1787        pages = preallocate_image_memory(alloc, avail_normal);
1788        if (pages < alloc) {
1789                /* We have exhausted non-highmem pages, try highmem. */
1790                alloc -= pages;
1791                pages += pages_highmem;
1792                pages_highmem = preallocate_image_highmem(alloc);
1793                if (pages_highmem < alloc)
1794                        goto err_out;
1795                pages += pages_highmem;
1796                /*
1797                 * size is the desired number of saveable pages to leave in
1798                 * memory, so try to preallocate (all memory - size) pages.
1799                 */
1800                alloc = (count - pages) - size;
1801                pages += preallocate_image_highmem(alloc);
1802        } else {
1803                /*
1804                 * There are approximately max_size saveable pages at this point
1805                 * and we want to reduce this number down to size.
1806                 */
1807                alloc = max_size - size;
1808                size = preallocate_highmem_fraction(alloc, highmem, count);
1809                pages_highmem += size;
1810                alloc -= size;
1811                size = preallocate_image_memory(alloc, avail_normal);
1812                pages_highmem += preallocate_image_highmem(alloc - size);
1813                pages += pages_highmem + size;
1814        }
1815
1816        /*
1817         * We only need as many page frames for the image as there are saveable
1818         * pages in memory, but we have allocated more.  Release the excessive
1819         * ones now.
1820         */
1821        pages -= free_unnecessary_pages();
1822
1823 out:
1824        stop = ktime_get();
1825        pr_cont("done (allocated %lu pages)\n", pages);
1826        swsusp_show_speed(start, stop, pages, "Allocated");
1827
1828        return 0;
1829
1830 err_out:
1831        pr_cont("\n");
1832        swsusp_free();
1833        return -ENOMEM;
1834}
1835
1836#ifdef CONFIG_HIGHMEM
1837/**
1838 * count_pages_for_highmem - Count non-highmem pages needed for copying highmem.
1839 *
1840 * Compute the number of non-highmem pages that will be necessary for creating
1841 * copies of highmem pages.
1842 */
1843static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1844{
1845        unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1846
1847        if (free_highmem >= nr_highmem)
1848                nr_highmem = 0;
1849        else
1850                nr_highmem -= free_highmem;
1851
1852        return nr_highmem;
1853}
1854#else
1855static unsigned int count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1856#endif /* CONFIG_HIGHMEM */
1857
1858/**
1859 * enough_free_mem - Check if there is enough free memory for the image.
1860 */
1861static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1862{
1863        struct zone *zone;
1864        unsigned int free = alloc_normal;
1865
1866        for_each_populated_zone(zone)
1867                if (!is_highmem(zone))
1868                        free += zone_page_state(zone, NR_FREE_PAGES);
1869
1870        nr_pages += count_pages_for_highmem(nr_highmem);
1871        pr_debug("Normal pages needed: %u + %u, available pages: %u\n",
1872                 nr_pages, PAGES_FOR_IO, free);
1873
1874        return free > nr_pages + PAGES_FOR_IO;
1875}
1876
1877#ifdef CONFIG_HIGHMEM
1878/**
1879 * get_highmem_buffer - Allocate a buffer for highmem pages.
1880 *
1881 * If there are some highmem pages in the hibernation image, we may need a
1882 * buffer to copy them and/or load their data.
1883 */
1884static inline int get_highmem_buffer(int safe_needed)
1885{
1886        buffer = get_image_page(GFP_ATOMIC, safe_needed);
1887        return buffer ? 0 : -ENOMEM;
1888}
1889
1890/**
1891 * alloc_highmem_image_pages - Allocate some highmem pages for the image.
1892 *
1893 * Try to allocate as many pages as needed, but if the number of free highmem
1894 * pages is less than that, allocate them all.
1895 */
1896static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
1897                                               unsigned int nr_highmem)
1898{
1899        unsigned int to_alloc = count_free_highmem_pages();
1900
1901        if (to_alloc > nr_highmem)
1902                to_alloc = nr_highmem;
1903
1904        nr_highmem -= to_alloc;
1905        while (to_alloc-- > 0) {
1906                struct page *page;
1907
1908                page = alloc_image_page(__GFP_HIGHMEM|__GFP_KSWAPD_RECLAIM);
1909                memory_bm_set_bit(bm, page_to_pfn(page));
1910        }
1911        return nr_highmem;
1912}
1913#else
1914static inline int get_highmem_buffer(int safe_needed) { return 0; }
1915
1916static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
1917                                               unsigned int n) { return 0; }
1918#endif /* CONFIG_HIGHMEM */
1919
1920/**
1921 * swsusp_alloc - Allocate memory for hibernation image.
1922 *
1923 * We first try to allocate as many highmem pages as there are
1924 * saveable highmem pages in the system.  If that fails, we allocate
1925 * non-highmem pages for the copies of the remaining highmem ones.
1926 *
1927 * In this approach it is likely that the copies of highmem pages will
1928 * also be located in the high memory, because of the way in which
1929 * copy_data_pages() works.
1930 */
1931static int swsusp_alloc(struct memory_bitmap *copy_bm,
1932                        unsigned int nr_pages, unsigned int nr_highmem)
1933{
1934        if (nr_highmem > 0) {
1935                if (get_highmem_buffer(PG_ANY))
1936                        goto err_out;
1937                if (nr_highmem > alloc_highmem) {
1938                        nr_highmem -= alloc_highmem;
1939                        nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
1940                }
1941        }
1942        if (nr_pages > alloc_normal) {
1943                nr_pages -= alloc_normal;
1944                while (nr_pages-- > 0) {
1945                        struct page *page;
1946
1947                        page = alloc_image_page(GFP_ATOMIC);
1948                        if (!page)
1949                                goto err_out;
1950                        memory_bm_set_bit(copy_bm, page_to_pfn(page));
1951                }
1952        }
1953
1954        return 0;
1955
1956 err_out:
1957        swsusp_free();
1958        return -ENOMEM;
1959}
1960
1961asmlinkage __visible int swsusp_save(void)
1962{
1963        unsigned int nr_pages, nr_highmem;
1964
1965        pr_info("Creating hibernation image:\n");
1966
1967        drain_local_pages(NULL);
1968        nr_pages = count_data_pages();
1969        nr_highmem = count_highmem_pages();
1970        pr_info("Need to copy %u pages\n", nr_pages + nr_highmem);
1971
1972        if (!enough_free_mem(nr_pages, nr_highmem)) {
1973                pr_err("Not enough free memory\n");
1974                return -ENOMEM;
1975        }
1976
1977        if (swsusp_alloc(&copy_bm, nr_pages, nr_highmem)) {
1978                pr_err("Memory allocation failed\n");
1979                return -ENOMEM;
1980        }
1981
1982        /*
1983         * During allocating of suspend pagedir, new cold pages may appear.
1984         * Kill them.
1985         */
1986        drain_local_pages(NULL);
1987        copy_data_pages(&copy_bm, &orig_bm);
1988
1989        /*
1990         * End of critical section. From now on, we can write to memory,
1991         * but we should not touch disk. This specially means we must _not_
1992         * touch swap space! Except we must write out our image of course.
1993         */
1994
1995        nr_pages += nr_highmem;
1996        nr_copy_pages = nr_pages;
1997        nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
1998
1999        pr_info("Hibernation image created (%d pages copied)\n", nr_pages);
2000
2001        return 0;
2002}
2003
2004#ifndef CONFIG_ARCH_HIBERNATION_HEADER
2005static int init_header_complete(struct swsusp_info *info)
2006{
2007        memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
2008        info->version_code = LINUX_VERSION_CODE;
2009        return 0;
2010}
2011
2012static char *check_image_kernel(struct swsusp_info *info)
2013{
2014        if (info->version_code != LINUX_VERSION_CODE)
2015                return "kernel version";
2016        if (strcmp(info->uts.sysname,init_utsname()->sysname))
2017                return "system type";
2018        if (strcmp(info->uts.release,init_utsname()->release))
2019                return "kernel release";
2020        if (strcmp(info->uts.version,init_utsname()->version))
2021                return "version";
2022        if (strcmp(info->uts.machine,init_utsname()->machine))
2023                return "machine";
2024        return NULL;
2025}
2026#endif /* CONFIG_ARCH_HIBERNATION_HEADER */
2027
2028unsigned long snapshot_get_image_size(void)
2029{
2030        return nr_copy_pages + nr_meta_pages + 1;
2031}
2032
2033static int init_header(struct swsusp_info *info)
2034{
2035        memset(info, 0, sizeof(struct swsusp_info));
2036        info->num_physpages = get_num_physpages();
2037        info->image_pages = nr_copy_pages;
2038        info->pages = snapshot_get_image_size();
2039        info->size = info->pages;
2040        info->size <<= PAGE_SHIFT;
2041        return init_header_complete(info);
2042}
2043
2044/**
2045 * pack_pfns - Prepare PFNs for saving.
2046 * @bm: Memory bitmap.
2047 * @buf: Memory buffer to store the PFNs in.
2048 *
2049 * PFNs corresponding to set bits in @bm are stored in the area of memory
2050 * pointed to by @buf (1 page at a time).
2051 */
2052static inline void pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
2053{
2054        int j;
2055
2056        for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2057                buf[j] = memory_bm_next_pfn(bm);
2058                if (unlikely(buf[j] == BM_END_OF_MAP))
2059                        break;
2060                /* Save page key for data page (s390 only). */
2061                page_key_read(buf + j);
2062        }
2063}
2064
2065/**
2066 * snapshot_read_next - Get the address to read the next image page from.
2067 * @handle: Snapshot handle to be used for the reading.
2068 *
2069 * On the first call, @handle should point to a zeroed snapshot_handle
2070 * structure.  The structure gets populated then and a pointer to it should be
2071 * passed to this function every next time.
2072 *
2073 * On success, the function returns a positive number.  Then, the caller
2074 * is allowed to read up to the returned number of bytes from the memory
2075 * location computed by the data_of() macro.
2076 *
2077 * The function returns 0 to indicate the end of the data stream condition,
2078 * and negative numbers are returned on errors.  If that happens, the structure
2079 * pointed to by @handle is not updated and should not be used any more.
2080 */
2081int snapshot_read_next(struct snapshot_handle *handle)
2082{
2083        if (handle->cur > nr_meta_pages + nr_copy_pages)
2084                return 0;
2085
2086        if (!buffer) {
2087                /* This makes the buffer be freed by swsusp_free() */
2088                buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2089                if (!buffer)
2090                        return -ENOMEM;
2091        }
2092        if (!handle->cur) {
2093                int error;
2094
2095                error = init_header((struct swsusp_info *)buffer);
2096                if (error)
2097                        return error;
2098                handle->buffer = buffer;
2099                memory_bm_position_reset(&orig_bm);
2100                memory_bm_position_reset(&copy_bm);
2101        } else if (handle->cur <= nr_meta_pages) {
2102                clear_page(buffer);
2103                pack_pfns(buffer, &orig_bm);
2104        } else {
2105                struct page *page;
2106
2107                page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
2108                if (PageHighMem(page)) {
2109                        /*
2110                         * Highmem pages are copied to the buffer,
2111                         * because we can't return with a kmapped
2112                         * highmem page (we may not be called again).
2113                         */
2114                        void *kaddr;
2115
2116                        kaddr = kmap_atomic(page);
2117                        copy_page(buffer, kaddr);
2118                        kunmap_atomic(kaddr);
2119                        handle->buffer = buffer;
2120                } else {
2121                        handle->buffer = page_address(page);
2122                }
2123        }
2124        handle->cur++;
2125        return PAGE_SIZE;
2126}
2127
2128static void duplicate_memory_bitmap(struct memory_bitmap *dst,
2129                                    struct memory_bitmap *src)
2130{
2131        unsigned long pfn;
2132
2133        memory_bm_position_reset(src);
2134        pfn = memory_bm_next_pfn(src);
2135        while (pfn != BM_END_OF_MAP) {
2136                memory_bm_set_bit(dst, pfn);
2137                pfn = memory_bm_next_pfn(src);
2138        }
2139}
2140
2141/**
2142 * mark_unsafe_pages - Mark pages that were used before hibernation.
2143 *
2144 * Mark the pages that cannot be used for storing the image during restoration,
2145 * because they conflict with the pages that had been used before hibernation.
2146 */
2147static void mark_unsafe_pages(struct memory_bitmap *bm)
2148{
2149        unsigned long pfn;
2150
2151        /* Clear the "free"/"unsafe" bit for all PFNs */
2152        memory_bm_position_reset(free_pages_map);
2153        pfn = memory_bm_next_pfn(free_pages_map);
2154        while (pfn != BM_END_OF_MAP) {
2155                memory_bm_clear_current(free_pages_map);
2156                pfn = memory_bm_next_pfn(free_pages_map);
2157        }
2158
2159        /* Mark pages that correspond to the "original" PFNs as "unsafe" */
2160        duplicate_memory_bitmap(free_pages_map, bm);
2161
2162        allocated_unsafe_pages = 0;
2163}
2164
2165static int check_header(struct swsusp_info *info)
2166{
2167        char *reason;
2168
2169        reason = check_image_kernel(info);
2170        if (!reason && info->num_physpages != get_num_physpages())
2171                reason = "memory size";
2172        if (reason) {
2173                pr_err("Image mismatch: %s\n", reason);
2174                return -EPERM;
2175        }
2176        return 0;
2177}
2178
2179/**
2180 * load header - Check the image header and copy the data from it.
2181 */
2182static int load_header(struct swsusp_info *info)
2183{
2184        int error;
2185
2186        restore_pblist = NULL;
2187        error = check_header(info);
2188        if (!error) {
2189                nr_copy_pages = info->image_pages;
2190                nr_meta_pages = info->pages - info->image_pages - 1;
2191        }
2192        return error;
2193}
2194
2195/**
2196 * unpack_orig_pfns - Set bits corresponding to given PFNs in a memory bitmap.
2197 * @bm: Memory bitmap.
2198 * @buf: Area of memory containing the PFNs.
2199 *
2200 * For each element of the array pointed to by @buf (1 page at a time), set the
2201 * corresponding bit in @bm.
2202 */
2203static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
2204{
2205        int j;
2206
2207        for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2208                if (unlikely(buf[j] == BM_END_OF_MAP))
2209                        break;
2210
2211                /* Extract and buffer page key for data page (s390 only). */
2212                page_key_memorize(buf + j);
2213
2214                if (pfn_valid(buf[j]) && memory_bm_pfn_present(bm, buf[j]))
2215                        memory_bm_set_bit(bm, buf[j]);
2216                else
2217                        return -EFAULT;
2218        }
2219
2220        return 0;
2221}
2222
2223#ifdef CONFIG_HIGHMEM
2224/*
2225 * struct highmem_pbe is used for creating the list of highmem pages that
2226 * should be restored atomically during the resume from disk, because the page
2227 * frames they have occupied before the suspend are in use.
2228 */
2229struct highmem_pbe {
2230        struct page *copy_page; /* data is here now */
2231        struct page *orig_page; /* data was here before the suspend */
2232        struct highmem_pbe *next;
2233};
2234
2235/*
2236 * List of highmem PBEs needed for restoring the highmem pages that were
2237 * allocated before the suspend and included in the suspend image, but have
2238 * also been allocated by the "resume" kernel, so their contents cannot be
2239 * written directly to their "original" page frames.
2240 */
2241static struct highmem_pbe *highmem_pblist;
2242
2243/**
2244 * count_highmem_image_pages - Compute the number of highmem pages in the image.
2245 * @bm: Memory bitmap.
2246 *
2247 * The bits in @bm that correspond to image pages are assumed to be set.
2248 */
2249static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
2250{
2251        unsigned long pfn;
2252        unsigned int cnt = 0;
2253
2254        memory_bm_position_reset(bm);
2255        pfn = memory_bm_next_pfn(bm);
2256        while (pfn != BM_END_OF_MAP) {
2257                if (PageHighMem(pfn_to_page(pfn)))
2258                        cnt++;
2259
2260                pfn = memory_bm_next_pfn(bm);
2261        }
2262        return cnt;
2263}
2264
2265static unsigned int safe_highmem_pages;
2266
2267static struct memory_bitmap *safe_highmem_bm;
2268
2269/**
2270 * prepare_highmem_image - Allocate memory for loading highmem data from image.
2271 * @bm: Pointer to an uninitialized memory bitmap structure.
2272 * @nr_highmem_p: Pointer to the number of highmem image pages.
2273 *
2274 * Try to allocate as many highmem pages as there are highmem image pages
2275 * (@nr_highmem_p points to the variable containing the number of highmem image
2276 * pages).  The pages that are "safe" (ie. will not be overwritten when the
2277 * hibernation image is restored entirely) have the corresponding bits set in
2278 * @bm (it must be unitialized).
2279 *
2280 * NOTE: This function should not be called if there are no highmem image pages.
2281 */
2282static int prepare_highmem_image(struct memory_bitmap *bm,
2283                                 unsigned int *nr_highmem_p)
2284{
2285        unsigned int to_alloc;
2286
2287        if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
2288                return -ENOMEM;
2289
2290        if (get_highmem_buffer(PG_SAFE))
2291                return -ENOMEM;
2292
2293        to_alloc = count_free_highmem_pages();
2294        if (to_alloc > *nr_highmem_p)
2295                to_alloc = *nr_highmem_p;
2296        else
2297                *nr_highmem_p = to_alloc;
2298
2299        safe_highmem_pages = 0;
2300        while (to_alloc-- > 0) {
2301                struct page *page;
2302
2303                page = alloc_page(__GFP_HIGHMEM);
2304                if (!swsusp_page_is_free(page)) {
2305                        /* The page is "safe", set its bit the bitmap */
2306                        memory_bm_set_bit(bm, page_to_pfn(page));
2307                        safe_highmem_pages++;
2308                }
2309                /* Mark the page as allocated */
2310                swsusp_set_page_forbidden(page);
2311                swsusp_set_page_free(page);
2312        }
2313        memory_bm_position_reset(bm);
2314        safe_highmem_bm = bm;
2315        return 0;
2316}
2317
2318static struct page *last_highmem_page;
2319
2320/**
2321 * get_highmem_page_buffer - Prepare a buffer to store a highmem image page.
2322 *
2323 * For a given highmem image page get a buffer that suspend_write_next() should
2324 * return to its caller to write to.
2325 *
2326 * If the page is to be saved to its "original" page frame or a copy of
2327 * the page is to be made in the highmem, @buffer is returned.  Otherwise,
2328 * the copy of the page is to be made in normal memory, so the address of
2329 * the copy is returned.
2330 *
2331 * If @buffer is returned, the caller of suspend_write_next() will write
2332 * the page's contents to @buffer, so they will have to be copied to the
2333 * right location on the next call to suspend_write_next() and it is done
2334 * with the help of copy_last_highmem_page().  For this purpose, if
2335 * @buffer is returned, @last_highmem_page is set to the page to which
2336 * the data will have to be copied from @buffer.
2337 */
2338static void *get_highmem_page_buffer(struct page *page,
2339                                     struct chain_allocator *ca)
2340{
2341        struct highmem_pbe *pbe;
2342        void *kaddr;
2343
2344        if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
2345                /*
2346                 * We have allocated the "original" page frame and we can
2347                 * use it directly to store the loaded page.
2348                 */
2349                last_highmem_page = page;
2350                return buffer;
2351        }
2352        /*
2353         * The "original" page frame has not been allocated and we have to
2354         * use a "safe" page frame to store the loaded page.
2355         */
2356        pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
2357        if (!pbe) {
2358                swsusp_free();
2359                return ERR_PTR(-ENOMEM);
2360        }
2361        pbe->orig_page = page;
2362        if (safe_highmem_pages > 0) {
2363                struct page *tmp;
2364
2365                /* Copy of the page will be stored in high memory */
2366                kaddr = buffer;
2367                tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
2368                safe_highmem_pages--;
2369                last_highmem_page = tmp;
2370                pbe->copy_page = tmp;
2371        } else {
2372                /* Copy of the page will be stored in normal memory */
2373                kaddr = safe_pages_list;
2374                safe_pages_list = safe_pages_list->next;
2375                pbe->copy_page = virt_to_page(kaddr);
2376        }
2377        pbe->next = highmem_pblist;
2378        highmem_pblist = pbe;
2379        return kaddr;
2380}
2381
2382/**
2383 * copy_last_highmem_page - Copy most the most recent highmem image page.
2384 *
2385 * Copy the contents of a highmem image from @buffer, where the caller of
2386 * snapshot_write_next() has stored them, to the right location represented by
2387 * @last_highmem_page .
2388 */
2389static void copy_last_highmem_page(void)
2390{
2391        if (last_highmem_page) {
2392                void *dst;
2393
2394                dst = kmap_atomic(last_highmem_page);
2395                copy_page(dst, buffer);
2396                kunmap_atomic(dst);
2397                last_highmem_page = NULL;
2398        }
2399}
2400
2401static inline int last_highmem_page_copied(void)
2402{
2403        return !last_highmem_page;
2404}
2405
2406static inline void free_highmem_data(void)
2407{
2408        if (safe_highmem_bm)
2409                memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
2410
2411        if (buffer)
2412                free_image_page(buffer, PG_UNSAFE_CLEAR);
2413}
2414#else
2415static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
2416
2417static inline int prepare_highmem_image(struct memory_bitmap *bm,
2418                                        unsigned int *nr_highmem_p) { return 0; }
2419
2420static inline void *get_highmem_page_buffer(struct page *page,
2421                                            struct chain_allocator *ca)
2422{
2423        return ERR_PTR(-EINVAL);
2424}
2425
2426static inline void copy_last_highmem_page(void) {}
2427static inline int last_highmem_page_copied(void) { return 1; }
2428static inline void free_highmem_data(void) {}
2429#endif /* CONFIG_HIGHMEM */
2430
2431#define PBES_PER_LINKED_PAGE    (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2432
2433/**
2434 * prepare_image - Make room for loading hibernation image.
2435 * @new_bm: Unitialized memory bitmap structure.
2436 * @bm: Memory bitmap with unsafe pages marked.
2437 *
2438 * Use @bm to mark the pages that will be overwritten in the process of
2439 * restoring the system memory state from the suspend image ("unsafe" pages)
2440 * and allocate memory for the image.
2441 *
2442 * The idea is to allocate a new memory bitmap first and then allocate
2443 * as many pages as needed for image data, but without specifying what those
2444 * pages will be used for just yet.  Instead, we mark them all as allocated and
2445 * create a lists of "safe" pages to be used later.  On systems with high
2446 * memory a list of "safe" highmem pages is created too.
2447 */
2448static int prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
2449{
2450        unsigned int nr_pages, nr_highmem;
2451        struct linked_page *lp;
2452        int error;
2453
2454        /* If there is no highmem, the buffer will not be necessary */
2455        free_image_page(buffer, PG_UNSAFE_CLEAR);
2456        buffer = NULL;
2457
2458        nr_highmem = count_highmem_image_pages(bm);
2459        mark_unsafe_pages(bm);
2460
2461        error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2462        if (error)
2463                goto Free;
2464
2465        duplicate_memory_bitmap(new_bm, bm);
2466        memory_bm_free(bm, PG_UNSAFE_KEEP);
2467        if (nr_highmem > 0) {
2468                error = prepare_highmem_image(bm, &nr_highmem);
2469                if (error)
2470                        goto Free;
2471        }
2472        /*
2473         * Reserve some safe pages for potential later use.
2474         *
2475         * NOTE: This way we make sure there will be enough safe pages for the
2476         * chain_alloc() in get_buffer().  It is a bit wasteful, but
2477         * nr_copy_pages cannot be greater than 50% of the memory anyway.
2478         *
2479         * nr_copy_pages cannot be less than allocated_unsafe_pages too.
2480         */
2481        nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2482        nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2483        while (nr_pages > 0) {
2484                lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2485                if (!lp) {
2486                        error = -ENOMEM;
2487                        goto Free;
2488                }
2489                lp->next = safe_pages_list;
2490                safe_pages_list = lp;
2491                nr_pages--;
2492        }
2493        /* Preallocate memory for the image */
2494        nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2495        while (nr_pages > 0) {
2496                lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2497                if (!lp) {
2498                        error = -ENOMEM;
2499                        goto Free;
2500                }
2501                if (!swsusp_page_is_free(virt_to_page(lp))) {
2502                        /* The page is "safe", add it to the list */
2503                        lp->next = safe_pages_list;
2504                        safe_pages_list = lp;
2505                }
2506                /* Mark the page as allocated */
2507                swsusp_set_page_forbidden(virt_to_page(lp));
2508                swsusp_set_page_free(virt_to_page(lp));
2509                nr_pages--;
2510        }
2511        return 0;
2512
2513 Free:
2514        swsusp_free();
2515        return error;
2516}
2517
2518/**
2519 * get_buffer - Get the address to store the next image data page.
2520 *
2521 * Get the address that snapshot_write_next() should return to its caller to
2522 * write to.
2523 */
2524static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2525{
2526        struct pbe *pbe;
2527        struct page *page;
2528        unsigned long pfn = memory_bm_next_pfn(bm);
2529
2530        if (pfn == BM_END_OF_MAP)
2531                return ERR_PTR(-EFAULT);
2532
2533        page = pfn_to_page(pfn);
2534        if (PageHighMem(page))
2535                return get_highmem_page_buffer(page, ca);
2536
2537        if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2538                /*
2539                 * We have allocated the "original" page frame and we can
2540                 * use it directly to store the loaded page.
2541                 */
2542                return page_address(page);
2543
2544        /*
2545         * The "original" page frame has not been allocated and we have to
2546         * use a "safe" page frame to store the loaded page.
2547         */
2548        pbe = chain_alloc(ca, sizeof(struct pbe));
2549        if (!pbe) {
2550                swsusp_free();
2551                return ERR_PTR(-ENOMEM);
2552        }
2553        pbe->orig_address = page_address(page);
2554        pbe->address = safe_pages_list;
2555        safe_pages_list = safe_pages_list->next;
2556        pbe->next = restore_pblist;
2557        restore_pblist = pbe;
2558        return pbe->address;
2559}
2560
2561/**
2562 * snapshot_write_next - Get the address to store the next image page.
2563 * @handle: Snapshot handle structure to guide the writing.
2564 *
2565 * On the first call, @handle should point to a zeroed snapshot_handle
2566 * structure.  The structure gets populated then and a pointer to it should be
2567 * passed to this function every next time.
2568 *
2569 * On success, the function returns a positive number.  Then, the caller
2570 * is allowed to write up to the returned number of bytes to the memory
2571 * location computed by the data_of() macro.
2572 *
2573 * The function returns 0 to indicate the "end of file" condition.  Negative
2574 * numbers are returned on errors, in which cases the structure pointed to by
2575 * @handle is not updated and should not be used any more.
2576 */
2577int snapshot_write_next(struct snapshot_handle *handle)
2578{
2579        static struct chain_allocator ca;
2580        int error = 0;
2581
2582        /* Check if we have already loaded the entire image */
2583        if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
2584                return 0;
2585
2586        handle->sync_read = 1;
2587
2588        if (!handle->cur) {
2589                if (!buffer)
2590                        /* This makes the buffer be freed by swsusp_free() */
2591                        buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2592
2593                if (!buffer)
2594                        return -ENOMEM;
2595
2596                handle->buffer = buffer;
2597        } else if (handle->cur == 1) {
2598                error = load_header(buffer);
2599                if (error)
2600                        return error;
2601
2602                safe_pages_list = NULL;
2603
2604                error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
2605                if (error)
2606                        return error;
2607
2608                /* Allocate buffer for page keys. */
2609                error = page_key_alloc(nr_copy_pages);
2610                if (error)
2611                        return error;
2612
2613                hibernate_restore_protection_begin();
2614        } else if (handle->cur <= nr_meta_pages + 1) {
2615                error = unpack_orig_pfns(buffer, &copy_bm);
2616                if (error)
2617                        return error;
2618
2619                if (handle->cur == nr_meta_pages + 1) {
2620                        error = prepare_image(&orig_bm, &copy_bm);
2621                        if (error)
2622                                return error;
2623
2624                        chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2625                        memory_bm_position_reset(&orig_bm);
2626                        restore_pblist = NULL;
2627                        handle->buffer = get_buffer(&orig_bm, &ca);
2628                        handle->sync_read = 0;
2629                        if (IS_ERR(handle->buffer))
2630                                return PTR_ERR(handle->buffer);
2631                }
2632        } else {
2633                copy_last_highmem_page();
2634                /* Restore page key for data page (s390 only). */
2635                page_key_write(handle->buffer);
2636                hibernate_restore_protect_page(handle->buffer);
2637                handle->buffer = get_buffer(&orig_bm, &ca);
2638                if (IS_ERR(handle->buffer))
2639                        return PTR_ERR(handle->buffer);
2640                if (handle->buffer != buffer)
2641                        handle->sync_read = 0;
2642        }
2643        handle->cur++;
2644        return PAGE_SIZE;
2645}
2646
2647/**
2648 * snapshot_write_finalize - Complete the loading of a hibernation image.
2649 *
2650 * Must be called after the last call to snapshot_write_next() in case the last
2651 * page in the image happens to be a highmem page and its contents should be
2652 * stored in highmem.  Additionally, it recycles bitmap memory that's not
2653 * necessary any more.
2654 */
2655void snapshot_write_finalize(struct snapshot_handle *handle)
2656{
2657        copy_last_highmem_page();
2658        /* Restore page key for data page (s390 only). */
2659        page_key_write(handle->buffer);
2660        page_key_free();
2661        hibernate_restore_protect_page(handle->buffer);
2662        /* Do that only if we have loaded the image entirely */
2663        if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
2664                memory_bm_recycle(&orig_bm);
2665                free_highmem_data();
2666        }
2667}
2668
2669int snapshot_image_loaded(struct snapshot_handle *handle)
2670{
2671        return !(!nr_copy_pages || !last_highmem_page_copied() ||
2672                        handle->cur <= nr_meta_pages + nr_copy_pages);
2673}
2674
2675#ifdef CONFIG_HIGHMEM
2676/* Assumes that @buf is ready and points to a "safe" page */
2677static inline void swap_two_pages_data(struct page *p1, struct page *p2,
2678                                       void *buf)
2679{
2680        void *kaddr1, *kaddr2;
2681
2682        kaddr1 = kmap_atomic(p1);
2683        kaddr2 = kmap_atomic(p2);
2684        copy_page(buf, kaddr1);
2685        copy_page(kaddr1, kaddr2);
2686        copy_page(kaddr2, buf);
2687        kunmap_atomic(kaddr2);
2688        kunmap_atomic(kaddr1);
2689}
2690
2691/**
2692 * restore_highmem - Put highmem image pages into their original locations.
2693 *
2694 * For each highmem page that was in use before hibernation and is included in
2695 * the image, and also has been allocated by the "restore" kernel, swap its
2696 * current contents with the previous (ie. "before hibernation") ones.
2697 *
2698 * If the restore eventually fails, we can call this function once again and
2699 * restore the highmem state as seen by the restore kernel.
2700 */
2701int restore_highmem(void)
2702{
2703        struct highmem_pbe *pbe = highmem_pblist;
2704        void *buf;
2705
2706        if (!pbe)
2707                return 0;
2708
2709        buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2710        if (!buf)
2711                return -ENOMEM;
2712
2713        while (pbe) {
2714                swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2715                pbe = pbe->next;
2716        }
2717        free_image_page(buf, PG_UNSAFE_CLEAR);
2718        return 0;
2719}
2720#endif /* CONFIG_HIGHMEM */
2721